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One accurate measurement
is worth a thousand expert opinions.

– Grace M. Hopper

Abstract

Random data and the entropy contained within is a critical com-
ponent of information security. Minimum entropy (min entropy, H∞)
is the base measurement defined by NIST and what many of their en-
tropy tests are based on. However minimum entropy does not satisfy
the basic requirements for an entropy measurement in either Shannon’s
original document [7] or in Rényi’s generalization of entropy [6]. This
document suggests a different way forward with a reclassification of
entropy into two classes. With this differentiation, measurement tools
are simplified and allow for more accurate assessments of entropy.

1 Information Security and Entropy

Random data and the entropy it contains is a critical component of infor-

mation security. Predictable – i.e., poor cryptographic random – can make

an otherwise secure system weak. Three NIST1 documents detail standards

on random data:

SP800-90B [9] Specifics on obtaining ‘raw’ or ‘true’ random data;
1US National Institute of Standards and Technology
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SP800-90A [2] Specifics on the oxymoronically named (yet ubiquitous)

deterministic random bit generation, or DRBG;

SP800-90C [1] Specifics on combining 90A and 90B for cryptographic use.

While these documents implicitly differentiate between raw (90B) and cryp-

tographic (90A,C) random, the measurement of entropy within them is sim-

ilar.

This indifferent treatment of random data types makes the testing pro-

cess messy and unreliable. Cryptographic applications tend to favor more

conservative views: assume the worst to maximize security. This idea has

been taken to heart in the NIST SP800-90 documents, using the most con-

servative measure, min-entropy (H∞). While this may make sense for cryp-

tographic random data 2, it makes no sense when measuring entropy in raw

random data. Accurate measuring tools, used conservatively, give a much

better picture of what ever is being measured. No one would use a conser-

vative ruler that was always a centimeter too short, nor would they use a

conservative thermometer that was always a degree higher.

This paper differentiates the types of random data and their properties.

It is hoped that this clarification will lead to simpler, more accurate tests

and also help with the design of new entropy extenders (i.e., DRBG).

2 What is Entropy and How do we measure it.

In information theory, entropy in data is defined by two equivalent defini-

tions:

1. The measure of randomness in data;
2There is a serious issue if min and mean entropy are not equivalent in cryptographic

random data.
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2. The amount of information contained in data.

Note that entropy is relative. It is not a solid, physical entity. Entropy

depends on perspective or what is known and unknown about the data to a

given entity. Once viewed, all information in the data is known to the viewer

(zero entropy in the viewers perspective), but the data still contains entropy

to non-viewers. The belief that entropy is something that has a classical,

fixed measure is false and causes many interpretation issues.

Knowledge of underlying entropy is represented in a probability distri-

bution. Assume that there are r possible states {xj | 0 < j ≤ r}, with state

j having probability pr(xj) = pj of occurring, with

P =

pj

∣∣∣∣∣∣ 0 < j ≤ r; 0 ≤ pj ≤ 1;

r∑
j=1

pj = 1

 . (1)

Shannons3 are the most commonly used unit[5]. A Shannon (Sh) is the

maximal entropy which can be contained in a single bit. Alternatively, a

Shannon is the entropy of a two state system with equally probable states.

One bit can store at most one Shannon, n-bits can store at most n-Shannons,

and in general, if there are k possible states, maximal entropy in the system

is

log2(k) = lg(k) .

Entropy of an individual event is inversely proportional to the probability

of it occurring: the more unlikely an event, the higher the entropy from its

occurrence. For example, in English we get more information about a hidden
3The term ‘bits’ is often used instead of Shannons. Multitasking the word ‘bit’ for both

an element of the set {0, 1} and an information measure can be misleading and confusing.
While use of base 2 logarithms is most common, there are other entropy measurement
units based off varying bases: hartleys (bans or dits) use base 10 and nat (natural units,
nit) use base e.
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word if the letter Z is revealed than if the letter E is revealed. The entropy

of the event j (for the given probability distribution (equation 1)) is given

by:

ent(j) = −lg(pj) . (2)

3 In a Perfect World: Raw vs Cryptographic En-
tropy

A distinction needs to be made between raw (true) and processed, crypto-

graphically usable random data and the entropy contained within each type.

In a perfect world, data with maximal entropy (1-Shannon per bit) from a

true random source would be used in each cryptographic application requir-

ing it. Our world is not perfect. Data from a raw random source rarely

holds maximal entropy, and even if it did, would be too costly (mostly in

terms of time) to generate for every application.

3.1 Our Imperfect World

In our imperfect world, we need a two part system with two different types

of entropy:

1. Raw entropy: Collected from a ‘true’ random source. Raw random

generally has a fairly low Shannon per bit ratio and is time and/or

computationally expensive. Raw entropy is contained in raw random

data.

