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Abstract. In this paper, using Mixed Integer Linear Programming, a new automatic
search tool for truncated differential characteristic is presented. While the previous
MILP models for truncated differential characteristic has been used just as a facilitator
for finding the bit-wise differential characteristic with maximum probability, ours
considers truncated differential characteristic as an stand-alone distinguisher. Our
method models the problem of finding a maximal probability truncated differential
characteristic, being able to distinguish the cipher from a pseudo random permutation.
Our model enjoys a word-wise variable definitions which makes it much simpler and
more easily solvable than its bit-wise counterpart.
Using this method, we analyse Midori64, SKINNY64/X and CRAFT block ciphers, for
all of which the existing results are improved. In all cases, the truncated differential
characteristic is much more efficient than the (upper bound of) bit-wise differential
characteristic proven by the designers, for any number of rounds. More specifically,
the highest possible rounds, for which an efficient differential characteristic can exist
for Midori64, SKINNY64/X and CRAFT are 6, 7 and 10 rounds respectively, for
which differential characteristics with maximum probabilities of 2−60, 2−52 and 2−62.61

(may) exist. However, we introduce new truncated differential characteristics for
6-round of Midori64 with probability 2−54. In case of SKINNY64/X and CRAFT,
the gap is much wider. For 7 rounds of Midori64, we find a truncated characteristic
with probability 2−4, and even a 10-round truncated characteristic can be found with
probability 2−40. Moreover, our result outperforms the only truncated differential
analysis that exists on Midori64. For CRAFT we find a 10, 11 and 12 truncated
characteristic with probabilities of 2−28, 2−32 and 2−36, respectively. This method
can be used as a new tool for differential analysis of SPN block ciphers.
Keywords: Truncated Differential · MILP · SPN

1 Introduction
Truncated differential attack is a variant of differential attack introduced by Knudsen in
1994 [11]. Despite the basic differential attack, in which the precise bit-wise value of the
input/output (and internal) differences are specified, in truncated differential cryptanalysis,
one considers the word-wise differences where the word size can be a nibble, byte, etc.,
usually equal to the S-box size in the design. Some examples of truncated differential
attacks are [17, 12, 13].

Truncated differential characteristics can offer efficient distinguishers for block ciphers,
even more efficient than their bit-wise counterpart, in some cases. A well-known instance is
KLEIN block cipher, while its security against bit-wise differential attack had been proved
in [10], it was broken by some truncated differential attacks [12, 17].
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However, while the designers prove upper bounds for bit-wise differential characteristics
and greedily try to tighten it more and more, there is no provable method to measure the
strength of truncated differential characteristics for block ciphers. Apart from the lack
of a provable method, there is not almost any systematic approach for finding efficient
truncated differential characteristics. Except a meet in the middle-based method proposed
in [13] for finding truncated differential characteristic, which was applied to CLEFIA and
Camellia block ciphers and later to MCrypton and CRYPTON v.1 [24].

On the other hand, since the variables are defined word-wise in truncated differential
attack, the search space is not as large as that of bit-wise differential attacks. So, it must
not be too infeasible to intelligently search the whole space in order to find the best possible
truncated differential characteristic by an appropriate search tool. The only work focusing
on this problem is a 2 decades old search algorithm proposed by Moriai et al. which was
applied to E2 block cipher [14] and later to Midori cipher [8].

Mixed Integer Linear Programming (MILP) has been recently known as an effective
automated tool for cryptanalysis of symmetric ciphers such as differential [21], impossible
differential [18], zero correlation [7] and integral [23] attacks. The scope of MILP is not
confined to SPN structure only, as there are innovative results in cryptanalysis of ciphers
with ARX structure, mostly using linear, differential, impossible differential and zero
correlation attacks [9, 2, 3, 16].

