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Abstract

Within the Transport Layer Security (TLS) Protocol Version 1.3, RFC 7748 specifies elliptic
curves targeted at the 128-bit and the 224-bit security levels. For the 128-bit security level, the
Montgomery curve Curve25519 and its birationally equivalent twisted Edwards curve Ed25519 are
specified; for the 224-bit security level, the Montgomery curve Curve448, the Edwards curve Ed-
wards448 (which is isogenous to Curve448) and another Edwards curve which is birationally equiva-
lent to Curve448 are specified. The contribution of this work is to propose new pairs of Montgomery-
Edwards curves at both the 128-bit and the 224-bit security levels. The new curves are nice in the
sense that they have very small curve coefficients and base points. Compared to the curves in
RFC 7748, the new curves lose two bits of security. The main advantage of the new curves over those
in RFC 7748 is that for 64-bit implementation, all the reduction steps on the outputs of additions
and subtractions in the ladder algorithm can be omitted. For 64-bit implementations on the Skylake
and the Kaby Lake processors, about 21% improvement in speed is achieved at the 128-bit security
level and about 28% improvement in speed is obtained at the 224-bit security level.

Keywords: Elliptic curve cryptography, Montgomery form, Edwards form, Transport Layer Se-
curity.

1 Introduction

Elliptic curves were independently introduced in cryptography by Koblitz [21] and Miller [23]. Since
their introduction, a large literature has developed around the theory and application of elliptic curves
in cryptography. Presently, elliptic curve cryptography is widely used in practical systems. Several
standards and proposals have been put forward by a number of influential organisations [13, 29, 9, 31].

The Transport Layer Security (TLS) Protocol, Version 1.3 [30] has been proposed by the Internet En-
gineering Task Force. This includes RFC 7748 [22] which specifies certain elliptic curves. The document
specifies Montgomery form curves and their birationally equivalent Edwards form curves.

Given a prime p, a parameter A ∈ Fp \ {−2, 2} defines the Montgomery curve EM,A,1 : y2 = x3 +
Ax2+x. Similarly, a parameter d ∈ Fp \{0, 1,−1} defines the Edwards curve EE,1,d : u2+v2 = 1+du2v2

or the twisted Edwards curve EE,−1,d : −u2 + v2 = 1 + du2v2.
We follow a “power-free” and “subscript-free” naming convention for primes and curves. The prime

2251 − 9 will be denoted as p251-9, 2255 − 19 will be denoted as p255-19, 2444 − 17 will be denoted as
p444-17, and 2448− 2224− 1 will be denoted as p448-224-1. A Montgomery curve EM,A,1 will be denoted
as M [A]; an Edwards curve EE,1,d will be denoted as E[d] and a twisted Edwards curve EE,−1,d will

be denoted as Ẽ[d]. If we wish to emphasize the underlying field Fp, we will write M [p,A], E[p, d] and

Ẽ[p, d] instead of M [A], E[d] and Ẽ[d] respectively. In terms of this naming convention, the parameters
of the new curves and those in RFC 7748 are shown in Table 1.

Curves proposed in RFC 7748:

Over p255-19: The birationally equivalent pair (M [486662], Ẽ[121665/121666]) has been proposed. The

curve M [486662] is the famous Curve25519 and was introduced in [3]. The curve Ẽ[121665/121666]
is the famous Ed25519 curve and was introduced in [5].
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Sec Prime Mont (h, hT ) (k, kT ) Security Mont Ed Ed

Level Base Pt Base Pt

≈ 128
p251-9 M [4698] (4, 4) (`− 1, `T−1

2
) 124.5 (3, ·) E[ 1175

1174
] (·, 2)

p255-19 M [486662] (8, 4) ( `−1
6

, `T−1
2

) 126 (9, ·) Ẽ[ 121665
121666

] (·, 4/5)

≈ 224
p444-17 M [4058] (4, 4) ( `−1

3
, `T − 1) 221 (3, ·) E[ 1015

1014
] (·, 2)

p448-224-1 M [156326] (4, 4) ( `−1
2

, `T−1
4

) 223 (5, ·) E[ 39082
39081

] (·,−3/2)

Table 1: Parameters of curves. See Section 2.3 for the definition of the parameters.

