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TI-PUF: Toward Side-Channel Resistant
Physical Unclonable Functions

Anita Aghaie, Amir Moradi

Abstract—One of the main motivations behind introducing PUFs was their ability to resist physical attacks. Among them, cloning was the
major concern of related scientific literature. Several primitive PUF designs have been introduced to the community, and several machine
learning attacks have been shown capable to model such constructions. Although a few works have expressed how to make use of
Side-Channel Analysis (SCA) leakage of PUF constructions to significantly improve the modeling attacks, little attention has been payed
to provide corresponding countermeasures.
In this paper, we present a generic technique to operate any PUF primitive in an SCA-secure fashion. We, for the first time, make it
possible to apply a provably-secure masking countermeasure – Threshold Implementation (TI) – on a strong PUF design. As a case
study, we concentrate on the Interpose PUF, and based on practical experiments on an FPGA prototype, we demonstrate the ability of our
construction to prevent the recovery of intermediate values through SCA measurements.
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1 INTRODUCTION

Physical Unclonable Functions (PUFs) are mostly known
as chip fingerprints by employing their inherent physical
variations which are also used for key generation in crypto-
graphic applications [18], [36], [20]. These one-way physical
functions behave uniquely and (in the ideal case) are reliable
to generate an unpredictable output as a response to the
given random input as a challenge [13]. Among different
kinds of PUF, silicon PUFs [13] absorbed more attention
of researchers as they mainly allow querying Challenge-
Response Pairs (CRPs) within the chip independent of
any external actuation and without requiring any analog
signal [8].

An ideal PUF promises to generate a unique unpre-
dictable response r ∈ {0, 1}m of a random challenge
c ∈ {0, 1}n under a deterministic unclonable function
inspiring from the Integrated Circuit (IC) manufacturing
process. The unclonability of PUFs guarantees that building
two PUF instances that have the exact same characteristics
would be impractical.

Excluding the protocols, PUFs are usually divided into
two categories as weak PUFs and strong PUFs. The first
category, also known as Physically Obfuscated Key (POK),
has small and limited number of CRPs that is applicable
for cryptographic key generations. Instead, the second
category has the exponential challenge-response space which
is appropriate in authentication protocols as well as key
generation [18], [23], [35], [37], [38]. Strong PUFs support
multiple readings of the same response for one randomly
chosen challenge.
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The concern of designing a good strong PUF includes not
only lightweight and qualitative features but also resistance
against various attacks. However, these two parameters are
mostly in a close trade-off, i.e., a highly-secure PUF which
provides resistance against modeling and Side-Channel
Analysis (SCA) attacks may not be considered as a too
lightweight construction. In addition, it should be given
thought how to achieve a proper uniqueness and uniformity
for a small PUF on hardware platforms like an FPGA in
which the designer should consider placement and routing
as well as SCA protection [28].

With respect to design and application of PUFs, there
exist not only multiple PUF primitive options such as Arbiter
PUF (APUF) [13], Ring-Oscillator PUF (ROPUF) [43], and
Bistable Ring PUF (BR PUF) [7] but also PUF protocols
like the recent one Lockdown [47]. To be more exemplified,
there are more observations through the PUF-based security
protocol applications such as identification, key exchange,
or oblivious transfer [6], [13], [32], [34]. With the aim of
hardening the corresponding attacks particularly the model-
ing ones, several delay-based PUFs are made of APUF as a
basic element, e.g., XOR APUF [43], Feed Forward PUF [20],
and the recently-introduced Interpose PUF [28]. Such strong
PUFs promise to provide tamper-evident feature and satisfy
the strict avalanche criterion [11], [9]. Besides, controlled PUF
design is one of such approaches which utilize input and
output layers [14], [25], [24] to increase the resistance against
modeling attacks, e.g., lightweight PUF (LS PUF) [24]. As
another example, composite PUFs combine a couple of PUF
primitives to build a PUF instance [41], [29].

1.1 Related Works

Similar to cryptographic primitives, designing PUFs has
encountered the problem of various cryptanalytic attacks
being able to diminish their promises. Following the state of
the art [27], the PUF security threats can be categorized in
three groups: cryptanalysis attacks, machine learning based



modeling attacks (MA), and SCA-based machine learning
attacks. The attacks in the first category are not applicable
to PUF primitives such as APUF or ROPUF, whereas they
target controlled PUFs or composite PUFs (see more details
in [27], [29]).

The second category involves the most threatening attack
vector against PUF primitives. In MAs it is supposed that the
adversary simulates a learned software model of a PUF by
means of information extracted from a set of collected CRPs.
In other words, the attacker tries to model a PUF that can be
used to imitate its intrinsic physical behavior [28], [20], [21].

The third category, i.e., SCA-based MAs (the focus of this
paper), can be considered as the most potent attacks against
the security of PUFs [27]. In such attacks, information about
intermediate values (e.g., response of each APUF primitive
in an XOR APUF) are extracted by power analysis or timing
analysis that help the attacker to emulate the targeted PUF
function with modeling algorithms.

To cope with SCA leakages, two techniques are proposed
in [39], [22]. One of them, which targets power analysis
attacks, adds an extra arbiter cell to the end of each APUF
primitive to produce complementary responses. Borrowed
from the concept of dual-rail logics [26] this can mitigate the
leakage but cannot fully avoid it. This shortcoming is due
to the difference between the capacitive load of dual rails,
which cannot be ideally equal due to slight differences in
their routing originating from process variations. Further,
in such a dual-rail solution, due to unreliability1 there
are probable cases where both dual-rail arbiter cells store
the same value, hence amplifying the SCA leakage. By
constructing an isochronous circuit for the XOR network,
the second approach of [39], [22] aims at defeating timing
attacks targeting the time that an APUF requires to issue the
response. The ideal goal is to make a circuit with constant
delay independent of its input. To the best of our knowledge,
none of such techniques has been practically evaluated.

