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Abstract. Ring signatures allow a person to generate a signature on
behalf of an ad hoc group, and can hide the true identity of the signer
among the group. Repudiable ring signatures are the more strongly de-
fined ring signatures, which can allow every non-signer to prove to others
that the signature was not generated by himself.

This paper has two main areas of focus. First, we propose a new
requirement for repudiable ring signatures, which is that no one can forge
a valid repudiation for others. Second, as a breakthrough, we present the
first logarithmic-size repudiable ring signatures which do not rely on a
trusted setup or the random oracle model. Specifically, our scheme can
be instantiated from standard assumptions and the size of signatures and
repudiations only grows logarithmically in the number of ring members.

Besides, our scheme also provides a new construction of logarithmic-
size standard ring signatures.
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1 Introduction

Ring signatures, introduced by [19], are a variant of digital signatures, which can
certify that one among a particular set of parties has signed a particular message,
without reveal who is the signer. And this particular set is called a ‘ring’. More
specifically, the signing algorithm of a ring signature scheme takes as additional
input a list of verification keys R and outputs a signature. Such a signature can
be verified produced by one among R. The interesting feature of ring signatures
is that given such a signature, no one can tell which key was used to compute this
signature. Ring signatures are useful, for example, to certify that certain leaked
information comes from a privileged set of government officials without revealing
the identity of the whistleblower, to issue important orders or directives without
setting up the signer to be a scapegoat for repercussions, or to enable untraceable
transactions in cryptocurrencies (such as Monero [16]). In terms of security two
properties are required in ring signatures: unforgeability and anonymity. The
first property requires that an efficient adversary should not be able to forge a
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signature on behalf of an honest ring of signers. And anonymity requires that
signatures do not give away by which member they were created.

The notion of repudiable ring signatures [18] is an extension of the concept
of ring signatures which can allow every non-signer to prove to others that the
signature was not generated by himself. More specifically, the repudiable ring
signature scheme is a ring signature scheme equipped with an additional pair of
algorithms (Repudiate, VerRepud), where Repudiate is an algorithm which can
create a repudiation ξ of any signature σ for any non-signer, and VerRepud can
verify whether ξ is a valid repudiation.

The repudiability of ring signatures is a necessary property in some situation.
For example, we can cite an example from [18] to illustrate the importance of
repudiability. Let us consider a hypothetical case, wherein two candidates Alice
and Bob are running for president in the land of Oz. Oz is notorious for its petty
partisan politics and its tendency to prefer whomever appears friendlier in a se-
ries of nationally televised grinning contests between the main-party candidates.
At the peak of election season, a disgruntled citizen Eve decides to help out her
preferred candidate Bob by publishing the following message, which goes viral
on the social networks of Bob supporters:

I created a notorious terrorist group and laundered lots of money!

Signed: Alice or Eve or Alice’s campaign chairman.

Of course, the virally publicized message does not actually incriminate Alice at
all, since any one of the signatories could have produced it. However, perhaps
there is nothing that Alice can do to allay the doubt in the minds of her suspicious
detractors.

The reason for this is that ring signatures are deliberately designed to allow
anyone to attach anyone else’s identity to a signature, without the latter’s con-
sent. And just like in the example above, these ring signatures provide protection
for malicious people who try to damage the reputation of others. Therefore, we
need to use repudiable ring signatures in these situations.

1.1 Our Contributions

In this paper, we focus on both definitions and constructions. We summarize our
results in each of these areas, and relate them to prior work.

Definitions of security. Prior work on repudiable ring signature scheme provides
definitions of security seem (to us) unnaturally weak, in that they do not address
what seem to be valid security concerns. One example is that they did not
consider the unforgeability of repudiation. Although at first glance, this property
seems to be included in anonymity, it actually requires more in some aspects
than anonymity. Because repudiation unforgeability requires that the adversary
cannot forge a repudiable of signature σ for others even if he knows the signing
key corresponding to the signature σ.
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This property is useful in many cases. For example, let us consider the fol-
lowing situation. A company is in trouble and its employees are asked to come
up with a solution. Bob is an employee of this company, he thinks of a seem-
ingly feasible solution, but he is afraid of being made a scapegoat by his boss if
his solution failed. So he uses a repudiable ring signature to sign his plan, and
publishes it. In the end, the plan works and Bob wants to be rewarded by the
company alone, so he can forge repudiations for everyone others in his ring. In
this case, the ring member can only share the risk but not the reward, which is
obviously unfair to the ring members.

The reason for this is that repudiable ring signatures do not satisfy repudia-
tion unforgeability. Therefore, we need repudiation unforgeability in these situ-
ations. So in this paper, we formalize the property of repudiation-unforgeability,
and give the first construction that satisfies this property.

Constructions. In this paper, we present the first construction of logarithmic-
size repudiable ring signatures which do not rely on a trusted setup or the
random oracle model. Specifically, our scheme can be instantiated from standard
assumptions and our scheme has signatures and repudiations of size log(n) ·
poly(λ), whereas the size of the signatures and repudiations of construction
in [18] is square in the ring size n.

There are two major obstacles in making the size of the signatures and re-
pudiations sublinear in [18] :

1. The signatures and repudiatons contain all witnesses;
2. The witness for the validity of statement is also size linear in n.
Our first modification is that for signature we can just use NIWI to produce

a witness, and do not produce witnesses π for every party, and since NIWI has
witness indistinguishable, we also have our signature has anonymity. Our second
modification is that we first hash the ring R into a succinct digest h, and then
use h in the NIWI. Here we use SPB hashing function, which can also prove the
membership of VKi in the ring R. This hash function was first used by [2].

Besides, the size of keys of our construction has been reduced by at least half
compared to scheme in [18].

Other Contributions. We find there are some mistakes in [18]. In [18] they use the
notation adaptive anonymity against adversarially chosen keys, but we find their
construction cannot satisfy this property they proposed, we can find an attack
for their construction. The attack algorithm is in the appendix. To rule out
such attack, we need to limit the ability of adversary slightly. Our modification
is that, we do not allow an adversary to ask its oracle OR(·) for (·,m,R, ·)
after the adversary gives challenge information (j0, j1,m,R) to experiment. Their
repudiable ring signatures satisfy this modified anonymity, so do our scheme.
And we think this limitation is necessary.

Besides, if we only use the first three algorithms of our repudiable ring sig-
nature, it is also a secure ring signature scheme and the size of signatures also
grows only logarithmically in the number of ring members. And this is also a
new construction of standard ring signatures with logarithmic-size signatures .
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1.2 Related Work

After the initial work of Rivest, Shamir and Tauman [19], a number of works
provided constructions under various computational hardness assumptions. The
scheme of Dodis et al. [7] was the first to achieve sublinear size signatures in
the ROM. Libert et al. [12] constructed a scheme with logarithmic size ring
signature from DDH in the ROM. And recently, Backes et al. [2] provided a
standard model construction with signatures of size log(n).

And since the original proposal of ring signatures, various variant definitions
have been proposed. For example, linkable ring signatures [13] allow identifica-
tion of signatures that were produced by the same signer, without compromising
the anonymity of the signer within the ring. Another notion called traceable ring
signature [9] considers a setting where signatures are generated with respect to
“tags” and each member may sign at most a single message with respect to
a particular tag, or else his identity will be revealed. Accountable ring signa-
tures [1,20] allow a signer to assign the power to deanonymize his signature to a
specific publicly identified party. And recently, Park and Sealfon proposed four
new notations which are repudiable, unrepudiable, claimable and unclaimable
ring signature in [18].

2 Preliminaries

Throughout the paper, we let λ denote the security parameter and negl(λ) denote
the negligible function. We denote by y ← A(x; r) the execution of algorithm
that A output y, on input x and random coins r. We write y ← A(x), if the
specific random coins used are not important. And we denote by y = A(x), if
the algorithm is deterministic. Let r ← S denote that r is chosen uniformly at
random from the set S. We use [n] to denote the set {1, . . . , n}.

Next, we briefly review some building blocks, which will be used in our
scheme.

2.1 Non-Interactive Witness-Indistinguishable Proof Systems

Let R be an efficiently computable binary relation, where for (x,w) ∈ R we call
x is a statement and w is a witness of x. Moreover, let LR denote the language
consisting of all statements in R, i.e. LR = {x | ∃w : (x,w) ∈ LR}.

Definition 1 (NIWI). Let R be an efficiently computable witness relation and
LR be the language generated by R. A non-interactive witness-indistinguishable
proof NIWI for language LR is a pair of probabilistic polynomial-time algorithms
(Prove,Verify) satisfying the three properties of Perfect Completeness, Perfect
Soundness, and Witness-Indistinguishability. The syntax of NIWI follows:

Prove (1λ, x, w): Takes as input a security parameter 1λ, a statement x and a
witness w, outputs either a proof π or ⊥.

Verify (x, π): Takes as input a statement x and a proof π, outputs either 0 or 1.
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We require the following properties of the NIWI :

Perfect Completeness: For any security parameter λ ∈ N, any statement x ∈
LR and any witness w, that if R(x,w) = 1 and π ← Prove(1λ, x, w), then it
holds that Verify(x, π) = 1.

Perfect Soundness: For any security parameter λ ∈ N, any statement x /∈ LR
and any proof π, it holds that Verify(x, π) = 0.

Witness-Indistinguishability: For any PPT adversary A, there is a negligi-
ble function negl, such that for any λ ∈ N, adversary A has at most negl(λ)
advantage in the following experiment:
ExpWI(A) :
– The adversary A is given input 1λ, and output a triple (x,w0, w1) , with
R(x,w0) = 1 and R(x,w1) = 1.

– The experiment chooses a random bit b ← {0, 1}, and computes π ←
Prove(1λ, x, wb), then gives π to A.

– The adversary A outputs a guess b′.
– The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise.

The advantage of A is defined by

AdvWI(A) = |Pr[ExpWI(A) = 1]− 1

2
|.

Proof-size: For π ← Prove(1λ, x, w) it holds that |π| = |Cx| ·poly(λ), where Cx
is a verificaiton circuit for the statement x.