Over p448-224-1: The curves M [156326], E[39082/39081] and E[−39081] have been proposed. The
curveM [156326] has been named Curve448 in [22]. The curve E[−39081] was proposed in [17] where
it was named Ed448-Goldilocks and in [22], it has been called Edwards448. The isogenies between
M [156326] and E[−39081] and the birational equivalence between M [156326] and E[39082/39081]
have been identified in [22].

Curve25519 and Ed25519 are targeted at the 128-bit security level while Curve448 and Edwards448 are
targeted at the 224-bit security level.

Our Contributions

Through this work we propose two new curves at the 128-bit and the 224-bit security levels.

New curves: We introduce the following pairs of birationally equivalent curves.

Over p251-9: (M [4698], E[1175/1174]).

Over p444-17: (M [4058], E[1015/1014]).

The prime p251-9 was considered in [6] where the curve u2 + v2 = 1 − 1174u2v2 was introduced
and named Curve1174. The Montgomery curve (4/1175)y2 = x3 + (4/1175 − 2)x2 + x with base point
(4, ·) was considered as birationally equivalent to Curve1174; the corresponding base point on Curve1174
is (·, 3/5). Using the isogenies given in [11], it can be shown that M [p251-9, 4698] is 4-isogenous to
Curve1174 which was introduced in [6].

To the best of our knowledge, neither M [p251-9, 4698] nor E[p251-9, 1175/1174] was earlier considered
in the literature. Further, the prime p444-17 has not been earlier considered in the literature and so
neither M [p444-17, 4058] nor E[p444-17, 1015/1014] have been considered in the literature.

Table 1 compares the parameters of the newly proposed curves with those in RFC 7748. Note that the
curve coefficients of the new curves are quite small. Also, the fixed base points for the new Montgomery
and Edwards curve are also very small. In fact, the fixed base point over both the new Edwards curves is
(·, 2). As we explain later, this has a significant effect on the speed of fixed base point scalar multiplication
over such curves.

Improvements to Montgomery ladder computation: The improvement is based on working with
a slightly smaller prime. Suppose m = dlog2 pe and elements of Fp are represented using κ 64-bit words.
We show that if 64κ−m ≥ 3, then it is possible to omit performing the reduction step on the outputs of
all the addition/subtraction operations in the ladder step. This is the major reason for obtaining faster
ladder computation modulo 2251 − 9 compared to 2255 − 19 and for obtaining faster ladder computation
modulo 2444 − 17 compared to 2448 − 2224 − 1.

We put forward the curve M [p251-9, 4698] as a faster alternative to Curve25519 and the curve
M [p444-17, 4058] as a faster alternative to Curve448. In both cases, the loss in security is about 2 bits. For
64-bit implementations on the Skylake and Kaby Lake processors, the gain in speed of M [p251-9, 4698]
over Curve25519 is about 21% while the gain in speed of M [p444-17, 4058] over Curve448 is about 28%.

Related Works

In this work, we consider elliptic curves over large prime order fields. We note that elliptic curves over
composite order fields have been proposed in the literature [18, 18, 18, 18, 10]. Cryptography over hyper-
elliptic curves was proposed by Koblitz [18] and there have been concrete proposals for cryptography in
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genus 2 [16, 8, 1]. For the same security level, computations over these proposals are faster than over
genus one prime order field curves. On the other hand, the security perception for composite order fields
and genus two curves is different from that of elliptic curves over prime order fields. It is perhaps due to
this perception issue that elliptic curves over prime order fields remain to be of primary interest.