Nevertheless, controlled PUFs with input/output layers
like LS PUF [24] and composite PUFs are threatened by
cryptanalysis and modeling attacks as well as those which
make use of SCA information [40]. In other words, SCA
information of the PUF primitives would allow having some
information about the intermediate values, which again
makes the modeling attacks possible. For example, we refer
to [39], [22], [10], [3], [44]. The countermeasures discussed in
these schemes focus on the input and output layers to enable
the integration of an SCA-protection technique. They mainly
argue that SCA attacks on PUF primitives are impractical
due to a high level of noise in the measurements, which is
in contrast to what we practically show in this paper.

In terms of reliability of PUFs (that can be somehow con-
sidered as a side-channel information), there is a threatening
modeling attack known as CMA-ES reliability attack [2],
[1]. Further, there are several countermeasures against this
attack like majority voting [46] or Lockdown solutions [8] (in
protocol scenarios) which – based on the application – can
be chosen for an appropriate benefit.

1. For some challenges, the PUF primitive does not provide the same
response when the same challenge is repeatedly given. This is referred
to as PUF unreliability.

1.2 Our Contributions
Before introducing our achievements, the specification of the
adversary model considered in this work is given. Note that
the given definitions hold for almost all strong PUFs which
have a publicly-accessible CRP interface.

• The attacker has access to the net-list of the PUF and
its input/output layers, knows all implementation
details, can with no particular limit send challenges
and receive responses.

• While the challenge is processed, the attacker can
measure the SCA leakage of either the entire design,
i.e. the chip (by measuring power consumption) or
somehow a part of the design (by measuring EM
radiations by localized facilities).

• The attacker is not able to directly probe the interme-
diate values of the chip.

• The adversary does not have access to and cannot
predict the random values which are generated inside
the chip (a common and essential assumption of secret
sharing).

We present a technique which enables operating any
PUF primitive in an SCA-protected fashion. The core idea is
based on Boolean masking (a proper SCA countermeasure),
and its secure realization in hardware, i.e., Threshold Imple-
mentation (TI) [31]. Since the underlying function of PUF
primitives (e.g., an APUF) is not known before fabrication,
it does not seem possible to design a circuit which realizes
the corresponding masked representation. Here we illustrate
a mechanism to operate any arbitrary function (like a PUF
primitive) in a masked form fulfilling all TI requirements.
Further, we employ an SCA-resistant technique to improve
the reliability.

Although the SCA-security of our construction comes
at the cost of area and timing overheads, we believe that
area footprint is not of major concerns anymore in modern
nano-scale technologies2. For practical evaluations we con-
sider a recently published strong PUF primitive (Interpose
PUF [28]) which shows a high level of resistance against
MAs. By means of FPGA-based experiments, we present its
susceptibility to SCA-based MAs, and examine its resistance
against SCA modeling attacks when it is plugged into our
SCA-protected construction.

Organization. In Section 2 we give the preliminary knowl-
edge on PUF primitives required to follow the underlying
concept of the paper. Section 3 exhibits the practical result of
our SCA-based modeling attacks on an instance of Interpose
PUF [28]. We present the concept of Boolean masking and its
application on arbitrary functions including PUF primitives
in Section 4. This is followed by the application of our scheme
on the same instance of Interpose PUF and its practical SCA
evaluations in Section 5, while we conclude our research in
Section 6.

2 PUF PRELIMINARIES

This section briefly gives the required knowledge on PUF
primitives used in our investigations. Afterwards, the mod-

2. In a 2mm× 2mm chip fabricated by an ASIC 40 nm standard cell
library, the available area is more than 10 million GE, while a small AES
encryption circuit needs around 2000 GE.
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eling attack(s) which we use in our analyses are shortly
described.

Notations. We denote binary or real random variables ∈ F2/
∈ R with italic, vectors ∈ Fn>1

2 / ∈ Rn>1 with italic bold,
elements in a vector with superscripts, and functions with
italic sans serif font.

2.1 Arbiter PUF
The most common delay-based silicon strong PUF is known
as Arbiter PUF (APUF) [20], [13], [43], [28] consisting of n
stages, each of which controlled by a challenge bit ci<n. Trig-
gered by an electrical signal, a race is initiated simultaneously
in two different delay-based challenge-dependent paths
formed by these stages to reach a flip-flop. This delay-based
PUF is modeled by a linear additive delay model (shown
below) presented and applied in many related articles [20],
[13].

∆ = w0Φ0 + ...+ wiΦi + ...+ wnΦn = wT ·Φ, (1)

where Φn = 1. The Vector w : 〈w0, . . . , wn〉 plays the role
of weights which convey the physical characteristics of the
underlying APUF and should be learned through the learner
function, and wT stands for w transposed. The same way,
Φ : 〈Φ0, . . . ,Φn〉 is considered as the feature vector which
is derived from the given challenge c : 〈c0, . . . , cn−1〉 and
computed as follows.

Φi∈{0,...,n−1} =
n−1∏
j=i

(1− 2 · cj) (2)

Then based on this linear additive model, the final response
of an arbiter PUF with n stages and 1-bit response r is
computed. To this end, a unit sign function Θ(.) is used
which determines which delay line propagators earlier to the
arbiter.

r = Θ(∆) =

{
1 if ∆ ≥ 0,
0 otherwise.

(3)

2.2 XOR Arbiter PUF
XOR arbiter PUFs are more prevalent in strong PUF ap-
plications due to their boosted resistance against modeling
attacks by means of combining the output of k arbiter PUFs
by an XOR gate. The aforementioned additive linear model
in Equation (1) is also applicable to model XOR arbiter PUFs.
Equation (4) represents this parallel attribute for a k-XOR
APUF, where delay differences ∆ are multiplied involving
k weight vectors wi of each individual APUF and k feature
vectors Φi derived from the corresponding challenges [37].

r = Θ
( k∏

i=1

∆i
)

= Θ
( k∏

i=1

wiT ·Φi
)

(4)

2.3 Interpose PUF
With combining the concepts of APUF and XOR APUF,
the recent modeling-secure PUF, called Interpose PUF, is
made of two XOR APUF layers as shown in Figure 1. The
top layer consists of x instances of n-bit XOR APUFs (x-
XOR APUF) with 1-bit response, so-called rt. This 1-bit
response interposes to a determined position (ideally n

2 )

rb1

APUF 1

APUF 2

APUF y

⊕c : 〈c0, . . . , ci, . . . , cn-1〉
...