In case of bit-wise differential cryptanalysis of SPN ciphers, the MILP-based character-
istic search problem has progressed from the simple problem of counting the minimum
number of active S-boxes [15] into finding the precise maximal probability characteristic for
some lightweight ciphers [21, 1]. MILP modeling of S-boxes which is the most challenging
part of the MILP modeling of differential attack is now feasible even for 8× 8 S-boxes [1].
However, as far as the truncated differential attack is concerned, the existing MILP models
work up to finding a characteristic with minimum number of active S-boxes, supposed to
be instantiated by a bit-wise characteristic later [21, 1]. Another trace of MILP modeling
of truncated differential characteristic is seen in impossible differential characteristic search
[18], where the worst case propagation of truncated differentials is modeled. So, there is not
any MILP model concentrating on finding the optimal truncated differential characteristic,
as an stand-alone distinguisher with maximum probability.

Our contributions. This paper focuses on the problem of MILP modeling of truncated
differential characteristic. In this model the variables are defined word-wise, so the number
of variables does not grow too fast as the number of rounds grows. Moreover, since
truncated differential attack is irrelevant to the S-box specifications, its MILP model is free
of modeling the S-boxes which was a bottleneck in its bit-wise counterpart. In this model,
using an appropriately defined objective function, we can find the optimum truncated
differential characteristic, which covers the most possible number of rounds with highest
possible probability, yet distinguishing the cipher from a pseudo random permutation
(PRP) .

Having modeled the truncated differential characteristic, we examine our search tool
on three remarkable SPN ciphers SKINNY64/X, where X = 64, 128, 192 [5], Midori64 [4]
and CRAFT [6]. we observe that for all of them, for any rounds that bit-wise differential
characteristic works, the truncated differential characteristic has a probability higher than
the upper bound of any bit-wise differential characteristic, proven by the designers or
third parties. For more details, see Tabs. 1,2 and 3. This shows that, beside the valuable
efforts on finding and tightening the upper bound of the bit-wise differential probability,
evaluating the strength of the cipher against other kinds of differential attack can be of
considerable importance.

This is the first external analysis of CRAFT. SKINNY64/X has not ever been received
any internal or external truncated differential analyses. However, for Midori64, a truncated
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Table 1: Comparison of bit-wise differential and truncated differential characteristics for
Midori64

Number of rounds 4 5 6 Ref.
Upper bound for bit-wise 2−32 2−46 2−60 [4]differential characteristic probability

Truncated differential probability 2−12 2−24 2−54 Sec. 4

Table 2: Comparison of bit-wise differential and truncated differential characteristics for
SKINNY64/X

Number of rounds 6 7 8 9 10 Ref.
Upper bound for bit-wise 2−32 2−52 2−72 2−82 2−92 [5]differential characteristic probability

Truncated differential probability 2−4 2−4 2−8 2−20 2−40 Sec. 4

Table 3: Comparison of bit-wise differential and truncated differential characteristics for
CRAFT

Number of rounds 8 9 10 Ref.
Upper bound for bit-wise 2−52 2−64 2−72 [6]differential characteristic probability

The best found differential probability - 2−54.67 2−62.61 [6]
Truncated differential probability 2−20 2−24 2−28 Sec. 4

Table 4: Summary of 4-round truncated differential characteristics for Midori64

Probability Method Reference
2−44 Moriai et. al. [14] [8]
2−20 MILP-based, Strategy I Sec. 4
2−12 MILP-based, Strategy II Sec. 4

differential cryptanalysis has been reported [8], in which the automatic search tool of [14] is
used. Despite the claim in [8], we found a more probable 4-round truncated characteristic
and an efficient 5-round one. For more details see Tab. 4.

Organization of the paper. In Section 2, we bring the preliminaries of the paper, including
a brief description of Midori, SKINNY and CRAFT block ciphers and a review of the MILP
problem and related work. In Section 3, we present our new method for automatic search
for truncated differential characteristic by MILP. In Section 4, we apply our automatic
search to Midori, SKINNY and CRAFT where we bring our results and compare them
with previous ones. Finally, Section 5 concludes the paper.