Variable base scalar multiplication over Kummer lines associated with Legendre form elliptic curves
have been proposed in the literature [15]. These have very efficient vectorised implementations [20]. So,
if applications are targeted primarily for vector implementations, then the curves proposed in [20] will
be the primary choice. On the other hand, for non-vectorised implementations, Montgomery curves will
be faster.

2 Montgomery and (Twisted) Edwards Form Elliptic Curves

We consider elliptic curves over a field Fp where p is a prime.
In general, the Montgomery form elliptic curve EM,A,B is given by the equation EM,A,B : By2 =

x3 +Ax2 +x with A ∈ Fp \{−2, 2} and B ∈ Fp \{0}. In general, the twisted Edwards form elliptic curve
EE,a,d is given by the equation EE,a,d : au2 + v2 = 1 + du2v2 with a, d ∈ Fp \ {0} and a 6= d. If a = 1,
then the corresponding curve is simply called an Edwards form curve (instead of twisted Edwards form
curve). If a is a square and d is not a square in Fp, then the addition formula in EE,a,d is complete [4].
In this case, EE,a,d is called a complete twisted Edwards curve. For further details about Montgomery
curves, we refer to [24, 7, 12] and for (twisted) Edwards curves, we refer to [14, 2, 4].

In the following discussion, a full field multiplication (resp. squaring) in Fp will be denoted as [M]
(resp. [S]); if one of the multiplicands is a constant, the resulting multiplication will be denoted as [C].

2.1 Addition on Complete (Twisted) Edwards Curves

Following [19], the extended affine coordinate system is (u, v, t) with t = uv. The projective version of
this coordinate system is (U, V, T,W ) where u = U/W , v = V/W and t = T/W . Suppose, it is required
to add (U1 : V1 : T1 : W1) and (U2 : V2 : T2 : W2) to obtain (U3 : V3 : T3 : W3). The formulas for
U3, V3, T3 and W3 are as follows [19].

U3 = (U1V2 + V1U2)(W1W2 − dT1T2)
V3 = (V1V2 − aU1U2)(W1W2 + dT1T2)
T3 = (U1V2 + V1U2)(V1V2 − aU1U2)
W3 = (W1W2 + dT1T2)(W1W2 − dT1T2).

 (1)

1. Computing V1V2 and U1U2 and then computing U1V2 +V1U2 as (U1 +V1)(U2 +V2)− (U1U2 +V1V2)
leads to an algorithm for computing U3, V3, T3 and W3 using 9[M]+2[C] operations, where the
multiplications by the two constants are by a and d. If a = 1, then the number of operations is
9[M]+1[C].

2. If a = −1, then by first computing α = (V1 + U1)(V2 + U2), β = (V1 − U1)(V2 − U2) and then
computing 2(V1V2 + U1U2) = α + β and 2(V1U2 + U1V2) = α − β, the number of operations can
be brought down to 8[M]+1[C] [19], where 1[C] corresponds to a multiplication by d. The relevant
formula becomes the following.

4U3 = 2(U1V2 + V1U2)(2W1W2 − 2dT1T2) = (α− β)(2W1W2 − 2dT1T2)
4V3 = 2(V1V2 + U1U2)(2W1W2 + 2dT1T2) = (α+ β)(2W1W2 + 2dT1T2)
4T3 = 2(U1V2 + V1U2)2(V1V2 + U1U2) = (α− β)(α+ β)

4W3 = (2W1W2 + 2dT1T2)(2W1W2 − 2dT1T2).

 (2)

If W1 = 1, the number of operations required is 7[M]+1[C] [19].

3. For a = −1, suppose (U1 : V1 : T1 : W1) is a fixed base point with W1 = 1. By pre-computing and
storing (V1 − U1, V1 + U1, 2dT1) the number of operations can be brought down to 7[M] [5]. The
multiplication by d becomes part of the pre-computed quantity 2dT1. In this formula, since the
multiplication by d is part of the pre-computed quantity 2dT1, the efficiency of the computation is
not affected by whether d is small or large. Also, the efficiency of the computation is not affected
by whether V1 (or U1) is small or large.

