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Abstract. In the pairing-based zero-knowledge succinct non-interactive
arguments of knowledge (zk-SNARK), there often exists a requirement
for the proof system to be combined with encryption. As a typical exam-
ple, a blockchain-based voting system requires the vote to be confidential
(using encryption), while verifying voting validity (using zk-SNARKs).
In these combined applications, a general solution is to extend the zk-
SNARK circuit to include the encryption code. However, complex cryp-
tographic operations in the encryption algorithm increase the circuit size,
which leads to impractically large proving time and the CRS size.
In this paper, we propose Snark-friendly, Additively-homomorphic, and
Verifiable Encryption and decryption with Rerandomization or SAVER,
which is a novel approach to detach the encryption from the SNARK
circuit. The encryption in SAVER holds many useful properties. It is
SNARK-friendly : the encryption is conjoined with an existing pairing-
based SNARK, in a way that the encryptor can prove pre-defined proper-
ties while encrypting the message apart from the SNARK. It is additively-
homomorphic: the ciphertext holds a homomorphic property from the
ElGamal-based encryption. It is a verifiable encryption: one can ver-
ify arbitrary properties of encrypted messages by connecting with the
SNARK system. It provides a verifiable decryption: anyone without the
secret can still verify that the decrypted message is indeed from the given
ciphertext. It provides rerandomization: the proof and the ciphertext can
be rerandomized as independent objects so that even the encryptor (or
prover) herself cannot identify the origin.
For the representative application, we define and construct a voting sys-
tem scenario and explain the necessity of each property in the SAVER.
We prove the IND-CPA-security of the encryption, along with the sound-
ness of encryption and decryption proofs. The experimental results show
that the voting system designed from our SAVER yields 0.7s proving/encryption
(voting) time, and 16MB-sized CRS for the SNARK.

Keywords: pairing-based zk-SNARK, verifiable encryption, verifiable decryp-
tion, public-key encryption, additively-homomorphic, rerandomization
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1 Introduction

Verifiable encryption (VE) [Ate04, CS03, CD00, LN17, YAS+12] is a crypto-
graphic system where the encrypted data provides a proof that can guarantee
publicly-defined properties. It can be a useful primitive in trust-based protocols,
such as group signatures or key escrow services. The verifiable property varies
depending on the nature of the application. For instance, in the group signature,
the verifiable encryption is used for the signer to encrypt and prove its iden-
tity commitment, which is evidence for detecting the malicious signer in case
of treachery. In the key escrow systems where users deposit their keys to the
trusted party, the verifiable encryption can let users prove their legitimacy of
encrypted keys to the others.

The zero-knowledge proof (ZKP) system is a primitive where one can prove
a knowledge for some pre-defined relation R, without revealing any other infor-
mation. As in previous definitions [CS03, LN17], the verifiable encryption can be
also viewed as an encryption scheme combined with the ZKP system, by consid-
ering the encrypted message as an instance which satisfies the pre-defined rela-
tion R. In this case, the ZKP relation should be combined with the encryption,
settled in advance along with the protocol. For example, in [CS03], the relation
is pre-defined as discrete logarithm problem; the ciphertext is an encryption of
(m1, . . . ,mk) such that δ = γm1

1 · · · γmkk for common inputs (δ, γ1, · · · , γk).

Universal VE from zk-SNARKs. If we consider the ZKP with arbitrary
relations, it is possible to construct verifiable encryption with universal rela-
tions, which can be applied to any general applications. The ZKP for verifiable
encryption requires the following conditions:

1. The ZKP should be non-interactive, to be compatible with the ciphertext in
non-interactive public-key encryption.

2. The ZKP should guarantee knowledge-soundness of the message; it requires
at least zero-knowledge arguments of knowledge (zk-AoK).

3. The ZKP should guarantee that the instances for proving the relation are the
same as messages in the encryption, i.e., m = m′ for Prove(m) and Enc(m′).

Considering the fact that the proof size determines the ciphertext payload,
the most suitable primitive would be zero-knowledge succinct non-interactive ar-
guments of knowledge (zk-SNARK). Specifically, pairing-based zk-SNARKs [PHGR13,
Gro16, GM17, BG18, KLO19, Lip19] yields constant-sized proof, regardless of
the relation complexities. The pairing-based zk-SNARK can take any pre-defined
arithmetic circuit (e.g. quadratic arithmetic program) as an input so that the
prover can convince the verifier that the prover indeed evaluates the function
correctly. As for the verifiable encryption, if any desired property is included in
the zk-SNARK circuit, the proof ensures that the encrypted data satisfies the
property in the circuit.

Unfortunately, the naive combination of the zk-SNARK and encryption is
beyond practicality, because of the third condition. To satisfy the consistency
of m in the third condition, the entire encryption process must be included in
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the zk-SNARK circuit to ensure that m is an input for both encryption and the
relation, which incurs large overhead. This problem has recently been studied
in [KZM+15b, KZM+15a], which focused on boosting the performance when
including the standard cryptographic protocols in the zk-SNARK circuit. They
designed the SNARK-friendly encryption with minimal multiplications since the
circuit size in pairing-based zk-SNARKs relies on the number of multiplications.
By optimizing the encryption circuit, their experiment result could boost the zk-
SNARK with RSA public-key encryption up to the nearly-practical level: 8.9s
proving time and 48MB CRS size.

Necessity for an advanced VE. However, in real-world applications, we often
need more than simple RSA encryption. The encryption schemes have evolved ac-
cording to more complex functionality requirements. Even the well-known exam-
ples such as key escrow, secret sharing in previous verifiable encryption schemes
may require the encryption to be extended to more sophisticated primitives like
identity-based encryption (IBE) [BBG05, KLLO18], attribute-based encryption
(ABE) [AHL+12], etc., to cover various applications. This might involve some
heavy cryptographic operations like pairings or access tree comparisons. In case
of adding rerandomization to make encryption unlinkable [PR07], the relation
circuit needs to include verification procedure of the proof using the cipher-
text as a witness. This requires the zk-SNARK verification to be included in
the rerandomization circuit, which becomes impractically heavy due to multiple
pairings.

If we build universal verifiable encryption with the general approach of encryption-
in-the-circuit [KZM+15a, KZM+15b], the efficiency might become unrealistic
when the encryption is a bit out of simplicity. For instance, to cover the example
of the voting application described in 1.1, the circuit needs to include additively-
homomorphic encryption such as Paillier encryption [Pai99], zk-SNARK verifi-
cation, rerandomization, decryption procedure, etc. All these properties require
huge amount of work on the prover’s side. In particular, even considering the
special elliptic curve group optimized for the zk-SNARK verification [BSCTV17],
this still leads to the tremendous increment in proving time and common refer-
ence string (CRS) size.

Separating encryption from the circuit. An intriguing idea to deviate from
this efficiency problem is to separate the encryption from the zk-SNARK cir-
cuit. The main purpose of including the encryption in the circuit is to ensure
that the same m is used for both Prove(m) and Enc(m′) within the relation. If
we can prove this consistency with some pre-published commitments, there is
no need to include the entire encryption in the circuit anymore. This idea is
well-addressed in Hash&Prove [FFG+16] and Commit&Prove [CFQ19]. In brief,
Hash&Prove [FFG+16] tries to detach the hashing of data from the circuit, and
prove that the same data is used in both hash and the zk-SNARK circuit. Com-
mit&Prove in LegoSNARK [CFQ19] extends this concept to the general level,
which tries to provide a connectivity among separate zk-SNARK circuits. LegoS-
NARK provides various proof gadgets such as sum-checks and self-permutations
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so that they can be interconnected with other proof gadgets. However, even
LegoSNARK lacks a proof gadget for the encryption; it is a remaining prob-
lem to design an efficient Commit&Prove protocol for the connectivity between
encryption and zk-SNARKs.

