
Resource-Restricted Cryptography:
Honest-Majority MPC from a CRS (and No Broadcast)

Juan A. Garay ∗ Aggelos Kiayias† Rafail M. Ostrovsky‡ Giorgos Panagiotakos§

Vassilis Zikas¶

October 30, 2019

Abstract

Traditional bounds on synchronous Byzantine agreement (BA) and secure multi-party com-
putation (MPC) establish that in absence of a private-coin correlated-randomness setup, such as
a PKI, protocols can tolerate up to t < n/3 of the parties being malicious. The introduction of
“Nakamoto style” consensus, based on Proof-of-Work (PoW) blockchains, put forth a somewhat
different flavor of BA, showing that even a majority of corrupted parties can be tolerated as
long as the majority of the computation resources remain at honest hands. This assumption
on honest majority of some resource was also extended to other resources such as stake, space,
etc., upon which blockchains achieving Nakamoto-style consensus were built that violated the
t < n/3 bound in terms of number of party corruptions. The above state of affairs begs the
question of whether the seeming mismatch is due to different goals and models, or whether the
resource-restricting paradigm can be generically used to circumvent the n/3 lower bound.

In this work we study this question and formally demonstrate how the above paradigm
changes the rules of the game in cryptographic definitions. First, we abstract the core prop-
erties that the resource-restricting paradigm offers by means of a functionality wrapper, in the
UC framework, which when applied to a standard point-to-point network restricts the ability
(of the adversary) to send new messages. We show that such a wrapped network can be imple-
mented using the resource-restricting paradigm—concretely, using PoWs and honest majority
of computing power—and that the traditional t < n/3 impossibility results fail when the parties
have access to such a network.

We then present constructions for BA and MPC, which given access to such a network tol-
erate t < n/2 corruptions without assuming a private correlated randomness setup, but merely
a fresh Common Reference String (CRS)—i.e., a CRS which becomes available to the parties
at the same time as to the adversary. We also show how to remove this freshness assumption
by leveraging the power of a random oracle. Our MPC protocol achieves the standard notion
of MPC security, where parties might have dedicated roles, as is for example the case in Obliv-
ious Transfer protocols. This is in contrast to existing solutions basing MPC on PoWs, which
associate roles to pseudonyms but do not link these pseudonyms with the actual parties.

∗Texas A&M University, garay@cse.tamu.edu.
†University of Edinburgh and IOHK, akiayias@inf.ed.ac.uk. Research party supported by H2020 Grant 780477,

PRIViLEDGE.
‡University of California, Los Angeles, rafail@cs.ucla.edu. Supported by DARPA SPAWAR contract N66001-

15-C-4065.
§University of Edinburgh, giorgos.pan@inf.ed.ac.uk.
¶University of Edinburgh and IOHK, vzikas@inf.ed.ac.uk.

1

Contents

1 Introduction 3

2 Model 7

3 Inapplicability of Strong BA Impossibility 9
3.1 Modeling a Communication-Restricted Network . 10
3.2 The Impossibility Theorem, Revisited . 10

4 Implementing a Communication-Restricted Network 12

5 Implementing a Registration Functionality 15
5.1 The Registration Functionality . 15
5.2 The Protocol . 15

6 Removing the Freshness Assumption 20

2

1 Introduction

Byzantine agreement (BA), introduced by Lamport, Shostak, and Pease [26], is a fundamental
primitive in distributed computing and is at the core of many secure multi-party computation (MPC)
protocols. The problem comes in two main flavors, Consensus and Broadcast—although a number
of relaxations have also been proposed. Consensus considers a set of n parties P = {P1, . . . , Pn}
each of whom has an input xi, and who wish to agree on an output y (Consistency) such that if
xi = x for all honest parties then y = x (Validity), despite the potentially malicious behavior of
up to t of them. In the Broadcast version, on the other hand, only a single party, often called the
sender has an input xs, and the goal is to agree on an output y (Consistency) which, when the
sender is honest equals x (Validity).

The traditional setting in which the problem was introduced and investigated considers syn-
chronous communication and protocol execution. In a nutshell, this means that the protocol ad-
vances in rounds such that: (1) parties have a consistent view of the current round—i.e., no party
advances to round ρ + 1 before all other parties are finished with their round ρ instructions; and
(2) all messages sent in round ρ are delivered to their respective recipients by the beginning of
round ρ + 1. Furthermore, the underlying communication network is a complete point-to-point
authenticated channels network, where every pair (Pi, Pj) of parties is connected by a channel, such
that when Pj receives a message on this channel it knows it was indeed sent by Pi (or the adversary,
in case Pi is corrupted). We refer to the above setting as the (standard) LSP setting.

In this model, Lamport et al. proved that there exists no Consensus or Broadcast protocol
which can tolerate t ≥ n/3 Byzantine parties, i.e., parties controlled by a (central) active and
malicious adversary. The original formulation considered perfect security (i.e., information-theoretic
security with zero error probability) and no correlated randomness shared among the parties.1 This
impossibility result was later extended by Borcherding [7] to computational security—i.e., it was
proved to hold even under strong computational assumptions, such as one-way permutations.2

Furthermore, it applies even when the point-to-point channels used by the parties are secure, i.e.,
both authenticated and private, and even if we assume an arbitrary public correlated randomness
setup and/or a random oracle (RO).3 (A public correlated randomness setup can be viewed as a
functionality which samples a string and distributes it to all parties, e.g, a common reference string
(CRS). This is in contrast to a private correlated randomness setup which might keep part of the
sampled string private and distribute different parts of it to different parties, e.g., a PKI. For ease
of reference we state the above as a corollary:

Corollary 1 (Strong t ≥ n/3 impossibility [7]). In the synchronous point-to-point channels
setting, there exists no Broadcast protocol tolerating t ≥ n/3 corrupted parties. The statement holds
both in the authenticated and in the secure channels setting, both for unconditional adversaries and
assuming (even enhanced) trapdoor permutations, and even assuming an arbitrary public correlated
randomness setup and/or a random oracle.

The effect of BA lower bounds on MPC. MPC allows a set of parties to compute an arbitrary function
of their (potentially private) inputs in a secure way even in the presence of an adversary. Ben-Or,
Goldwasser and Wigderson [5] presented a protocol which computes any function with perfect

1Lamport et al. also considered the case of “signed messages.” The information-theoretic setting was referred to
as the “oral messages” setting.

2The original result by Borcherding just treats the case of assumptions sufficient for the existence of existentially
unforgeable signatures, but it can easily be extended to arbitrary cryptographic hardness assumptions.

3As usual, the implicit assumption here is that no party of adversary can query the RO more times than its
running time.

3

security in the synchronous setting while tolerating t < n/3 malicious parties assuming the parties
have access to a complete network of instant delivery point-to-point secure—i.e., authenticated and
private—channels (we shall refer to this model as the BGW communication model). The lower
bound holds even if a Broadcast channel—i.e., an ideal primitive guaranteeing the input/output
properties of Broadcast—is available to the parties. Rabin and Ben-Or [29] proved that if we allow
for a negligible error probability and assume broadcast, then there exists a general MPC protocol
tolerating up to t < n/2 of the parties being corrupted, even if the adversary is computationally
unbounded.

Observe, however, that just allowing negligible error probability is not sufficient for circumvent-
ing the t < n/3 barrier. Indeed, it is straightforward to verify that fully secure MPC as considered
in [21, 29]—with fairness and guaranteed output delivery—against malicious/Byzantine adversaries
implies Broadcast: Just consider the function which takes input only from a designated party, the
sender, and outputs it to everyone.4 In fact, using the above observation and Corollary 1 directly im-
plies that t < n/3 is tight even assuming a computational adversary, secure point-to-point channels,
an arbitrary public correlated randomness setup, e.g., a CRS, and/or a random oracle.

The public-key infrastructure (PKI) model. With the exception of perfect security5, the above land-
scape changes if we assume a private correlated randomness setup, such as a PKI. Indeed, in this
case Dolev and Strong [16] proved that assuming a PKI and intractability assumptions implying
existentially unforgeable digital signatures (e.g., one way functions) Broadcast tolerating arbitrar-
ily many (i.e., t < n) malicious corruptions is possible. We refer to this protocol as Dolev-Strong
Broadcast. In fact, as shown later by Pfitzmann and Waidner [28], by assuming more complicated
correlations—often referred to as a setup for information-theoretic (pseudo-)signatures—it is pos-
sible to obtain an unconditionally (i.e., information-theoretically) secure protocol for Broadcast
tolerating any corrupted minority. Clearly, by plugging the above constructions in [29], we obtain a
computationally or even i.t. secure MPC protocol tolerating any dishonest minority in the private
correlated randomness setting. Recall that this task was impossible for honest majorities in the
public correlated randomness setting.