2 Preliminaries

In this section we review the structure of Midori, SKINNY and CRAFT block ciphers,
which are the ciphers analyzed in this paper. All of them has a AES-like structure
with a 4× 4 state of bytes (nibbles) and a round function composed of a S-box layer, a
byte(nibble)-wise permutation, and a column-wise MixColumn operation.
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Figure 1: Overview of one round of Midori64 [4]

2.1 Midori Specifications
Midori is a lightweight SPN block cipher proposed in AISACRYPT 2015 [4]. It has two
versions Midori64 and Midori128, with 64-bit and 128-bit block sizes, respectively, however
both of which work with 128-bit keys. The state of Midori block cipher is expressed as a
4× 4 matrix as below: 

s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

 (1)

for Midori64 each cell of state matrix, si, i = 0, . . . , 15, has 4 bits length (nibble) and for
Midori128 each cell is 8 bits. At first, a whitening key is added to the state matrix and
then the result goes through round functions. Each round function of Midori consist of
the following transformations:

• AddRoundKey (AK): The subkey RKr is added to the intermediate state.

• SubCell (SC): The intermediate state goes through 16 S-boxes (the size of the
S-boxes depends on the cipher variant).

• ShuffleCell (ShC): The cells in the state are permuted as follows.

(s0, s1, ..., s15) −→ (s0, s10, s5, s15, s14, s4, s11, s1, s9, s3, s12, s6, s7, s13, s2, s8) (2)

• MixColumn (MC): An almost MDS binary matrix M is applied to each column
of the intermediate state matrix

M =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


The S-box used in Midori64 is a 4-bit S-box, while for Midori128, it is a 8-bit one. Number
of rounds for Midori64 is 16 and for Midori128 is 20. In the last round, linear layers (SC
and MC) are omitted and finally the whitening key is added to state matrix.

Midori128 doesn’t employ any key schedule and for Midori64 the key schedule is very
simple. For Midori64 the 128 bit secret key is divided into two 64-bit halves K0,K1, then
the round key is determined by RKr = Krmod2 . This keys are XORed with a round
constant named αr before AddRoundKey operation. Whitening key of Midori128 is the
same as the secret key while for Midori64 it is WK = K0 ⊕K1. Fig. 1 shows an overview
of Midori64.
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Figure 2: Overview of one round of SKINNY [5]

2.2 SKINNY Specifications
SKINNY is a lightweight SPN cipher proposed in CRYPTO 2016. It takes tweakey rather
than the secret key. SKINNY has many variants depending on the block and tweakey sizes
which are detailed in [5]. However, in the following we describe SKINNY64/X, the version
analyzed in this paper, whose block size is 64 bits and key size can be X = 64, 128, 192
bits. All variants of SKINNY initialize plaintext in a 4 × 4 state matrix, then it goes
through round functions. Each round function of SKINNY consists of five transformations
of SubCell, AddConstant, AddRoundTweakey, ShiftRows and MixColumn. SKINNY does
not have any whitening key.

• SubCell (SC): The state matrix goes through 16 S-boxes.

• AddConstant (AC): A round constant is added to the state matrix.

• AddRoundTweakey (ART): The tweakey TKr is added to the state matrix.

• ShiftRows (SR): The second, third, and fourth cell rows are rotated by 1, 2 and 3
positions to the right, respectively. The first row remains unchanged.

• MixColumn (MC): A binary matrix M is multiplied by each column of intermedi-
ate state matrix

M =


1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 (3)

Fig. 2 illustrates one round function of SKINNY.

2.2.1 CRAFT

CRAFT block cipher was proposed in IACR TOSC 2018 [6]. This cipher follows an
innovative approach, which is protection against differential fault attack in the design
phase. It is a lightweight block cipher with a 128-bit key, a 64-bit tweak and a 64-bit block
arranged in a 4× 4 matrix of nibbles, numbered as follows:

s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

 (4)

Each round of CRAFT consists of the following transformations, which is applied to the
input state according to the following order.

• MixColumn (MC): The following binary matrix M is multiplied to each column
of the state.

M =


1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1

 (5)
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Figure 3: Overview of one round of CRAFT [6]

• AddConstants (ARC): A round Constant is added to the state matrix.

• AddTweakey (ATK): The tweakey TKr is added to the state matrix.

• PermuteNibbles (PN): The cells in the states are permuted as follows.

(s0, s1, . . . , s15)→ (s15, s12, s13, s14, s10, s9, s8, s11, s6, s5, s4, s7, s1, s2, s3, s0) (6)

• SubBox (SB): The state matrix goes through 16 parallel S-boxes.