Consider (1) for a = 1 and suppose (U1 : V1 : T1 : W1) is a fixed base point where W1 = 1. Further sup-
pose that V1 is small and U1 +V1 and dT1 are pre-computed and stored as part of (U1, V1, U1 +V1, dT1).
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In (1), by directly computing U1V2, V1U2, U1U2 and V1V2, (dT1)T2 along with the other four multiplica-
tions, the formulas in (1) can be computed using 7[M]+2[C], where 2[C] counts the multiplications V1U2

and V1V2. The efficiency of the computation following this strategy is not affected by whether d is small
or large. For the curves that we introduce, V1 is equal to 2 as can be seen from Table 1. So, for fixed base
multiplication, the difference in the cost between a = −1 and a = 1 is essentially two multiplications by
very small constants.

For dedicated (not unified) addition in Ẽ[p, d], it has been shown in [19] that 8[M] operations are
sufficient without the assumption that (U1 : V1 : T1 : W1) is a fixed base point. The corresponding
formulas do not involve d. Further, Section 4.3 of [19] shows how to perform efficient scalar multiplication
using fast formulas for dedicated addition and dedicated doubling that do not involve d. The resulting
scalar multiplication is not necessarily constant time and can be used only when the scalars are not
secret.

Summary:

Role of d: For the fastest formulas, the size of d does not play a role.

� For fixed base point scalar multiplication, the fastest complete addition formulas over both
E[d] and Ẽ[d] do not depend on the size of d.

� For scalar multiplication with non-secret scalars, the fastest formulas do not involve d.

Size of fixed base point:

� For Ẽ[p, d], the fastest formula for complete and unified addition does not depend on the size
of any of the components of the fixed base point. The number of operations required is 7[M].

� For E[p, d], the fastest formula for complete and unified addition is achieved when V1 is small.
The number of operations required is 7[M]+2[C], where 2[C] counts two multiplications by
very small constants. In particular, for both E[p251-9, 11751174 ] and E[p444-17, 10151014 ], (·, 2) is a
base point. So, the multiplication by constant is the operation of multiplying an element of
Fp by 2.

2.2 Birational Equivalences between Montgomery and Edwards Curves

Consider the curves M [A] and E[d] over a field Fp with p ≡ 3 mod 4. If A − 2 is a square in Fp, then
the map

(x, y) 7→ (u, v) = (δx/y, (x+ 1)/(x− 1)), (3)

where δ2 = (A − 2), is a birational equivalence from M [A] to E[d] with exceptional points y = 0 and
x = 1. Conversely, the map

(u, v) 7→ (x, y) = ((v + 1)/(v − 1), δ(v + 1)/(u(v − 1))), (4)

is a birational equivalence from E[d] to M [A] with exceptional points u = 0 and v = 1. The relation
between A and d is (A − 2)/4 = 1/(d − 1). The above birational equivalences can be obtained using
the elementary birational equivalences in [2, 4]. On the other hand, verification of these birational
equivalences can be done by direct substitution.

2.3 Security Properties

Let E be an elliptic curve over Fp, where p is a prime.
Let n = #E(Fp) and nT = 2(p+1)−#E(Fp), i.e., n and nT are the orders of E(Fp) and its twist. Let

` (resp. `T ) be a prime such that n = h · ` (resp. nT = hT · `T ). Cryptography is done over a subgroup
of E(Fp) of size `. The parameters h and hT are the co-factors of E(Fp) and its twist respectively.

For a Montgomery curve, the curve order n is a multiple of 4. Using this fact along with n + nT =
2(p + 1), it is easy to argue that if p ≡ 3 mod 4, then the minimum value of (h, hT ) is (4, 4), while if
p ≡ 1 mod 4, then the minimum value of (h, hT ) is either (8, 4) or (4, 8).