The blockchain revolution. The introduction and systematic study of blockchains in the permission-
less setting, such as the Bitcoin blockchain, demonstrated how Consensus and Broadcast can be
reached even in settings where a majority of the participants might be adversarial (as long as the
majority of the computing power remains honest) and even without a private correlated randomness
setup. And although it was proven that such constructions work under the different assumption
of honest-majority computing power, a confusion still remained driven mainly by the fact that the
investigation of the type of consensus achieved by Bitcoin (“Nakamoto consensus”) considered more
involved models that closer capture its execution parameters (e.g., “partial synchrony” [17]), and that
the Bitcoin backbone protocol [19, 27] was shown to achieve eventual consensus, a property closer to
the traditional state-machine replication problem from distributed computing [30]6. In fact, similar
approaches were also used for alternative blockchains that relied on assumptions about restricting
other resource, such as for example a majority of honest stake (“proof of stake”—PoS) [6, 25, 20], a
majority of honest space [25, 15, 3, 6, 13], etc., which were however also analyzed in more complex
network settings.

4There are some delicate matters to handle when capturing Broadcast as MPC, which will become relevant for
out results, but for clarity we defer discussing them for when they are needed.

5Since perfect security allows no error probability, a setup does not help.
6Although it was also shown in [19] how to achieve the standard version of Consensus, as defined above, but in a

way radically different from the existing protocols.

4

The resource-restricting paradigm. We will use this general term to refer to all the above approaches.
Thus, an intriguing question remained:

Does Corollary 1 still apply to the standard LSP model (of instant delivery authenticated
channels and full synchrony) under the resource-restricting paradigm?

In this work we first answer this question in the negative by abstracting the essence of the above
resource-restricting paradigm as an access restriction on the underlying communication network.
Intuitively, the assumption of restricting (the adversary’s access to) the relative resource can be
captured by disallowing any party—and in particular any adversarial party—to send unboundedly
many more new messages than any other party. To avoid ambiguity and allow using the related
assumption in higher level constructions, we choose to work on Canetti’s Universal Composition
framework [9]. In particular, we describe the assumption induced by restricting the resources avail-
able to the adversary by means of a functionality wrapper, which wraps a communication network
and restricts the ability of parties (or the adversary) to send new messages through this network.

We then demonstrate how our wrapper, when applied to the standard instant-delivery syn-
chronous network, makes it impossible for the adversary to launch the attack from [7]. In particular,
the classical impossibilities (or even their extension stated in Corollary 1) in the same model as the
one they were proven, and with the required properties from the target primitive, do not apply to
protocols in this new restricted network.

In order to prove that our network restriction is an appropriate abstraction of the mechanisms
implied by the resource-restricting paradigm, we focus on the case of proofs of work (PoW) and
prove how to implement the wrapped LSP-style network from a public correlated randomness setup
(in particular, any high min-entropy CRS) and an access-restricted random oracle. Concretely, along
the lines of the composable analyses of Bitcoin [4], we capture the assumption of honest majority
of hashing power by means of a wrapped RO, which allows each party (honest or corrupted) at
most q queries per communication round (cf. [19]) for any given q (polynomial in the security
parameter).7An important consideration of our transformation is the need for a freshness property
on the assumed CRS. Specifically, our protocol for realizing the wrapped network assumes that
the adversary gets access to the CRS at the same time as honest parties do (and crucially relies
on this fact). Intuitively, the reason is that our protocol will rely on PoW-style hash puzzles in
order to restrict the ability of the adversary to create many new valid messages. Clearly, if the
adversary has access to the initial CRS—which will play the role of the genesis block—way before
the honest parties do, then he can start potentially precomputing valid messages thus making the
implementation of communication restriction infeasible.

We note that such freshness of the CRS might be considered a non-standard assumption and
seems relevant only in combination with the resource-restricting paradigm. Nonetheless, in Sec-
tion 6, we discuss how this freshness can be replaced using PoWs on challenges exchanged between
parties, along the lines of [1]. The absence of freshness yields a somewhat relaxed wrapper which
offers analogous restrictions as our original wrapper, but guarantees only limited transferability of
the messages sent, and is not as strict towards the adversary as our original one (i.e., adversarial
messages can be transfered more times than honest ones). Still, as we argue, this relaxed wrapper
is sufficient for obtaining all the positive results in this work.

The above sheds light on the seemingly confusing landscape, but leaves open the question of how
powerful the new assumption of the resource-restricting wrapper (and hence the resource-restricting

7The wrapper actually puts a restriction to adversarial parties as honest parties can be restricted by their protocol
(cf. [4]).

5

paradigm in general) is. In particular, although the above demonstrates that the resource-restricting
paradigm allows to circumvent the limitation of Corollary 1, it still leaves open the question:

Does the resource-restricting methodology allow for fully secure MPC in the public corre-
lated randomness model, and if so, under what assumptions on the number of corrupted
parties?

We investigate the question of whether we can obtain honest majority MPC in this setting,
and answer it in the affirmative. (Recall that without the resource-restricting methodology and
associated assumptions this is impossible since MPC implied Broadcast.) Note that a consensus
impossibility due to Fitzi [18] proved that the t < n/2 bound is actually necessary for Consensus in
the standard LSP communication model. And the lower bound holds even if we assume a broadcast
primitive. In fact, by a simple inspection of the results one can observe that the underlying proof
uses only honest strategies (for different selections of corruption sets) and therefore applies even
under the resource-restricting paradigm—where, as above, this paradigm is captured by wrapping
the network with our communication-restricting wrapper.

Towards the feasibility goal, we provide a protocol which allows us to establish a PKI assuming
only our resource-restricted (wrapped) LSP network and one-way functions (or any other assump-
tion which allows for existentially unforgeable signatures). More specifically, we show that our PKI
establishment mechanism implements the key registration functionality Freg from [10]. Our pro-
tocol is inspired by the protocol of Andrychowicz and Dziembowski [1]. Their protocol, however,
achieved a non-standard notion of MPC in which inputs are associated to public-keys/pseudonyms.
In particular, in the standard MPC setting, computing a function f(x1, . . . , xn) among parties
P1, . . . , Pn means having each Pi contribute input xi and output f(x1, . . . , xn)—this is reflected
both in in the original definitions of MPC [31, 21] and in the UC SFE functionality Fsfe [9] and the
corresponding standalone evaluation experiment from [8]. Instead, in the MPC evaluation from [1],
every party Pi is represented by a pseudonym ji, which is not necessarily equal to i and where the
mapping between i and ji is unknown to the honest participants.8 Then the party contributing the
`th input to the computation of f is Pi such that ji = `. This evaluation paradigm was termed
pseudonymous MPC in [24].

It is not hard to see, however, that the above evaluation paradigm makes the corresponding
solution inapplicable to classical scenarios where MPC would be applied, where parties have distin-
guished roles. Examples include decentralized auctions—where the auctioneer should not bid—and
asymmetric functionalities such as oblivious transfer. We note in passing that the above relaxation
of traditional MPC guarantees seems inherent in the permissionless peer-to-peer setting setting
of [1, 24]. Instead, our protocol adapts the techniques from [1] in a white-box manner to lever-
age the authenticity of our underlying communication network—recall that our protocol is in the
(wrapped) BGW communication setting—in order to ensure that the registered public keys are pub-
licly linked to their respective owners. This allows us to evaluate the standard MPC functionality.

Getting from an implementation of Freg where the keys are linked to their owners to stan-
dard MPC is then fairly straightforward by using the modularity of the UC framework. As proved
in [10], Freg can be used to realize the certified signature functionality (aka certification function-
ality) FCERT which, in turn, can be used to realize a Broadcast functionality against even adaptive
adversaries [22]. By plugging this functionality into the honest-majority protocol (compiler) by
Cramer et al. [14]—an adaptation of the protocol from [29] to tolerate adaptive corruptions—we
obtain an MPC protocol which is adaptively secure.

Organization of the paper. In Section 2 we discuss our model. In Section 3 we introduce our wrapper-
based abstraction of the resource-restricting paradigm and demonstrate how the impossibility from

8In fact, (j1, . . . , jn) is a permutation of (1, . . . , n)

6

Corollary 1 fails when parties can use it. Section 4 presents our implementation of this wrapper from
PoWs and a fresh CRS, and Section 5 discusses how to use it to obtain certified digital signatures
and MPC. Finally in Section 6 we discuss how to remove the freshness assumption by leveraging
PoWs.

2 Model

To allow for a modular treatment and ensure universal composition of our results, we will work in
Canetti’s UC model [8]. We assume some familiarity of the reader with UC but we will restrict
the properties we use to those that are satisfied by any composable security framework. In fact,
technically speaking, our underlying framework is the UC with global setups (GUC) [11], as we aim
to accurately capture a global notion of time (see below). Nonetheless, the low level technicalities
of the GUC framework do not affect our arguments and the reader can treat our proofs as standard
UC proofs.