For more details about this cipher, one can refer to [6]. Fig. 2.2.1 shows one round of
CRAFT.

In Midori and SKINNY, the linear layers come after the nonlinear (S-box) layer in each
round. This type of SPN cipher will be called S-then-P structure, in this paper. However,
for CRAFT the linear layers are applied first, then the S-box layer comes. We call this
SPN structure P-then-S.

2.3 MILP-based differential cryptanalysis
2.3.1 MILP definition

Linear Programming is a class of optimization problems in which the objective function
and all constraints are linear functions in decision variables x = [x1, x2, . . . , xn]. So, an
LP problem is as the following form:

minimize cT x
subject to Ax ≤ b (7)

and x ≥ 0

if all or part of the decision variables are integer-valued, the LP problem is called MILP.
An MILP problem is inherently NP-complete, however there are either commercial or open
source solvers, which are able to solve some not-too-complicated instances of MILP problem.
A recent trend in symmetric cryptanalysis is using this tool for finding (sub-)optimal
(differential, linear, integral, cube, etc.) characteristics for symmetric primitives.

2.4 Related work
In this section we review the developments of MILP-based techniques in differential
cryptanalysis of SPN ciphers. The early work in this area belongs to [15, 22] which searches
the minimum number of active S-boxes in SPN ciphers with word-oriented diffusion layers.
In these models the differential property of the diffusion layer is taken into account up to
its branch number while the information of S-boxes differential properties is not included,
at all. The next work, [21], extends the coverage of this method to the SPN ciphers with
bit-wise permutation diffusion layers, though with the same objective function and same
limitations. A significant work is done in [20], where the differential properties of the
S-box along with their probabilities are included in the model. This method enables the
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cryptanalyst to construct a more accurate feasible set for the MILP problem and set the
objective function equal to the precise probability of the differential characteristic, rather
than the number of active S-boxes, merely.

However, the method proposed in [20] for modeling S-box is effective for small S-boxes
(at most 4×4). Abdelkhalek et al. developed a method for MILP modeling of large S-boxes
(up to 8×8) and applied it to SKINNY block cipher and a AES-based MAC [1]. Besides
these improvements in differential attack, the problem of searching impossible differential
characteristic is also modeled by MILP in [18].

Therefore there are lots of work in employing MILP technique for finding bit-wise
differential characteristic for SPN ciphers, but this is not the case with truncated differential
cryptanalysis. MILP modeling for truncated differential characteristic is paid attention
just in [1] and [18]. In the former, truncated characteristic is treated just as a facilitator
to find the optimal bit-wise differential characteristic. In that work, it is targeted to find a
minimum active S-box truncated differential characteristic to be instantiated later by a
bit-wise characteristic. In the latter, truncated characteristic is used as a tool for fining
the impossible differential characteristic. So, a worst-case scenario for propagation of the
truncated differential characteristic (i.e. the propagation with probability one) is modeled
and utilized for finding impossible differential characteristic.

3 NewMILP-based automatic truncated differential search
Despite the bit-wise differential characteristics, there is not any systematic method for
proving an upper bound for the probability of the truncated differential characteristic in
SPN ciphers. Moreover, the only automatic search algorithm for finding optimal truncated
differential characteristic is an exhaustive-type one, dating back two decades [14].

In this section, we propose an efficient technique for MILP modeling the truncated
differential characteristic search problem for SPN structures. Due to the word-wise essence
of this attack, we use the word-wise variable definition in the MILP-model as well, where
the word size is equal to the S-box size in the cipher. In this model all the variables are
binary, indicating that the associated word is active (1) or inactive (0).

It is clear that in any kind of (single-key) differential characteristic, XORing with
constants, round keys and tweakeys are effectless on the characteristic. In addition, word-
wise permutations, such as ShuffleCell in Midori, ShiftRows in SKINNY and PermuteNibbles
in CRAFT can be modeled by a simple variable change. Moreover, as we adopted the
word-wise variable definition, and assuming bijective S-boxes, the S-box layer would be
totally bypassed in our model, hence the input and output of the S-box are indicated by a
single binary variable. so, the only layer that plays a decisive and key role in both the
propagation pattern of the truncated characteristic and its probability is MixColumn layer.