Universal SAVER. We devise a new technique named SAVER: Snark-friendly,
Additively-homomorphic, and Verifiable Encryption and decryption with Reran-
domization, to detach encryption from the zk-SNARK circuit while maintaining
the connectivity between them. Intuitively, it can be also viewed as designing an
encryption gadget for LegoSNARK’s Commit&Prove, where the encryption en-
tails more advanced functionalities. Instead of including the entire complicated
encryption in the zk-SNARK circuit, the SAVER provides verifiable encryption
conjoined with the existing zk-SNARKs (e.g. [Gro16, GM17, BG18, KLO19]) for
a universal relation.

The proposed SAVER is universal verifiable encryption which satisfies zk-
SNARK connectivity (SNARK-friendly), additive homomorphism, rerandomiz-
ability, and verifiable decryption. We describe each property as follows:

– SNARK-friendly encryption: SAVER can be conjoined with zk-SNARK
supporting universal relations, which can be realized as universal verifiable
encryption. In the encryption, the encryptor can prove any arbitrary pre-
defined relation, while encrypting the message separately from the circuit.
Later, the proof and ciphertext are jointly verified to guarantee the relation
of the message in the ciphertext.

– Additively-homomorphic encryption: an additively - homomorphic en-
cryption is a well-known primitive that allows computations on ciphertexts.
SAVER is an additively-homomorphic encryption based on ElGamal encryp-
tion variants [CGS97], i.e., Gm1+m2 = Gm1 · Gm2 ; the ciphertext can be
merged by simple elliptic curve cryptography (ECC) multiplications.

– Verifiable decryption: a verifiable decryption [CS03] is a primitive which
can convince the verifier that the decrypted message is indeed from the corre-
sponding ciphertext. Likewise, the decryption in SAVER entails a decryption
proof, which is verified with message and ciphertext to guarantee the valid-
ity. This allows the decryptor to prove the correctness of decrypted messages
without revealing her secret key.

– Rerandomizable encryption: a rerandomizable encryption [PR07] is a
public-key encryption scheme where the ciphertext can be rerandomized,
which can be viewed as a newly-encrypted ciphertext. Likewise, ciphertext
in the SAVER can be rerandomized as a new unlinkable ciphertext. Since the
SAVER outputs an encryption proof as verifiable encryption, the encryption
proof is also rerandomized along with the ciphertext.

To justify the practicality, we implemented the proposed SAVER by applying
the voting relation in section 1.1. The experiment result yields 0.7s for the voting
time, which includes both encryption and zk-SNARK proof. The encryption time
takes less than 10ms, which indicates that the additional encryption overhead
to the zk-SNARK is almost negligible. The CRS size for the voting relation is
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only 16MB, and the public key and verification key for the verifiable encryption
is from 1MB to 8MB, linearly depending on the message size.

Our contributions. We summarize the contributions of the paper, from various
perspectives listed as follows:

– Universal verifiable encryption: the proposed Snark-friendly, Additively-
homomorphic, and Verifiable Encryption and decryption with Rerandomiza-
tion (SAVER) is universal verifiable encryption. The SAVER can be con-
nected with zk-SNARKs such as [Gro16] with any universal relation. The
ciphertext and the proof guarantee that the message satisfies the pre-defined
relation from zk-SNARK.

– zk-SNARK connectivity: instead of including the encryption process in
the circuit for the universal verifiable encryption, the SAVER detaches en-
cryption from the zk-SNARK circuit with providing connectivity. The verifi-
cation in SAVER guarantees a linkage between encryption and the relation,
as well as knowledge soundness of the proof.

– Functionalities: the proposed SAVER supports and satisfies many func-
tionalities. It is SNARK-friendly : the encryption is compatible with zk-
SNARK composition. It is Additively-homomorphic: the ciphertext can be
merged additively from the homomorphic property. It is verifiable encryp-
tion: one can encrypt a message while proving any universal relation for the
message. It is verifiable decryption: the decryptor can convince the verifier
that the decrypted message is indeed from the ciphertext, without revealing
her secret key. It provides rerandomization: the ciphertext can be rerandom-
ized to be unlinkable to the original one.

– Vote-SAVER: to justify the functionalities in SAVER, we define an ideal
voting system and propose an efficient Vote-SAVER scheme (in section 1.1).
While existing voting systems lack some necessary properties, the Vote-
SAVER can efficiently satisfy them all without any compromise.

– Implementation: we implement our SAVER with the voting application
on the real computer system to show the practicality of the construction.
The experiment result yields 0.7s for zk-SNARK proving time and 10ms for
encryption, with the CRS size of 16MB for the voting relation.

– Security: the proposed SAVER requires many security notions: indistin-
guishability (IND-CPA), encryption knowledge soundness, rerandomizabil-
ity, perfect decryption soundness, and perfect zero-knowledge. We formally
define each property and provide security proof in a standard model.

The rest of the paper proceeds as follows. Section 1.1 provides a specific ap-
plication to justify the functionalities in the SAVER. Section 2 organizes related
works. In section 3, we describe some necessary preliminaries and definitions for
building blocks. Section 4 represents a formal definition of the proposed SAVER.
Section 5 presents the construction of SAVER along with main ideas. In section 7,
we present a formal description on the voting application of section 1.1. Section 8
shows experiment results on voting application with implementing our SAVER.
In section 9, we draw a conclusion.



6 Jiwon Lee, Jaekyoung Choi, Jihye Kim, and Hyunok Oh

1.1 Application: Vote-SAVER

Our proposed SAVER is universal verifiable encryption with many useful func-
tionalities - zk-SNARK connectivity, additive-homomorphism, rerandomizabil-
ity, and verifiable decryption. To strengthen the justifications on such complex
functionalities, we specify one of the interesting applications, voting, which is
mentioned as a representative example of verifiable encryption in the cryptog-
raphy encyclopedia [Sak11]. In our observation, existing proposals on voting
systems rely on some trusted authority at the end, which cannot fundamentally
prevent the malicious authority from tampering with the result or at least dis-
daining the privacy. It turns out that advanced verifiable encryption with the
zk-SNARK can resolve this long-lasting problem. We first redefine the essential
properties in the voting system, to tackle the holes in various existing systems
and elaborate on why they are fundamentally difficult to eliminate. Then we
show that the verifiable encryption with the zk-SNARK can provide an efficient
solution to satisfy the redefined properties of the fundamentally reliable voting
system, where privacy and verifiability can co-exist under any circumstances.

Essential properties. Constructing an ideal voting system, whether offline or
online, has been a famous research topic for a long history. It is agreed in common
that a reliable voting system must satisfy the following properties, which are
well-defined in the surveys [JMP13, AM16]:

– Vote-integrity: the entire system should be non-malleable; even the ad-
ministration must not be able to manipulate the result.

– Receipt-freeness: for privacy, it is defined in [AM16] that the voting system
should not give the voter any evidence to prove to a third party how she
voted. As stated in [AM16], this property implies ballot-secrecy.

– Eligibility verifiability: an observer should be able to verify that the vote
was cast by an eligible voter.

– Individual verifiability: a voter should be able to verify that his vote is
included in the result.

– Universal verifiability: an observer should be able to verify that the result
is tallied correctly from the entire votes.

While existing proposals [HS00, Oka97, IKSA03, MN06, Adi08, RBH+09,
CRST15, Smy18] capture most of the given properties, they do not fundamen-
tally satisfy all properties at once. For instance, [MN06] relies on the split au-
thorities for privacy, which is breakable when both authorities are corrupted.
Helios [Adi08] fails to maintain privacy for dishonest ballots, due to the lack of
individual verifiability. In fact, it is recently proved in [CL18] that the privacy
implies individual verifiability, but most of the existing works compromise on
the individual verifiability, which leads to some security holes in privacy. It is
stated in many works [RS17, Smy18, AM16] that the fundamental achievement
of individual verifiability is a difficult open problem, and the most difficult con-
flict emerges between receipt-freeness and individual verifiability3. Even with

3 In an abstract point of view, the conflict between privacy and eligibility is rather
easy to solve with some cryptographic primitives; many schemes already adopt
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cryptographic primitives such as ZKPs or blind signatures, it is difficult to pre-
vent the voter (prover) from reproducing the proof. Or if a vote is distorted by
another entity to prevent reproduction, then it is no longer possible for the voter
to identify his vote.