Let k (resp. kT ) be the smallest positive integer such that `|pk−1 (resp. `T |pkT −1). The parameters
k and kT are the embedding degrees of the curve and its twist respectively.

The complex multiplication field discriminant D of E is defined in the following manner. Let t =
p+1−n. By Hasse’s theorem, |t| ≤ 2

√
p and in the cases that we considered |t| < 2

√
p so that t2−4p is a
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negative integer; let s2 be the largest square dividing t2−4p; define D = (t2−4p)/s2 if t2−4p mod 4 = 1
and D = 4(t2 − 4p)/s2 otherwise.

SafeCurves1, recommend all of `, `T , k, kT and D to be large. In particular, we are interested in curves
for which (h, hT ) has the optimal value.

By security of a curve in terms of bits we will mean the value of the expression 1
2 min(log2 `, log2 `T ).

3 Concrete Curves

The parameters of the new curves are given below.

Curves over F2251−9: Let p = 2251 − 9 ≡ 3 mod 4. The minimum positive value of A for which the
curve M [p251-9, A] attains the optimal value of (h, hT ) is A = 4698. We have that A− 2 is a square in
Fp. Using the birational equivalences given by (3) and (4), we obtain the pair (M [4698], E[1175/1174])
of birationally equivalent curves.

The parameters for M [p251-9, 4698] are as follows.

n = 3618502788666131106986593281521497120369356141117981896093957047094571902404,

` = 904625697166532776746648320380374280092339035279495474023489261773642975601,

log2 ` = 249,

h = 4,

k = `− 1,

nT = 3618502788666131106986593281521497120460017900484553356372141953399998700076,

`T = 904625697166532776746648320380374280115004475121138339093035488349999675019,

log2 `T = 249,

hT = 4,

kT = (`T − 1)/2,

D = −12419122501803997450343277787015672473799971462290478421477646400945935050060,

dlog2(−D)e = 253.

The point (·, 2) is a point of order ` on EE,1,1175/1174; the corresponding point on EM,4698,1 is (3, ·).
The set of scalars for EM,4698,1 is set to be 4(2248 + {0, 1, . . . , 2248 − 1}). Given a 32-byte scalar a,

the clamping function clamp(a) is defined as follows (assuming that the first byte is the least significant
byte of a): clear bits 0 and 1 of the first byte; set bit number 2 of the last byte and clear bits numbered
3 to 7 of the last byte.

Curves over F2444−17: Let p = 2444 − 17 ≡ 3 mod 4. The minimum positive value of A for which the
curve M [p444-17, A] attains the optimal value of (h, hT ) is A = 4058. We have that A− 2 is a square in
Fp. Using the birational equivalences given by (3) and (4), we obtain the pair (M [4058], E[1015/1014])

1https://safecurves.cr.yp.to/disc.html, accessed on September 8, 2019.
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of birationally equivalent curves. The parameters for M [p444-17, 4058] are as follows.

n = 45427420268475430659332737993000283397102585042957378767593137448788478\
822109994887784723325457774857125204145126361050201810186649452,

` = 11356855067118857664833184498250070849275646260739344691898284362\
197119705527498721946180831364443714281301036281590262550452546662363,

log2 ` = 442,

h = 4,

k = (`− 1)/3,

nT = 4542742026847543065933273799300028339710258504295737876759313744879\
1432192064745527989158013762670837970111055656911191490015016927348,

`T = 1135685506711885766483318449825007084927564626073934469189828436\
2197858048016186381997289503440667709492527763914227797872503754231837,

log2 `T = 442,

hT = 4,

kT = (`T − 1),

D = −17952908255149577299516917379535520546407753331717917874287686507374\
0299495896775961634341986909858530888358546664503937673912260606892,

dlog2(−D)e = 446.