Parties, functionalities, and the adversary and environment are (instances of) interactive Turing
machines (ITMs) running in probabilistic polynomial time (PPT). We prove our statements for a
static active adversary; however, the static restriction is only for simplicity as our proofs can be
directly extended to handle adaptive corruptions. In (G)UC, security is defined via the standard
simulation paradigm: In a nutshell, a protocol π realizes a functionality F (in UC, this is described
as emulation of the dummy/ideal F-hybrid protocol φ) if for any adversary attacking π there exists
a simulator attacking φ making the executions of the two protocols indistinguishable in the eyes
of any external environment. Note that π might (and in our cases will, as discussed below) have
access to its own hybrid functionalities.

Synchrony. We adopt the global clock version of the synchronous UC model by Katz et al. [23]
as described in [4]. Concretely, we assume that parties have access to a global clock functionality
which allows them to advance rounds at the same pace. For generality, we will allow the clock to
have a dynamic party set, as in [4].

The functionality manages the set P of registered identities, i.e, parties P = (pid, sid). It also manages
the set F of registered functionalities (together with their session identifier). Initially, P = ∅ and F = ∅.
For each session sid the clock maintains a variable τsid. For each identity P = (pid, sid) ∈ P it manages
variable dP . For each pair (F , sid) ∈ F it manages variable d(F,sid) (all integer variables are initially set
to 0).

Synchronization:
Upon receiving (clock-update, sidC) from some party P ∈ P set dP := 1; execute Round-Update
and forward (clock-update, sidC , P) to A.
Upon receiving (clock-update, sidC) from some functionality F ∈ F in a session sid such that
(F , sid) ∈ F , set d(F,sid) = 1, execute Round-Update and return (clock-update, sidC ,F) to A.
Upon receiving (clock-read, sidC) from any participant (including the environment, the adversary,
or any ideal—shared or local—functionality) return (clock-read, sidC , τsid) to the requestor.

Procedure Round-Update: For each session sid do: If d(F,sid) = 1 for all F ∈ F and dP = 1 for all honest
P = (·, sid) in P, then set τsid = τsid + 1 and reset dF = 0 and dP = 0 for all parties P = (·, sid) ∈ P.

Global Functionality Gclock

7

Communication network. We capture point-to-point authenticated communication, modeling
the LSP channels in UC, by means of a multi-party multi-use version of the authenticated channel
functionality with instant delivery along the lines of [4]. (The original network from [4] had bounded
delay; hence here we need to set this bound to 1.) Note that in this network once an honest party
Pi inserts a message to be sent to Pj , the message is buffered, and it is delivered after at most
∆ attempts from the receiver (here ∆ = 1). Syntactically, we allow the simulator to query the
network and learn if a buffered message was received by the respective receiver. This step—despite
being redundant in most cases as the simulator should be able to defer this fact by observing the
activations forwarded to him—is not only an intuitive addition, as it captures that the adversary
is aware of delivery of message, but will also simplify the protocol description and simulation. For
completeness, we include the authenticated network functionality below.

Note that the BGW-style secure point-to-point network functionality can be trivially derived by
the authenticated one by replacing in the message (sent, sid,m, Pi, Pj ,mid) which the adversary
receives upon some m being inserted to the network, the value of m by ⊥ (of by |m| if this is
implemented by standard encryption).

The functionality is parameterized by a set of possible senders and receivers, denoted by P, a list ~M ,
and integer variables of the form Dz, where z ∈ {0, 1}∗, that are dynamically created. For every party
P ∈ P it maintains a fetch counter fP . Initially, ~M := ∅ and fP := 0, for every P ∈ P.

Upon receiving (send, sid,m, Pj) from Pi ∈ P, set Dmid := 1 and ~M = ~M ||(m,Pi, Pj ,mid), where
mid is a unique message-ID, and send (sent, sid,m, Pi, Pj ,mid) to A.
Upon receiving (fetch, sid) from some honest party Pj ∈ P, increment fP by 1, set M ′ = ∅, and do
the following:

1. For all tuples (m,Pi, Pj ,mid) ∈ ~M , set Dmid := Dmid − 1,

2. for all tuples (m,Pi, Pj ,mid) ∈ ~M , where Dmid ≤ 0, delete (m,Pi, Pj ,mid) from ~M , and add
(m,Pi) to M ′.

3. Send (sent, sid,M ′) to Pj .

Upon receiving (fetch-requests, sid, P) from A, output (fetch-requests, sid, fP).

Functionality Fauth

The random oracle functionality. As is typical in the proof-of-work literature, we will abstract
puzzle-friendly hash functions by means of a random oracle functionality.

The functionality is parameterized by a security parameter λ and a set of parties P. It maintains a
(dynamically updatable) map H that is initially empty.

Upon receiving (Eval, sid, x) from some party P ∈ P (or from A on behalf of a corrupted P), do the
following:

1. If H[x] = ⊥, sample a value y uniformly at random from {0, 1}λ, and set H[x] := y.

2. Return (Eval, sid, x,H[x]) to the requestor.

Functionality FRO

Furthermore, following [4], we will use the wrapper to capture the assumption that no party gets
more than q queries to the RO per round. This wrapper in combination with the honest majority

8

of parties captures the assumption that the adversary does not control a majority of the systems
hashing power.

The wrapper functionality is parameterized by a set of parties P, and an upper bound q which restricts
the F-evaluations of each corrupted party per round. (To keep track of rounds the functionality
registers with the global clock Gclock.) The functionality manages the variable τ and the current set of
corrupted miners P. For each party P ∈ P it manages variables qP . Initially, τ = 0.
General:

The wrapper stops the interaction with the adversary as soon as the adversary tries to exceed its
budget of q queries per corrupted party.

Relaying inputs to the random oracle:

Upon receiving (Eval, sid, x) from A on behalf of a corrupted party P ∈ P ′, then first execute
Round Reset. Then, set qP := qP + 1 and only if qP ≤ q forward the request to FRO and return to A
whatever FRO returns.
Any other request from any participant or the adversary is simply relayed to the underlying
functionality without any further action and the output is given to the destination specified by the
hybrid functionality.

Standard UC Corruption Handling:
Upon receiving (corrupt, sid, P) from the adversary, set P ′ := P ′ ∪ P. If P has already issued
t > 0 random oracle queries in this round, set qP := t. Otherwise set qP := 0.

Procedure Round-Reset:
Send (clock-read, sidC) to Gclock and receive (clock-read, sidC , τ ′) from Gclock. If |τ ′ − τ | > 0 (i.e.,
a new round started), then set qP := 0 for each participant P ∈ P and set τ := τ ′.

Wrapper Functionality Wq
ro(F)

Correlated randomness setup. Finally, we make use of the CRS functionality [12], which models
a public correlated randomness setup.

When activated for the first time on input (Retrieve, sid), choose a value d← D, and send (Retrieve,
d) back to the activating party. In each other activation return the value d to the activating party.

Functionality FDcrs

3 Inapplicability of Strong BA Impossibility

In this section we present our abstraction of the resource-restricting paradigm as a communication-
restricting wrapper for the underlying communication network, and show that the strong BA im-
possibility (Corollary 1) does not apply to this wrapped network. In partcular, as we discussed,
in [7] it was argued that assuming 3t ≥ n, no private correlated randomness setup, the existence
of signatures, and authenticated point-to-point channels, no protocol solves the broadcast problem.
In this section, we show that if parties have access to a simple channel that is restricted in such a
way that spam or sybil attacks are infeasible, the impossibility proof of [7] does not go through.

9

3.1 Modeling a Communication-Restricted Network

Our filtering wrapper restricts the per-round accesses of each party to the functionality, in a prob-
abilistic manner. In more detail, for parameters p, q, each party has a quota of q send requests
per round, each of them succeeding with probability p. Note that after a message has been sent
through the filter, the sender, as well as the receiver, can re-send the same message for free. This
feature captures the fact that if a message has passed the filtering mechanism once, it should be
freely allowed to circulate in the network. We explicitly differentiate this action in our interface,
by introducing the resend request; parties have to use resend to forward for free messages they
have already received.

The wrapper functionality is parameterized p ∈ [0, 1] and q ∈ N, which restrict the probability of success
and number of F-evaluations of each party per round, respectively, and a set of parties P. It manages
the round integer variable τ , the current set of corrupted parties P̃, and a list T . For each party P ∈ P,
it manages the integer variable tP .
Initially τ := 0, T := ∅, and tP := 0, for each P ∈ P.
Filtering:
• Upon receiving (send, sid,m, Pj) from party Pi ∈ P, execute Round-Reset, and do the following:

– Set tPi := tPi + 1. If tPi ≤ q, with probability p, do:

1. Add (m,Pi) to T and output (success, sid) to Pi,
2. on response (continue, sid,m) from Pi, forward (send, sid,m, Pj) to F .
In any other case, send (fail, sid) to Pi.