...

APUF 1

APUF 2

APUF x

⊕c : 〈c0, c1, . . . , cn-1〉
...

...
1 rt

n

n+1

Top Layer

Bottom Layer

Fig. 1. Interpose PUF.

of the challenge of the bottom y-XOR APUF layer. Therefore,
the bottom layer has n + 1 bits challenge and 1-bit final
response rb [28]. The entire n-bit challenge c : 〈c0, . . . , cn−1〉
is given to all x-XOR APUF of the top layer. The challenge
of the entire y-XOR APUF of the bottom layer is formed by
〈c0, . . . , cn

2−1, rt, c
n
2 , . . . , cn−1〉 for the most ideal case, i.e.,

the interpose position i = n
2 .

This PUF is claimed to be secure against MAs depending
on the challenge length n, the position of the interpose
bit, and the number of applied APUFs in each layer (x, y).
However, its security does not cover the third category of
attacks, i.e., SCA-based MAs [28].

2.4 Modeling Attacks on PUFs
As described in Section 1.1, MAs are one of the most
threatening attacks on PUFs, which are also appeared in the
form of improved by SCA leakages extracted when CRPs are
processed. In [37], [38] it is shown that in classical modeling
attacks (pure ML attacks without reliability information) the
adapted logistic regression outperforms other techniques
such as Support Vector Machine (SVM) and Artificial Neural
Networks (ANNs) which do not benefit from the precise
modeling of XOR APUFs and LS PUFs. Due to this fact, we
express a brief introduction of the well-considered logistic
regression.

Logistic Regression (LR) known as a classification algorithm
is also exploited as a supervised machine learning framework
to assign input data to discrete set of classes [5]. It is
shown in [37], [38] that there is an adapted format of
logistic regression to model the PUF process as learning
the weights especially in the case of 1-bit response. Through
logistic regression, the adversary aims at learning the APUF’s
weightsw so that each challenge c has a probability p(c, r|w)
to produce one-bit response r [37], [38]. In order to classify
the given challenges to possible responses 0/1, we need an
activation function for the weight vector w which is the
encoding of the inherent PUF’s parameters like delay of the
PUF lines.

Supposing that the PUF output is predicted by f (c,w),
the logistic sigmoid function σ(x) = (1 + e−x)

−1 is applied
as an activation function on f (., .) to update the randomly-
initialized weight vector by p(c, r|w) = r ·σ

(
f (c,w)

)
+ (1−

3



r) ·
(

1 − σ
(
f (c,w)

))
[37], [38]. The decision boundary for

the aforementioned function is determined when f (., .) = 0
in the case of equal output probabilities. Through getting
maximum likelihood for a selected training set Q of CRPs,
the boundary decision for the weights w is determined in
such a way that it leads to the minimum log-likelihood. In
order to reduce the distance between initialized weights
and the optimal ones, a gradient function can be applied to
minimize the logistic regression cost function of weights for
the selected training set Q:

argmin
w

∑
∀(c,r)∈Q

− ln
(
p(c, r|w)

)
. (5)

The Resilient back Propagation (Rprop) is well inves-
tigated and advantageous for the gradient decent among
other optimization algorithms like conjugate gradient. Rprop
provides more advantages such as fast convergence speed
and no need to chose a learning rate. Nevertheless, it can
sound more complex [5], [19]. Since the learning weights
process should be optimized frequently during the iterations,
gradient information of weights on set Q as 5l(Q,w) can
be helpful for the optimization methods like Rprop.

5l(Q,w) =
∑

∀(c,r)∈Q

(
σ(f (c,w)− r)

)
5 f (c,w) (6)

To sum up, logistic regression sounds more appropriate
compared to other learners like SVM due to its high learning
speed, its stability through a large number of XOR APUFs,
and since it does not require to be separated linearly in
the feature space [39]. It is worth to mention that if the
convergence speed or accuracy in the optimization algorithm
Rprop through LR does not achieve the local minima, the
training or test process should be restarted. Regarding these
facts, the Artificial Neural Networks (ANNs) operate similar
to LR considering an activation function and an additive
linear model for APUFs.

3 SCA ANALYSIS ON ORIGINAL DESIGN

In order to practically show the effectiveness of SCA-based
MAs, we have taken an exemplary instance of Interpose PUF
with x = 1 and y = 5 with the challenge length n = 64,
so-called (1, 5)-IPUF. More precisely, the top layer consists
of a single 64-bit APUF, and the bottom layer a 65-bit 5-
XOR APUF. The interpose bit is set right at the middle
of the 65-bit challenge of the bottom layer. Based on the
analyses reported in the original article [28], (1, 5)-IPUF
provides a high level of security against modeling attacks.
We performed our analyses on the original design provided
by the authors of [28]; the HDL designs are accessible through
the authors GitHub3.

We implemented one instance of (1, 5)-IPUF on a
Spartan-6 FPGA, and conducted SCA analysis. To this end,
we made use of a SAKURA-G platform [42] dedicated to SCA
evaluations. The power consumption of the target FPGA is
monitored at the output of the embedded amplifier which
magnifies the voltage drop over a shunt resistor at the Vdd
path. The power traces are collected by a digital oscilloscope
at the sampling rate of 2.5 GS/s while the FPGA is driven

3. https://github.com/scluconn/DA PUF Library
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Fig. 2. SCA of original (1, 5)-IPUF, 100 000 averaged signals, each of
which obtained by repeating 1000 times.

by a 24 MHz clock. Following the recommendations given
in [28], we put a considerable delay between the termination
of the top layer and the activation of the bottom layer to
make sure that the interpose bit is stable while the bottom
later is triggered. Further, to conduct a proper analysis we
routed out the output of all APUF instances. In other words,
the target FPGA sends out the response of the bottom later
rb as well as rt and 5 response bits of the APUF instances
of bottom layer. This is essential for the analysis to examine
how accurately the intermediate values can be recovered
through SCA analysis. Such additional outputs, of course,
are not present in an actual design.