The point (·, 2) is a point of order ` for EE,1,1015/1014; the corresponding point on EM,4058,1 is (3, ·).
The set of scalars is set to be 4(2441 + {0, 1, . . . , 2441 − 1}). Given a 56-byte scalar a, the clamping

function clamp(a) is defined as follows (assuming that the first byte is the least significant byte of a):
clear bits 0 and 1 of the first byte; set bit number 3 of the last byte and clear bits numbered 4 to 7 of
the last byte.

Remark: Using the isogenies given in [11], it can be shown that M [p444-17, 4058] is 4-isogenous to
E[p444-17,−1014]. Also, it has been mentioned earlier that M [p251-9, 4698] is 4-isogenous to Curve1174.
Connecting Montgomery and Edwards using these isogenies can be a problem, since a small base point
on one of these curves does not translate to a small base point on the other.

4 Implementation

In this section, we discuss about the implementation issues.

4.1 Representation of Field Elements

Let m = dlog2 pe. Elements of Fp can be represented as m-bit strings. We are interested in 64-bit multi-
precision arithmetic. Elements of Fp are considered to be κ 64-bit words. Conventionally, each such
word is called a limb. We will consider packed or saturated limb representation. In this representation,
m is written as m = η(κ− 1) + ν with 1 ≤ ν ≤ η, where η = 64. In other words, the first κ− 1 limbs are
64 bits long while the last limb is between 1 and 64 bits long.

The representations of the four primes of interest to this work are given in Table 2. Note that for
p251-9 and p444-17, 64κ−m ≥ 3 (equivalently, the last limb has three or more “free” bits), for p255-19,
64κ−m = 1 (equivalently, the last limb has one “free” bits) and for p448-224-1, 64κ = m (equivalently,
the last limb has no “free” bits). These have significant effect on the ladder computation as we will see
below.

Prime m κ η ν 64κ−m

p251-9 251 4 64 59 5

p255-19 255 4 64 63 1

p444-17 444 7 64 60 4

p448-224-1 448 7 64 64 0

Table 2: Saturated limb representations of primes related to this work.
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Remark: For 64-bit arithmetic, it is possible to work with representations where η < 64. For example, a
5-limb representation with each limb having 51 bits has been proposed for 2255−19. Such representations
can be considered to have redundant or unsaturated limb representation. The target architecture for
our implementation is Skylake and later processors. For these architectures, implementations using the
saturated limb representation outperform the implementations using unsaturated limb representation.
So, we do not consider unsaturated limb representations in this work.

4.2 Integer Multiplication/Squaring

The Skylake and later processors provide the mulx/adcx/adox instructions. The mulx instruction per-
forms a multiplication without affecting the carry and overflow flags. The adcx instruction adds with
carry using the carry flag but, does not affect the overflow flag, while the adox instructions adds with carry
using the overflow flag but, does not affect the carry flag. We collectively term the set mulx/adcx/adox
to be the maax instructions. The availability of maax operations opened up the possibility of very fast
integer multiplication using two double carry chains. For multiplication/squaring of 256-bit numbers,
this has been explained in the Intel white papers [28, 27]. A general algorithmic description for multi-
plication/squaring of 64κ-bit numbers, κ ≥ 4 is given in [25].