3.1 MILP model for Diffusion Property of MixColumns
Suppose that the cipher state is a k× k matrix of m-bit words. So, the MixColumn matrix
would be a k × k matrix M over GF (2m) and each round contains k parallel MixColumns
matrix multiplications. For a single MixColumn, the input and output truncated differential
variables are denoted by x = (x0, x1, . . . , xk)T and y = (y0, y1, . . . , yk)T , where x,y ∈
(GF (2))k.

It is a straightforward task to compute the probability of all 22k truncated input/output
differentials P (x→ y) and arrange them in a 2k × 2k table called branching property table
of M , whose rows are hexadecimal form of the input difference vector x and columns are
the hexadecimal form of the output differences vector y. In [14] a recursive method for
computing these diffusion probabilities was proposed. Furthermore, these probabilities can
be computed by direct analysis or by means of a simple programming. Since the word size
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is m bits here, the possible values for the probability P (x→ y) fall into the range

{0, 1, 2−m, 2−2m, . . . , 2−(k−1)m}. (8)

The branching property tables of Midori, SKINNY and CRAFT MixColumns are shown in
Appendix A. For more convenience, in the branching property table, the zero probabilities
are shown by 0, the one probabilities are shown by 1, and the other probabilities p 6= 0, 1
are shown by −log2(p).

Those differentials with zero probability are called the impossible differentials that
should be excluded from the feasible set of our MILP model. All the remaining differentials
should be included in the feasible set, while their probabilities are encoded and defined as
decision variables of the MILP model. The process is identical to the method of MILP
modeling of differential property of (small) S-boxes [21]. We need to define at most
dlog2(k)e decision variables, denoted by (p0, p1, . . . , pdlog2(k)e), to encode the probability of

all possible differentials of form p = 2−m
∑dlog2(k)e

i=0
pi2i

. For example, for the MixColumn
matrices of Midori, SKINNY and DRAFT which are 4 × 4 matrices over GF (24), all
possible probabilities are {0, 1, 2−4, 2−8}. The non-zero probabilities are encoded using
dlog2(k)e = 2 bits (p0, p1) as follows.

20 → (0, 0)
2−4 → (1, 0)
2−8 → (0, 1) (9)

Finally, each possible differentials can be presented as a (2k + [log2(k)])-tuple of the form

(x0, x1, . . . , xk, y0, y1, . . . , yk, p1, . . . , p[log2(k)]) (10)

Using SAGE computer algebra system [19], one can derive the convex hull of all possible
vectors of the form (10). The number of inequalities can be reduced dramatically using
the greedy algorithm introduced in [21, 20].

The objective function that should be maximized is the probability of the differential
truncated characteristic, which is equal to the product of all MixColumns diffusion
probabilities in the characteristic. Equivalently, suppose the cipher under scrutiny has r
rounds, each round contains k MixColumn matrix. The objective function, supposed to be
minimized, is defined as

PT =
rk∑

j=1

k−1∑
i=0

pj,i2i (11)

where pj,i, i = 0, . . . , k − 1 are the variables encoding the jth MixColumn diffusion proba-
bility, j = 1, . . . , k.

3.2 Efficient Characteristics
A truncated differential characteristic will be efficient, if it is able to distinguish the cipher
from a Pseudo Random Permutation (PRP). Therefore, the probability of the truncated
characteristic P (∆in

E−→ ∆out) must be greater than that of a PRP which is equal to
P (∆in

P RP−−−→ ∆out) = |∆out|
2n , where n is the block size of the cipher in bits, here n = k2m.

3.2.1 Strategy I

A raw way to count |∆out|, used also in [8], is to count the number of active words in
the output difference, i.e. Hw(∆out). If so, |∆out| would be mHw(∆out). Therefore the
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Figure 4: 4-round truncated differential characteristic by strategy I for Midori64.

distinguishability condition in our model is translated into a new linear constraint of the
following form

PT > k2 −Hw(∆out) (12)

This constraint works correctly for the P-then-S structures, where there is no linear
dependency between the active words of the output difference. However, as we will see
for the S-then-P structures, this constraint incorrectly excludes some efficient truncated
characteristics since P (∆in

P RP−−−→ ∆out) has been overestimated in this model.