In order not to cause confusion, we write NIWI.Prove, NIWI.Verify to denote
the Prove and Verify algorithms belonging to NIWI.

Non-interactive witness-indistinguishable proofs can be constructed from NIZK
proofs derandomization assumptions [3,5], from bilinear pairings [10], and indis-
tinguishablity obfuscation [4].

2.2 Verifiable Random Function

Let a : N → N ∪ {∗} and b, s : N → N be any three functions such that
a(λ), b(λ), s(λ) are all computable in time poly(λ), and a(λ), b(λ), s(λ) are both
bounded by a polynomial in λ (expect when a(λ) takes on the value ∗).1

Definition 2 (VRF). A family of functions

F = {fk : {0, 1}a(λ) → {0, 1}b(λ)}k∈{0,1}s(λ)

is a family of verifiable random functions with security parameter λ if there is
a tuple of algorithms (Gen,Eval,Prove,Verify) such that: the key-generation al-
gorithm Gen(1λ) is a PPT algorithm that outputs a pair of keys (pk, sk); the
function-evaluator algorithm Eval(sk, x) is a deterministic polynomial-time al-
gorithm that outputs fsk(x); the prover algorithm Prove(sk, x) is a deterministic
polynomial-time algorithm that outputs a proof of correctness π; and the verifier
algorithm Verify(pk, x, y, π) is a PPT algorithm that outputs either 0 or 1.

We require the following properties for the VRF:

1 When a(λ) takes the value of ∗, it means the VRF is defined for inputs of all length.
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Perfect Completeness: For any λ ∈ N, any (pk, sk) ← Gen(1λ) and any
input x, that if y = Eval(sk, x), π = Prove(sk, x), then it holds that

Verify(pk, x, y, π) = 1.

Uniqueness: For every pk, x, y0, y1, π0, and π1 such that y0 6= y1, the following
holds for either i = 0 or i = 1:

Pr[Verify(pk, x, yi, πi) = 1] < negl(λ).

Where the probability is taken over the random coins of Verify.
Pseudorandomness: For any PPT adversary A, there is a negligible function

negl, such that for any λ ∈ N, adversary A has at most negl(λ) advantage
in the following experiment:
ExpVRF(A):
– A pair of keys (pk, sk) are generated by running Gen(1λ).
– The adversary A is given input 1λ, pk and oracle access to Eval(sk, ·)

and Prove(sk, ·), and outputs an x.
– The experiment chooses a random bit b ← {0, 1}, if b = 0 computes
y = Eval(sk, x), otherwise y ← {0, 1}b(λ), then gives y to A.

– The adversary A continues to have oracle access to Eval(sk, ·) and Prove
(sk, ·). Eventually, adversary A outputs a guess b′. Let Q denote the set
of all queries that A asked its oracle.

– The output of the experiment is defined as follow:
1. If x ∈ Q, the experiment outputs a random bit;
2. If x /∈ Q and b′ = b, the experiment outputs 1;
3. Otherwise, the experiment outputs 0.

The advantage of A is defined by

AdvVRF(A) = |Pr[ExpVRF(A) = 1]− 1

2
|.

In order not to cause confusion, we write VRF.Gen, VRF.Eval, VRF.Prove,
VRF.Verify to denote the Gen, Eval, Prove and Verify algorithms belonging to
VRF.

The notion of a verifiable random function (VRF) was introduced by Micali,
Rabin, and Vadhan [15]. Known constructions of VRFs are due to [15] based on
strong RSA, [14] based on a strong version of the Diffie-Hellman assumption in
bilinear groups, [6] based on the sum-free generalized DDH assumption, and [8]
based on the bilinear Diffie-Hellman inversion assumption.

2.3 Somewhere Perfectly Binding Hash Function

The notion of Somewhere Perfectly Binding Hash Function(SPB)2 was intro-
duced by [2], which can be used to create a short digest h = Hhk(x) of some
long input x = (x[1], . . . , x[L]) ∈ ΣL, where Σ is some alphabet. The hashing

2 This is a stronger notion, compare with SSB in [11].
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key (hk, shk)← Gen(i) can be generated by providing a special “binding index”
i and this ensures that the hash h = Hhk(x) is perfectly binding for the i’th
symbol. In other words, even though h has many other preimages x′ such that
Hhk(x′) = h, all of these preimages agree in the i’th symbol x′[i] = x[i]. More-
over, we will be interested in SPB hash function with a ‘private local opening’
property that allow us to prove that i’th symbol of x takes on some particular
value x[i] = u by providing a short opening π. The formal definition is below.

Definition 3 (SPB). A somewhere perfectly binding hash family with private
local opening SPB is given by a tuple of algorithms (Gen,Hash,Open,Verify)
with the following syntax:

Gen(1λ, n, i): 3 Takes as input a security parameter 1λ, a database size n and
an index i, and outputs a hashing key hk and a private key shk.

Hash(hk, x): Takes as input a hashing key hk and a database x and outputs a
digest h.

Open(hk, shk, x, j): Takes as input a hashing key hk, a private key shk, a
database x and an index j and outputs a witness π.

Verify(hk, h, j, u, π) Takes as input a hashing key hk, a digest h, an index j,
an alphabet u and a witness π, and outputs either 0 or 1.

We require the following properties for the SPB:

Perfect Correctness: For any security parameter λ ∈ N, any n = poly(λ), any
database x of size n and all index i ∈ [n], that if (hk, shk) ← Gen(1λ, n, i),
h = Hash(hk, x) and π ← Open(hk, shk, x, i), then it holds that

Pr[Verify(hk, h, i, x[i], π) = 1] = 1.

Somewhere Perfectly Binding: For any security parameter λ ∈ N, any n =
poly(λ), any database x of size n, any index i ∈ [n], any alphabet value u and
any witness π, that if h = Hash(hk, x) and Verify(hk, h, i, u, π) = 1, then it
holds that i = ind, and u = x[ind], where ind is the index for generating hk.

Index Hiding: For any PPT adversary A, there is a negligible function negl,
such that for any λ ∈ N, adversary A has at most negl(λ) advantage in the
following experiment:
ExpIH (A):
– The adversary A is given input 1λ, and output a triple (n, i0, i1), then

gives it to experiment.
– The experiment chooses a random bit b ← {0, 1}, and then computes

(hk, shk)← Gen(1λ, n, ib), then give hk to A.
– The adversary A outputs a guess b′.
– The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise.

The advantage of A is defined by

AdvIH(A) = |Pr[ExpIH(A) = 1]− 1

2
|.

3 Where we need i ∈ [n], the same thing has to be true for the following j.
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Efficiency: The hashing keys hk generated by Gen(1λ, n, i) and the witness
τ generated by Open(hk, shk, x, j) are of size log(n) · poly(λ). Moreover,
Verify(hk, shk, i, x, τ) can be computed by a circuit of size log(n) · poly(λ).

In order not to cause confusion, we write SPB.Gen, SPB.Hash, SPB.Open,
SPB.Verify to denote the Gen, Hash, Open and Verify algorithms belonging to
SPB.

Remark 1. To simplify notation, we will not provide the block size of databases
as an input to SPB.Gen but rather assume that the block size for the specific
application context is hardwired.

Remark 2. We can input every j ∈ [n] into Open algorithm, but the only j that
was used to generate hashing key can produce a valid witness.

The notion of somewhere perfectly binding hash family with private local
opening (SPB) was introduced by [2]. In that work, they give a simple black-box
transformation from any SPB hash family to a SPB with private local opening.
They also show that the DDH-based SSB construction of [17] can be proofed to
be SPB hash family.

3 Repudiable Ring Signatures

In this section, we provide the definitions related to repudiable ring signatures.
The notion of repudiable ring signatures was introduced by [18].

Definition 4 (RRS). A repudiable ring signature scheme is a tuple of PPT
algorithms RRS = (Gen,Sign,Verify,Repudiate,VerRepud), satisfying the five
properties of correctness (Definition 5), anonymity (Definition 6), unforgeability
(Definition 7), repudiability (Definition 8) and repudiation unforgeability (Defini-
tion 9). The syntax of RRS follows:

Gen(1λ): Takes as input a security parameter 1λ, and outputs a pair (VK,SK)
of verification and signing keys.

Sign(SK, m, R): Takes as input a signing key SK, a message m, and a set of
verification keys R = (VKi1 , . . . ,VKin), and outputs a signature σ. The set
R is also known as a ‘ring’.

Verify(m, R, σ): Takes as input a message m, a set R = (VKi1 , . . . ,VKin) of
verification key, and a signature σ, and outputs either 0 or 1.

Repudiate(SK, m, R, σ): Takes as input a signing key SK, a message m, a
set R = (VKi1 , . . . ,VKin) of verification key, and a signature σ, and outputs
a repudiation ξ.

VerRepud(VK, m, R, σ, ξ ): Takes as input an identity VK, a message m, a
set R = (VKi1 , . . . ,VKin) of verification key, a signature σ,and a repudiation
ξ, and outputs either 0 or 1.
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Definition 5 (Correctness). We say that a repudiable ring signature scheme
RRS = (Gen,Sign,Verify,Repudiate,VerRepud) satisfies correctness, if there is
a negligible function negl(λ) such that for any λ ∈ N, any n = poly(λ), any
n key pairs (VKi1 ,SKi1), . . . , (VKin ,SKin) ← Gen(1λ), any j0, j1 ∈ [n], where
j0 6= j1, and any message m, we have

Pr[Verify(m,R, σ) = 1] ≥ 1− negl(λ),

and

Pr[VerRepud(VKij1
,m,R, σ, ξ) = 1] ≥ 1− negl(λ),

where R = (VKi1 , . . . ,VKin), σ = Sign(SKij0
,m,R), and ξ = Repudiate(SKij1

,
m,R, σ).

To give the formal definition of other properties, we need to introduce three
oracles first:

– Corruption oracle: For a repudiable ring signature scheme RRS, the ora-
cle OC(VK1,SK1),...,(VKl,SKl) is defined to take as input i ∈ [l], and outputs
(VKi,SKi).