4.3 Reduction

Integer multiplication/squaring of κ-limb quantities produces a 2κ-limb output. The reduction step
reduces this output modulo the prime p. A full reduction will reduce the output to a value less than
p. For the purposes of efficiency a full reduction is not carried out in the intermediate steps of the
computation. Instead a size reduction is done. The size reduction can be of two types, namely, reduction
to an (m+ 1)-bit integer and reduction to an m-bit integer (note than an m-bit integer is not necessarily
fully reduced since it is not necessarily less than p). The former is more efficient than the later. Further,
the reduced quantity should again be a κ-limb quantity. If ν < 64, i.e., the last limb has at least one
free bit, then reduction to an (m + 1)-bit integer is a κ-limb quantity. On the other hand, if ν = 64,
i.e., the last limb has no free bits, then it is a necessity to reduce to an m-bit integer to obtain a κ-limb
quantity. Among the primes in Table 2, the prime 2448 − 2224 − 1 has no extra bits in the last limb and
the reduction for this prime has to be to an m-bit integer. For the other primes, it is possible to reduce
to an (m+ 1)-bit integer without any overfull. The size reductions to (m+ 1) bits modulo 2251 − 9 and
2444 − 17 have been done following the algorithm reduceSLPMP in [25].

4.4 Addition and Subtraction

Other than multiplication/squarings, the ladder algorithm also uses field addition and subtraction. In the
ladder algorithm, the inputs to an addition/subtraction operation are outputs of multiplication/squar-
ing operations and the outputs of addition/subtraction operations are inputs to multiplication/squaring
operations. In particular, the outputs of addition/subtraction are never inputs to another addition/sub-
traction.

We have mentioned that the outputs of multiplication/squaring are size reduced to either m bits or
to (m+ 1) bits. So, the inputs to addition/subtraction operations are either m bits or (m+ 1) bits. We
require the outputs of the addition/subtraction operations to be κ-limb quantities so that the integer
multiplication/squaring algorithm can be applied to these outputs. So, it is not always required to size
reduce the outputs of addition/subtraction operations to m or (m + 1) bits. Depending upon the sizes
of the inputs to the addition/subtraction operation and the relative values of η and ν, various cases may
arise. We discuss the cases of addition and subtraction separately.

Addition: A field addition is typically an integer addition followed by a possible reduction operation.
The integer addition operation increases the size of the output by one bit compared to the sizes of the
inputs.

Case p448-224-1: In this case, there is no leeway in the last limb and the output of integer addition
must necessarily be reduced to obtain a κ-limb quantity.

Case p255-19: If the inputs to the addition are m-bit quantities, then it is possible to omit applying
the reduction step to the output of the integer addition operation. On the other hand, if the
inputs to the addition are (m+ 1)-bit quantities, then the reduction step has to be applied to the
output of the integer addition operation. The inputs to the addition operation are the outputs of
previous multiplication/squaring operations. So, whether the output of the integer addition needs
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to be reduced depends on whether the outputs of the multiplication/squaring operation have been
reduced to m bits or to (m+ 1) bits.

Cases p251-9 and p444-17: In these cases, it is possible to reduce the outputs of multiplication/squaring
to (m+ 1) bits and omit the reduction step after the integer addition operation.

Subtraction: A field subtraction is of the type a − b mod p. To avoid handling negative numbers, a
suitable multiple of p is added to a so that the result is guaranteed to be positive. Since the result will
be reduced modulo p, the correctness of the result is not affected by adding a multiple of p.

Cases p255-19 and p448-224-1: The reduction operation must be performed on the output of each
subtraction operation to ensure that the result fits in κ limbs.

Cases p251-9 and p444-17: The operation a− b mod p is performed as follows. Note that both a and b
are (m+1)-bit quantities. The operation 4p+a−b is guaranteed to be an (m+3)-bit non-negative
integer. So, instead of performing a − b mod p, the operation (4p + a) − b is computed. Since
the result is at most an (m + 3)-bit quantity, it fits within κ limbs. Consequently, no reduction
operation is performed on this result.

Remark: We have discussed the issue of avoiding reduction with respect to 64-bit arithmetic. The
general idea, on the other hand, holds for saturated limb representations using 32-bit (or, lower) arith-
metic. The implementation benefits of of p251-9 and p444-17 over p255-19 and p448-224-1 also holds for
32-bit arithmetic.

4.5 Optimisations of the Ladder Step

Based on the description in Section 4, the following strategy may be adopted for implementing the ladder
step for the various primes.