Since power consumption of an APUF instance is rela-
tively low (as the trigger signal just traverses through two
lines to reach the arbiter cell with no glitch or extra toggle),
it has been predicted in many articles that power analysis
on such PUF primitives is unlikely possible [12]. According
to the adversary model defined in Section 1.2, the adversary
is able to repeatedly give the same challenge to the design.
Hence, to overcome the low signal (or high noise issue) we
repeated every measurement 1000 times and get an averaged
power signal, one of which is shown in Figure 2(a), where
the time instances corresponding to the activation of top
and bottom layers are marked. We collected 100 000 such
averaged signals (so-called collected signals), for each of
which the design (on the target FPGA) is provided by a
random 64-bit challenge.

Top Layer. By classifying the collected signals into two
groups based on the response of the top layer rt, we obtain
two mean traces, whose difference identifies at which time
instances the power consumption depends on the output of
the single APUF in the top layer (as shown in Figure 2(b)).
Hence, in Figure 3(a) we present two histograms of the
collected signals at a certain sample point corresponding
to the evaluation of the top layer. It can be seen that the
histograms include areas (the tails) which have a little overlap
with each other. Therefore, the adversary can extract a subset
of challenges associated to the tails of the full histogram
(Figure 3(b)), and predict rt based on being in the left or right
tail. In our experiments, we defined the threshold of 20% at
each tail to extract the challenges with guessed rt. Note that
such conjectures are not fully noise free, i.e., there are (but
not many) challenges in both tails with wrong guessed rt.
However, this does not strongly affect the performance of
the modeling attack which learns the weights of the APUF
of the top layer.
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Fig. 3. SCA of the top layer of original (1, 5)-IPUF using 100 000 averaged
signals, histograms at the point of interest identified in Figure 2(b).

Attack. We conducted an LR attack (as described in Sec-
tion 2.4) using the extracted challenges with the predicted rt.
Although – as stated – such predictions are slightly noisy, the
attack required around 3000 CRPs to achieve the accuracy
of 99%.

Bottom Layer. Having access to rt or being able to predict
it with a high accuracy (as we showed above how to do),
the adversary can conduct a modeling attack on the bottom
layer since it turns to an XOR APUF with a challenge of
n + 1 = 65 bits, where all challenges are known. In the
shown practical results, the top layer consists of only a single
APUF. Therefore, we extend our SCA investigations on the
bottom layer, where a 5-XOR APUF is employed. To this
end, we performed two different analyses: one based on the
output of the XOR APUF (rb) and another one based on the
response of all APUFs in the bottom layer. Figure 2(b) shows
the corresponding difference of means signal ∆ (based on
rb) and the standard deviation signal σ (based on all APUFs
in the bottom layer).

In Figure 4(a) and Figure 4(b), the result of the analyses
based on rb is shown. It can be seen that – similar to that
on the top layer – the adversary can extract a subset of
challenges with highly accurately guessed rb. In Figure 4(c)
and Figure 4(d) we represent a similar analysis result but
based on the response of all APUFs in the bottom layer. In
contrary to what has been reported based on simulation
in [39], we observed that the Hamming weight of the XOR
input (of the bottom layer) is not detectable by analyzing
the SCA leakages. Instead, we noticed that the histogram of
the case when all APUFs’ response are ‘1’ is distinguishable
from the others.

Attacks. In our experiments – knowing all challenge bits –
having only the rb, the weights of the 65-bit 5-XOR APUF of
the bottom layer have been learned by an LR attack using
15 000 CRPs reaching the accuracy of 86%. In case of being
able to distinguish the full one ‘11111’ from the others,
the adopted LR attack utilizes the same CRP size 15 000
but achieves the higher accuracy of 96%. It is noteworthy
to mention that to adopt the LR algorithm, the logistic
regression optimization has been changed to minimize the
squared error between the given (extracted through SCA)
and modeled responses leading to a different gradient
formula instead of Equation (6) (see more details in [39]).

These analyses show that when the top layer is not a sin-
gle APUF, the SCA analysis makes it still possible to conduct
modeling attacks dedicated to the top layer. Furthermore, the
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Fig. 4. SCA of the bottom layer of original (1, 5)-IPUF using 100 000 aver-
aged signals, histograms at the point of interest identified in Figure 2(b).

SCA information decreases the required number of CRPs to
model XOR APUFs. This is of highly interest since the CRP
space applied in classical MAs exponentially increases by a
higher number of APUF instances in XOR APUFs. As stated
before, such an SCA-boosted divide-and-conquer scenario
allows the adversary to highly accurately learn the weights
of all APUF instances.

4 PROTECTION TECHNIQUE

In this section before illustrating the concept behind our
construction, we first restate the basics of hardware masking
as an SCA countermeasure. We limit ourselves to the essen-
tials necessary for the underlying concept of our proposed
scheme.

As given in Section 2, we denote elements in a vector
with superscripts, and functions with italic sans serif font.
Additionally, we denote shares of a random variable with
subscripts, binary matrices ∈ Fn>1

2 × Fm>1
2 with CAPITAL

ITALIC BOLD and Boolean functions with larger than one
output bit with CAPITAL ITALIC SANS SERIF font.

4.1 Threshold Implementation
The most widely studied SCA countermeasure, i.e., masking,
follows the concept of secret sharing as well as multi-party
computation. In the s-th order Boolean masking, the secret
value c is represented by s + 1 shares (c1, . . . , cs+1) in
such a way that c =

⊕
∀i
ci. The initial masking requires s

independent and uniformly-distributed masks m1, . . . ,ms

to form the shares as ci≤s = mi and cs+1 = c ⊕⊕
∀i
mi.