– Signing oracle: For a repudiable ring signature scheme RRS, the oracle
OS(VK1,SK1),...,(VKl,SKl) is defined to take as input i ∈ [l], a message m, and
a ring R4, and output Sign(SKi,m,R).

– Repudiation oracle: For a repudiable ring signature scheme RRS, the or-
acle OR(VK1,SK1),...,(VKl,SKl) is defined to take as input j ∈ [l], a message m,
a ring R, and a signature σ, and output Repudiate(SKj ,m,R, σ).

In this paper, we refer to adaptive anonymity against adversarially chosen
keys, which is slightly different from the previous one in [18].

Definition 6 (Anonymity). We say that a repudiable ring signature scheme
RRS = (Gen,Sign,Verify,Repudiate,VerRepud) satisfies adaptive anonymity a-
gainst adversarially chosen keys, if for all PPT adversary A, there is a negligible
function negl such that, for all λ ∈ N, all l = poly(λ), it holds that A has at
most negligible advantage in the following experiment.
ExpAno(A):

– For each i ∈ [l], the experiment generates the key pairs (VKi,SKi) ←
Gen(λ).

– The adversary A is given input 1λ, VK1, . . . ,VKl, and oracle access to
OC(·), OS(·), OR(·).

– The adversary provides a tuple (m,R, j0, j1) to experiment, with j0, j1 ∈ [l],
and VKj0 ,VKj1 ∈ R.

– The experiment chooses a random bit b ← {0, 1}, and computes σ ← Sign
(SKjb ,m,R), then gives σ to adversary A.

4 We allow that the ring R may contain maliciously chosen verification keys that were
not included in {VK1, . . . ,VKl}. The same thing holds for the ring in the OR.
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– The adversary continues to have oracle access to OC(·), OS(·) and OR(·)
except that A can not query OR(·) with (·,m,R, ·). Let QOC denote the set
of all queries that A asked its oracle OC.

– The adversary A outputs a guess b′.
– The output of the experiment is defined as follow :

1. If j0 ∈ QOC or j1 ∈ QOC, the experiment outputs a random bit.
2. If j0, j1 /∈ QOC and b′ = b, the experiment outputs 1.
3. Otherwise, the experiment outputs 0.

The advantage of A is defined by

AdvAno(A) = |Pr[ExpAno(A) = 1]− 1

2
|.

Remark 3. We allow that ring R chosen by adversary A in step 3 may contain
maliciously chosen verification keys that were not generated by challenger.

Definition 7 (Unforgeability). We say that a repudiable ring signature con-
struction RRS = (Gen,Sign,Verify,Repudiate,VerRepud) is unforgeable with
respect to insider corruption, if for all PPT adversary A, there is a negligible
function negl such that , for all λ ∈ N, all l = poly(λ), it holds that A has at
most negl(λ) advantage in the following experiment.
ExpUnf(A):

– For each i ∈ [l], the experiment generates the key pairs (VKi,SKi) ←
Gen(λ).

– The adversary A is given input 1λ, VK1, . . . ,VKl, and oracle access to
OC(·), OS(·), OR(·). The adversary A outputs (m,R, σ). Let QOC denote
the set of all queries that A asked its oracle OC, and let QOS denote the set
of all queries that A asked its oracle OS.

– The output of the experiment is defined to be 1 if it satisfies the following
conditions:
1. Verify(m,R, σ) = 1,
2. R ⊂ {VK1, . . . ,VKl} \ QOC

5,
3. (·,m,R) /∈ QOS.

Otherwise, the experiment is defined by 0.

The advantage of A is defined by

AdvUnf(A) = Pr[ExpUnf(A) = 1].

Definition 8 (Repudiability). We say that a repudiable ring signature con-
struction RRS = (Gen,Sign,Verify,Repudiate,VerRepud) is repudiable with re-
spect to insider corruption, if for all PPT adversary A, there is a negligible
function negl such that, for all λ ∈ N, all l = poly(λ), it holds that A has at
most negl(λ) advantage in the following experiments.
1. ExpRep1(A) (Non-signer can repudiate experiment):

5 With a slight abuse of notation, we sometimes use QOC to denote the set of verifi-
cation keys {VKj1 , . . . ,VKjs} where {jk|k = 1, . . . , s} were all the queries that A
asked its oracle OC.
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– For each i ∈ [l], the experiment generates the key pairs (VKi,SKi) ←
Gen(λ).

– The adversary A is given input 1λ, VK1, . . . ,VKl, and oracle access to
OC(·), OS(·), OR(·). The adversary A outputs (m,R, σ) with R ⊂ {VK1, . . . ,
VKl}. Let QOC denote the set of all queries that A asked its oracle OC, let
QOS denote the set of all queries that A asked its oracle OS, and let QOR

denote the set of all queries that A asked its oracle OR.
– The experiment compute:

ξik = Repudiate(SKik ,m,R, σ), and bik = VerRepud(VKik ,m,R, σ, ξik),

for all VKik ∈ R \ QOC.
– Finally, the output of the experiment is defined to be 1 if it satisfies the

following condition:
1. (·,m,R) /∈ QOS and (·,m,R, ·) /∈ QOR,
2. Verify(m,R, σ) = 1,
3. R \ QOC 6= ∅,
4.

∧
VKj∈R\QOC

bj = 0.

Otherwise, the experiment is defined by 0.

The advantage of A is defined by

AdvRep1(A) = Pr[ExpRep1(A) = 1].

2. ExpRep2(A)(Signer cannot repudiate):

– For each i ∈ [l], the experiment generates the key pairs (VKi,SKi) ←
Gen(λ).

– The adversary A is given input 1λ, VK1, . . . ,VKl, and oracle access to
OC(·), OS(·), OR(·). Let QOC denote the set of all queries that A asked its o-
racle OC, let QOS denote the set of all queries that A asked its oracle OS. The
adversary A outputs (m,R, σ, {ξik}VKik∈QOC∩R) with R ⊂ {VK1, . . . ,VKl}.

– The experiment compute bik = VerRepud(VKik ,m,R, σ, ξik) for all VKik ∈
QOC ∩ R.

– The output of the experiment is defined to be 1 if it satisfies the following
condition:
1. (·,m,R) /∈ QOS,
2. Verify(m,R, σ) = 1,
3. QOC ∩ R 6= ∅,
4.

∧
VKj∈QOC∩R

bj = 1.

Otherwise, the experiment is defined by 0.

The advantage of A is defined by

AdvRep2(A) = Pr[ExpRep2(A) = 1].

Furthermore, we also need that no one can forge other people’s valid repudi-
ation, and this is a new requirement we proposed.
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Definition 9 (Repudiation Unforgeability). We say that a repudiable ring
signature scheme RRS = (Gen,Sign,Verify,Repudiate,VerRepud) satisfies re-
pudiation unforgeability against adversarially chosen messages and keys, if for
all PPT adversary A, there is a negligible function negl such that, for all λ ∈ N,
all l = poly(λ), it holds that A has at most negligible advantage in the following
experiment.
ExpReun(A)(Nobody cannot forge others repudiation experiment):

– For each i ∈ [l], the experiment generates the key pairs (VKi,SKi) ←
Gen(λ).

– The adversary A is given input 1λ, VK1, . . . ,VKl, and oracle access to
OC(·), OS(·), OR(·).

– The adversary provides a tuple (m,R, j) to experiment, with j ∈ [l], and
VKj ∈ R.

– The experiment computes σ ← Sign(SKj ,m,R), then give σ to adversary A.
– The adversary continues to have oracle access to OC(·), OS(·). Let QOC

denote the set of all queries that A asked its oracle OC.
– Then the adversary A outputs (j′, ξ).
– The output of the experiment is defined to 1 if it satisfies the following con-

ditions:

1. j′ /∈ QOC,
2. VerRepud(VKj′ ,m,R, σ, ξ) = 1.

Otherwise, the experiment is defined by 0.

The advantage of A is defined by

AdvReun(A) = Pr[ExpReun(A) = 1].

Remark 4. Here, we consider a stronger requirement that the adversary even can
know the signing key of signature σ, they still cannot forge a valid repudiation.

In order not to cause confusion, we write RRS.Gen, RRS.Sign, RRS.Verify,
RRS.Repudiate, RRS.VerRepud to denote the Gen, Sign, Verify, Repudiate and
VerRepud algorithms belonging to RRS.

4 Construction of Repudiable Ring Signatures

In this section we will provide a construction of a repudiable ring signature. Our
construction RRS is parameterized by NIWI, VRF and SPB, where:

– NIWI = (Prove, Verify) be a NIWI-proof system for a language L.
– VRF = (Gen, Eval, Prove, Verify) be a verifiable random function with input

domain {0, 1}∗, output range {0, 1}α(λ).
– SPB = (Gen, Hash, Open, Verify) be a somewhere perfectly binding hash

function with private local opening.
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In the rest of the section, we use the following convention to parse a ring R,
write

R = {VKi1 , . . . ,VKin},

where VKik = (pk0ik , pk
1
ik

). And we use R[k] denote k’th verification key VKik

in R.
We first present two languages, which will be used in the scheme latter.

Definition 10. Let L1 be the following language:

(m,ϕ, y00 , y
1
0 , y

0
1 , y

1
1 ,hk0,hk1, h0, h1) ∈ L1,

if and only if there are VK = (pk0, pk1), index i, η, τ0 τ1 and j ∈ {0, 1} subject
to

SPB.Verify(hkj , hj , i,VK, η) = 1;

and
VRF.Verify(pk0, (hj ,m, ϕ), y0j , τ

0) = 1;

and
VRF.Verify(pk1, (hj ,m, ϕ), y1j , τ

1) = 1.

Remark 5. This language is used to produce signature.

Definition 11. Let L2 be the following language:

(VK,m, ϕ, y10 , y
1
1 , h0, h1, z0, z1) ∈ L2,

if and only if there are y′0, y
′
1 ∈ {0, 1}α(λ) and τ00, τ01, τ10, τ11 subject to

(y′0 6= y10) ∧ (y′1 6= y11) = 1;

and

VRF.Verify(pk1, (h0,m, ϕ), y′0, τ00) = 1, VRF.Verify(pk1, y′0, z0, τ01) = 1;

and

VRF.Verify(pk1, (h1,m, ϕ), y′1, τ10) = 1, VRF.Verify(pk1, y′1, z1, τ11) = 1.