We solve this problem by adopting rerandomizability in verifiable encryption.
A rerandomizable encryption is a public-key encryption scheme where the reran-
domized ciphertext is independent of the original. By letting the network reran-
domize the vote, we can prevent the voter from reproducing the vote because
he does not know the new random used in the rerandomization. Nevertheless,
he can still check the proof to verify that his rerandomized vote is preserved
and will be tallied as intended. The remaining properties can also be satisfied,
by applying some existing primitives and proposals. Intuitively, we give ideas on
how to seize each property:

– Blockchain (or public bulletin board) for vote-integrity: a blockchain
system is well-known for its tamper-proof property; relying on the proof of
work (PoW), it is hard to modify the contents in a block once it is fixed.
Many systems already adopt the blockchain-based design [LW17], or at least
a public bulletin board [Adi08], to ensure the vote-integrity of vote results.

– Rerandomizable encryption for receipt-freeness: a rerandomizable en-
cryption is a public-key encryption scheme where the ciphertext can be
rerandomized, which can be viewed as a newly-encrypted ciphertext. If we
allow the blockchain nodes to rerandomize the vote, the voter can no longer
reproduce his vote because he does not know the random trapdoor used in
the rerandomization.

– zk-SNARK for eligibility verifiability: the zk-SNARK can be utilized to
prove the membership test, which is a building block in anonymous blockchain
systems such as Zerocash [BCG+14]. The purpose of the membership test is
to prove that the prover belongs to the pre-defined group of users, without
revealing the actual identity. A well-known algorithm for the membership
test is a Merkle hash tree; for the Merkle root of public keys computed in
advance, the prover shows that his secret key (corresponding to the pub-
lic key) generates the same Merkle root value along with its co-paths. By
adopting the membership test as a relation, the voter can prove his mem-
bership within the public key list without revealing the secret value, while
an observer can still verify the eligibility of the voter.

– Verifiable encryption for individual verifiability: the verifiable encryption
can resolve the conflict between receipt-freeness and individual verifiabil-
ity. The main conflict was from the fact that distorting the vote makes the
voter difficult to identify his vote. However, if verifiable encryption is com-
bined with the rerandomization, the rerandomized proof ensures that the
ciphertext of which message satisfies the relation is correctly rerandomized.
This can convince the voter that no manipulations have been done except
rerandomization, and his vote will be tallied as he cast.

ZKPs [RBH+09, LW17] or blind signatures [Oka97, IKSA03] to construct a privacy-
preserving and verifiable voting system.
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– Additively-homomorphic encryption & verifiable decryption for uni-
versal verifiability: verifiable decryption can convince the verifier that the
decrypted message is indeed from the corresponding ciphertext. The idea is
already discussed in [HS00]; if the result can be merged with the additively-
homomorphic encryption and the message can be verified with the verifiable
decryption, an observer can verify that the decrypted result from the admin-
istrator is indeed from the merged ciphertext.

Overall, to satisfy all the given properties, it is required to design a public-key
encryption system which satisfies the notion of rerandomizable encryption, veri-
fiable encryption, additively-homomorphic encryption, and verifiable decryption,
along with the zk-SNARK system. Therefore, we emphasize that advanced veri-
fiable encryption with rerandomizability, additive-homomorphism, and verifiable
decryption is necessary to construct an ideal voting system.

Fig. 1: The Vote-SAVER framework from the advanced verifiable encryption with reran-
domizability, additive-homomorphism, and verifiable decryption

Scenario. Figure 1 represents how to efficiently proceed a voting scenario by
utilizing the advanced verifiable encryption. The system works with a publicly
available blockchain, where the consensus block defines the relation R of mem-
bership test and message validity, with the corresponding common reference
string CRSR generated from zk-SNARK setup. There are two entities, voters
and an administrator, who interact mainly through the blockchain subscription.
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We refer to the election committee as an administrator, rather than authority,
because the administrator is only responsible for tallying the anonymous results;
even when corrupted, she holds no power to trace or manipulate the votes at
any cost. Before proceeding the system, we refine the definition of eligibility in
eligibility verifiability more specifically:

– Eligibility: the right to vote must be originated from the voter, not from
the authority.

We emphasize that this property is important when applying the voting system
to the real world since corrupted authorities often try to tamper the result with
impersonation. For instance, some systems [MN06] let the authority pre-define
the ballot and distribute them to the users; this cannot prevent the authority
from creating dummies to inject malicious votes. Therefore, we insist it is also
essential to assure that the voter’s right should be preserved by himself, not
from the authority’s setup. Our voting system can satisfy this by letting each
user publish his own pk to the public, where pk is generated from user’s secret
value. For example, a simple way is to let pk = H(sk) for collision-resistant hash
H. Without knowing sk, no one can make a valid ballot.

Initiating election. First, to open an election, the administrator makes the
pklist of the voters, which prescribes the selection of eligible voters who partici-
pate in the election. Then she generates a secret key SK, a public key PK, and a
verification key V K for the occasion, to publish PK, V K on the blockchain along
with the pklist and its Merkle root rt. This set of PK, V K and pklist, rt defines
each election; a new election can be initiated with a different set of PK ′, V K ′

and pklist′, rt′.

Casting votes. After the election is initiated, voters who are selected in the
list can cast a vote. Each voter must encrypt the vote and prove the relation
(i.e. membership test and message validity) at the same time, via universal ver-
ifiable encryption from zk-SNARK. Similar to the membership test in Zero-
cash [BCG+14], the zk-SNARK circuit outputs a Merkle root rt to prove the
belonging within the pklist, and a serial number sn to prevent the duplication.
Note that the sn does not reveal the identity; it is only used for checking the
duplication. As a ballot, a set of serial number sn, proof π and ciphertext CT is
sent to the blockchain network as a transaction. The blockchain node checks if
sn already exists in the blockchain (then abort). If sn is unique, it first verifies
the proof, rerandomizes the vote from π, CT to π′, CT ′, and publishes (by min-
ing the block) the renewed vote sn, π′, CT ′ on the blockchain. The voter verifies
π′, CT ′ for his sn within the verifiable encryption, to be convinced that his vote
is included. This satisfies the individual verifiability, but the voter can only check
the existence of his vote; π′, CT ′ is unlinkable from π, CT , which also achieves
the receipt-freeness.

Tallying results. After all the votes from participants are posted on the blockchain,
the administrator closes the vote by declaring the tally result. Since the encryp-
tion scheme is additively-homomorphic, anyone can get the merged ciphertext
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CT sum. The administrator is responsible for decrypting the CT sum with her own
SK, and publishing the corresponding vote result Msum along with the decryp-
tion proof ν. By verifying Msum, ν with the verifiable decryption, anyone can be
convinced that the result is tallied correctly (universal verifiability).

We define the relation for the voting scenario in section 8, and also provide
implementation results of the entire voting system on the real machine.