• Upon receiving (resend, sid,m, Pj) from honest party Pi ∈ P \ P̃, if (m,Pi) ∈ T then forward
(send, sid,m, Pj) to F .

• Upon receiving (resend, sid,m, PJ) from A on behalf of corrupted Pi ∈ P̃, if (m,P) ∈ T for some
P ∈ P, then forward (send, sid,m, Pj) to F .

• Upon F sending (sent, sid,m, Pi) to Pj , add (m,Pj) to T and forward the message to Pj .

Standard UC Corruption Handling:

• Upon receiving (corrupt, sid, P) from the adversary, set P̃ ← P̃ ∪ P.

General:

• Any other request from (resp. towards) any participant or the adversary, is simply relayed to the
underlying functionality (resp . any participant of the adversary) without any further action.

Procedure Round-Reset:
• Send (clock-read, sidC) to Gclock and receive (clock-read, sidC , τ ′) from Gclock.

• If |τ ′ − τ | > 0, then set tP := 0 for each P ∈ P and set τ := τ ′.

Wrapper Functionality Wp,q
flt(F)

3.2 The Impossibility Theorem, Revisited

Next, we show that if parties have access to Wp,q
flt(Fauth), for some noticeable p and q ≥ 1, the

BA impossibility proof [7] does not go through. The proof relies on the fact that the adversary can
simulate the behavior of multiple honest parties. In a nutshell, we describe a protocol where parties
send messages through Wp,q

flt(Fauth), and thus due to the restricted number of send attempts the

10

adversary has at his disposal, it will be impossible for him to simulate multiple parties running this
protocol.

Lemma 2. Let n = 3, t = 1, p be a noticeable function, and q ≥ 1. There exists a polynomial
time protocol in the (Gclock,Fauth,Wp,q

flt(Fauth),Fsig)-hybrid model that invalidates the t ≥ n/3
BA impossibility theorem of [7].

Proof. The impossibility proof considers the class of full information protocols, where if some party
receives a message at some round r, it signs the message with its own signing key, and sends it to
all other parties. We are going to show a subclass of protocols that use Wp,q

flt(Fauth) and are not
captured by the proof.

We first briefly recall the proof in [7] for the case n = 3 and t = 1. The proof is based on
constructing three scenarios σ1, σ2, σ3, where broadcast cannot possibly be achieved. Let the sender
be P1. We proceed to describe σ1, σ2, σ3. In σ1, P1 has input 0 and P2 is corrupted. In σ2, P1 has
input 1 and P3 is corrupted. In σ3, P1 is corrupted.

By Validity, it follows that in σ1 P2 should output 0, and in σ2 P3 should output 1, no matter the
behavior of the adversary. Moreover, due to the Agreement (Consistency) property, the output of
P2 and P3 in σ3 must be the same. The proof then proceeds to describe a way of making the view of
P2 (resp. P3) indistinguishable in scenarios σ1 (resp. σ2) and σ3, and thus reaching a contradiction
since they are going to decide on different values in σ3.

The main idea is for P2 in σ1 to behave as if P1 had input 1, by creating a set of fake keys and
changing the signatures of P1 to the ones with the fake keys and different input where possible. Since
there is no PKI, P3 cannot tell whether P1 is corrupted and sends messages signed with different
keys to P2, or if P2 is corrupted. Symmetrically, P3 in σ2 simulates P1 with input 0. Finally, P1 in
σ3 simulates both behaviors, i.e., P1 running the protocol honestly with input 1 in its communication
with P2, and P1 with input 0 in its communication with P3. This is exactly where the impossibility
proof does not go through anymore.

For the moment, assume that we are in the setting where p = 1 − negl(λ) and q = 1. Let Π

be a full information protocol, where in the first round the sender P1 uses W1−negl(λ),1
flt (Fauth) to

transmit its message to the other two parties. Further, assume that this message is different for
the cases where the sender input is 0 and 1, with probability α. It follows that P1 has to send two
different messages to parties P2 and P3 at the first round of σ3, with probability α. However, this
is not possible anymore, as the network functionality only allows for one new message to be send
by P1 at each round, with overwhelming probability. Hence, with probability α the impossibility
proof cannot go through anymore.

For the case where p is noticeable and q ≥ 1, we can design a similar protocol that cannot be
captured by the proof. The protocol begins with a first “super round” of size λ

pq regular rounds,
where each party should successfully send its first message m at least 3λ

4 times using Wp,q
flt(Fauth)

for it to be considered valid. Since the functionality allows sending the same message twice for free,
the sequence of 3λ

4 messages is encoded as follows: (m, 1), . . . , (m, 3λ
4).

Next, we analyze the probability that A can use the strategy described in the impossibility proof
in [7]. Note that each party can query Wp,q

flt(Fauth) up to λ/p times during the super round. We
will show that: (i) honest parties will be able to send 3λ

4 messages with overwhelming probability,
and (ii) that the adversary in σ3 will not be able to send the 2 · 3λ

4 messages it has to. Let random
variable Xi be 1 if the i-th query to Wp,q

flt(Fauth) of some party P succeeds, and 0 otherwise. Also,
let X =

∑λ/p
i=1Xi. It holds that E[X] = p · λ/p = λ. By an application of the Chernoff bound, for

δ = 1
4 , it holds that

Pr[X ≤ (1− δ)E[X]] = Pr[X ≤ 3λ

4
] ≤ e−Ω(λ).

11

Hence, with overwhelming probability each party will be able to send at least 3λ
4 messages in the

first λ
pq rounds. On the other hand, we have that

Pr[X ≥ (1 + δ)E[X]] = Pr[X ≥ 5λ

4
] ≤ e−Ω(λ).

Hence, no party will be able to send more than 5λ
4 messages in the first super round. This concludes

the proof, since the adversary, in order to correctly follow the strategy described before, must send
in total 6λ

4 (> 5λ
4) messages in the first super round. Thus, with overwhelming probability it is going

to fail to do so. Finally, note that the length of the super round is polynomial, since 1/p is bounded
by some polynomial. Thus, the theorem follows.

The proof of Corollary 1 works along the same lines as the proof of [7]; since only public correlated
randomness is assumed, nothing prevents the adversary from simulating an honest party. Finally,
we note that the same techniques used above can also be used to refute an appropriate adaptation
of Corollary 1, where parties have access to Wp,q

flt(Fauth).

4 Implementing a Communication-Restricted Network

In this section we describe our implementation of Wp,q
flt(Fauth) that is based on the resource-

restricted RO functionality Wq
ro(FRO) and a standard authenticated network. As discussed in

the introduction, we also make use of an enhanced version of the Fcrs functionality, where it is
guaranteed that the adversary learns the shared string after the honest parties. We capture this
restriction as a wrapper Wfresh(FDcrs) which does not allow the adversary to learn the CRS before
the round honest parties are spawned. W.l.o.g., in the rest of the paper we are going to assume
that all parties are spawned at round 1.

Our protocol makes uses of the proof-of-work construction of [2]. Every time a party wants to
send a new message, it tries to find a hash of the message and some nonce, that is smaller than some
target value, and if successful it forwards this message through Fauth to the designated recipient.
Moreover, if it has received such a message and nonce, it can perform a resend by forwarding this
message through Fauth. To be sure that the adversary does not precompute small hashes before
the start of the protocol, and thus violates the send quota described in the wrapper, parties make
use of the string provided by WDfresh(Fcrs), where D will be a distribution with sufficient high
min-entropy. They use this string as a prefix to any hash they compute, thus effectively disallowing
the adversary to use any of the small hashes it may have precomputed.

Initialization:
• We assume that P is in the party set of Wq

ro(FRO), Fauth, and Wfresh(FDcrs). The protocol
maintains a list of valid message/nonce/hash tuples T , initially empty, and a counter t initially set to
0. When P is first activated, it gets the CRS from Wfresh(FDcrs), and uses it as a prefix of all
messages it sends to Wq

ro(FRO). For simplicity, we avoid explicitly including this term bellow.

Message Exchange:
• Upon receiving (send, sid,m, P ′), execute Round-Reset, set t := t+ 1, and if t > q output (fail, sid)

to P . Otherwise, do the following:

1. Send (eval, sid, (m, r)) to Wq
ro(FRO), where r ← {0, 1}λ.

2. On response (eval, sid, (m, r), v), if (v > D), output (fail, sid) to P .

Protocol Wrapped-ChannelD,q(P)

12

3. Otherwise, store (m, r, v) in T , and send (success, sid) to P . On response (continue, sid), pick
r′, v′ such that (m, r′, v′) is the lexicographically smallest such entry in T , and send
(send, sid, (m, r′, v′), P ′) to Fauth.