Remark 6. This language is used to produce repudiation, notice that we only
use the second private key in this language.

4.1 Construction

Our repudiable ring signature schemes RRS = (Gen, Sign, Verify, Repudiate,
VerRepud) is given as follows.

RRS.Gen(1λ):

1. (pk0, sk0), (pk1, sk1)← VRF.Gen(1λ).
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2. Output VK = (pk0, pk1) and SK = (sk0, sk1,VK).

We include the verification key VK in SK so that the Sign procedure can
identify the verification key in the ring corresponding to the signing key.

RRS.Sign(SK, m, R):

1. Parse R as described above and SK=(sk0, sk1, VK).
2. If VK /∈ R, output ⊥ and halt.
3. Define i∗ ∈ [N ] such that R[i∗] = VK.
4. Compute (hk0, shk0), (hk1, shk1)← SPB.Gen(1λ, |R|, i∗).
5. Compute h0 = SPB.Hash(hk0,R), h1 = SPB.Hash(hk1,R)
6. Compute η ← SPB.Open(hk0, shk0,R, i

∗).
7. Compute ϕ← {0, 1}λ.
8. Compute y00 = VRF.Eval(sk0, (h0,m, ϕ)), τ0 = VRF.Prove(sk0, (h0,m, ϕ)).
9. Compute y10 = VRF.Eval(sk1, (h0,m, ϕ)), τ1 = VRF.Prove(sk1, (h0,m, ϕ)).

10. Compute y01 ← {0, 1}α(λ), y11 ← {0, 1}α(λ).
11. Set x = (m,ϕ, y00 , y

1
0 , y

0
1 , y

1
1 ,hk0,hk1, h0, h1) and w = (VK, i∗, η, τ0, τ1, 0).

12. Compute π ← NIWI.ProveL1
(x,w).

13. Output σ = (ϕ, y00 , y
1
0 , y

0
1 , y

1
1 ,hk0,hk1, π).

RRS.Verify(m,R, σ):

1. Parse R as above and σ = (ϕ, y00 , y
1
0 , y

0
1 , y

1
1 ,hk0,hk1, π).

2. Compute h′0 = SPB.Hash(hk0,R), h′1 = SPB.Hash(hk1,R).
3. Output NIWI.VerifyL1

((m,ϕ, y00 , y
1
0 , y

0
1 , y

1
1 ,hk0,hk1, h

′
0, h
′
1), π).

The above is our ring signature algorithm, which can be used separately. Now
we proceed to describe the repudiation algorithms for RRS.

RRS.Repudiate(SK, m, R, σ):

1. Parse R as above, SK= (sk0, sk1, VK), and σ = (ϕ, y00 , y
1
0 , y

0
1 , y

1
1 ,hk0,hk1, π).

2. If VK /∈ R, output ⊥ and halt.
3. Compute b = RRS.Verify(m,R, σ), if b = 0 output ⊥ and halt.
4. Compute h0 = SPB.Hash(hk0,R), h1 = SPB.Hash(hk1,R).
5. Compute y′0 = VRF.Eval(sk1, (h0,m, ϕ)), y′1 = VRF.Eval(sk1, (h1,m, ϕ)).
6. If y′0 = y10 or y′1 = y11 , output ⊥ and halt.
7. Compute τ00 = VRF.Prove(sk1, (h0,m, ϕ)), τ10 = VRF.Prove(sk1, (h1,m, ϕ)).
8. Compute z0 = VRF.Eval(sk1, y′0), z1 = VRF.Eval(sk1, y′1).
9. Compute τ01 = VRF.Prove(sk1, y′0), τ11 = VRF.Prove(sk1, y′1).

10. Set x = (VK,m, ϕ, y10 , y
1
1 , h0, h1, z0, z1), w = (y′0, y

′
1, τ00, τ01, τ10, τ11).

11. Compute π′ ← NIWI.ProveL2(x,w).
12. Output ξ = (z0, z1, π

′).

RRS.VerRepud(VK, m, R, σ, ξ):

1. Parse R as above, σ = (ϕ, y00 , y
1
0 , y

0
1 , y

1
1 ,hk0,hk1, π), and ξ = (z0, z1, π

′).
2. If VK /∈ R, output 1 and halt.
3. Compute b = RRS.Verify(m,R, σ), if b = 0 output 1 and halt.
4. Compute h′0 = SPB.Hash(hk0,R), h′1 = SPB.Hash(hk1,R).
5. Output NIWI.VerifyL2

((VK,m, ϕ, y10 , y
1
1 , h
′
0, h
′
1, z0, z1), π′).
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4.2 Signature and Repudiation Size

We will first show that our scheme has only logarithmic-size signatures and
repudiations.

For a signature σ = (ϕ, y00 , y
1
0 , y

0
1 , y

1
1 ,hk0,hk1, π), the size of ϕ, y00 , y

1
0 , y

0
1 , y

1
1

is poly(λ) and independent of the ring-size n. And since SPB is efficient, we have
hk0,hk1 is bounded by log(n) · poly(λ). Also by the efficiency of SPB the size of
the witness τ is log(n)·poly(λ) and the SPB verification function SPB.Verify can
be computed by a circuit of size log(n)·poly(λ). Therefore, the verification circuit
Cx for the language L1 and statement x = (m,ϕ, y00 , y

1
0 , y

0
1 , y

1
1 ,hk0,hk1, h0, h1)

has size log(n) · poly(λ). By the proof-size property of the NIWI proof it holds
that |π| = |Cx| · poly(λ) = log(n) · poly(λ). Consequently, the size of signatures
σ is log(n) · poly(λ).

For a repudiation ξ = (z0, z1, π
′), the size of z0, z1 is poly(λ) and independent

of the ring-size n. Using the same analysis we can also get that the size of proof
π′ is log(n) · poly(λ). Consequently, the size of repudiations ξ is log(n) · poly(λ).

4.3 Correctness

We now show that our scheme satisfies correctness.

Lemma 1. The repudiable ring signature scheme RRS is correct, given that
NIWI has perfect completeness, VRF has perfect completeness and pseudoran-
domness, and SPB has perfect correctness.

Proof. Assume that (VK, SK) were generated by RRS.Gen(1λ), and for any
signature σ = (ϕ, y00 , y

1
0 , y

0
1 , y

1
1 ,hk0,hk1, π) is the output of RRS.Sign(SK,m,R),

where R = (VK1, . . .VKn) is a ring generated by RRS.Gen(1λ), and R[i] =
VK. We will show that it holds RRS.Verify(m,R, σ) = 1. Because SPB.Hash
is a deterministic algorithm, it holds h′0 = h0 and h′1 = h1. According to the
RRS.Sign algorithm we have defined and the correctness of SPB, we have there
is a η, such that it holds that

SPB.Verify(hk0, h0, i,VK, η) = 1,

Moreover, by the definition of y00 , y
1
0 , and completeness of VRF, there are τ0, τ1

such that it holds

VRF.Verify(pk0, (h0,m, ϕ), y00 , τ
0) = 1,VRF.Verify(pk1, (h0,m, ϕ), y10 , τ

1) = 1.

Therefore, (m,ϕ, y00 , y
1
0 , y

0
1 , y

1
1 ,hk0,hk1, h0, h1) ∈ L1 and w = (VK, i, η, τ0, τ1, 0)

is a witness for the membership. Thus, by the correctness of NIWI it holds that

NIWI.VerifyL1
((m,ϕ, y00 , y

1
0 , y

0
1 , y

1
1 ,hk0,hk1, h0, h1), π) = 1.

and consequently RRS.Verify(m,R, σ) = 1.
Furthermore, assume (VKj ,SKj) were generated by RRS.Gen(1λ), where

R[j] = VKj and VK 6= VKj , and ξ = (z0, z1, π
′) is the output of RRS.Repudiate
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(SKj ,m,R, σ). We will show that it holds RRS.VerRepud(VKj ,m,R, σ, ξ) = 1.
Because SPB.Hash is a deterministic algorithm, it holds h′0 = h0 and h′1 =
h1. Since RRS.Gen is a random algorithm, and VK 6= VKj , it holds that
sk1 6= sk1j . And by the pseudorandomness of VRF, we have that there is

a negligible function negl(λ), a y′0 = VRF.Eval(sk1j , (h0,m, ϕ)), and a y′1 =

VRF.Eval(sk1j , (h1,m, ϕ)), such that

Pr[(y′0 6= y10) ∧ (y′1 6= y11)] ≥ 1− negl(λ).

And by the correctness of the VRF, there are τ00, τ01, τ10 and τ11 such that it
holds that

VRF.Verify(pk1j , (h0,m, ϕ), y′0, τ00) = 1, VRF.Verify(pk1j , y
′
0, z0, τ01) = 1;

VRF.Verify(pk1j , (h1,m, ϕ), y′1, τ10) = 1, VRF.Verify(pk1j , y
′
1, z1, τ11) = 1.

Therefore, (VKj ,m, ϕ, y
1
0 , y

1
1 , h0, h1, z0, z1) ∈ L2 holds with overwhelming prob-

ability, and when it holds, w = (y′0, y
′
1, τ00, τ01, τ10, τ11) is a witness for the mem-

bership. Thus, in this case by the correctness of NIWI it holds that

NIWI.VerifyL2
((VKj ,m, ϕ, y

1
0 , y

1
1 , h0, h1, z0, z1), π′) = 1.

And consequently Pr[RRS.VerRepud(VKj ,m,R, σ, ξ) = 1] ≥ 1− negl(λ).

Remark 7. Definition 5 considers only for honestly generated keys. We can also
consider a stronger requirement that verify be successful for honestly generated
signatures with respect to rings containing adversarial keys. And we can easily
proof that our construction also satisfy this stronger requirement by the same
way.