Application of a binary linear function L(.) on c in a masked
form can be easily achieved by applying the same function
on all shares as L(c) =

⊕
∀i

L(ci). This also holds for any affine

function A(c) = L(c)⊕α if the constant α is applied an odd
number of times. The challenge is how to apply a non-linear
function F (.) in such a masked form. For simplicity, without

5



losing generality, suppose that c is a vector of 3 bits 〈w, y, z〉
and f (.) a coordinate function F3

2 7→ F2 with algebraic degree
of 3. Algebraic Normal Form (ANF) of exemplary function
f (c) : 11011100 is written as

f
(
c : 〈w, y, z〉

)
=1⊕ y ⊕ wy ⊕ wyz. (7)

Representing every variable with s+ 1 = 3 shares leads to

f (c) =1⊕ y1 ⊕ y2 ⊕ y3 ⊕ w1y1 ⊕ w1y2 ⊕ w1y3⊕ (8)
w2y1 ⊕ w2y2 ⊕ w2y3 ⊕ w3y1 ⊕ w3y2 ⊕ w3y3⊕
w1y1z1 ⊕ w1y1z2 ⊕ w1y1z3 ⊕ w1y2z1 ⊕ w1y2z2 ⊕ w1y2z3⊕
w1y3z1 ⊕ w1y3z2 ⊕ w1y3z3 ⊕ w2y1z1 ⊕ w2y1z2 ⊕ w2y1z3⊕
w2y2z1 ⊕ w2y2z2 ⊕ w2y2z3 ⊕ w2y3z1 ⊕ w2y3z2 ⊕ w2y3z3⊕
w3y1z1 ⊕ w3y1z2 ⊕ w3y1z3 ⊕ w3y2z1 ⊕ w3y2z2 ⊕ w3y2z3⊕
w3y3z1 ⊕ w3y3z2 ⊕ w3y3z3.

The terms in the above equation should be split into s′ + 1
parts to represent f (.) in a masked form with s′ + 1 shares.
To achieve d-th order security, one share of each variable
should be missing in every d parts of the resulting split.
This condition, known as non-completeness, is originally
defined by TI [31], [30] forcing at least s + 1 = td + 1
input shares to achieve d-th order security for a function
with algebraic degree t. This implies at least s + 1 = 3
shares for the smallest non-linear function, an AND gate. The
resulting split should also achieve uniformity, i.e., shared
output (f1(.), . . . , fs′+1(.)) should be indistinguishable from
the output of f (.) being masked in s′ + 1 shares using s′

independent and uniformly-distributed masks. For a given
function, it is not straightforward to find a uniform split
(see [31], [4]). Alternatively, additional masks (so-called
fresh masks) can be added to achieve the uniformity. In
a conservative way, by means of s′ fresh masks γ we can
re-mask the shared output as fi≤s′(.)⊕γi and fs′+1(.)⊕⊕

∀i
γi.

The high number of required input shares of TI can
be relaxed by computing the shared output in two steps
which (most of the time) enforce the use of fresh masks. In
case of the above example, every term in Equation (8) can
independently be XORed with a fresh mask and stored into
a register, i.e., 40 fresh masks and 40 register cells. If the
XOR of all fresh masks is also stored in a register, the output
of the 41 registers form a uniform sharing of f (.) with 41
shares. The output of the register cells can be classified into
any number of s′ + 1 groups; the XOR of all cells in each
group would also result in an s′ + 1 uniform sharing of f (.).
Of course, this conservative way of using fresh masks and
registers can be optimized as some terms can be combined
before being re-masked without any effect on the desired
security order, e.g., y1 and w1y1 and w1y1z1. This has been
extensively investigated in a couple of related articles [17],
[16], [33], [15]. It indeed allows us to use d+ 1 inputs (and
output) shares for d-th order security without being bounded
by the algebraic degree t of the underlying function.

4.2 Application on PUF
The main motivation behind a PUF primitive is to avoid
knowing the function it realizes before fabrication, and every
fabricated PUF primitive should be different to the others,
i.e., uniqueness. Therefore, it does not seem possible to
construct a masked PUF primitive. Instead, we here introduce
a mechanism which allows us to operate a PUF primitive in

a masked way. Back to the example given in Section 4.1, we
can add some terms an even number of times (highlighted
in red) to Equation (8) without affecting its functionality as
follows.

f (c) =(1⊕ y1 ⊕ w1y1 ⊕ w1y1z1)⊕ (1⊕ y2 ⊕ w1y2 ⊕ w1y2z1)⊕
(1⊕ y3 ⊕ w1y3 ⊕ w1y3z1)⊕ (1⊕ y1 ⊕ w2y1 ⊕ w2y1z1)⊕
(1⊕ y2 ⊕ w2y2 ⊕ w2y2z1)⊕ (1⊕ y3 ⊕ w2y3 ⊕ w2y3z1)⊕
(1⊕ y1 ⊕ w3y1 ⊕ w3y1z1)⊕ (1⊕ y2 ⊕ w3y2 ⊕ w3y2z1)⊕
(1⊕ y3 ⊕ w3y3 ⊕ w3y3z1)⊕ (1⊕ y1 ⊕ w1y1 ⊕ w1y1z2)⊕
(1⊕ y2 ⊕ w1y2 ⊕ w1y2z2)⊕ (1⊕ y3 ⊕ w1y3 ⊕ w1y3z2)⊕
(1⊕ y1 ⊕ w2y1 ⊕ w2y1z2)⊕ (1⊕ y2 ⊕ w2y2 ⊕ w2y2z2)⊕
(1⊕ y3 ⊕ w2y3 ⊕ w2y3z2)⊕ (1⊕ y1 ⊕ w3y1 ⊕ w3y1z2)⊕
(1⊕ y2 ⊕ w3y2 ⊕ w3y2z2)⊕ (1⊕ y3 ⊕ w3y3 ⊕ w3y3z2)⊕
(1⊕ y1 ⊕ w1y1 ⊕ w1y1z3)⊕ (1⊕ y2 ⊕ w1y2 ⊕ w1y2z3)⊕
(1⊕ y3 ⊕ w1y3 ⊕ w1y3z3)⊕ (1⊕ y1 ⊕ w2y1 ⊕ w2y1z3)⊕
(1⊕ y2 ⊕ w2y2 ⊕ w2y2z3)⊕ (1⊕ y3 ⊕ w2y3 ⊕ w2y3z3)⊕
(1⊕ y1 ⊕ w3y1 ⊕ w3y1z3)⊕ (1⊕ y2 ⊕ w3y2 ⊕ w3y2z3)⊕
(1⊕ y3 ⊕ w3y3 ⊕ w3y3z3)