2 Related Work

We briefly organize related works on two individual topics: zero-knowledge suc-
cinct non-interactive argument of knowledge - an essential building block for the
SAVER, and reliable voting systems - a suitable application for the SAVER.

zk-SNARKs. A zero-knowledge succinct non-interactive argument of knowl-
edge (zk-SNARK) is introduced in [BCCT12], as a proof system where a prover
can generate a proof that they know a witness to an instance in a manner
which is succinct : proofs are short and verifier computation is small, and zero-
knowledge: proofs do not reveal the witness. Since Gennaro et al. [GGPR13]
introduced a notion of quadratic arithmetic program (QAP), a pairing-based
zk-SNARKs [Gro16, GM17, BG18, Lip19, KLO19] have received significant at-
tention for their constant sized proof and verification. Groth’s protocol [Gro16]
set an efficient standard, by yielding three group elements as a proof. Then
Groth and Maller [GM17] introduced a notion of simulation-extractability, to
prevent malleability in the proof of [Gro16]. However, to achieve simulation-
extractability, [GM17] requires a square arithmetic program (SAP) instead of
QAP, which doubles the circuit size - which sacrifices proving time and CRS
size. To address this issue, Bowe and Gabizon [BG18] applied random oracle
to [Gro16], which can transform the [Gro16] to be simulation-extractable. How-
ever, this compromises the proof size to five elements. Lipmaa [Lip19] proposed
a QAP-based simulation-extractable zk-SNARK with four elements, from the
help of more general assumption. Recently, Kim et al. [KLO19] devised the most
efficient simulation-extractable zk-SNARK, which achieves both QAP and three
elements as a proof, compatible to non simulation-extractable [Gro16].

Voting Systems. Designing an ideal voting system which satisfies both ver-
ifiability and privacy was a long-lasting challenge. Since Benaloh and Tuin-
stra [BT94] introduced a concept of receipt-freeness, it has been agreed as an es-
sential property which implies the voter’s privacy. In the past, it was under some
strong physical assumption, such as existence of a voting booth [Oka97]. Since
then, numerous works [CGS97, HS00, Oka97, IKSA03, MN06, Adi08, RBH+09,
CRST15, Smy18] focused on designing a receipt-free voting systems, by ap-
plying variant of cryptographic primitives. Cramer et al. [CGS97] and Hirt et
al. [HS00] adopted an ElGamal-based additively-homomorphic encryption for
the anonymous tallying. Okamoto [Oka97] and Ibrahim et al. [IKSA03] applied
blind signatures, for the eligibility checks of voters. Moran and Naor [MN06] uti-
lizes a permutation on the physical ballot paper for privacy. Later, Helios [Adi08]
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and vVote [CRST15] received attentions for the practical implementation. Re-
cently, Liu and Wang [LW17] proposed an efficient e-voting protocol based on
the blockchain system, which is now being implemented on the Ethereum.

3 Preliminaries

3.1 Notations

In this section, we define some essential notations. For the simple legibility,

we define yi(x) = βui(x)+αvi(x)+wi(x)
γ as in [BG18], where βui(x)+αvi(x)+wi(x)

γ is

from pairing-based SNARK relations such as [Gro16]. Then, for the simplicity,

we define G
βui(x)+αvi(x)+wi(x)

γ in [Gro16] as Gi = Gyi(x).
We use {xi} for the list of elements, which is equivalent to a vector. We

also define JXK = span{X} as a linear combination of x ∈ X, i.e., JXK =
{
∑
xi∈X ηixi}. For any set JXK, we define JAK× JBK = {a · b | a ∈ JAK, b ∈ JBK}

and JAK−1 = {a−1 | a ∈ JAK}. For any given vectors, ◦ represents a Hadamard

product (i.e. let −→a = (a1, a2) and
−→
b = (b1, b2), then −→a ◦

−→
b = (a1 · b1, a2 · b2)).

3.2 Relations

Given a security parameter 1λ, a relation generator RG returns a polynomial
time decidable relation R ← RG(1λ). For (Φ,w) ∈ R we say w is a witness to
the statement (I/O) Φ being in the relation. The statement Φ in the SAVER
consists of Φ = M ∪ Φ̂ for message statements M = {m1, . . . ,mn} arbitrary
statements Φ̂ = {φn+1, · · · , φl}, where l is the number of statements.

3.3 Bilinear Groups

Definition 1. A bilinear group generator BG takes a security parameter as input
in unary and returns a bilinear group (p,G1,G2,GT , e, aux) consisting of cyclic
groups G1, G2, GT of prime order p and a bilinear map e : G1 × G2 → GT
possibly together with some auxiliary information (aux) such that:

– there are efficient algorithms for computing group operations, evaluating the
bilinear map, deciding membership of the groups, and for sampling the gen-
erators of the groups;

– the map is bilinear, i.e., for all G ∈ G1 and H ∈ G2 and for all a, b ∈ Z we
have

e(Ga, Hb) = e(G,H)ab;

– and the map is non-degenerate (i.e., if e(G,H) = 1 then G = 1 or H = 1).

Usually bilinear groups are constructed from elliptic curves equipped with
a pairing, which can be tweaked to yield a non-degenerate bilinear map. There
are many ways to set up bilinear groups, both as symmetric bilinear groups,
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where G1 = G2, and as asymmetric bilinear groups, where G1 6= G2. We will
be working in the asymmetric setting, in what Galbraith, Paterson, and Smart
[GPS08] call the Type III setting where there is no efficiently computable non-
trivial homomorphism in either direction between G1 and G2. Type III bilinear
groups are the most efficient type of bilinear groups and hence the most relevant
for practical applications.

3.4 Complexity Assumptions

We use Power Knowledge of Exponent (d-PKE) with Batch Knowledge Check
assumption [Gab19]. In [Gab19] (lemma 2.3), it is proven that the d-PKE can
be used to batch knowledge checks, stated as below:

Lemma 1. batch-PKE [Gab19]: Assuming the d-PKE the following holds. Fix
k = poly(λ), a constant t and an efficiently computable degree d rational map
S : Ft+1 → FM . Fix any i ∈ [k]. For any efficient A there exists an efficient χA
such that the following holds. Consider the following experiment. α1, . . . , αk, τ ∈
F and xxx ∈ Ft are chosen uniformly. A is given as input [S(τ,xxx)] and {[αj ·
τ l]}j∈[k],l∈[0..d] and outputs a sequence of elements ([a1], . . . , [ak], [b]) in G. χA,
given the same input as A together with the randomness of A and {αj}j∈[k]\{i},
outputs A(X) ∈ F[X] of degree at most d such that the probability that both

1. A ”succeeded”, i.e., b =
∑k
j=1 αj · aj. But,

2. χA ”failed”, i.e., ai 6= [A(τ)].

is Advbatch-PKE
R,A,χA (λ) = negl(λ).

We also introduce a decisional version of the polynomial (Poly) assumption,
which is originated from the computational Poly assumption adopted in [GM17].
In the univariate case, the Poly assumption states that for any G ∈ G1, given
Gg1(xxx), . . . , GgI(xxx), an adversary cannot compute Ggc(xxx) for a polynomial gc that
is linearly independent from g1, . . . , gI - even if it knows Hgc(xxx) for H ∈ G2.

We extend the computational Poly assumption to the decisional Poly as-
sumption (D-Poly). In the D-Poly game, the adversary acts similarly as in com-
putational Poly game, except that it queries a challenge polynomial and guesses
the nature of the output (i.e. whether the output is generated from the poly-
nomial or from an independent random). In this case, the restriction for the
challenge gc 6∈ JQ1K is not sufficient where Q1 = {g1, . . . , gI}. For example, the
adversary should not have Hgc(xxx); otherwise it can check whether the received
challenge T is Ggc(xxx) or a random group element by applying pairings (i.e. check
the nature of T by e(T,Hgc(xxx)))4. Thus, the restriction should be extended to
H ∈ G2, to prevent the adversary from obtaining the span of gc(xxx) in G2. The
formal description of the D − Poly is as follows.

4 This problem is similar to the decisional BDH assumption: it cannot follow the
standard DDH as (ga, gb, T0 ← gz, T1 ← gab, b ← {0, 1} | b′ ← A(ga, gb, T )),

because the adversary can test if e(ga, gb)
?
= e(g, T ).
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Assumption 1. Let A be a PPT adversary, and define the advantage AdvD−PolyBG,d(λ),q(λ),A(λ) =

Pr[GD−PolyBG,d(λ),q(λ),A]− 1
2 where GD−PolyBG,d(λ),q(λ),A is defined as below and Q1, Q2 is the

set of polynomials gi(X1, . . . , Xq), hi(X1, . . . , Xq) queried to O1
G,xxx,O2

H,xxx.