4.4 Repudiation unforgeability

We will first turn to establishing repudiation unforgeability of RRS. This is the
a new requirement we proposed.

Lemma 2. The repudiable ring signature scheme RRS satisfies repudiation un-
forgeability, given that NIWI has perfect soundness, VRF has completeness, u-
niqueness, and pseudorandomness.

The main idea of the proof is that, if A can produce a valid repudiation, then
by the perfect soundness of NIWI proof, it must has y′0, τ00, τ01, such that it holds
VRF.Verify(pk1, (h0,m, ϕ), y′0, τ00) = 1, and VRF.Verify(pk1, y′0, z0, τ01) = 1.
Since VRF has completeness and uniqueness, we have y′0 = VRF.Eval(pk1, (h0,
m, ϕ)), and z0 = VRF.Eval(pk1, y′0), and by this we can attack the experiment
ExpVRF.

Proof. Suppose, for contradiction, that RRS is not repudiation unforgeability,
then there exist some l = ploy(λ), and some PPT adversary A such that A has
non-negligible advantage in experiment ExpReun. Now, we will use this adversary
A to build an adversary B that break experiment ExpVRF:

Adversary B: given input 1λ, pk, and access to oracle Eval(sk, ·), Prove(sk, ·).
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1. The adversary B runs RRS.Gen(1λ), and generates l pairs of keys.
2. The adversary B choose a random index i∗ ∈ [l], and let VKi∗ = (pk0i∗ , pk),

instead of VKi∗ = (pk0i∗ , pk
1
i∗). Then B gives 1λ and VK1, . . . ,VKl to A.

3. When A queries its corruption oracle OC(·) on i ∈ [l], B answers this query
in the following way:
– If i 6= i∗, then B outputs SKi;
– If i = i∗, then B outputs a random string x to challenger, and then

outputs a random bit b′ ← {0, 1} and aborts.
4. When A queries its signing oracle OS(·) on i ∈ [l], m, and R, B answers this

query in the following way:
– If i 6= i∗, then B runs the honest signing algorithm RRS.Sign and outputs

RRS.Sign(SKi,m,R);
– If i = i∗, then B runs the honest signing algorithm RRS.Sign with the

following modification: in step 9, instead of using sk to generate y10 and
τ1, B generates these by invoking its VRF oracle.

5. When A queries it repudiation oracle OR(·) on i ∈ [l], m, R, and σ, B
answers this query in the following way:
– If i 6= i∗, then B runs the honest repudiating algorithm RRS.Repudiate

and outputs RRS.Repudiate(SKi,m,R, σ);
– If i = i∗, then B runs the honest repudiating algorithm RRS.Repudiate

with the following modification: in step 5, step 7, step 8, and step 9,
instead of using sk to generate y′0, y

′
1, τ00, τ10, z0, z1, and τ01, τ11, B

generates these by invoking its VRF oracle.
6. The adversary A outputs (m,R, j) to B, and B answers in the following way:

– If j 6= i∗, then B runs the honest signing algorithm RRS.Sign and outputs
RRS.Sign(SKj ,m,R) to A;

– If j = i∗, then B outputs a random bits x to challenger, and then outputs
a random bit b′ ← {0, 1} and aborts.

7. The adversaryA continues to queries OC(·) and OS(·), and B answers queries
in the same way described above.

8. Then the adversary A outputs (j′, ξ). If j′ 6= i∗, then B outputs a random
bits x to challenger, and then outputs a random bit b′ ← {0, 1} and aborts.

9. B parse σ = (ϕ, y00 , y
1
0 , y

0
1 , y

1
1 ,hk0,hk1, π) and ξ = (z0, z1, π

′), and do:
– Compute h0 = SPB.Hash(hk0,R);
– B queries its oracle Eval(·) on (h0,m, ϕ) and get x.
– B submits x to the VRF challenger and then receives responses y. If
y = z0, B outputs 0. Otherwise, B outputs a random bit.

It remains to show that the adversary B has non-negligible advantage in
experiment ExpVRF. Let us first consider the probability that A queries oracle
OC(·) for input i∗, or A outputs (m,R, i∗). Recall that this event causes B to
abort and outputs a random bit. The distribution (i.e., verification keys and
oracle responses) of the view of A is unaffected by B’s choice of i∗, until the
point at which A submits an oracle query to oracle OC for input i∗, or A outputs
(m,R, i∗). The condition j′ /∈ QOC in the experiment ExpReun ensures that if
A wins the game with non-negligible probability, then A leaves one or more
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keys uncorrupted with at least non-negligible probability. Since i∗ is chosen at
random by B, it follows that Pr[(i∗ /∈ QOC)∧ (i∗ 6= j) = 1] is non-negligible. Let
E1 denote the event that A does not corrupt i∗ and j 6= i∗. When E1 does not
occur, then by the definition of B, it will outputs a random bit, and in this time,
B will have exactly 1

2 advantage in the experiment ExpVRF.

Condition on E1 occurs, since A does not query corruption oracle on i∗ and
j 6= i∗, the view of A is identical to the view in experiment ExpReun. It follows
that A will win the game with non-negligible probability by assumption.

Now, let us consider the probability that j′ = i∗, condition on E1 occurs
and A win the game. As also observed above, the distribution of the view of A
is unaffected by B’s choice of i∗, until the point at which A submits an oracle
query to oracle OC for input i∗ or j = i∗. Since i∗ is chosen at random by B,
and i∗, j′ ∈ R, then in this situation we have Pr[i∗ = j′] must be non-negligible.
Let E2 denote the event that E1 occurs and A win the game and j′ = i∗. Then
according to the above discussion, we have that E2 occurs with non-negligible
probability.

If E2 occurs, then ξ will be a valid repudiation of i∗ respect to σ, i.e.

RRS.VerRepud(VKi∗ ,m,R, σ, ξ) = 1.

Since by the perfect soundness of NIWI, there exists y′0, and τ00, τ01, s.t.

VRF.Verify(pk, (h0,m, ϕ), y′0, τ00) = 1, VRF.Verify(pk, y′0, z0, τ01) = 1.

And since VRF has completeness and uniqueness, we have

x = y′0 = VRF.Eval(sk, (h0,m, ϕ)) and z0 = VRF.Eval(sk, y′0).

In this case, if the VRF challenger’s bit b = 0, then we have y = z0. Recall
that this is the trigger condition for B to output 0. If the VRF challenger’s bit
b = 1, then y is turly random strings. Thus, by the definition of B, B outputs a
random bit with overwhelm probability.

Furthermore, let us consider when E2 occurs, the probability that B queries o-
racle Eval(sk, ·) or Prove(sk, ·) for input x = VRF.Eval(sk, (h0,m, ϕ)). B queries
its oracle only when A queries oracle respect input i∗. When A queries its sig-
nature oracle, B will chooses a random strings ϕ, so there is only negligible
probability such that B meets x. And since σ is generated by B, and after sig-
nature produced A cannot query its repudiation oracle, there is only negligible
probability such that A queries a repudiation oracle with a signature which in-
clude ϕ. Therefore, there is only a negligible probability such that B queries
oracle Eval(sk, ·) or Prove(sk, ·) for input x.

Finally, we consider when E1 occurs and E2 does not occur, the behaviour of
B. In this situation, since VRF is pseudorandom, thus, by the definition of B, B
outputs a random bit with overwhelm probability.
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Therefore, the advantage of the adversary B for experiment ExpVRF is:

Pr[AdvVRF(B)] =
1

2
· Pr[E1 not occurs] +

1

2
· Pr[E1 occurs, and E2 not occurs]

+
1

2
· Pr[E2 occurs] +

1

4
· Pr[E2 occurs]

=
1

2
+

1

4
· Pr[E2 occurs].

Thus, B wins the experiment ExpVRF with non-negligible probability. This
contradicts the pseudorandomness of the VRF. Therefore, RRS satisfies repudi-
ation unforgeability.

4.5 Anonymity

We will now turn to establishing anonymity of RRS.

Lemma 3. The repudiable ring signature scheme RRS satisfies anonymity a-
gainst adversarially chosen keys, given that NIWI has perfect soundness and
witness indistinguishablity, VRF has commpletenss, uniqueness, and pseudoran-
domness, and SPB has index hiding.

Our strategy is to first move the index of hk1 from j0 to j1 and argue indis-
tinguishability via the index-hiding property of SPB. Next we switch y01 , y

1
1 to an

evaluation of VRF.Eval(pk0j1 , (h1,m, ϕ)) and VRF.Eval(pk1j1 , (h1,m, ϕ)), where
h1 is a digest of R for new hk1. This modification will not be detected due to
the pseudorandom property of VRF. Now, we can switch the NIWI witness to
(VKj1 , ind1, η1, τ

0
1 , τ

1
1 , 1), and by witness indistinguishability of NIWI, this sig-

nature also satisfies indistinguishability. Next, we perform the first two changes
above for hk0 and y00 , y

1
0 , switch the witness back to the witness for j = 0, and

finally replace y01 , y
1
1 with a random string. The signature in the last experiment

is now a real signature of m under VKj1 .

Proof. Let A be a PPT adversary against the anonymity of RRS. Assume that
A makes at most q = poly(λ) queries for any oracle. Let in the following ind0 be
the index of VKj0 in R, and ind1 be the index of VKj1 in R, where (m,R, j0, j1)
is the challenge query of A. Now, consider the following hybrids:

Hybrid 1: This is the real experiment with challenge bit b = 0.
Hybrid 2: Same as Hybrid 1, except that in σ, we compute hk1 by (hk1, shk1)
← SPB.Gen(1λ, |R|, ind1).

Hybrid 1 and Hybrid 2 are computationally indistinguishable, given that SPB
is index hiding. More specifically, there exists a reduction R1 such that

AdvIH(RA1 ) = AdvH1,H2
(A).

We will provide an informal description ofR1. TheR1 simulates H1 faithfully,
until A outputs a challenger query (m,R, j0, j1). Then R1 gives (|R|, j0, j1) to
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the index hiding experiment and receives a hashing key hk∗. R1 continues the
simulation of H1 faithfully, except that in the challenge signature it sets hk1 =
hk∗. In the end, R1 outputs the output of A.