2. Processed/Cryptographic entropy: Processed entropy is obtained

from an entropy extender, seeded with raw entropy. The device col-

lects, concentrates, and extends the generally poor Shannon-per-bit

raw random. Once enough raw entropy has been collected, entities
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without knowledge of the seed or state (i.e., observers) of the entropy

extender would see output data with full processed entropy (i.e., one

Shannon per bit). Furthermore, if n raw Shannons seeded the device,

an observer would measure much more than n processed Shannons

from the resulting output. No deterministic device generates entropy,

but each raw Shannon can produce many processed Shannons.

Cryptographic random data and entropy (output from a cryptographic

entropy extender) has the added property that no information on pre-

vious or future output can be determined from current output.

By definition, there are no cryptographic concerns for raw entropy. if

raw random data contains n Shannons, then due to its true random nature,

an observer of any collection of previous output would have only a 2−n

probability of guessing the next output.

It is critical is to insure that:

1. raw entropy is accurately measured;

2. the entropy extender is cryptographically sound;

3. enough entropy is collected in the entropy extender before any cryp-

tographic random data is generated;

4. The entropy extender is judiciously used.

Insuring good cryptographic entropy implies a careful assessment of what

the bold face terms above mean. The following sections briefly outline some

of the goals for these terms. Note that this is not intended to be an all

inclusive list, only a rough outline.
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3.1.1 Accurately Measuring Raw Entropy

It is difficult, if not impossible, to determine with any certainty a precise

measure of entropy in raw data. First, entropy is relative, dependent on

an entities knowledge of the underlying information. If the source is truly

random, its behavior is not well known, can change, and the output is (by

definition) not well defined. Second, even the existence of random data

can be questioned. However this kind of thinking quickly leads down a

deep philosophical rabbit hole, and does us no practical good. This section

reviews some of the very basic foundations for entropy measurement, upon

which more elaborate working tests should be based.

Shannon [7] described the requirements for an accurate entropy measure

H. Three critical properties (pgs 10-11) of this measure were laid out in

this text, as well as their implications. The text also contains a proof that

the only measure satisfying these properties is a mean (theorem on page 11,

proof on page 28).

Rényi [6] lists five initial postulates for an entropy measure which roughly

mirror Shannon’s properties. Postulate five (pg 551 [6]) correlates to Shan-

non’s third (pg 10 [7]). It is this constraint which leads to the mean measure.

Replacing Rényi’s postulate five (arithmetic mean) with a modified con-

straint (postulate 5′, the generalized mean, on pg 552 [6]), allows for a whole

suite of alternate entropy measures:

Hα[P] = (1− α)−1log2

(∑
k

pαk

)(∑
k

pk

)−1
 with α > 1.

This formula can be extended to include α = 1 and α = ∞ by taking the

limit of Hα as α goes to one or ∞ respectively.

This modified postulate requires a continuous, invertible function gα(x)
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which is used in the generalized mean. For mean entropy (α = 1), gα(x) =

ax+ b (a = 1, b = 0 is the most common). For other entropy measures the

function becomes:

gα(x) = 2(1−α)x (3)

(see equation 2.13 [6] and pg 14 [4]; note that Cachin has a corrected g).

Rényi does not discuss H∞, minimum entropy measure in [6]. One issue

is the fact that the function, gα, is a constant and not invertible for α =

∞. This implies that H∞ (min-entropy) does not satisfy even the relaxed,

generalized properties of a good entropy measure. The central limit theorem

does not hold and confidence intervals are not well defined for H∞.

If minimum entropy does not satisfy the requirements set out by either

Shannon or Rényi, why is it used as the foundation for measuring entropy in

cryptographic applications? Some have cited the conservative nature of min-

entropy (H∞ ≤ Hα for all α); others have cited the accepted ‘folklore’ [8]. I

strongly believe the usage of H∞ as the foundation of cryptographic entropy

measurement should be re-evaluated with the separation of cryptographic

and entropic concerns. In this light, the conservative argument fails.

3.1.2 Cryptographically Sound Entropy Extender

Cryptographically sound random data is quite different from raw random. It

is expected that the quality – i.e., the Shannons per bit – is maximal within a

very small confidence interval. Except for the unsuitable nature of using H∞

in many statistical tests, H∞ should equal H1. It should also be relatively

inexpensive in terms of time and computation, and be cryptographically

secure.

Cryptographically sound entropy extender should have minimal raw en-

tropy leakage. Leakage of raw entropy through the system implies one or
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more of the following:

• Information on raw entropy (seed) can be determined from output;

• Information on previous or future output can be determined from a

set of output;

Entropy Extenders are very similar to cryptographic stream ciphers.

Just as the only perfectly secure cipher is the one-time pad with a max-

imal Shannon-per-bit, the only perfect entropy extender is one which only

outputs as many Shannons as it receives and can prove no Shannons were

lost in the concentration process. Using concentrated raw entropy, while giv-

ing the most security, violates the ‘inexpensive’ requirement of an entropy

extender.