• Upon receiving (resend, sid,m, P ′), let M := {(r, v) : (m, r, v) ∈ T }, and do the following:

1. If M 6= ∅, then pick the lexicographically smallest (r, v) in M , and send (send, sid, (m, r, v), P ′) to
Fauth.

2. Otherwise, output (fail, sid) to P .

• Upon receiving (fetch, sid), forward the message to Fauth.

• Upon receiving (sent, sid, (m, r, v), P ′) from Fauth, send (eval, sid, (m, r)) to Wq
ro(FRO). On

response (eval, sid, (m, r), v′), if (v ≤ D) and (v′ = v), add (m, r, v) to T and output
(sent, sid,m, P ′).

• Upon receiving (fetch-requests, sid), forward the message to Fauth, and output its response.

Procedure Round-Reset:
Send (clock-read, sidC) to Gclock and receive (clock-read, sidC , τ ′) from Gclock. If |τ ′ − τ | > 0, then
set t := 0 and τ := τ ′.

Next, we prove that Wrapped-ChannelD,q UC realizes the Wp,q
flt(Fauth) functionality, for ap-

propriate values of p. The main idea of the proof is that the simulator is going to simulate new
messages sent through the ideal functionality in the eyes of A, by appropriately programming the
random oracle. All other actions can be easily simulated.

Lemma 3. Let p := D
2λ
, and D be a distribution with min-entropy at least ω(log(λ)). The protocol

Wrapped-ChannelD,q UC-realizes functionalityWp,q
flt(Fauth) in the (Wq

ro(FRO),Fauth,Wfresh(FDcrs))-
hybrid model.

Proof. We consider the following simulator that is parameterized by some real-world adversary A:

The simulator manages a set of parties P . It sets up an empty network buffer ~M , an empty random
oracle table H, and a table of received messages T . The simulator also manages integer variables of the
form Dz, where z ∈ {0, 1}∗, that are dynamically created, and fP , for P ∈ P. Initially, ~M is empty, and
fP := 0, for P ∈ P.

Simulating the CRS:
• Sample a value from D once, and only output it after the round the protocol starts.

Simulating the Random Oracle:
• As in the protocol above, we always include the CRS value as a prefix of all messages to Wq

ro(FRO).
Again, for clarity we avoid explicitly including this term bellow.

• Upon receiving (eval, sid, u) for Wq
ro(FRO) from A on behalf of corrupted P ∈ P, do the following:

1. If H[u] is already defined, output (eval, sid, u,H[u]),

2. If u is of the form (m, r), send (send, sid,m, P) to Wp,q
flt(Fauth) on behalf of P . On response

(fail, sid), set H[u] to a uniform value in {0, 1}λ larger than D. On response (success, sid), set
H[u] to a uniform value in {0, 1}λ smaller or equal to D. Output (eval, sid, v,H[u]).

3. Otherwise, set H[u] to a uniform value in {0, 1}λ and output (eval, sid, u,H[u]).

Simulating the Network:

Simulator S1

13

• Upon receiving (send, sid, u, P ′) for Fauth from A on behalf of corrupted P ∈ P, do the following:

1. If u is of the form (m, r, v), H[(m, r)] is defined, H[(m, r)] = v, and v ≤ D, add (u, P) to T , and
send (resend, sid,m, P ′) to Wp,q

flt(Fauth) on behalf of P . On response (sent, sid,m, P, P ′,mid),
set Dmid = 1 and ~M = ~M ||(u, P, P ′,mid), and send (sent, sid, u, P, P ′,mid) to A.

2. Otherwise, send (sent, sid, u, P, P ′,mid) to A, where mid is a unique message-ID.

• Upon receiving (fetch-requests, sid, P) for Fauth from A, execute Network-Update and output
(fetch-requests, sid, P, fP).

Interaction with Wp,q
flt(Fauth):

• Upon receiving (sent, sid,m, P, P ′,mid) from Wp,q
flt(Fauth), execute Network-Update, and do the

following :

1. If (6 ∃(r′, v′) : ((m, r′, v′), P) ∈ T), pick an r uniformly at random from {0, 1}λ and set
H[(m, r)] := v, where v is a uniform value in {0, 1}λ smaller or equal to D. Then, add
((m, r, v), P) to T ,

2. otherwise, pick r, v such that ((m, r, v), P) is the lexicographically smallest such entry in T .

Add ((m, r, v), P, P ′,mid) to ~M , set Dmid = 1, and output (sent, sid, (m, r, v), P, P ′,mid) to A.

Procedure Network-Update: For each P ∈ P, send (fetch-requests, sid, P) to Wp,q
flt(Fauth). On

response (fetch-requests, sid, P, f ′P), if f ′P > fP , set fP := f ′P and do the following

1. For all tuples (u, P ′, P,mid) ∈ ~M , set Dmid := Dmid − 1.

2. For all tuples (u, P ′, P,mid) ∈ ~M , where Dmid ≤ 0, delete (u, P ′, P,mid) from ~M , and add (u, Pj) to
T .

We will argue that for every PPT adversary A in the real world, no PPT environment Z can
distinguish between the real execution against A and the ideal execution against S1.

First, let E1 denote the event where honest parties in the real world, and on input send, repeat
a query to the random oracle. Each time an honest party issues a new RO query, a random string
of size λ bits is sampled. The probability that the same string is sampled twice in a polynomial
execution is negligible in λ. Moreover, E1 implies this event. Hence, the probability of E1 happening
in a polynomially bounded execution is at most negl(λ). Note, that if E1 does not occur, the
distribution of send commands invoked by honest parties that succeed is identical in the real and
the ideal world.

Next, we turn our attention to adversarial attempts to send a new message. Let E2 be the
event where A sends a message of the form (m, r, v) to Fauth, such that it hasn’t queried (m, r)
on the random oracle and H[(m, r)] = v. The probability of this event happening, amounts to
trying to guess a random value sampled uniformly over an exponential size domain, and is negl(λ).
Moreover, if E2 does not occur, the adversary can only compute new “valid” messages by querying
the RO. Define now E3 to be the event where the adversary makes a query to the RO containing
the CRS value, before round 1. By the fact that the CRS value is sampled by a high min-entropy
distribution, and that A is PPT, it is implied that Pr[E3] ≤ negl(λ). Hence, if E2 and E3 do not
occur, the distribution of adversarially created messages is identical in both worlds.

Now if E1, E2, E3 do no occur, the view of the adversary and the environment in both worlds is
identical, as all requests are perfectly simulated. By an application of the union bound, it is easy
to see that ¬(E1 ∨ E2 ∨ E3) occurs with only negligible probability. Hence, the real and the ideal
execution are statistically indistinguishable in the eyes of Z, and the theorem follows.

Corollary 4. Let n = 3, t = 1, p be a noticeable function, q ≥ 1, and any distribution D with min-

14

entropy at least ω(log(λ)). Then, there exist a polynomial time protocol in the (Gclock,Wq
ro(FRO),

Fauth,Wfresh(FDcrs),Fsig)-hybrid model, that invalidates the proof of the impossibility theorem of [7].

5 Implementing a Registration Functionality

In this section, we show how to implement a key registration functionality (cf. [10]) in the resource
restricted setting, and in the presence of an honest majority of parties.

5.1 The Registration Functionality

The registration functionality Freg allows any party to submit a key, which all other parties can later
retrieve. Our specific formulation, is parameterized by an integer r that specifies the round after
which key retrieval becomes available. Note, that Freg does not guarantee that the keys submitted
belong to the corresponding parties, i.e., a corrupted party can submit a key it saw another party
submit.

Following the paradigm of [4] to deal with synchrony, Freg also has a Maintain command, which
is parameterized by an implementation dependent function predict-time. We use this mechanism,
to capture the behavior of the real world protocol with respect to Gclock, and appropriately delay
Freg from sending its clock update until all honest parties get enough activations. In more detail,
predict-time takes as input a timed honest input sequence of tuples ~ITH = (. . . , (xi, idi, τi), . . .), where
xi is the i-th input provided to Freg, by honest party idi at round τi. We say that a protocol Π
has a predictable synchronization pattern, if there exists a function predict-time such that for any
possible execution of Π, with timed honest input sequence ~ITH , predict-time(~ITH) = τ + 1 if all honest
parties have received enough activations to proceed to round τ + 1.

The functionality is parameterized by a set of parties P, and an integer r. It maintains integer variables
τ, du, and a owner/key set T . Initially, T is empty and τ is equal to 0.