Case p448-224-1: The outputs of all multiplication/squaring operations are to be size reduced to m
bits. Outputs of all addition/subtraction operations are to be size reduced to m bits.

Case p255-19: The outputs of all multiplication/squaring operations are to be size reduced to (m+ 1)
bits. Outputs of all addition/subtraction operations are to be size reduced to m or (m+ 1) bits.

Cases p251-9 and p444-17: The outputs of all multiplication/squaring operations are to be size reduced
to (m+ 1) bits. Outputs of all addition/subtraction operations are left unreduced.

The above strategy has direct consequences to the efficiencies of the ladder step for the various primes.
We summarise these below.

4-limb representations: For both F2251−9 and F2255−19, field elements have 4-limb representations. So,
the integer multiplication/squaring operations take the same time in both cases. Due to the ability
to avoid reductions, the ladder step is significantly faster modulo 2251 − 9 compared to 2255 − 19.

7-limb representations: For the fields F2444−17 and F2448−2224−1, field elements have 7-limb representa-
tions. So, the integer multiplication/squaring operations take the same time in both cases. Due to
the ability to avoid reductions, the ladder step is significantly faster modulo 2444− 17 compared to
2448 − 2224 − 1.

The Intel x86 64-bit assembly codes implementing the Montgomery ladder for the proposed curves
are publicly available at the following link:

https://github.com/kn-cs/nice-curves

4.6 Timings

The timing experiments were carried out on a single core of Skylake and Kaby Lake processors. During
measurement of the cpu-cycles, turbo-boost and hyper-threading features were turned off. An initial
cache warming was done with 25000 iterations and then the median of 100000 iterations was recorded.
The time stamp counter TSC was read from the CPU to RAX and RDX registers by RDTSC instruction.
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Curve Field Security Skylake Kaby Lake Reference

Curve25519 F2255−19 126 118231 113728 [26]
Curve448 F2448−2224−1 223 536362 521934 [26]

M [p251-9, 4698] F2251−9 124.5 92250 88882 This work
M [p444-17, 4058] F2444−17 221 384905 365382 This work

Table 3: CPU-cycle counts on Skylake and Kaby Lake processors for variable base
scalar multiplication on the Montgomery form curves.

Platform specifications: The details of the hardware and software tools used in our software imple-
mentations are as follows.

Skylake: Intel®CoreTM i7-6500U 2-core CPU @ 2.50GHz. The OS was 64-bit Ubuntu 14.04 LTS and
the source code was compiled using GCC version 7.3.0.

Kaby Lake: Intel®CoreTM i7-7700U 4-core CPU @ 3.60GHz. The OS was 64-bit Ubuntu 18.04 LTS
and the source code was compiled using GCC version 7.3.0.

Timings in form of cpu-cycles are shown in Table 3 for Skylake and Kaby Lake processors. For
comparison, we provide the timings of the most efficient (to the best of our knowledge) publicly available
64-bit implementations. Such implementations consist of the code corresponding to the work [26]. The
timings of the previous implementations were obtained by downloading the relevant software and mea-
suring the required cycles on the same platforms where the present implementations have been measured.
Based on Table 3, we observe that M [p251-9, 4698] is about 21% to 22% faster than Curve25519, while
M [p444-17, 4058] is about 28% to 30% faster than Curve448.

5 Conclusion

In this paper, we have introduced two pairs of Montgomery-Edwards curves for performing cryptography
at the 128-bit and the 224-bit security levels. Compared to the curves proposed in IETF RFC 7748, the
new curves provide 2 bits less security. The advantage is that for 64-bit implementations on Skylake and
Kaby Lake processors, the gain in speed is about 21% at the 128-bit security level and about 28% at the
224-bit security level.

Acknowledgements: Thanks to Rene Struik for comments on the paper and to Armando Faz Hernández
for comments on our implementation code.
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