No entropy extender can guarantee zero leakage. Cryptanalysis should

be performed on an entropy extender to find some estimate on leakage.

3.1.3 What is ‘Enough’ Entropy

How much raw entropy must be collected in a entropy extender before it may

output cryptographic random data? This question depends on the applica-

tion and the effects of having poor entropy on the results. A minimum of m

raw Shannons must be collected, stored and used by the entropy extender

when:

1. The entropy extender outputs m-bits of random data;

2. The output data is used in a system requiring an m-bit random block;

Note that these are bare minimums.
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3.1.4 Judicious Use of Entropy Extender

Abuse of an entropy extender can lead to security issues. Generating too

many cryptographic Shannons per raw Shannon is one issue. This would

be equivalent to overuse of a cryptovariable (secret key) in a conventional

cryptosystem. Proper analysis of the entropy extender and prior experience

should give a rough estimate of an appropriate ratio of raw to cryptographic

Shannons.

Another abuse, also covered in the previous section, is using more Shan-

nons in a single application than the entropy extender has collected and

stored. For example, if the entropy extender has only 128-bits of storage

for raw random, then it should not be used to create a cryptovariable for a

256-bit cryptosystem.

4 Summary

Entropy is not a concrete entity that is easily measured. Obtaining entropy

for cryptographic purposes imposes other, slightly less nebulous require-

ments. Ignoring the differences between raw and cryptographic entropy

confuses and complicates the measurement process.

Separating cryptographic entropy generation into the following distinct

processes:

1. generating and measuring entropy in raw random data,

2. and concentrating and extending this entropy to create suitable cryp-

tographic random data

simplifies and improves both the measurement and creation process.
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The very flawed measure, min-entropy or H∞, seems to be used due to

this confusion. It is conservative, helping to prop up security arguments.

This is unnecessary if raw entropy generation is examined separately from

cryptographic entropy generation. Instead, the more accurate and usable

mean entropy should be used. It removes much of the questionable math-

ematics involved in many of the existing tests and would give much more

accurate estimates of entropy.

The most dangerous phrase in the

language is,

“We’ve always done it this way.”

– Grace M. Hopper

A Comments on NIST SP800-90B[9]
A.1 Confidence Intervals

Confidence intervals are used in many places in SP800-90B [9]:

• 6.3.2: Most Common Value Estimate

• 6.3.5: t-Tuple Estimate

• 6.3.6: Longest Repeated Substring Estimate

• 6.3.7: Multi Most Common in Window Prediction Estimate

Min-entropy can not be used to compute confidence intervals as it does

not satisfy the central limit theorem. These tests attempt to legitimatize

min-entropy usage by converting the distribution from a set of k possible out-

puts to a simple binary distribution. If the event set is A = {x1, x2, . . . , xk}
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and the full probability distribution is P = {pj = pr(xj) | 0 < j ≤ r}, the

reduced binary distribution to allow min-entropy to be used is P̂ =
{
pt,
∑

j ̸=t pj

}
,

where xt is the most likely event.

There are several problems with this modification

1. The binomial distribution does not play well with the central limit

theorem. Standard (Wald) confidence intervals are used, and it can

act very erratically with the binomial distribution [3];

2. Reducing the distribution to a binomial throws away a wealth of in-

formation about the distribution and thus reduces the accuracy of any

statistics arising from the test;

3. These tests (and H∞ in general) do not deal with multiple sources

of entropy well. Getting entropy from more than source is common.

Improving one of the sources should improve the entropy output.

This does not happen with min-entropy. It does hold for Hα for every

finite α > 0.

Minimum entropy (H∞) fails because it does not satisfy postulate 5’

in [6] (equation 2.12, pg 552).

A.2 6.4: Reducing the Symbol Space

This section details how to concentrate entropy in a given word of random

data. It assumes that in a given word, certain bits occur more frequently

than other bits. While this may be true in certain cases, such as when

random data is collected from a clock, there are many cases when it would

not.

Concentration of entropy is critical, but it is a processing concern, not

an entropy source concern. Handling a single type or case of concentration
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in a document which focuses on the collection of raw entropy seems out of

place. It should be considered for more generalized cases in SP800-90A or

90C, which deal with the processing of raw random data.

A.3 Appendix D: Min-entropy and optimum Guessing At-
tack Cost

This section supports the use of H∞ as a foundational entropy measure based

off the conservative argument: H∞ ≤ Hα for all α, and the supposition that

cryptographic attacks exist against the raw entropy source.

Cryptographic attacks do not exist against raw (true) entropy sources.

A guess can not be checked without revealing the value itself. An attacker

who sees the raw random data (assuming IID4) has no advantage on the next

output from the raw source. In other words, if each output word contains

k Shannons, an attacker would have only a 2−k probability of randomly

guessing any future or previous words.

Cryptographic attacks are a concern only once raw entropy is in a entropy

extender and cryptographic random data is output.
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