Clearly, if the challenge bit of the index hiding experiment is 0 then R1 simu-
lates Hybrid 1 perfectly. And if the challenge bit of the index hiding experiment
is 1 then R1 simulates Hybrid 2 perfectly. Therefore, Hybrid 1 and Hybrid 2 are
computationally indistinguishable.

Hybrid 3: Same as Hybrid 2, except that we compute y01 by y01 = VRF.Eval
(sk0j1 , (h1,m, ϕ)).

Hybrid 2 and Hybrid 3 are computationally indistinguishable, given that the
VRF is pseudorandom. More specifically, there exists a reduction R2 such that

AdvVRF(RA2 ) = AdvH2,H3
(A) · poly(λ).

The proof is very similar with the proof of lemma 2. We only provide an
informal description of R2. The reduction R2 receives as input a public key pk.
The R2 simulates H2 faithfully, except for the following. Before the simulation
stars, R2 chooses a random index i∗ and sets VKi∗ = (pk, pk1i∗), where pk1i∗ is
generated as in H2 and pk is the input of R2. R2 continues the simulation of H2

6

until A announces (j0, j1,m,R). If it holds j1 6= i∗, R2 outputs ⊥. Otherwise, R2

continues the simulation of H2 faithfully, except that in the challenge signature
it sets y01 = y, where y is the outputs of challenger when B gives it (h1,m, ϕ).
Finally, R2 continues the simulation and outputs whatever A outputs.

Hybrid 4: Same as Hybrid 3, except that we compute y11 by y11 = VRF.Eval
(sk1j1 , (h1,m, ϕ)).

Hybrid 3 and Hybrid 4 are computationally indistinguishable, given that the
VRF is pseudorandom. More specifically, there exists a reduction R3 such that

AdvVRF(RA3 ) = AdvH3,H4
(A) · poly(λ).

The proof is very similar to the above, except that we set VKi∗ = (pk0i∗ , pk),
where pk0i∗ is generated as in H3 and pk is the input ofR3. And since we requireA
can not query OR(·) with (·,m,R, ·), after he has received a challenge signature,
A can not get any advantage from repudiation.

Hybrid 5: Same as Hybrid 4, except that we compute witness by

– η ← SPB.Open(hk1, shk1,R, ind1),

– τ0 ← VRF.Prove(sk0j1 , (h1,m, ϕ)), τ1 ← VRF.Prove(sk1j1 , (h1,m, ϕ)),

and use the witness w = (VKj1 , ind1, η, τ
0, τ1, 1) to compute π.

6 When A queries its oracle, the answer of R2 is same as B’s answer in Lemma 2.
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Hybrid 4 and Hybrid 5 are computationally indistinguishable, give that NIWI
is computationally witness indistinguishable. More specifically, there exists a
reduction R4 against the witness indistinguishability of NIWI such that

AdvWI(RA4 ) = AdvH4,H5(A).

The reduction R4 simulates H4 faithfully, until the challenge signature is
computed. Instead of computing the proof π itself, R4 sends the statement x =
(m,ϕ, y00 , y

1
0 , y

0
1 , y

1
1 ,hk0,hk1, h0, h1) and the witness w0 ← (VKj0 , ind0, η0, τ

0
0 ,

τ10 , 0) and w1 ← (VKj1 , ind1, η1, τ
0
1 , τ

1
1 , 1) to the witness indistinguishability ex-

periment. The experiment returns a proof π∗, and R4 use the proof π∗ in the
challenge signature. R4 continues the simulation of H4 faithfully and outputs
whatever the simulated A outputs.

Clearly, if the challenge bit of the witness indistinguishability experiment
is 0, then R4 simulates H4 perfectly. On the other hand, if the challenge bit
is 1, then R4 simulates H5 perfectly. Therefore, Hybrid 4 and Hybrid 5 are
computationally indistinguishable.

Next, we perform the similar changes as above.

Hybrid 6: Same as Hybrid 5, except that we compute y00 by y00 ← {0, 1}α(λ).
Hybrid 7: Same as Hybrid 6, except that we compute y10 by y10 ← {0, 1}α(λ).
Hybrid 8: Same as Hybrid 7, except that in σ, we compute hk0 by (hk0, shk0)
← SPB.Gen(1λ, |R|, ind1).

Hybrid 9: Same as Hybrid 8, except that we compute y00 by y00 = VRF.Eval
(sk0j1 , (h0,m, ϕ)) instead of y00 ← {0, 1}α(λ).

Hybrid 10: Same as Hybrid 9, except that we compute y10 by y10 = VRF.Eval
(sk1j1 , (h0,m, ϕ)) instead of y10 ← {0, 1}α(λ).

Hybrid 11: Same as Hybrid 10, except that we compute witness by
– η ← SPB.Open(hk0, shk0,R, ind1),
– τ0 ← VRF.Prove(sk0j1 , (h0,m, ϕ)), τ1 ← VRF.Prove(sk1j1 , (h0,m, ϕ)),

and use the witness w = (VKj1 , ind1, η, τ
0, τ1, 0) to compute π.

Hybrid 12: The same as hybrid 11, except that we compute y01 and y11 by
y01 , y

1
1 ← {0, 1}α(λ). This is identical to the real experiment with b = 1.

These hybrids are also indistinguishability, the proof is analogous, and we
omit it. Therefore, RRS satisfies anonymity.

4.6 Unforgeability

We will now turn to showing that our scheme is unforgeable.

Lemma 4. The repudiable ring signature scheme RRS is unforgeable, given that
NIWI has perfect soundness, VRF has completeness, uniqueness, and pseudo-
randomness, and SPB has somewhere perfectly binding.

The main idea of the proof is that, if adversary can produce a valid signature,
then since the NIWI proof has perfect soundness, it must has VK, i ∈ [N ], η,
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τ0, τ1, and j ∈ {0, 1} such that it holds SPB.Verify(hkj , hj , i,VK, η) = 1 and
VRF.Verify(pk0, (hj ,m, ϕ), y0j , τ

0) = 1, and VRF.Verify(pk1, (hj ,m, ϕ), y1j , τ
1) =

1. Since SPB has somewhere perfectly binding, we have VK = R[i]. And by the
completeness and uniqueness of the VRF, we have y0j = VRF.Eval(pk0, (hj ,m,

ϕ)), and y1j = VRF.Eval(pk1, (hj ,m, ϕ)), and by this we can attack the experi-
ment ExpVRF.

Proof. Suppose, for contradiction, that RRS is not unforgeable. Then there exist
some l = poly(λ), and some PPT adversary A such that A has non-negligible
advantage in experiment ExpUnf . Next, we will use adversary A to build an
adversary B that break experiment ExpVRF:

Adversary B: given input 1λ, pk, and access to oracle Eval(sk, ·), Prove(sk, ·).

1. The adversary B runs RRS.Gen(1λ), and generates l pairs of key.
2. The adversary B chooses a random index i∗ ∈ [l], and let VKi∗ = (pk, pk1i∗)

instead of VKi∗ = (pk0i∗ , pk
1
i∗). Then B give 1λ and VK1, . . . ,VKl to A.

3. When A queries its corruption oracle on i ∈ [l], B answers this query in the
following way:
– If i 6= i∗, then B outputs SKi;
– If i = i∗, then B outputs a random string x to challenger, and then

outputs a random bit b′ ← {0, 1} and aborts.
4. When A queries its Signing oracle on i ∈ [l], m, and R, B answers this query

in the following way:
– If i 6= i∗, then B runs the honest signing algorithm RRS.Sign and outputs

RRS.Sign(SKi,m,R);
– If i = i∗, then B runs the honest signing algorihm RRS.Sign with the

following modification : in step 8, instead of using sk to generate y00 and
τ0, B invokes its VRF oracle.

5. When A queries its Repudiation oracle on j ∈ [l], m, R, and σ, B runs the
honest repudiation algorithm RRS.Repudiate on its input.7

6. The adversary A outputs (m,R, σ). The adversary B runs the honest ver-
ifying algorithm RRS.Verify on (m,R, σ). If RRS.Verify(m,R, σ) = 0, then
B outputs a random string x to challenger, and then outputs a random bit
b′ ← {0, 1} and aborts.

7. The adversary B parse σ = (ϕ, y00 , y
1
0 , y

0
1 , y

1
1 ,hk0,hk1, π), and do :

– Compute h0 = SPB.Hash(hk0,R), h1 = SPB.Hash(hk1,R);
– Choose a random bit k ← {0, 1}.

Then B submits (hk,m, ϕ) to the VRF challenger and then receive responses
y′. If y′ = y0k, B outputs 0. Otherwise, B outputs a random bit.

It remains to show that the adversary B has non-negligible advantage, in
experiment ExpVRF. Let us first consider the probability that A queries oracle
OS for input i∗. Recall that this event causes B to abort and outputs a random
bit. The condition R ⊂ {VK1, . . . ,VKl}\QOC in the experiment ExpUnf ensures

7 Since sk is not used by RRS.Repudiate, B does not need to invoke the VRF oracle
here.



Repudiable Ring Signature: Stronger Security and Logarithmic-Size 23

that if A wins the game with non-negligible probability, then A leaves one or
more keys uncorrupted with at least non-negligible probability. Since i∗ is chosen
at random by B, it follows that Pr[i∗ /∈ QOC] is non-negligible. Let E1 denote
the event that A does not corrupt i∗. When E1 does not occur, then by the
definition of B, it will outputs a random bit, and in this time, B will have
exactly 1

2 advantage in the experiment ExpVRF.

Condition on E1 occurs, since A does not query corruption oracle on i∗, the
view of A is identical to the view in experiment ExpUnf . It follows that A will
win the game with non-negligible probability by assumption. Let E2 denote the
event that event E1 occurs and adversary A win the game. When E1 occurs and
E2 does not occur, by the definition of B, it will outputs a random bit, and in
this time, B will have exactly 1

2 advantage in the experiment ExpVRF.