3.2.2 Strategy II

The objection of Strategy I is that this model is not able to take into account the possible
linear dependencies that definitely exists between the active words of the output difference,
in the S-then-P structures. Linear dependencies, caused due to the last linear layer, makes
|∆out| smaller than mHw(∆out). For precise enumeration of |∆out|, one should actually
counts the number of active words in the last round’s S-box layer. So, in the MILP model,
it suffices that the distingushability constraint (12) be modified into

P ′T > k2 −Hw(∆S
out) (13)

where ∆S
out is the output difference of the last round’s S-box layer and P ′T is the

probability of the truncated characteristic excluding the last round’s linear layer, i.e.
P ′T =

∑(r−1)k
j=1

∑k−1
i=0 pj,i2i. Note that the objective function is still defined according to

PT in (11).
Although, such an approach finds the truncated differential characteristic with maximal

probability, this optimum characteristic may activates all the output words. Although
the linear relations between the active words of the output difference, along with (13),
ensures that it is still an efficient distinguisher, its fully active output state may become
challenging in the key recovery phase. Because it typically demands guessing the whole
subkey of the next round which definitely is not desirable. To avoid such a situation, we
add an extra constraint to the model, enforcing that not all the words in ∆out are active,
i.e.

Hw(∆out) < k2. (14)

Therefore, for a given S-then-P cipher, the truncated differential characteristic derived by
Strategy II is one round longer than that derived by Strategy I.

3.2.3 Strategy III

The characteristic found by Strategy I can be extended one round for free for the P-then-S
structure, as well. It suffices that a P−1 transformation is applied to the input difference of
the characteristic found by Strategy I. Here, P represents all the linear layers of one round
of the cipher. This extension does not have any cost in the probability of the distinguisher.
Clearly, there would be linear dependencies between the input differences of such truncated
differential characteristic.
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Figure 5: 4,5,6-round truncated differential characteristic by strategy II for Midori64.

4 Application to Midori64, SKINNY64/X and CRAFT
In this section, we report the new truncated differential characteristics we found by applying
the proposed search method to three lightweight block ciphers Midori64, SKINNY64/X
and CRAFT.

4.1 Midori64 truncated differential characteristics
According the method explained in Sec. 3.2, we first model the truncated differential
property of the MixColumn of Midori64. The branching property table of Midori64
MixColumn is shown in Appendix A which can be modeled by 13 linear constraints.

4-round characteristic by Strategy I. In order to compare the MILP-based search method
with Moriai et al. automatic search method [14], which was applied to Midori64 in [8],
we first examine the less efficient strategy, Strategy I, which is the strategy chosen in [8],
too. We found a 4-round characteristic with probability 2−20 shown in Fig. 4, while the
highest-probability characteristic introduced in [8] is a 4-round one with probability 2−44,
claiming "there are no such truncated differentials with more than 4 rounds for Midori64".

4,5,6-round characteristic by Strategy II. Fig. 5, shows the 4,5,6-round characteristics
found for Midori64 using Strategy II. The 4-round characteristic has a probability of 2−12.
This characteristic demonstrates the large gap that exists between these two strategies.
The optimum 5-round characteristic has a probability of 2−24. The highest possible number
of rounds for which truncated distinguisher can be proposed is 6 round with probability of
2−52. As it can be compared in Tab. 2, for any round that an efficient bit-wise differential
characteristic may exist, there is a more efficient truncated differential characteristic, with
better probability. For all above cases, the linear dependencies between ∆out active nibbles
are shown in Appendix B.

4.2 SKINNY64/X truncated differential characteristics
The branching property table of SKINNY is shown in Appendix A, which can be modeled
using 12 linear inequalities. The branch number of SKINNY MixColumn is smaller than
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Figure 6: 8,9,10-round truncated differential characteristics by strategy II for
SKINNY64/X.