Based on Equation (7), we can therefore write

f (c) =f
(
〈w1, y1, z1〉

)
⊕ f
(
〈w1, y2, z1〉

)
⊕ f
(
〈w1, y3, z1〉

)
⊕ (9)

f
(
〈w2, y1, z1〉

)
⊕ f
(
〈w2, y2, z1〉

)
⊕ f
(
〈w2, y3, z1〉

)
⊕

. . .

f
(
〈w3, y1, z3〉

)
⊕ f
(
〈w3, y2, z3〉

)
⊕ f
(
〈w3, y3, z3〉

)
=
⊕
∀i,j,k

f
(
〈wi, yj , zk〉

)
.

This means that we can use the same function f (.) to realize
it in a masked form. However, this is correct only for an
odd number of input shares s + 1. In case of an even
number (exemplary 2), Equation (9) would contain only
the cubic terms (see Equation (7)). The constant, all linear
and quadratic terms are canceled out, and the correctness
property (defined by TI [31]) is not fulfilled.

Observation 1. For any arbitrary coordinate function with
n-bit input f : Fn

2 7→ F2, if the input c is masked in an
odd number of s+1 shares, the XOR sum of applying f (.)
on all (s+ 1)n shared input combinations equals f (c).

Therefore, we can securely operate any arbitrary function;
minimum number of s + 1 = 3 input shares provides at
most 2nd-order security. As given in Section 4.1, this requires
(s + 1)n fresh masks as well as register cells to maintain
both non-completeness and uniformity. As stated, in such a
scenario the output can be represented with any arbitrary
number of shares s′ + 1 ≤ (s+ 1)n.

A PUF primitive with n challenge bits realizes a coor-
dinate function Fn

2 7→ F2. Therefore, the above observation
also holds for a PUF primitive. Since a PUF primitive cannot
be instantiated multiple times with the same underlying
function, we must serially re-use the same PUF primitive
(s + 1)n times to cover all shared input combinations. In
other words, multiple instances of f (.) can be used in
Observation 1, but the nature of PUF primitives deactivates
such an optimization.

Limitations. Serially using a PUF primitive (s + 1)n times
(and XORing the masked results, see Equation (9)) leads to a
high latency even for small n and s+ 1. Exemplary, for an
8-bit PUF primitive and minimum number of input shares
s+ 1 = 3, the PUF primitive should operate 38 = 6561 times
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Fig. 5. Secure evaluation, the construction to operate an n-bit PUF primitive in a masked way with 3 shares.

and the (re-masked) results should be XORed. Since any PUF
primitive faces unreliability due it physical characteristics,
XORing 6561 PUF outputs will lead to extreme unreliability,
regardless of its high latency.

Back to the main idea, i.e., Equation (9), we highlight that
all shared input combinations ∀i, j, k 〈wi, yj , zk〉 are applied
to the function f (.). Since it is based on an odd number of
input shares s+1, the original (unmasked) input c : 〈w, y, z〉
is definitely one of such shared input combinations. For
example with 3 shares, 0 is represented by (0,0,0), (1,0, 1),
(1, 1,0), or (0, 1, 1), and 1 by (1, 0, 0), (0, 0,1), (0,1, 0), or
(1,1,1). It can be seen that the original (unmasked) value
always appears in one of the shares. This means that although
Equation (9) realizes a masked way of operating the function
f (.), it indeed hides the calculation of the original input
c : 〈w, y, z〉 among the others depending on the given masks.
This fact does not hold for even number of input shares,
which also justifies Observation 1.

We further should point out that – as defined in Sec-
tion 1.2 – the challenge c is known to the adversary. This
allows us to share only a few challenge bits as protecting
the output of the PUF primitive is of our interest. Therefore,
based on the trade-off between security and latency (resp.
reliability), the designer can select how many challenge bits
should be masked. This way, PUF primitives with large
challenge sizes can also be used as long as the number of
masked challenge bits is limited.

4.3 Realization

In order to realize the aforementioned scheme for a given
PUF primitive, we illustrate our construction by an n-bit
coordinate function and s + 1 = 3 shares. To this end, we
define an at-run-time user-adjustable signal p, that identifies
which challenge bits should be masked. As shown in Figure 5,
the n-bit challenge c is masked by two n-bit masks m1

and m2 to form a 3-share challenge (c1, c2, c3). A priori,
multiplying m1 and m2 by p (bit-wise AND) would allow
us to only mask the identified challenge bits.

Each 3 corresponding bits (3 LSBs, 3 second bits, . . . ,
3 MSBs) are given to a 3-to-1 multiplexer (MUX) controlled
by a 2-bit signal si=1,...,n. In order to efficiently control the
MUXes, we make use of cascaded 2-bit Linear Feedback Shift
Registers (LFSRs) initiated with ‘11’ (see Figure 5). If pi=‘0’
(i.e., no masking for the i-th challenge bit), the i-th LFSR

constantly states at ‘11’. Otherwise, the LFSR generates the
cyclic sequence ‘11’, ‘01’, ‘10’ and enables the next LFSR
when it moves from ‘10’ to ‘11’.