Condition on E2 occurs, by the perfect soundness of NIWI, there exists VK,
i, η, τ0, and τ1, j ∈ {0, 1} such that it holds SPB.Verify(hkj , hj , i,VK, η) = 1,
VRF.Verify(pk0, (hj ,m, ϕ), y0j , τ

0) = 1, VRF.Verify(pk1, (hj ,m, ϕ), y1j , τ
1) = 1.

Since SPB has somewhere perfectly binding, we have VK = R[i]. And by the
completeness and uniqueness of the VRF, we have y0j = VRF.Eval(pk0, (hj ,m,

ϕ)), and y1j = VRF.Eval(pk1, (hj ,m, ϕ)). When i = i∗, and j = k, this moreover

implies y0k = VRF.Eval(pk, (hk,m, ϕ)). In this case, if the VRF challenger’s bit
b = 0, then we have y′ = y0k. Recall that this is the trigger condition for B to
output 0. If the VRF challenger’s bit b = 1, then y′ is turly random strings. Thus,
by the definition of B, B outputs a random bit with overwhelm probability. 8

Let E3 denote the event that event E2 occurs and i = i∗, j = k. Now we
consider the probability that E3 occurs. As also observed above, the distribution
of the view of A is unaffected by B’s choice of i∗, until the point at which A
submits an oracle query to oracle OC for input i∗. Since i∗ is chosen at random by
B, and i∗, i ∈ R, then in this situation we have Pr[i∗ = i] must be non-negligible.
Condition on i = i∗ occurs, since k is chosen at random by B, and j, k ∈ {0, 1},
we have Pr[j = k] = 1

2 . Therefore, according to the above discussion, we have
that E3 occurs with non-negligible probability.

Finally, we consider when E2 occurs and E3 does not occur, the behaviour of
B. In this situation, since VRF is pseudorandom, thus, by the definition of B, B
outputs a random bit with overwhelm probability.

Therefore, the advantage of the adversary B for experiment ExpVRF is:

Pr[AdvVRF(B)] =
1

2
· Pr[E1 not occurs] +

1

2
· Pr[E1 occurs, and E2 not occurs]

+
1

2
· Pr[E2 occurs, and E3 not occurs]

+
1

2
· Pr[E3 occurs] +

1

4
· Pr[E3 occurs]

=
1

2
+

1

4
· Pr[E3 occurs].

8 Besides, in this case, the probability that B queries its oracle on (hk,m, ϕ) is negli-
gible.
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Thus, B wins the experiment ExpVRF with non-negligible probability. This
contradicts the pseudorandomness of the VRF. Therefore, RRS satisfies unforge-
ability.

4.7 Repudiability

We will now turn to showing that our scheme is repudiable.

Lemma 5. The repudiable ring signature scheme RRS is repudiable, given that
NIWI has perfect completeness, perfect soundness, VRF has completeness, u-
niqueness, pseudorandomness, and SPB has somewhere perfectly binding and
index hiding.

The main idea of the proof is that, by the definition of repudiability, we need
to proof non-signer can repudiate and signer cannot repudiate separately. So we
consider these two situations in turn. The proof of non-signer can repudiate is
very similar with the proof of Lemma 4, if there exist a PPT adversary A break
the experiment ExpRep1, we will use the adversary to build an adversary which
can break experiment ExpVRF. The proof of signer cannot repudiate is also by
the same way.

Proof. Suppose, for contradiction, that RRS is not repudiability. Then, it must
be that there exist some l = poly(λ), and some PPT adversary A such thatA has
non-negligible advantage in either experiment ExpRep1 or experiment ExpRep2.
Let us consider the two cases separately.

Case 1: There exist some l = poly(λ), and some PPT adversary A such that A
has non-negligible advantage in experiment ExpRep1. Now, we will use adversary
A to build an adversary B that break the experiment ExpVRF:

Adversary B: given input 1λ, pk, and access to oracle Eval(sk, ·), Prove(sk, ·).

1. The adversary B runs RRS.Gen(1λ), and generates l pairs of keys.
2. The adversary B choose a random index i∗ ∈ [l], and let VKi∗ = (pk0i∗ , pk),

instead of VKi∗ = (pk0i∗ , pk
1
i∗). Then B gives 1λ and VK1, . . . ,VKl to A.

3. When A queries its corruption oracle OC(·) on i ∈ [l], B answers this query
in the following way:

– If i 6= i∗, then B outputs SKi;
– If i = i∗, then B outputs a random bits x to challenger, and then outputs

a random bit b′ ← {0, 1} and aborts.

4. When A queries its signing oracle OS(·) on i ∈ [l], m, and R, B answers this
query in the following way:

– If i 6= i∗, then B runs the honest signing algorithm RRS.Sign and outputs
RRS.Sign(SKi,m,R);

– If i = i∗, then B runs the honest signing algorithm RRS.Sign with the
following modification: in step 9, instead of using sk to generate y10 and
τ1, B generates these by invoking its VRF oracle.
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5. When A queries it repudiation oracle OR(·) on i ∈ [l], m, R, and σ, B
answers this query in the following way:
– If i 6= i∗, then B runs the honest repudiating algorithm RRS.Repudiate

and outputs RRS.Repudiate(SKi,m,R, σ);
– If i = i∗, then B runs the honest repudiating algorithm RRS.Repudiate

with the following modification: in step 5, step 7, step 8, and step 9,
instead of using sk to generate y′0, y

′
1, τ00, τ10, z0, z1, and τ01, τ11, B

generates these by invoking its VRF oracle.
6. The adversary A outputs (m,R, σ).
7. The adversary B parse σ = (ϕ, y00 , y

1
0 , y

0
1 , y

1
1 ,hk0,hk1, π), and do:

– Compute h0 = SPB.Hash(hk0,R), h1 = SPB.Hash(hk1,R);
– Choose a random bit k ← {0, 1}.

8. Finally, B submits (hk,m, ϕ) to the VRF challenger and then receive re-
sponses y. If y = y1k B outputs 0. Otherwise, B outputs a random bit.

It remains to show that the adversary B has non-negligible advantage in
experiment ExpVRF. Let us first consider the probability that A queries oracle
OS(·) for input i∗. Recall that this event causes B to abort and outputs a random
bit. The distribution (i.e., verification keys and oracle responses) of the view of
A is unaffected by B’s choice of i∗, until the point at which A submits an oracle
query to oracle OC for input i∗. The condition R \ QOC 6= ∅ in the experiment
ExpRep1 ensures that if A wins the game with non-negligible probability, then
A leaves one or more keys uncorrupted with at least non-negligible probability.
Since i∗ is chosen at random by B, it follows that Pr[i∗ /∈ QOC] is non-negligible.
Let E1 denote the event that A does not corrupt i∗. When E1 does not occur,
then by the definition of B, it will output a random bit, and in this time, B will
have exactly 1

2 advantage in the experiment ExpVRF.
Condition on E1 occurs, since A does not query corruption oracle on i∗, the

view of A is identical to the view in experiment ExpRep1. It follows that A will
win the game with non-negligible probability by assumption. Let E2 denote the
event that event E1 occurs and adversary A win the game. When E1 occurs and
E2 does not occur, then since VRF is pseudorandom, by the definition of B, B
will output a random bit with overwhelm probability.

Condition on E2 occurs, by the definition of experiment ExpRep1, we have
RRS.VerRepud will reject on an honestly generated repudiation ξj , generated
with respect to VKj , i.e. ∃j ∈ R \ QOC, s.t.

VerRepud(VKj ,m,R, σ, ξj) = 0, where ξj ← Repudiate(SKj ,m,R, σ).

Since ξj is honestly generated with respect to VKj , and by the definition of
RRS.Repudiate and RRS.VerRepud, we have either y′0 = y10 or y′1 = y11 , where
y′0 = VRF.Eval(sk1j , (h0,m, ϕ)) and y′1 = VRF.Eval(sk1j , (h1,m, ϕ)). Since if the
above two formulas are not true, then by the perfect completeness of the NIWI
and the completeness of the VRF, we have VerRepud(VKj ,m,R, σ, ξj) = 1.

Now, let us consider the probability that j = i∗ condition on E2 occurs. As
also observed above, the distribution of the view of A is unaffected by B’s choice
of i∗, until the point at which A submits an oracle query to oracle OC for input
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i∗. Since i∗ is chosen at random by B, and i∗, j ∈ R, then Pr[i∗ = j] must be
non-negligible. Let E3 denote the event that E2 occurs and j = i∗. Then when
E2 occurs and E3 does not occur, since VRF is pseudorandom, by the definition
of B, B will output a random bit with overwhelm probability.

Finally, let us consider the situation when E3 occurs. In this situation, we
have either y′0 = y10 or y′1 = y11 , where y′0 = VRF.Eval(sk, (h0,m, ϕ)) and y′1 =
VRF.Eval(sk, (h1,m, ϕ)). Without lose generation, we can assume only the first
equation is true, then when B chooses k = 0, and VRF challenger’s bit b = 0,
we have y = y1k. Recall that this is the trigger condition for B to output 0.
Otherwise, by the pseudorandomness of VRF, we have B will output a random
bit with overwhelm probability.

We now consider the the probability that B queries oracle Eval(sk, ·) or
Prove(sk, ·) for input (hk,m, ϕ). Since A is not allow queries its oracle on m and
R, and SPB is collision resistant9, there is only negligible probability such that
B queries oracle Eval(sk, ·) or Prove(sk, ·) for input (hk,m, ϕ).

Therefore, the advantage of the adversary B for experiment ExpVRF is:

Pr[AdvVRF(B)] ≥1

2
· Pr[E1 not occurs] +

1

2
· Pr[E1 occurs, and E2 not occurs]

+
1

2
· Pr[E2 occurs, and E3 not occurs]

+
1

4
· Pr[E3 occurs] +

3

8
· Pr[E3 occurs]

=
1

2
+

1

8
· Pr[E3 occurs].

We have shown that B wins the experiment ExpVRF with non-negligible
probability. This contradicts the security of the VRF. Therefore, there is no
adversary can break experiment ExpRep1.