Upon receiving any input I from any party or the adversary, send (clock-read, sidC) to Gclock.
On response (clock-read, sidC , t′), if |τ ′ − τ | > 0, set τ := τ ′, du := 0. Then, if I was received from an
honest party P ∈ P \ P̃, set ~ITH := ~ITH ||(I, Pi, τ). Depending on the input I and the ID of the sender,
execute the respective code:

On input I = (Submit, sid, v) from honest party P , if there is no v′ such that (P, v′) ∈ T , add (P, v)
to T and send (Submit, sid, v) to A.
On input I = (Submit, sid, v) from corrupted party P , if τ ≤ r and there is a v′ such that
(P, v′) ∈ T , delete it and add (P, v) instead. Then, send (Submit, sid, v) to A.
On input I = (Retrieve, sid) from party P , if τ > r, output (Retrieve, sid, T) to P .
Upon receiving (Maintain, sid) from honest party P , if all honest parties have submitted an input,
predict-time(~ITH) > τ , and du = 0, set du := 1 and send (clock-update, sidC) to Gclock. Otherwise,
send (I,ID) to A.

Functionality Frreg

5.2 The Protocol

To implement the above functionality we follow an adaptation of the protocol from [1], with the
difference that instead of relating keys to pseudonyms, parties are able to create a PKI relating keys
to identities. First, we deal with a technical issue.

15

Our protocol contains commands that perform a sequence of operations. It is possible that
during the execution of this operation, the party will lose the activation. Following the formulation
of [4], we perform some of the commands in an interruptible manner. That is, a command I is I-
interruptible executed, if in case activation is lost, an anchor is stored so that in the next invocation
of this command it continues from the place it stopped in the previous activation. For more details
on how implement this mechanism, we refer to [4].

Next, we give an informal description of the protocol, which makes use of Wflt(Fauth), Fauth,
Gclock, and the signature functionality Fsig of [10], adapted for many signers and being responsive,
i.e., the one who is issuing a command is not losing its activation, as for example is done in the
context of the key evolving signature functionality Fkes of [3].

The protocol is structured in 3 different phases. In the first phase, parties attempt to send
enough messages containing a pair of verification keys (pk, p̂k) through Wflt(Fauth) to all other
parties. The first key is generated by the parties themselves, while the second key corresponds to
the input they receive through the Submit command (we assume here that it is a verification key,
but that does not need to be the case). This phase ends after a predetermined number of rounds.
The second phase that takes n + 1 rounds. Parties depending on when they received the different
messages assign them a grade, from 0 for the earliest, to n for the latest. To ensure that these
grades differ by at most one for the same key, they immediately send keys they received to all
other parties. This allows them to establish a form of a graded PKI, denoted by K in the protocol,
where parties are proportionally represented, and which can be later used in the third phase to do
broadcast through an adaptation of the Dolev-Strong protocol.

Unlike [1], at the end of the first phase, all parties sign their input p̂k with their key pk, and
send it to all other parties. The receiving parties add the key send and signed to a list, denoted by
M. This way honest parties can relate a key to their identity. The setM is then broadcast by each
party in the third phase. Finally, by using a majority rule, parties are able to agree on set of keys
and identities, denoted by N in the protocol, which is going to be what they are going to output
when they get a Retrieve command.

Initialization:
• We assume that P is registered to Gclock and is in the party sets of Wq

flt(FRO), Fauth and Fsig. The
protocol maintains a list K of key/grade pairs, a listM of key/owner tuples, a list N of key/owner
pairs, and a list T of message/key pairs, all initially empty, keys pk, p̂k, initially set to ⊥, and integer
variables τ := 0, r := 4n2λ

min(1,pq) , c := 1.

Upon receiving any input I from any party or the adversary, send (clock-read, sidC) to Gclock. On
response (clock-read, sidC , t′), if |τ ′ − τ | > 0, set τ := τ ′ and dr, du := 0, and do the following:
• Upon receiving (Maintain, sid), execute in a (Maintain, sid)-interruptible manner the following:

1. If dr = 0, then:

– If 0 < τ ≤ r, execute PowGeneration.
– Else if r < τ ≤ r + n+ 1, execute KeyAgreement.
– Else, execute Broadcast.
– Set dr := 1.

2. Else if dr = 1 and du = 1, set dr := 2 and send (clock-update, sidC) to Gclock.

3. Else, set dr := 2.

• Upon receiving (Submit, sid, v), if τ > 0 or dr = 0, set p̂k := v.

Protocol Graded-Agreement(P)

16

• Upon receiving (Retrieve, sid), if τ > r + 2n, output N .

• Upon receiving (clock-update, sidC), if dr = 2 and du = 0, set du := 1 and send
(clock-update, sidC) to Gclock. Otherwise, set du := 1.

Procedure PoWGeneration: If pk = ⊥, then send (KeyGen, sid) to Fsig, and on response
(Verification Key, sid, v), set pk := v. If p̂k = ⊥, give the activation to Z, and in the next activation
repeat this step. Otherwise,do the following:
1. Repeat q times: Send (send, sid, (pk, c), P) to Wp,q

flt(Fauth). On response (success, sid), increase c by
1, and for each P ′ ∈ P send (resend, sid, (pk, i), P ′) through Wp,q

flt(Fauth).

2. If τ = r, send (Sign, sid, pk, (p̂k, P ′)) to Fsig. On response, (Signed, sid, pk, (p̂k, P ′), σ), for each
P ′ ∈ P send (send, sid, (pk, p̂k, σ), P ′) to Fauth.

Procedure KeyAgreement: Do the following:
1. Send (fetch, sid) to Wflt(Fauth).

2. On response, (sent, sid, ~M) from Wflt(Fauth), for every subset of messages in ~M of the form
M ′ = {(sent, sid, (pk′, p̂k

′
, Pi), P

′
i)}i∈[(1−δ)pqr)], for δ equal to 1/4t, if no entry of the form (pk′, ·)

exists in K, add (pk′, τ − (r + 1)) to K and forward the messages in M ′ to all other parties through
Wflt(Fauth).

3. If τ = r + 1, send (fetch, sid) to Fauth. On response (sent, sid, ~M ′) from Fauth, for every message
in ~M of the form (sent, sid, (pk′, p̂k

′
, σ), P ′), if there exists a entry of the form (pk′, ·) in K, send

(Verify, sid, pk′, (p̂k
′
, P ′), σ) to Fsig. On response (Verified, sid, pk′, (p̂k

′
, P ′), σ, f), if f = 1, add

(p̂k′, P ′) toM.

Procedure Broadcast: Do the following:
1. If τ = r + n+ 2, set m := (M, pk), and send (Sign, sid, pk,m) to Fsig. On response,

(Signed, sid, pk,m, σ), send (send, sid, (m, pk, (pk, σ)), P ′) to every party P ′ ∈ P through Fauth.

2. If r+ n+ 2 < τ ≤ r+ 2n+ 2, send (fetch, sid) to Fauth. On response, (sent, sid, ~M) from Fauth, do
the following:

(a) For every message in ~M of the form (sent, sid, (m′, pk1, (pk1, σ1), . . . , (pkk, σk)), P ′), for
k = τ − (r + n+ 2), send (Verify, sid, pki, (m, pki), σi) to Fsig, for i ∈ [k]. If for all responses of
the form (Verified, sid, pki, (m, pki), σi, fi), for i ∈ [k], it holds that fi = 1, and (pki, gi) ∈ K and
gi ≤ k, add (m′, pk1) to T .

(b) For every new entry (m′, pk′1) in T , send (Sign, sid, pk, (m′, pk′1)) to Fsig. On response,
(Signed, sid, pk, (m′, pk′1), σ), add (pk0, σ) to the relevant message, and forward it to all other
parties through Fauth.

3. If τ = r + 2n+ 2, do the following:

(a) For every pki, where ∃m 6= m′ : (m, pki), (m
′, pki) ∈ T , delete all entries of the form (·, pki) from

T .
(b) For every P ′ ∈ P, if there exists a unique key p̂k′, where at least n/2 entries of T , contain an entry

of the form (p̂k
′
, P ′), and do not contain any other entry of the form (·, P ′), add (p̂k′, P ′) to N .

First, we note that there exists a function predict-time for protocol Graded-Agreement that suc-
cessfully predicts when honest parties are done for the round. To see this, notice that honest parties
lose their activation in a predictable manner when they get Maintain as input. Moreover, the
simulator has all the information it needs to simulate honest parties: it can simulate functionalities
Wflt(Fauth) and Fauth, as well as the signatures generated by honest parties. Finally, due to the
properties of the protocol, also proved in [1], parties are going to reliably broadcast their key set
M, and thus all provide the same responses on a Retrieve command from Z. We proceed to state

17

our theorem.

Theorem 5. Let n > 2t, p be a noticeable function, q ∈ N+. The protocol Graded-Agreement

UC-realizes functionality F
4n2λ

min(1,pq)
+2n+3

reg in the (Gclock, Fauth, Wp,q
flt(Fauth), Fsig)-hybrid model.

Proof. Let r = 4n2λ
min(1,pq) and w.l.og., p · q ≤ 1. We start by making some observations about the

protocol.

Claim 1. The set K of each honest party, at the end of round r + 1, will contain the keys of all
other honest parties, with overwhelming probability in λ.