MAIN GD−PolyBG,d(λ),q(λ),A(λ)

(p,G1,G2,GT , e, aux)← BG(1λ);

G← G1;H ← G2;xxx← (Z∗p)q

gc(X1, . . . , Xq)← AO
1
G,xxx,O

2
H,xxx(p,G1,G2,GT , e, aux)

where gc(xxx) 6∈ JQ1K× JQ2K× JQ2K−1

set T1 ← Ggc(xxx), T0
$← G1

b← {0, 1}, T = Tb

b′ ← AO
1
G,xxx,O

2
H,xxx(T )

return 1 if b = b′

else return 0

O1
G,xxx(gi)

assert gi ∈ Z∗p[X1, . . . , Xq]

assert deg(gi) ≤ d
return Ggi(xxx)

O2
H,xxx(hj)

assert hj ∈ Z∗p[X1, . . . , Xq]

assert deg(hj) ≤ d
return Hhj(xxx)

The (d(λ), q(λ))−D − Poly assumption holds relative to BG if for all PPT

adversaries A, we have AdvD−PolyBG,d(λ),q(λ),A(λ) is negligible in λ.

3.5 Zero-Knowledge Succinct Non-interactive Arguments of
Knowledge

For the paring-based zk-SNARK, we adopt the definitions from [Gro16, GM17].

Definition 2. A zero-knowledge succinct non-interactive arguments of knowl-
edge (zk-SNARK) for R is a set of four algorithms Πsnark = (Setup,Prove,Vfy,SimProve)
working as follows:

– (CRS, τ)← Setup(R): takes a relation R ← RG(1λ) as input and returns a
common reference string CRS and a simulation trapdoor τ .

– π ← Prove(CRS,Φ,w): takes a common reference string CRS, a relation R,
a statement and witness in the relation (Φ,w) ∈ R as inputs, and returns a
proof π.

– 0/1 ← Vfy(CRS,Φ, π): takes a common reference string CRS, a statement
Φ, a proof π as inputs and returns 0 (reject) or 1 (accept).
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– π ← SimProve(CRS, τ, Φ): takes a common reference string CRS, a simula-
tion trapdoor τ , a statement Φ as inputs and returns a proof π.

It satisfies completeness, knowledge soundness, zero-knowledge, and succinct-
ness described as below:

Completeness: Given a true statement, a prover with a witness can convince
the verifier. For all λ ∈ N, for all R and for all (Φ,w) ∈ R, Pr[(CRS, τ) ←
Setup(R), π ← Prove(CRS,Φ,w) : Vfy(CRS,Φ, π) = 1] = 1.

Computational Knowledge Soundness: Computational knowledge sound-
ness says that the prover must know a witness and such knowledge can be
efficiently extracted from the prover by a knowledge extractor. Proof of knowl-
edge requires that for every adversarial prover A generating an accepting proof,
there must be an extractor χA that, given the same input of A, outputs a valid
witness. Formally, an argument system Πsnark is computationally considered as
knowledge sound if for any PPT adversary A, there exists a PPT extractor χA,
such that AdvsoundΠsnark,A,χA(λ) is negligible.

AdvsoundΠsnark,A,χA(λ) = Pr[(CRS, τ)← Setup(R), (Φ∗, π∗)← A(CRS), w ← χA(transA) :

V fy(CRS,Φ∗, π∗) = 1 ∧ (Φ∗, w) 6∈ R] = negl(λ).

Perfect Zero-Knowledge: Perfect zero-knowledge states that the system does
not leak any information besides the truth of the statement. This is modelled by
a simulator that does not know the witness but has some trapdoor information
that enables it to simulate proofs.

Succinctness: Succinctness states that the argument generates the proof of
polynomial size in the security parameter, and the verifier’s computation time
is polynomial in the security parameter and in statement size.

3.6 Additively-Homomorphic Encryption

We adopt the definition of additively-homomorphic encryption from homomor-
phic ElGamal encryption [CGS97].

Definition 3. An encryption system ΠAH is an additively-homomorphic encryp-
tion, if it satisfies Completeness described as follows:

Enc(Mi) ◦ Enc(Mj) = Enc(Mi +Mj)

Dec(CT i) + Dec(CT j) = Dec(CT i ◦ CT j)

for any messages Mi,Mj and any ciphertexts CT i, CT j.
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3.7 Verifiable Encryption

We refine the definition of verifiable encryption by combining the previous defini-
tions in [CD00, LN17]. We mostly follow the definitions in [CD00], but separate
the verification phase individual from decryption as in [LN17].

Definition 4. A public-key encryption scheme ΠVE is a secure verifiable encryp-
tion, if it includes the following polynomial-time algorithm for some pre-defined
relation R:

– π, CT ← Enc(PK,M) : the encryption of a message M under the public key
PK must output a proof π, along with the corresponding ciphertext CT .

– 0/1 ← Verify Enc(V K, π, CT ) : takes a verification key V K, an encryption
proof π, a corresponding ciphertext CT as inputs, and outputs 1 if π, CT is
within the relation R, or 0 otherwise.

which satisfies completeness, encryption soundness, and perfect zero-knowledge
as described below:

Completeness: A proof π and a ciphertext CT must pass the verification if
they are honestly generated from a message M which satisfies M ∈ R, formally
as Pr[(π, CT )← Enc(PK,M),M ∈ R : Verify Enc(V K, π, CT ) = 1] = 1.

Encryption Soundness: The advantage of an adversary forging verifying π∗, CT ∗
where M 6∈ R is negligible.

AdvsoundΠVE,A(λ) = Pr[(SK,PK, V K)← KeyGen(λ), (CT ∗, π∗)← A(PK, V K) :

Verify Enc(V K, π∗, CT ∗) = 1 ∧ Dec(SK, CT ∗) 6∈ R] = negl(λ).

Indistinguishability: A verifiable encryption should satisfy IND-CPA of the
original public-key encryption, with providing additional information π to the
adversary.

3.8 Verifiable Decryption

We refine the definition of verifiable decryption from [CS03]; the definition in
[CS03] represents the proof system and the encryption system separately, but we
intend to combine them as an encryption scheme with verifying phase. Plus, we
strengthen the security notion from decryption soundness to perfect decryption
soundness, and introduce a new security notion - perfect zero-knowledge.

Definition 5. A public-key encryption scheme ΠVD is a secure verifiable de-
cryption, if it includes the following polynomial-time algorithm:

– M,ν ← Dec(SK, CT ) : the decryption of a ciphertext CT outputs a message
M , along with the corresponding decryption proof ν.
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– 0/1 ← Verify Dec(V K,M, ν, CT ) : takes a verification key V K, a message
M , a decryption proof ν, a ciphertext CT as inputs, and outputs 1 if M,ν is
a valid decryption for CT or 0 otherwise.

which satisfies completeness, and perfect decryption soundness, and indistin-
guishability as described below:

Completeness: A message M and a decryption proof ν must pass the verifica-
tion, if decrypting CT with SK outputsM , formally as Pr[(M,ν)← Dec(SK, CT ), CT =
Enc(PK,M) : Verify Dec(V K,M, ν, CT ) = 1] = 1.

Perfect Decryption Soundness: The advantage of an adversary forging ver-
ifying M∗, ν∗, CT ∗ where M∗ is not a decryption of CT is 0.

AdvsoundΠVD,A(λ) = Pr[(M∗, ν∗, CT ∗)← A(SK,PK, V K) :

Verify Dec(V K,M∗, ν∗, CT ∗) = 1 ∧ Dec(SK, CT ∗) 6= M∗] = 0.

Indistinguishability: A verifiable decryption should satisfy IND-CPA of the
original public-key encryption, with providing additional information ν to an
adversary A, for A’s chosen messages.