The selected n-bit input is given to the PUF primitive
whose output is re-masked by means of fresh single-bit
masks γ1 and γ2. This updates the register cells which store
the XOR sum of re-masked output of the PUF primitive
applied on shared input combinations. The shared final
output (ω1, ω2, ω3) is taken from the register cells which
fulfills f (c) =

⊕
∀i
ωi = ω. This process is in line with the

observation given in Section 4.2 satisfying non-completeness
and uniformity (if the fresh masks γ are uniformly dis-
tributed).

We should highlight that when the LFSRs change, a
leakage depending on the input might be exhibited. For
clarification, consider the first MUX receiving LSBs (c11, c

1
2, c

1
3)

and controlled by s1. When s1 changes from ‘11’ to ‘01’,
the output of the MUX switches from c11 to c12. However,
by changing from ‘01’ to ‘10’, due to a race condition it
may happen that the MUX switches from c12 to c11 shortly
before giving c13 as output. This can lead to a first-order
leakage about c1. A similar issue has formerly been observed
in [45], where a solution based on gray codes has been given.
However, in our application scenario the given input c is
not secret. It is either the given challenge or derived by the
known input layer. Based on the adversary model defined in
Section 1, the input layer is known to the attacker; hence, c
is also of his possession. Therefore, the aforementioned issue
does not pose any security weakness in our application.

4.4 Reliability
Reliability of PUF primitives is of serious concern which
becomes more problematic when the output of a couple
of PUF primitives are combined, e.g., in XOR PUFs. Our
construction which operates a PUF primitive in a secure way
can be seen as an XOR PUF with (s + 1)h instances where
h = w(p), i.e., Hamming weight of signal p. By increasing
h the reliability is obviously decreased. A trivial solution –
as majority voting – is to apply the given challenge c for a
couple of times, and count by means of two counters a and
b how many times the output f (c) = ω = 0 and how many
times ω = 1, respectively. The larger counter would vote for
the probable reliable output υ = 1 if b > a (see Figure 6(a)).
Application of this technique on our construction – where the
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(b) Secure with 3 shares

Fig. 6. Compensating unreliability by majority voting.

output is masked –is not straightforward. In other words, the
majority voting mechanism should also be adjusted based
on the underlying number of output shares. To this end, we
start with the 3-share case, i.e., the output of the majority
voting is represented by three shares (υ1, υ2, υ2). The goal is
to mask the underlying counters. Since we can always write
υ1 = υ ⊕ υ2 ⊕ υ3, following the concept of Boolean masking
and considering υ2 and υ3 as single-bit masks, the counters
a, b are swapped if υ2 ⊕ υ3 = 1. Therefore, at any time(
υ1 =

{
1 if b > a
0 else

, υ2, υ3

)
represent the voting output

with three shares. The given challenge c is supplied to our
construction (Section 4.3) for a couple of times, each time with
newly generated masks mi (and newly generated p) leading
to the shared output (ω1, ω2, ω3) (see Figure 5). Suppose
that counters a and b contain some values associated to the
masks (υ2, υ3) that should be updated by the newly given
tuple (ω1, ω2, ω3). First a and b are swapped if υ2 ⊕ ω2 = 1
and again if υ3 ⊕ ω3 = 1. Then, based on ω1 one of the
counters is incremented resulting in updated counters a′

and b′ with υ′2 = ω2 and υ′3 = ω3 as the updated associated
masks. By the swap based on υ2 ⊕ ω2 and υ3 ⊕ ω3, we
indeed replace the masks (υ2, υ3) with (ω2, ω3). This process
is depicted in Figure 6(b). As shown in the diagram, the result
of each swap should be stored in registers. Otherwise, all
shares ω1, ω2, and ω3 are involved in a combinatorial circuit
violating the non-completeness property of TI. Further, the
gray numbers written inside the registers in Figure 6(b) show
the order which should be followed when updating the
registers. This scheme can straightforwardly be extended to
a higher number of shares.

5 DESIGN AND ANALYSIS

We applied our construction (explained in Section 4) on the
selected case study, i.e., (1, 5)-IPUF, discussed and presented
in Section 3. To this end, we built a circuit (shown in Figure 7)
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Fig. 7. Application of our construction on Interpose PUF.

TABLE 1
Performance figures of our construction (for Interpose PUF).

FPGA ASIC Latency
(Spartan-6) (IBM 130 nm)

[FFs] [LUTs] [GE] freq. [MHz] clock cycles [#]
178 383 2336 72 4 + (l + 1)(3h · 16 + 10)

consisting of a single instance of ‘Share Selection’, ‘Mask
Refreshing’, and ‘Secure Majority Voting’ modules. Since
the top and bottom layers have to serially be evaluated, the
aforementioned modules are shared. For the ‘Secure Majority
Voting’ module, we adjusted the counters/comparators to
deal with 4-bit values, i.e., the user can at most repeat
top/bottom evaluation l = 15 times to compensate the
unreliability. The masked result of the top layer (after
repeating l times) is stored in the masked rt register, and
later is used during the evaluation of the bottom layer (also l
times).

In addition to the FPGA-based practical experiments, we
synthesized our construction using the IBM 130 nm standard
library. Our developed HDL codes are accessible through
GitHub4. In Table 1 we report the corresponding performance
figures including the area footprint and latency. Note that
the (1, 5)-IPUF and the random number generators are
excluded in the reported area. As stated before, the latency
of our construction depends exponentially on h = w(p)
(the number of challenge bits which should be masked) and
linearly on l (the number of repeats in the majority voting
module). Hence, selecting a small h is of reasonable choices;
otherwise, the very high latency might be not affordable.