12 iacrtans class documentation

Midori, expectedly resulting in a more sparse branching property table than Midori. In
the following, we report our results on 7,8,10 rounds of SKINNY64/X which is consid-
erably much more effective than Midori64, covering more number of rounds with larger
probabilities.

8,9,10-round characteristic by Strategy II. SKINNY64/X has not ever been analyzed
by truncated differential attack. Using Strategy II, we found efficient 8,9,10-round dis-
tinguishers, with probabilities 2−8, 2−20 and 2−40, respectively. These characteristics are
shown in Fig. 6 and the linear dependencies between active nibbles of ∆out is shown in
Appendix C.

Comparing to Midori64, SKINNY64/X exhibits a much wider gap between the truncated
and bit-wise differential probabilities, as reflected in Tab. 2, in details. The longest bit-wise
differential characteristic that may exist for SKINNY64/X has 7 rounds with probability
2−52, whilst at the same number of rounds, we have found a much stronger truncated
differential characteristic with probability of 2−4.

4.3 CRAFT truncated differential characteristics

The branching property table for CRAFT MixColumn is shown in Appendix A, which is
modeled by 47 linear constraints. The diffusion property of CRAFT MixColumn is weaker
than the two other ones, resulting in longer distinguishers with higher probabilities.

10,11,12-round characteristic by Startegy III. This is the first external analysis of
CRAFT cipher. For this cipher, we observed one 1-round and two 2-round iterative
truncated differential characteristics with probabilities 2−4 and 2−8, respectively. Based
on these characteristics, truncated differential distinguishers for 10, 11 and 12 rounds of
CRAFT are introduced, which are shown in Fig.7 . Their respective probabilities are 2−24,
2−32 and 2−36. The input differences of all of these characteristics are linearly dependent,
which are detailed in Appendix D.

Similar to SKINNY64/X, CRAFT shows a wide gap between the truncated and bit-wise
differential characteristic probabilities, as it can be noticed in Tab. 3. With the help
of strategy III, a 12-round truncated differential characteristic is found with probability
of 2−36, while the longest bit-wise one found in [6] has 10-rounds with characteristic
probability of 2−72 and differential probability 2−62.61.

5 Conclusion

We proposed a new MILP-based automatic search method for finding truncated differential
characteristic for SPN block ciphers. The proposed MILP model maximizes the truncated
differential characteristic probability, ensuring its distinguishability from PRP, yet avoiding
all output words being active. We applied our proposed method to Midori64, SKINNY64/X
and CRAFT block ciphers. Comparing to its bit-wise counterpart, truncated differential
attack enjoys a much smaller and less complicated S-box-free MILP model, which makes it
much faster to be solved. More importantly, our results on Midori64, SKINNY64/128 and
CRAFT shows that the optimal truncated differential characteristics found by this method
are much more efficient than the upper bound of bit-wise differential characteristics proven
for these three ciphers. This method can be used as a new tool for differential analysis of
SPN ciphers.
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Figure 7: 10,11,112-round truncated differential characteristics by strategy III for CRAFT.
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Appendix A
Tabs. 5, 6 and 7 illustrate The branching property tables of Midori64, SKINNY64/128
and CRAFT MixColumns.
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Table 5: Branching property table of Midori64 MixColumn

in/out 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf
0x0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0x1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0x2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0x3 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 1
0x4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0x5 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 1
0x6 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 1
0x7 0 0 0 0 0 0 0 4 8 0 0 4 0 4 4 1
0x8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0x9 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 1
0xa 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 1
0xb 0 0 0 0 8 0 0 4 0 0 0 4 0 4 4 1
0xc 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 1
0xd 0 0 8 0 0 0 0 4 0 0 0 4 0 4 4 1
0xe 0 8 0 0 0 0 0 4 0 0 0 4 0 4 4 1
0xf 0 0 0 8 0 8 8 4 0 8 8 4 8 4 4 1