3.9 Rerandomizable Encryption

We adopt the definition of rerandomizable encryption from [PR07].

Definition 6. A public-key encryption scheme ΠRR is rerandomizable, if it in-
cludes the following polynomial-time algorithm:

– CT ′ ← Rerandomize(PK, CT ) : a randomized algorithm which takes a public
key PK and a ciphertext CT and outputs another ciphertext CT ′.

which satisfies completeness and rerandomizability described as below:

Completeness: For every ciphertext CT and every CT ′ in the support of Rerandomize(PK, CT ),
we must have Dec(SK, CT ′) = Dec(SK, CT ).

Rerandomizability: For every plaintext M and every ciphertext CT in the
support of Enc(PK,M), the distribution of Rerandomize(PK, CT ) is identical to
another round of Enc(PK,M).

4 Definition

We represent the definition of our SAVER: Snark-friendly, Additively-homomorphic,
and Verifiable Encryption and decryption with Rerandomization - which satis-
fies the properties of zk-SNARK Πsnark, additively-homomorphic encryption ΠAH,
verifiable encryption ΠVE, verifiable decryption ΠVD and rerandomizable encryp-
tion ΠRR altogether.
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Definition 7. For any arbitrary zk-SNARK relation R (also noted as relation),
the SAVER consists of seven polynomial-time algorithms as follows:

– CRS ← Setup(relation) : takes an arbitrary relation R as an input, and
outputs the corresponding common reference string CRS.

– SK,PK, V K ← KeyGen(CRS) : takes a CRS as an input, and outputs the
corresponding secret key SK, public key PK, verification key V K.

– π, CT ← Enc(CRS,PK,M, Φ̂;w) : takes CRS, a public key PK, a message
M = m1, . . . ,mn, a zk-SNARK statement Φ̂ = {φn+1, . . . , φl}, and a witness
w as inputs, and outputs a proof π and a ciphertext CT = (c0, · · · , cn, ψ).

– π′, CT ′ ← Rerandomize(PK, π, CT ) : takes a public key PK, a proof π, a
ciphertext CT as inputs, and outputs a new proof π′ and a new ciphertext
CT ′ with fresh randomness.

– 0/1 ← Verify Enc(CRS, π, CT , Φ̂) : takes CRS, a proof π, a ciphertext CT ,
and a statement Φ̂ = {φn+1, . . . , φl} as inputs, and outputs 1 if CT , Φ̂ is in
the relation R, or 0 otherwise.

– M,ν ← Dec(CRS, SK, V K, CT ) : takes CRS, a secret key SK, a verification
key V K, and a ciphertext CT = (c0, · · · , cn, ψ) as inputs, and outputs a
plaintext M = m1, . . . ,mn and a decryption proof ν.

– 0/1← Verify Dec(CRS, V K,M, ν, CT ) : takes CRS, a verification key V K,
a message M , a decryption proof ν, and a ciphertext CT as inputs, and
outputs 1 if M is a valid decryption of CT , or 0 otherwise.

It satisfies completeness, indistinguishability, encryption knowledge soundness,
rerandomizability, decryption soundness, perfect zero-knowledge as described be-
low:

Completeness: The completeness of SAVER must satisfy the completeness of
Πsnark, ΠAH, ΠVE, ΠVD and ΠRR altogether.

Indistinguishability: The indistinguishability is also known as semantic se-
curity (IND-CPA). The IND-CPA of the SAVER should be indistinguishability
of ΠVE and ΠVD, which is defined by an adversary A and a challenger C via
following game.

Setup: The challenger C runs Setup(relation) to obtain CRS, and share CRS and
statements Φ̂ to A.

KeyGen: C runs KeyGen(CRS) to obtain a secret key SK, a public key PK, and
a verification key V K. Then, C gives PK,V K to A.

Enc1: For the polynomial-time, A may issue an encryption query Mi, to ob-
tain the corresponding ciphertext CT i and a decryption proof νi. As a stan-
dard IND-CPA game, A can encrypt the message by himself with the PK.
The purpose of the encryption query is to provide A an additional informa-
tion: a decryption proof νi. For A’s query Mi, C generates πi, CT i by running
Enc(CRS,PK,Mi, Φ̂;w), generates νi by running Dec(CRS, SK, V K, CT i), and
returns (πi, CT i, νi) to A.
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Challenge: For the challenge, A outputs two messages M0 and M1. B picks b ∈
{0, 1} to choose Mb, generates π, CT by running Enc(CRS,PK,Mb, Φ̂;w), and
returns π, CT to A.

Enc2: A can continue to issue encryption queries Mj , same as Enc1. The only
restriction is that Mj 6∈ {M0,M1}.

Guess: A outputs its guess b′ ∈ {0, 1} for b, and wins the game if b = b′.

Let AdvindSAVER,A(λ) be the advantage of A winning the above game. For a neg-
ligible function ε, it is IND-CPA secure if for any adversary A we have that
|AdvindSAVER,A(λ)− 1/2| < ε.

Encryption Knowledge Soundness: The encryption knowledge soundness
is a combined definition of computational knowledge soundness in Πsnark and
encryption soundness in ΠVE. It is formally defined as follows:

AdvsoundSAVER,A,χA(λ) = Pr[(CRS, τ)← Setup(R), (PK,SK, V K)← KeyGen(CRS),

(π∗, CT ∗, Φ̂∗)← A(CRS,PK, V K), (M,w)← χA(transA) :

Verify Enc(CRS, π∗, CT ∗, Φ̂∗) = 1 ∧ (Dec(CT ∗) 6= M ∨ (M, Φ̂∗, w) 6∈ R)] = negl(λ).

Rerandomizability: The rerandomizability is extended from ΠRR, to include
π as follows: for all M and π, CT in the support of Enc(CRS,PK,M, Φ̂;w),
the distribution of Rerandomize(PK, π, CT ) is identical to another round of
Enc(CRS,PK,M, Φ̂;w).

Perfect Decryption Soundness: Equivalent to the perfect decryption sound-
ness in ΠVD.

Perfect Zero-Knowledge: Equivalent to the perfect zero-knowledge in Πsnark.

5 Proposed Scheme

In this section, we represent the formal construction of the proposed SAVER:
Snark-friendly, Additively-homomorphic, and Verifiable Encryption and decryp-
tion with Rerandomization. In section 5.1, we provide some intuitive ideas on
designing the SAVER. Then we show the construction in section 5.2.

5.1 Main Idea

Before presenting the construction, we provide some intuitive ideas on designing
the proposed SAVER. For the voting application in section 1.1, the main objec-
tive is to design universal verifiable encryption with additional functionalities:
additive-homomorphism, rerandomizability, and verifiable decryption. A naive
approach to achieve this is to include the entire encryption algorithm in the
zk-SNARK circuit along with the universal relation (to ensure the consistency
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Algorithm 1 Encryption-in-the-circuit

relationenc(PK, CT , φn+1, . . . , φl;M):

CT ← ΠRR,AH.Enc(PK,M)
· · ·

relationrerand(PK, CT ′, φn+1, . . . , φl;π, CT ):

Πsnark.Verify(π, PK, CT , φn+1, . . . , φl)
CT ′ ← ΠRR,AH.Rerandomize(PK, CT )

relationdec(CT ,M ;SK)

M ← ΠRR,AH.Dec(SK, CT )

of m between Prove and Enc), which we refer to as encryption-in-the-circuit
method [KZM+15a, KZM+15b].