Proof. We first show that the claim holds for a single honest party. Let random variable Xi be
equal to 1, if the i-th invocation of send by some honest party P is successful, and 0 otherwise. It
holds that Pr[Xi = 1] = p, and that X1, . . . , Xr·q is a set of independent random variables; each
party invokes send r · q times up to round r. Let X =

∑rq
i=1Xi. By an application of the Chernoff

bound, it holds that:

Pr[X < (1− 1

4t
)pqr] = Pr[X < (1− 1

4t
)E[X]] ≤ e−Ω(λ)

Hence, with overwhelming probability each honest party will send at least (1 − 1
4t)pqr messages,

and by an application of the union bound the claim follows. a

In addition to the previous claim we also note two things: (i) The grade of each suck key will
be 0, and (ii) due to the unforgeability property of the signature scheme all honest parties will add
the associated key p̂k and the correct owner of key pk in M. This two facts will be useful later,
when we will argue that all honest keys make it to the final list of keys N , along with their correct
owner.

Next, we show that the total number of keys generated will be at most n.

Claim 2. At the end of round r + n + 1, the set K of each honest party will contain at most n
elements, with overwhelming probability.

Proof. As before let Z =
∑qt(r+n)

i=1 Zi, denote the successful attempts by the adversary to send
a message through Wflt(Fauth). Note that, starting from round 1, she has r + n rounds in her
disposal to send messages. First, after some computations we can show that:

(1 +
1

4t
)E[Z] = (1 +

1

4t
)pqt(r + n) ≤ (1− 1

4t
)pqr(t+ 1)

Then, by the Chernoff bound, it holds that:

Pr[Z > (1− 1

4t
)pqr(t+ 1)] ≤ Pr[Z > (1 +

1

4t
)E[Z]] ≤ e−Ω(λ)

This implies that with overwhelming probability the set K of any honest party will contain at most
t keys. Due to the previous claim, K will also contain at most n− t honest keys. Hence, the claim
follows. a

It is easy to see that if an honest party adds a key to K with grade g < n, due to the forwarding
of the relevant messages for this key in the network, all honest parties will have add key in their
keyset with grade at most g + 1.

18

Using all facts proved above, we can now proceed and show that during the Broadcast phase
of the protocol, all honest parties will reliably broadcast setM. Moreover, the adversary will not
be able to confuse them about her broadcast input, if any. We start by arguing about the values
broadcast by honest parties.

Claim 3. At the end of round r + 2n + 2, the set N of each honest party will contain the keys of
all honest parties, along with their correct identity, with overwhelming probability.

Proof. Let P be some honest party, (pk, p̂k) be her public keys, K′,M′ be her key sets, andm =M′.
By our previous claim, all honest parties will have added (pk, 0) to their key set K. Moreover, they
will all receive the message (p̂k, P) signed w.r.t. pk at round r + 1 by party P , and thus include
(p̂k, P) inM. Note, that no honest party will include another entry related to P , as P will not send
any other such message. Moreover, all parties will receive (m, pk, σ), where σ is a valid signature
for m. Hence, they will all add (m, pk) to T . Again, due to unforgeability, they will not add any
other entry related to pk in T . Hence, since T has at most n elements (one for each key) (p̂k, P)
will be the only entry that appears exactly once, with respect to P , in at least n/2 sets of T . Thus,
all honest parties will add (pk, P) in N , and the claim follows. a

Next, we argue that the key sets N of all honest parties will be the same.

Claim 4. At the end of round r+ 2n+ 2, all honest parties will have the same set N , with at most
one entry per party, with overwhelming probability.

Proof. First, we argue that all honest parties have same set T at the end of round r + 2n+ 2. For
the sake of contradiction assume that the opposite was true. This would imply that some honest
party P has added (m, pk) ∈ T at some round r′, while some other party P ′ has not. We take
two cases. If r′ < r + 2n + 2, then P will forward the messages relevant to entry (m, pk) to all
other parties, and they will all add (m, pk) to T . On the other hand, if r′ = r + 2n + 2, it means
that (m, pk) is signed by n keys in the set K of P , and by our previous claim at least one of these
keys was of an honest party. Thus, this party must have accepted this message earlier, and by the
previous argument all other honest parties will also have received and accepted this message. This
is a contradiction, and hence the honest parties agree on their entries in T .

Next, notice that the deletion of entries from T , when a key is associated with two different
messages that happens in the Broadcast procedure, does not change the fact that all honest parties
agree on these sets, since if a message is included in T to begin with, the relevant key is also part
of K. Now, since all parties agree on T , and N is a function of T , it is implied that they will also
agree on N . Also, by construction each party P is associated with at most one key in N . The claim
follows. a

Our last two claims imply that all parties agree on N , each honest party will be correctly rep-
resented, and at one most key will be assigned to each identity. Having established these properties
of the protocol, we next give a sketch of the simulator, which we denote by S2. The first thing the
simulator must deal with is clock updates. In the ideal world, clock updates sent by the Z to honest
parties, are directly forwarded to Gclock, which in turn forwards them to S2. This is not the case
in the real world, parties sent updates to the Gclock, only after a sufficient number of Maintain
and clock-update inputs have been provided by Z. The way we simulate this behavior, is by
having S2 deduce exactly when honest parties would sent their update in the real world, by keeping
track of when Freg will sent its clock update in the ideal world, and the activations it gets after
a Maintain command has been issued to Freg or a clock-update command has been issued to

19

Gclock. Note, that a new round starts only after either of the two commands has been issued, and
S2 has been activated.

Since S2 can simulate when parties are done for each round, it can easily simulate the interaction
of A with Wflt(Fauth) and Fauth. It does that by simulating the behavior of honest parties. All
information needed to do this are either public, or in the case of the signatures of the honest parties,
can be generated by the simulator itself. Note, care has been taken, so that never throughout the
protocol S2 has to sign anything with the keys input to Freg for honest parties; it only signs with
the keys generated by the parties themselves.

Finally, the simulator has to tell Freg which keys different parties have registered. It decides
that, after round r + 2n + 2, where the parties have agreed on their key sets N , and thus have
agreed on which keys each party has registered. By our analysis above, this is always the case with
overwhelming probability in λ.

As discussed in the introduction, getting from an implementation of Freg where the keys are
linked to their owners to standard MPC is fairly straightforward by using the modularity of the UC
framework. As proved in [10], Freg can be used to realize the certified signature functionality (aka
certification functionality) Fcert which, in turn, can be used to realize a Broadcast functionality
against even adaptive adversaries [22]. By plugging this functionality into the honest-majority
protocol (compiler) by Cramer et al. [14]—an adaptation of the protocol from [29] to tolerate
adaptive corruptions—we obtain an MPC protocol which is adaptively secure.

Corollary 6. Let n > 2t, p be a noticeable function, q ∈ N+. Then there exists a protocol that
UC-realizes functionality Fmpc in the (Gclock, Fauth, Wp,q

flt(Fauth), Fsig)-hybrid model.

6 Removing the Freshness Assumption

So far, we have assumed that all parties, including the adversary, get access to the CRS at the same
time, i.e., when the protocol starts. In this section, we give a high level overview of how our analysis
can be adapted to the case where we remove the fresh CRS and instead assume a collision-resistant
hash function. The protocol we devise is based on techniques developed initially in [1].

The main function of the CRS in the implementation of Wflt(Fauth), is to ensure that all
parties agree on which hash evaluations are “fresh,” i.e., performed after the CRS became known.
Consequently, sent messages are fully transferable, in the sense that they can be forwarded an
arbitrary number of times and still be valid. Without a CRS we have to sacrifice full transferability
and instead settle with a limited version of the property (cf. [28]).

Next, we describe the filtering functionality we can implement9 in this setting, denotedWflt-lim(Fauth).
The functionality has the same syntax as Wflt(Fauth), with one difference: each message sent is
accompanied by a grade g, which signifies the number of times that this message can be forwarded
by different parties and is also related to when the message was initially sent. For example, if party
P1 receives a message with grade 2, the message can be forwarded to party P2 with grade 1, and
party P2 can forward to party P3 with grade 0. Party P3 cannot forward the message any further,
while party P2 can still forward the message to any other party it wants to. Moreover, the initial
grade assigned to a message sent using the send command is equal to the round that this command
was issued minus 1, i.e., messages with higher grades can be computed at later rounds, for honest
parties. The adversary has a small advantage: the initial grade of messages he send is equal to the
current round. Next, we formally describe Wflt-lim.

9In fact, we have to slightly weaken the functionality to enforce the participation of honest parties, the same way
we do for the Freg functionality in Section 5. For clarity, we omit this change.

20

The wrapper functionality is parameterized p ∈ [0, 1] and q ∈ N, which restrict the probability of success
and number of F-evaluations of each party per round, respectively, and a set of parties P. It manages
the round integer variable τ , the current set of corrupted parties P̃, and a list T . For each party P ∈ P,
it manages the integer variable tP . Initially τ := 0, T := ∅, and tP := 0, for each P ∈ P.