Table 6: Branching property table of SKINNY64/X MixColumn

in/out 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf
0x0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0x1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0x2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0x3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0x4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0x5 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 1
0x6 0 0 0 0 0 0 0 0 0 4 0 1 0 0 0 0
0x7 0 0 8 0 0 0 4 0 0 0 0 4 0 0 0 1
0x8 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0x9 0 0 0 0 0 0 0 0 0 0 4 1 0 0 0 0
0xa 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0xb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 1
0xc 0 0 0 0 0 0 0 0 0 0 0 0 4 1 0 0
0xd 0 0 0 0 0 0 0 4 0 0 0 0 0 0 4 1
0xe 0 0 0 0 0 0 0 0 8 4 0 0 4 1 0 0
0xf 0 0 0 0 0 8 0 4 0 0 0 0 8 4 4 1

Table 7: Branching property table of CRAFT MixColumn

in/out 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf
0x0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0x1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0x2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0x3 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 1
0x4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0x5 0 0 0 0 0 0 0 0 0 4 0 0 0 1 0 0
0x6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0x7 0 0 0 8 0 0 0 4 0 0 0 4 0 0 0 1
0x8 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0x9 0 0 0 0 0 4 0 0 0 0 0 0 0 1 0 0
0xa 0 0 4 0 0 0 0 0 0 0 1 0 0 0 0 0
0xb 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 1
0xc 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0xd 0 8 0 0 0 4 0 0 0 4 0 0 0 1 0 0
0xe 0 0 0 0 0 0 4 0 0 0 0 0 0 0 1 0
0xf 0 0 0 8 0 0 0 8 0 0 0 4 0 0 0 1
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Appendix B

The linear dependencies between active nibbles of ∆out for the proposed 4,5,6-round
truncated differential characteristics for Midori64 are as follows.

4-round
∆S

out ∆out
a e i 0
b f 0 0
c g j k
d h 0 l

 2−4

−−→


j ⊕ f ⊕ l e⊕ b 0 c⊕ i
a⊕ f ⊕ l k ⊕ b d c⊕ h⊕ i
a⊕ j ⊕ l k ⊕ e⊕ b 0 h⊕ i
a⊕ j ⊕ f k ⊕ e d h⊕ c


5-round

∆S
out ∆out

a 0 d f
0 c 0 g
0 0 e h
b 0 0 i

 1−→


e⊕ c⊕ i 0 b⊕ f d⊕ g
a⊕ c⊕ i h f d
a⊕ e⊕ i h b d⊕ g
a⊕ e⊕ c h b⊕ f g


6-round

∆S
out ∆out

0 0 0 0
0 0 a b
0 0 0 0
0 0 0 0

 1−→


0 0 0 b
0 0 a 0
0 0 a b
0 0 a b



Appendix C

The linear dependencies between active nibbles of ∆out for the proposed 8,9,10-round
truncated differential characteristics for SKINNY64/X are as follows.
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8-round
∆S

out ∆out
a e 0 k
b f i 0
c g j l
d h 0 m

 1−→


a⊕ j ⊕ k e⊕ l c⊕m d⊕ k ⊕ g

a e 0 k
j b⊕ l c⊕ f g ⊕ i

a⊕ j e⊕ l c k ⊕ g


9-round

∆S
out ∆out

a e 0 h
b 0 f 0
c 0 g i
d 0 0 j

 1−→


a⊕ g e⊕ i c⊕ j d⊕ h
a e 0 h
g b⊕ i c f

a⊕ g e⊕ i c h


10-round

∆S
out ∆out

a b 0 0
0 0 0 d
0 c 0 e
0 0 0 0

 1−→


a e⊕ b 0 c
a b 0 0
d e 0 c
a e⊕ b 0 c


Appendix D
The linear dependencies between active nibbles of ∆in for the proposed 10,11,12-round
truncated differential characteristics for CRAFT are as follows.

10-round
∆in ∆1

b 0 0 c
0 0 a 0
b 0 0 c
0 0 0 0

 1−→


0 0 0 0
0 0 b c
a 0 0 0
0 0 0 0


11-round

∆in ∆1
0 b a 0
0 0 0 c
0 b a 0
0 0 0 0

 1−→


0 0 0 0
a b 0 0
0 0 0 c
0 0 0 0


12-round

∆in ∆1
a⊕ b 0 0 c
a 0 0 0
b 0 0 c
a 0 0 0

 1−→


0 a 0 0
0 0 b c
0 0 0 0
0 0 0 0
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