Reliability. Since in our construction every PUF primitive
is evaluated 3h times to form a single-bit masked output,
increasing h would affect the reliability. We have practically
examined this issue using the aforementioned SAKURA-G
platform based on a Spartan-6 FPGA. We have supplied the
implementation with 1000 randomly-chosen challenges for
different values of l ∈ {0, . . . , 15} and h ∈ {0, . . . , 7}, and
repeated this process 10 times. As the reference response we
took those belonging to (l = 15, h = 0) and extracted the
reliable output as those with at least 6 times the same output.
Based on this, we calculated the reliability for other settings
of (l, h) which are shown in Figure 8. The results imply
that increasing h makes sense for single APUF (top layer),
while the reliability suddenly drops for the 5-XOR APUF for
high h. Further, the majority voting can slightly compensate
the unreliability, but it does not fully solve the problem due of
the nature of XOR APUF. Hence, both latency and reliability

4. https://github.com/emsec/TI-PUF
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Fig. 8. Reliability of the protected implementation for different number of
masked challenge bits h = w(p) and number of repeats l.

indicate that a small h ≤ 3 should be chosen, which can still
reach a reliability of 90% for high l.

Analysis. In order to examine the resistance of our con-
struction to SCA attacks, similar to the analysis formerly
illustrated in Section 3 we collected 100 000 averaged power
signals, each of which obtained by repeating the measure-
ments 1000 times for a given challenge. For the entire
measurements we set (l = 4, h = 1), i.e., only one challenge
bit is masked and the majority voting module decides
between 5 runs (for each of the top and bottom layers).
A sample collected signal is shown in Figure 9. For each
run, the masks (m1,m2) and (γ1, γ2) as well as p are
randomly generated inside the target FPGA by means of
a couple of randomly-seeded 31-bit LFSRs with feedback
polynomial x31 + x28 + 1. For more clarification, during the
entire process of collecting signals, m1, m2, p have been
generated (l + 1) · 2 · 1000 · 100 000 = 1 000 000 000 times,
while fresh masks (γ1, γ2) were updated at each clock cycle.

In order to conduct the same analysis as we have done
for the unprotected implementation (Section 3), we routed
out the masked output of the top layer rt. This allows us to
unmask the output of both top and bottom layers by the PC
which communicates with the FPGA to obtain the unmasked
values rt and rb. It is an essential task, otherwise unmasking
inside the FPGA would strongly exhibit leakage about both
rt and rb. Note that due to the underlying construction
(Figure 7) where the APUFs of the bottom layer are not
separately evaluated, we could not route out the output of
all APUF instances (in contrast to the unprotected analyses
in Section 3).

Classifying the collected signals based on the unmasked
values rt and rb led to the difference of mean signals
represented in Figure 9. As marked on the curves, there
exist (l+ 1) · 3h = 15 points of interests which show a slight
dependency of collected signals to the output of the top layer
rt. This turns to (l + 1) · 3h+1 = 45 points of interest for the
bottom layer. This increase is due to the fact that during the
evaluation of the bottom layer rt (which is always provided
by 3 shares independent of the given p) is used as a masked
challenge bit. We highlight the different scale of the y-axis in
difference-of-mean signals of the unprotected and protected
implementations shown in Figure 2(b) and Figure 9(bottom).

We analyzed the histogram of the collected signals at
all points of interest marked in Figure 9. They all share
roughly the same shape; one example for each layer is
shown in Figure 10. It can be seen that the histograms
classified either by unmasked rt or unmasked rb are not
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Fig. 9. SCA of our protected (1, 5)-IPUF, 100 000 averaged signals, each
of which obtained by repeating 1000 times, (top) an averaged signal,
(bottom) difference of means.
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Fig. 10. SCA of our protected (1, 5)-IPUF using 100 000 averaged signals,
histograms at an exemplary point of interest identified in Figure 9.

easily distinguishable from each other. This means that by
observing the full histograms the adversary is not able to
predict the intermediate values (unmasked rt or rb) even
for a subset of the collected signals. In other words, the
SCA leakages cannot provide more information to boost the
modeling attacks.

Comparison to Controlled PUF. It is worth to point out
that – as mentioned in Section 1 – composite PUFs or
controlled PUFs with their input- and output-layers harden
general modeling attacks. Our proposed construction also
hardens modeling attacks, but only those which make use
of the SCA leakages. Indeed, there is an obvious difference
between our mechanism and controlled PUFs. Based on the
generic concept of controlled PUF where hash functions
as input- and output-layers are initially used in [13], [14],
the attacker is prevented to be able to choose arbitrary
challenges of the PUF primitives placed between the known
input- and output-layers. More precisely, the input- and
output-layers are deterministic functions in the controlled
PUFs. Although they are known and can be modeled by the
attacker, they may make the modeling attacks harder. Mean-
while our proposed technique, which employs dynamically-
and-randomly-selected bit-position masked challenges and
masked responses for each PUF evaluation, is a generic SCA
countermeasure. In other words, assuming a PUF primitive
f (c) = r, our technique makes it enable to give a masked
representation of challenge c to the circuit and receive a
masked representation of the response r. This does not
change the functionality of the underlying PUF and does
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not alter the robustness or weakness of the design to pure
modeling attacks (those which do not use SCA leakages).
Our approach can be applied on any PUF primitive used in
an application like controlled PUF, composite form, interpose
PUF, etc.

6 CONCLUSIONS

In this work, for the first time we have presented a
mechanism which allows us to SCA-securely operate any
PUF primitive. We should highlight that our introduced
concept is independent of the way a PUF primitive is used
in an application. Examples include PUF-based protocols,
weak PUFs, and strong PUFs. Based on this concept, we
have shown the application of our construction on an
Interpose PUF and represented its corresponding practical
SCA analyses. We first practically showed how SCA leakages
can extract intermediate values (i.e., interpose bit) of an
original (unprotected) implementation leading to successful
straightforward modeling attacks. We further illustrated the
result of the same analyses when our construction prevents
the exhibition of exploitable SCA leakages.

The main message of this research is a hope to construct
SCA-resistant PUFs based on sound and widely-studied
countermeasures. This, for sure, comes at the cost of latency
and area. We believe that our work initiates further research
in this area.
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[36] U. Rührmair and D. E. Holcomb, “Pufs at a glance,” in Design,
Automation & Test in Europe Conference & Exhibition – DATE 2014.
European Design and Automation Association, 2014, pp. 1–6.
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