Filtering:

• Upon receiving (send, sid,m, Pj) from party Pi ∈ P, execute Round-Reset, and do the following:

– Set tPi
:= tPi

+ 1. If tPi
≤ q, with probability p, do:

1. If Pi is honest, leta g := τ . Otherwise, let g := τ − 1.
2. Add (m,Pi, g) to T , and output (success, sid) to Pi,
3. on response (continue, sid,m) from Pi, forward (send, sid, (m, g), Pj) to F .
In any other case, send (fail, sid) to Pi.

• Upon receiving (resend, sid,m, g, Pj) from honest party Pi ∈ P \ P̃, if (m,Pi, g) ∈ T and g > 0, then
forward (send, sid, (m, g), Pj) to F .

• Upon receiving (resend, sid,m, g, PJ) from A on behalf of corrupted Pi ∈ P̃, if for some g′ ≥ g and
some P ∈ P, (m,P, g′) ∈ T , and g > 0, forward (send, sid, (m, g), Pj) to F .

• Upon F sending (sent, sid, (m, g), Pi) to Pj , add (m,Pj , g − 1) to T and forward the message to Pj .

Standard UC Corruption Handling:

• Upon receiving (corrupt, sid, P) from the adversary, set P̃ ← P̃ ∪ P.

General:

• Any other request from (resp. towards) any participant or the adversary, is simply relayed to the
underlying functionality (resp . any participant of the adversary) without any further action.

Procedure Round-Reset:
Send (clock-read, sidC) to Gclock and receive (clock-read, sidC , τ ′) from Gclock. If |τ ′ − τ | > 0, then
set tP := 0 for each P ∈ P and set τ := τ ′.

ag is a local variable.

Wrapper Functionality Wp,q
flt-lim(F)

The way we can implement this functionality is by introducing a challenge-exchange procedure
to protocol Wrapped-Channel: parties multicast random strings, then in the next round hash the
ones they received with a collision-resistant hash function and multicast them again, etc. At each
round they use the hash they computed as a prefix to the queries they will be making to the
restricted RO functionality. If successful, they multicast the hashed value, along with a pre-image
of the hash, in order for other parties to be sure that the hash that they multicast earlier was used
in the computation, and thus ensure freshness. Obviously, in the first round of the protocol parties
cannot send any message as they haven’t yet exchange any random challenges, in the second round
the messages can be transfered one time, in the third twice, and so on.

Next, observe that Wflt-lim(Fauth) is sufficient to implement Freg. The protocol is similar
to Protocol Graded-Agreement, with the only difference being that parties start trying to send
messages through Wflt-lim(Fauth) after n rounds have passed. Moreover, in order for a key to be
accepted as valid, the messages that accompany it must have a sufficiently high grade. The rest of
the protocol is exactly the same. The analysis of [1] is built on this idea, and we point there for
more details.

As a result, we are able to implement Freg, and subsequently Fmpc, without having to assume

21

a “fresh” CRS. With the techniques described above, the following theorem can be proven.

Theorem 7. Let n > 2t and q ∈ N+. Then, there exists a protocol that UC-realizes functionality
Fmpc in the (Gclock, Fauth, Wq

ro(FRO), Fsig)-hybrid model, assuming the existence of collision
resistant hash functions.

References
[1] M. Andrychowicz and S. Dziembowski. Pow-based distributed cryptography with no trusted setup.

In R. Gennaro and M. Robshaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, volume
9216 of Lecture Notes in Computer Science, pages 379–399. Springer, 2015.

[2] A. Back. Hashcash. http://www.cypherspace.org/hashcash, 1997.

[3] C. Badertscher, P. Gazi, A. Kiayias, A. Russell, and V. Zikas. Ouroboros genesis: Composable proof-
of-stake blockchains with dynamic availability. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018,
pages 913–930, 2018.

[4] C. Badertscher, U. Maurer, D. Tschudi, and V. Zikas. Bitcoin as a transaction ledger: A composable
treatment. pages 324–356, 2017.

[5] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-
tolerant distributed computation (extended abstract). In J. Simon, editor, Proceedings of the 20th
Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 1–10.
ACM, 1988.

[6] I. Bentov, R. Pass, and E. Shi. Snow white: Provably secure proofs of stake. Cryptology ePrint Archive,
Report 2016/919, 2016. http://eprint.iacr.org/2016/919.

[7] M. Borcherding. Levels of authentication in distributed agreement. In Ö. Babaoğlu and K. Marzullo,
editors, Distributed Algorithms, pages 40–55, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

[8] R. Canetti. Security and composition of multiparty cryptographic protocols. 13(1):143–202, Jan. 2000.

[9] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. pages
136–145, 2001.

[10] R. Canetti. Universally composable signature, certification, and authentication. In 17th IEEE Computer
Security Foundations Workshop, (CSFW-17 2004), 28-30 June 2004, Pacific Grove, CA, USA, page
219, 2004.

[11] R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally composable security with global setup. pages
61–85, 2007.

[12] R. Canetti and M. Fischlin. Universally composable commitments. In Advances in Cryptology -
CRYPTO 2001, 21st Annual International Cryptology Conference, Santa Barbara, California, USA,
August 19-23, 2001, Proceedings, pages 19–40, 2001.

[13] J. Chen and S. Micali. Algorand. arXiv preprint arXiv:1607.01341, 2016.

[14] R. Cramer, I. Damgård, S. Dziembowski, M. Hirt, and T. Rabin. Efficient multiparty computations
secure against an adaptive adversary. pages 311–326, 1999.

[15] B. David, P. Gazi, A. Kiayias, and A. Russell. Ouroboros praos: An adaptively-secure, semi-synchronous
proof-of-stake blockchain. pages 66–98, 2018.

[16] D. Dolev and H. R. Strong. Authenticated algorithms for byzantine agreement. SIAM J. Comput.,
12(4):656–666, 1983.

22

http://eprint.iacr.org/2016/919

[17] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony. Journal of
the ACM (JACM), 35(2):288–323, 1988.

[18] M. Fitzi. Generalized communication and security models in Byzantine agreement. PhD thesis, ETH
Zurich, 2002.

[19] J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis and applications.
In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II,
pages 281–310, 2015.

[20] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand: Scaling byzantine agreements
for cryptocurrencies. Cryptology ePrint Archive, Report 2017/454, 2017. http://eprint.iacr.org/
2017/454.

[21] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A completeness theorem
for protocols with honest majority. pages 218–229, 1987.

[22] M. Hirt and V. Zikas. Adaptively secure broadcast. pages 466–485, 2010.

[23] J. Katz, U. Maurer, B. Tackmann, and V. Zikas. Universally composable synchronous computation. In
Theory of Cryptography - 10th Theory of Cryptography Conference, TCC 2013, Tokyo, Japan, March
3-6, 2013. Proceedings, pages 477–498, 2013.

[24] J. Katz, A. Miller, and E. Shi. Pseudonymous broadcast and secure computation from cryptographic
puzzles. Cryptology ePrint Archive, Report 2014/857, 2014. http://eprint.iacr.org/2014/857.

[25] A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A provably secure proof-of-stake
blockchain protocol. pages 357–388, 2017.

[26] L. Lamport, R. E. Shostak, and M. C. Pease. The byzantine generals problem. ACM Trans. Program.
Lang. Syst., 4(3):382–401, 1982.

[27] R. Pass, L. Seeman, and abhi shelat. Analysis of the blockchain protocol in asynchronous networks.
Cryptology ePrint Archive, Report 2016/454, 2016. http://eprint.iacr.org/2016/454.

[28] B. Pfitzmann and M. Waidner. Unconditional byzantine agreement for any number of faulty processors.
In A. Finkel and M. Jantzen, editors, STACS 92, 9th Annual Symposium on Theoretical Aspects of
Computer Science, Cachan, France, February 13-15, 1992, Proceedings, volume 577 of Lecture Notes in
Computer Science, pages 339–350. Springer, 1992.

[29] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority
(extended abstract). pages 73–85, 1989.

[30] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial.
ACM Comput. Surv., 22(4):299–319, 1990.

[31] A. C.-C. Yao. Protocols for secure computations (extended abstract). pages 160–164, 1982.

23

http://eprint.iacr.org/2017/454
http://eprint.iacr.org/2017/454
http://eprint.iacr.org/2014/857
http://eprint.iacr.org/2016/454

	Introduction
	Model
	Inapplicability of Strong BA Impossibility
	Modeling a Communication-Restricted Network
	The Impossibility Theorem, Revisited

	Implementing a Communication-Restricted Network
	Implementing a Registration Functionality
	The Registration Functionality
	The Protocol

	Removing the Freshness Assumption