Algorithm 1 represents zk-SNARK relations required when applying the
encryption-in-the-circuit approach. We need three individual relations of relationenc,
relationrerand, and relationdec to satisfy the desired properties. In relationenc, a
rerandomizable homomorphic encryption ΠRR,AH like Paillier [Pai99] is combined
with the arbitrary relation to satisfy the verifiable additively-homomorphic en-
cryption. In relationrerand for rerandomizability, the relation includes the verifi-
cation of proof π to check the relation of CT , along with the rerandomization of
the ciphertext. For example, in the voting application, the administrator must
first verify the vote before rerandomizing it, to check that the vote is gener-
ated honestly from an eligible user. In relationdec, the decryption algorithm is
included to provide verifiable decryption property. When proceeding the ver-
ifiable encryption with these relations, the construction becomes very ineffi-
cient: Enc should include Πsnark.Prove(relationenc), Rerandomize should include
Πsnark.Prove(relationrerand), and Dec should include Πsnark.Prove(relationdec).

To avoid the inefficiency, we separate encryption from the zk-SNARK relation
and provide connectivity between them, similar to the Hash&Prove [FFG+16] or
Commit&Prove in LegoSNARK [CFQ19]. Naively binding the encryption and
zk-SNARK via commitments as in [FFG+16] may require additional verifications
for the linkage. Instead of verifying the linkage separately, we let the ciphertext
blend into the original zk-SNARK verification, by replacing the statement (In-
puts/Outputs).

Let us observe the zk-SNARK verification in [Gro16] as follows:

e(A,B) = e(Gα, Hβ) · e(
l∏
i=0

Gφii , H
γ) · e(C,Hδ)

In the equation, (φ1, . . . , φl) can be not only a statement and but also a plaintext.
Suppose that φ1 should be encrypted. Let a plaintext message M = φ1. Then
we may construct a ciphertext CT = GM1 similar to the ElGamal encryption,
which maintains the original verification format as following:
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e(A,B) = e(Gα, Hβ) · e(CT ·
l∏
i=2

Gφii , H
γ) · e(C,Hδ)

However, it is obvious that CT should include additional blinding factors
mixed to GM1 . When we denote the blinding factor as Xr, i.e., CT = Xr ·GM1 ,

the pairing e(Xr·GM1 ·
∏l
i=2G

φi
i , H

γ) generates unintended γr term in e(Xr, Hγ),
which breaks equality of the equation. To resolve this problem, we include G−γ

in the CRS. The prover modifies the proof element C as C = C · G−γr so that
the γr term can be eliminated with respect to the δ from e(C,Hδ). As a result,
the verification of zk-SNARK can ensure the existence of M in the ciphertext,
as well as the soundness of M within the relation.

Another interesting fact is that the form of GMi can be plugged into the
additive-homomorphism based on the ElGamal encryption. As introduced in
[CGS97], it is easy to transform the ElGamal encryption by encrypting GMi
instead of M , to achieve additive-homomorphism as GM1

i · GM2
i = GM1+M2

i . In
this case, the decryption requires finding the short discrete log of GMi , which
restricts the message space to be short enough. Therefore, we split the message
M into short message spaces as M = (m1|| . . . ||mn) (e.g. |mi| = 4bits), and
encrypt each block mi in the form of Xr

i · G
mi
i where Xr

i is a blinding factor.
The decryptor who can remove the blinding factor can obtain mi by the simple
brute-forcing (less than 24 for |mi| = 4bits).

5.2 SAVER Construction

We now represent a formal construction of the proposed SAVER: Snark-friendly,
Additively-homomorphic, and Verifiable Encryption and decryption with Reran-
domization. The SAVER utilizes a zk-SNARK Πsnark as a building block; we used
Groth’s protocol [Gro16] as a standard. It is possible to adopt other pairing-based
zk-SNARKs such as [GM17] and [KLO19], with some adjustments on Verify Enc
and Rerandomize to assemble the verification and proof format5.

In the SAVER, a message M is split into n blocks as M = (m1|| · · · ||mn), to
form a vector M = {m1, . . . ,mn}. A ciphertext CT consists of n + 2 blocks as
CT = {c0, · · · , cn, ψ}, where c0 contains the random, ψ contains an encryption
proof, and the remaining ci contains an encryption of mi for 1 ≤ i ≤ n. Within
the construction, we work with {m1, . . . ,mn}, assuming that M is already parsed
to M = (m1|| · · · ||mn).

Algorithm 2 represents a formal construction of the SAVER. The term rela-
tion denotes an arbitrary relation R for the zk-SNARK, and the terms of α, β, γ,
and δ within the functions come from CRS (common reference string) of the
adopted zk-SNARK scheme [Gro16].

The SAVER receives any relation which consists of two I/O statements. State-
ments m1, . . . ,mn will be encrypted while statements φn+1, . . . , φl will be used

5 Rerandomization of the proof can be viewed as a manipulation, which is prohibited
in the simulation-extractable zk-SNARKs. Providing additional terms can resolve
this by allowing one-time rerandomization in a restricted manner.
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Algorithm 2 SAVER construction

relation(m1, . . . ,mn, φn+1, . . . , φl;w) :

· · ·

Setup(relation) :
ˆCRS ← Πsnark.Setup(relation)

CRS ← ˆCRS ∪ {G−γ}
return CRS

KeyGen(CRS) :

{si}ni=1, {vi}ni=1, {ti}ni=0, ρ
$← Z∗p

PK ← (Gδ, {Gδsi}ni=1, {Gtii }
n
i=1, {Hti}ni=0, G

δt0
∏n
j=1G

δtjsj , G−γ·(1+
∑n
j=1 sj))

SK ← ρ
V K ← (Hρ, {Hsivi}ni=1, {Hρvi}ni=1)
return (SK,PK, V K)

Enc(CRS,PK,m1, . . . ,mn, φn+1, . . . , φl;w) :

let PK = (X0, {Xi}ni=1, {Yi}ni=1, {Zi}ni=0, P1, P2)

r
$← Z∗p

CT = (Xr
0 , X

r
1G

m1
1 , . . . , Xr

nG
mn
n , ψ = P r1 ·

∏n
j=1 Y

mj
j )

π̂ = (A,B,C)← Πsnark.Prove(CRS,m1, . . . ,mn, φn+1, . . . , φl;w)
π ← (A,B,C · P r2 )
return (π, CT )

Rerandomize(PK, π, CT ) :

parse π = (A,B,C) and CT = (c0, . . . , cn, ψ)
let PK = (X0, {Xi}ni=1, {Yi}ni=1, {Zi}ni=0, P1, P2)

r′, z1, z2
$← Z∗p

CT ′ ← (c0 ·Xr′
0 , . . . , cn ·Xr′

n , ψ · P r
′

1 )

π′ ← (Az1 , Bz
−1
1 ·Hδ·z2 , C ·Az1z2 · P r

′
2 )

return (π′, CT ′)

Verify Enc(CRS, π, CT , φn+1, · · · , φl) :

parse π = (A,B,C) and CT = (c0, . . . , cn, ψ)
assert

∏n
j=0 e(cj , H

tj ) = e(ψ,H)

assert e(A,B) = e(Gα, Hβ) · e(
∏n
i=0 ci ·

∏l
i=n+1G

φi
i , H

γ) · e(C,Hδ)

as normal I/O statements in plaintext. For the given relation, Setup generates
CRS using the adopted zk-SNARKs scheme, with additional G−γ . KeyGen gen-
erates a private key, a public key, and a verification key. Enc encrypts messages
m1, . . . ,mn and generates a proof π of statement Φ = (m1, . . . ,mn, φn+1, . . . , φl).
To check the truth of statement Φ, Verify Enc takes π and CT as inputs for verifi-
cation. Rerandomize does rerandomization of the given ciphertext and the proof.
Note that the rerandomized proof is a valid proof of the statement. Dec decrypts
the ciphertext CT by performing decryption for each block c1, . . . , cn, to output
m1, . . . ,mn and a decryption proof ν. The original message M can be restored
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Dec(CRS, SK, V K, CT ) :

parse SK = ρ, V K = (V0, {Vi}ni=1, {Vi}2ni=n+1), and CT = (c0, . . . , cn, ψ)
for i = 1 do to n

e(ci,Vn+i)

e(c0,Vi)ρ
= e(Gi, Vn+i)

mi

compute a discrete log of e(Gi, Vn+i)
mi to obtain mi

end for
ν ← cρ0
return (m1, . . .mn, ν)

Verify Dec(CRS, V K,m1, . . .mn, ν, CT ) :

parse V K = (V0, {Vi}ni=1, {Vi}2ni=n+1) and CT = (c0, . . . , cn, ψ)
assert e(ν,H) = e(c0, V0)
for i = 1 do to n

assert
e(ci,Vn+i)

e(ν,Vi)
= e(Gi, Vn+i)

mi

end for

as M = (m1|| . . . ||mn). The honest decryption of CT can be proved by calling
Verify Dec with a message M and a decryption proof ν.