Case 2: There exist some l = poly(λ), and some PPT adversary A′ such that
A′ has non-negligible advantage in experiment ExpRep2. And now we will use
the adversary A′ to build an adversary B′ that break the experiment ExpVRF:

Adversary B′: given input 1λ, pk, and access to oracle Eval(sk, ·), Prove(sk, ·).

1. The adversary B′ runs RRS.Gen(1λ), and generates l pairs of keys.
2. The adversary B′ choose a random index i∗ ∈ [l], and let VKi∗ = (pk, pk1i∗),

instead of VKi∗ = (pk0i∗ , pk
1
i∗). Then B′ gives 1λ and VK1, . . . ,VKl to A′.

3. When A′ queries its corruption oracle OC(·) on i ∈ [l], B′ answers this query
in the following way:

– If i 6= i∗, then B′ outputs SKi;
– If i = i∗, then B′ outputs a random bits x to challenger, and then outputs

a random bit b′ ← {0, 1} and aborts.

4. When A′ queries its Signing oracle on i ∈ [l], m, and R, B′ answers this
query in the following way:

9 Because SPB is index hiding
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– If i 6= i∗, then B′ runs the honest signing algorithm RRS.Sign and out-
puts RRS.Sign(SKi,m,R);

– If i = i∗, then B′ runs the honest signing algorihm RRS.Sign with the
following modification : in step 8, instead of using sk to generate y00 and
τ0, B′ invokes its VRF oracle.

5. When A′ queries its Repudiation oracle on j ∈ [l], m, R, and σ, B′ runs the
honest repudiation algorithm RRS.Repudiate on its input.10

6. The adversaryA′ outputs (m,R, σ, {ξik}VKik∈QOC∩R). The adversary B′ run-
s the honest verifying algorithm RRS.Verify on (m,R, σ). If RRS.Verify(m,
R, σ) = 0, then B′ outputs a random string x to challenger, and then outputs
a random bit b′ ← {0, 1} and aborts.

7. The adversary B′ runs the honest verrepud algorithm RRS.VerRepud, bik =
RRS.VerRepud(VKik ,m,R, σ, ξik) for all VKik ∈ QOC ∩ R. If there exists a
bik = 0, then B′ outputs a random string x to challenger, and then outputs
a random bit b′ ← {0, 1} and aborts.

8. The adversary B′ parse σ = (ϕ, y00 , y
1
0 , y

0
1 , y

1
1 ,hk0,hk1, π), and do :

– Compute h0 = SPB.Hash(hk0,R), h1 = SPB.Hash(hk1,R);
– Choose a random bit k ← {0, 1}.

Then B′ submits (hk,m, ϕ) to the VRF challenger and then receive responses
y′. If y′ = y0k, B′ outputs 0. Otherwise, B′ outputs a random bit.

It remains to show that the adversary B′ has non-negligible advantage, in
experiment ExpVRF. Let us first consider the probability that A′ queries oracle
OS for input i∗. Recall that this event causes B′ to abort and outputs a random
bit. If the adversary A′ queries all keys, then we have R ⊂ QOC , in this situation
we can proof A′ cannot win the game ExpRep2. Since in this case, if A′ wins
the game, then σ will be a valid signature for m, R. By perfect soundness of
NIWI, it must has VK, i ∈ [N ], η, τ0, τ1, and j ∈ {0, 1} such that it holds
SPB.Verify(hkj , hj , i,VK, η) = 1 and VRF.Verify(pk0, (hj ,m, ϕ), y0j , τ

0) = 1,

and VRF.Verify(pk1, (hj ,m, ϕ), y1j , τ
1) = 1. By somewhere perfectly binding of

SPB, we have VK = R[i]. And by the completeness and uniqueness of the VRF,
we have y0j = VRF.Eval(pk0, (hj ,m, ϕ)), and y1j = VRF.Eval(pk1, (hj ,m, ϕ)).
Now, let us consider the repudiation of VK, if ξ is the a valid repudiation, then by
the perfect soundness of NIWI proof, it must has y′0, y′1 τ00, τ01, τ10, τ11, such that
it holds VRF.Verify(pk1, (h0,m, ϕ), y′0, τ00) = 1, and VRF.Verify(pk1, y′0, z0, τ01)
= 1, VRF.Verify(pk1, (h1,m, ϕ), y′1, τ10) = 1, and VRF.Verify(pk1, y′1, z1, τ11) =
1. Since VRF has completeness and uniqueness, we have y′0 = VRF.Eval(pk1, (h0,
m, ϕ)), and z0 = VRF.Eval(pk1, y′0), y′1 = VRF.Eval(pk1, (h1, m, ϕ)), and z1 =
VRF.Eval(pk1, y′1). Therefore, by the uniqueness of VRF, we have (y′0 = y10) ∨
(y′1 = y11) = 1 with overwhelm probability. This is contradictory. Since we assume
that A wins the game with non-negligible probability, then A leaves one or more
keys uncorrupted in R with at least non-negligible probability. Since i∗ is chosen
at random by B, it follows that Pr[i∗ /∈ QOC ] is non-negligible. Let E1 denote
the event that A does not corrupt i∗. When E1 does not occur, then by the

10 Since sk is not used by RRS.Repudiate, B′ does not need to invoke the VRF oracle
here.
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definition of B, it will outputs a random bit, and in this time, B will have
exactly 1

2 advantage in the experiment ExpVRF.

Condition on E1 occurs, since A does not query corruption oracle on i∗, the
view of A is identical to the view in experiment ExpRep2. It follows that A will
win the game with non-negligible probability by assumption. Let E2 denote the
event that event E1 occurs and adversary A win the game. When E1 occurs and
E2 does not occur, by the definition of B, it will outputs a random bit, and in
this time, B will have exactly 1

2 advantage in the experiment ExpVRF.

Condition on E2 occurs, by the perfect soundness of NIWI, somewhere per-
fectly binding of SPB and completeness and uniqueness of VRF, we have there
exist VK, i, and j ∈ {0, 1} such that VK = R[i], y0j = VRF.Eval(pk0, (hj ,m,

ϕ)), and y1j = VRF.Eval(pk1, (hj ,m, ϕ)). And according to the above discussion,
we have VK /∈ QOC . And furthermore, when i = i∗, and j = k, this moreover
implies y0k = VRF.Eval(pk, (hk,m, ϕ)).

In this case, if the VRF challenger’s bit b = 0, then we have y′ = y0k. Recall
that this is the trigger condition for B to output 0. If the VRF challenger’s bit
b = 1, then y′ is turly random strings. Thus, by the definition of B, B outputs a
random bit with overwhelm probability. 11

Let E3 denote the event that event E2 occurs and i = i∗, j = k. Now we
consider the probability that E3 occurs. As also observed above, the distribution
of the view of A is unaffected by B’s choice of i∗, until the point at which A
submits an oracle query to oracle OC for input i∗. Since i∗ is chosen at random by
B, and i∗, i ∈ R, then in this situation we have Pr[i∗ = i] must be non-negligible.
Condition on i = i∗ occurs, since k is chosen at random by B, and j, k ∈ {0, 1},
we have Pr[j = k] = 1

2 . Therefore, according to the above discussion, we have
that E3 occurs with non-negligible probability.

Finally, we consider when E2 occurs and E3 does not occur, the behaviour of
B. In this situation, since VRF is pseudorandom, thus, by the definition of B, B
outputs a random bit with overwhelm probability.

Therefore, the advantage of the adversary B for experiment ExpVRF is:

Pr[AdvVRF(B)] =
1

2
· Pr[E1 not occurs] +

1

2
· Pr[E1 occurs, and E2 not occurs]

+
1

2
· Pr[E2 occurs, and E3 not occurs]

+
1

2
· Pr[E3 occurs] +

1

4
· Pr[E3 occurs]

=
1

2
+

1

4
· Pr[E3 occurs].

Thus, B wins the experiment ExpVRF with non-negligible probability. This
contradicts the security of the VRF. Therefore, there is no adversary can break
experiment ExpRep2. This concludes the proof.

11 Besides, in this case, the probability that B queries its oracle on (hk,m, ϕ) is negli-
gible.
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5 Conclusions

Ring signatures are a well-studied cryptographic primitive with many applica-
tions. Repudiable ring signatures are a more stronger cryptographic primitive
than ring signatures, which can allow non-signer repudiate a signature that was
not produced by him. In this paper we improved the state-of-the-art by intro-
ducing a scheme with signature and repudiation size that is logarithmic in the
number of ring members, while at the same time relying on standard assumptions
and not requiring a trusted setup.
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A Attack on [18]

In [18], they claim their repudiable ring signature scheme satisfies adaptive
anonymity against adversarially chosen keys they proposed. But we find it is
wrong, their construction can only satisfies anonymity (Definition 6) we pro-
posed. Here, we will give an attack on the anonymity of their construction.

Let R-RS be the repudiable ring signature proposed in [18], and let OC(·) be
the corrpution oracle, OS(·) be the signing oracle, and OR(·) be the repudiation
oracle.

Adversary A: given 1λ, VK1, · · · ,VKl, OC(·), OS(·), and OR(·).

1. The adversary A chooses (m,R, j0, j1) at random, and gives it to experiment.
2. The challenger givesA a signature σ,A parse σ = ((π1, · · ·πn), (y1, · · · y4), ϕ),

and then A chooses y′ ← {0, 1}l, and let σ′ = ((π1, · · ·πn), (y1, · · · y3, y′), ϕ).
3. The adversary A gives the input j0,m,R, σ

′ to its repudiation oracle OR(·),
and get repudiation ξ = (ξ1, · · · , ξn).

4. The adversary A runs the honest verification algorithm R-RS.VerRepud and
outputs R-RS(R,VKj0 , σ

′, ξ) to challenger.

We can find that if challenger’s bit b = 0, then by the definition of R-
RS.Repudiate, in this situation ξ cannot pass through the verification. When
b = 1, since R-RS.Repudiate only use y1, y2, that change does not affect the
generation of reputation, and ξ can pass through the verification. Therefore, A
has non-negligible advantage in the experiment.
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