The ciphertext CT in SAVER satisfies additive-homomorphic property. Given

CT = (Xr
0 , {Xr

i G
mi
i }ni=1, P

r
1

∏n
j=1 Y

mj
j ) and CT ′ = (Xr′

0 , {Xr′

i G
m′i
i }ni=1, P

r′

1

∏n
j=1 Y

m′j
j ),

it is easy to see that CT ·CT ′ = (Xr+r′

0 , {Xr+r′

i G
mi+m

′
i

i }ni=1, P
r+r′

1

∏n
j=1 Y

mj+m
′
j

j ),
which satisfies additive-homomorphism.

6 Security Proof

To satisfy the definition of SAVER, the scheme should satisfy completeness, indis-
tinguishability, encryption knowledge soundness, rerandomizability, and perfect
zero-knowledge. The completeness is easy to verify in algorithm 2. For the per-
fect zero-knowledge, it is sufficient to show that the proof π in SAVER maintains
the perfect zero-knowledge of zk-SNARK [Gro16].

Lemma 2. The proof π generated in SAVER is within the same distribution
from the proof π̂ of Πsnark.

Since π̂ is in a random distribution and P r2 is in a random distribution from
r, C · P r2 is also within a same random distribution.

6.1 Indistinguishability

In this section, we prove the standard IND-CPA security of our SAVER.

Theorem 1. Suppose the Decisional (d(λ), q(λ))-Poly assumption holds in BG.
Then SAVER is IND-CPA secure.
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Suppose that A has an advantage ε in attacking the SAVER. Using A, we
build an algorithm B that solves the D-Poly problem in BG. We first describe
the overall sketch of our proof as follows.

The game starts with selecting the generator G,H and the D-Poly secret vec-
tor xxx = {α, β, γ, δ, x, t0, . . . , tn, s1, . . . , sn, v1, . . . , vn, ρ} from Z∗p. As a challenger
in the D-Poly game, algorithm B can query polynomials gi(X1, · · · , Xq) and
hj(X1, · · · , Xq) to the oracles O1

G,xxx and O2
H,xxx to receive corresponding Ggi(xxx)

and Hhj(xxx), within a polynomial time.

With the help of these oracles, B simulates the encryption oracle for A’s
encryption queries; B receives query Mi from A within the polynomial time to
return corresponding ciphertext, proof and its decryption proof as (CT i, πi, νi).

Then for the challenge, B outputs gc(X1, · · · , Xq) which satisfies gc(x) 6∈
JQ1K × JQ2K × JQ2K−1, to receive T = Tb from the D-Poly game where Tb is

randomly chosen from T1 = Ggc(xxx) or T0
$← G1. The goal of algorithm B is to

guess b, outputting b′ = 1 if the T is generated from Ggc(xxx) and b′ = 0 otherwise.
Algorithm B works by interacting with A in an IND-CPA game as follows:

Setup: To generate the CRS, B runs a Setup(relation) in [Gro16] with using D-
Poly oracles. By querying gi(X1, · · · , Xq) or to the corresponding oracle O1

G,xxx or

O2
H,xxx, B can generate all CRS parameters (Gα, Gβ , Gδ, · · · ) without the knowl-

edge of the secret vector xxx.

KeyGen: Algorithm B can run the original KeyGen(CRS) by utilizing the existing
CRS generated from above. B returns (PK, V K) to initialize A. Additionally, B
generates the tag key ν̂ = Gδρ by querying δρ to O1

G,xxx.

Enc1: After the initialization, A may query B for the encryption of the message
Mi = (m1|| · · · ||mn), to obtain the corresponding ciphertext and decryption
proof CT i, νi. Note that A can generate CT i itself with using PK (as in standard
IND-CPA game); the purpose of encryption query is for the additional informa-
tion νi which A cannot create itself. For A’s query Mi, B generates a ciphertext
CT i by calling Enc(CRS,PK,Mi) with picking fresh random ri, and creates an
encryption proof πi by calling SimProvesnark(CRS,m1, . . . ,mn, φn+1, . . . , φl)
with given statement (m1, . . . ,mn, φn+1, . . . , φl) where SimProvesnark gener-
ates a simulated proof available in every zk-SNARK scheme since the zk-SNARK
scheme is zero knowledge. Then, B crafts the decryption proof νi = ν̂ri , and re-
turns πi, CT i, νi as a response to A.

Challenge: When A outputs M0 and M1 for the IND-CPA challenge, B picks
b ∈ {0, 1} for Mb then challenges the D-Poly game to receive T and create the

ciphertext CT by implicitly setting r = xd+1 · r′ (r′
$← Z∗p). To describe B’s

response on Mb = (m1|| . . . ||mn), we first define two events on generating CT =
(c0, . . . , ψ): REAL and FAKE. Among the blocks c1, . . . , cn which are supposed
to contain the encrypted message (excluding c0 and ψ which are not related to
the message), two events are defined for each block ci as follows:
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1. REAL: The block ci is crafted honestly with a real message as Gδsi·rGmii , by
querying g(xxx) to O1

G,xxx.

2. FAKE: The block ci is crafted with a random message µi
$← Z∗p as Gδsi·rGµii ,

by querying g(xxx) to O1
G,xxx.

When creating c1, . . . , cn, B picks j ∈ {1, . . . , n} to use the challenge response T
in cj , and let c1, . . . , cj−1 generated from REAL while cj+1, . . . , cn are generated
from FAKE. B gains advantage of winning the game only when A guesses b
exactly from the challenge. If A can already distinguish b without the challenge
cj , the game fails because A will always distinguish b regardless of the nature of
T . On the other hand, if A requires cj′ for j′ > j to distinguish b, the game fails
because A always fails to distinguish b regardless of the nature of T since cj′ is
from FAKE. More specifically, from A’s view, there exists j′ ∈ {1, . . . , n} where
A cannot distinguish b when c1, . . . , cj′−1 are from REAL, but can distinguish
b when c1, . . . , cj′ are from REAL. Therefore, by choosing j, B is guessing j′; if
B’s guess is correct, i.e., j = j′ with the probability of 1

n , B can win the D-Poly
game since A works differently depending on the nature of T .

To prepare the challenge, B picks r′
$← Z∗p and interacts with the D-Poly

oracle O1
G,xxx by implicitly setting r as xd+1 · r′. B first queries δ · xd+1 to receive

ĉ0. Next, B prepares the random parts for all the blocks except j-th block by
querying {gi(x) = δsi · xd+1}ni=1,6=j to receive {ĉi}ni=1,6=j . Then B prepares the

ingredient for ψ, by querying xd+1 · (δt0
∑n
i=1 δtisi) to receive ψ̂1 and querying∑j

i=1 yi(x) · timi +
∑n
i=j+1 yi(x) · tiµi to receive ψ̂2. For the encryption proof π,

B picks A,B ← Z∗p and queries the simulation equation (e.g.
AB−αβ−

∑l
i=0 aiyi

δ in
[Gro16]), to obtain C and generate the tuple of simulated proof π = (A,B,C).
Note that B is required to simulate the proof since it does not know the random
r, which is a witness for the relation.

When {ĉi}ni=1,6=j , ψ̂1, ψ̂2 and π are ready, B outputs a challenge query for the

j-th block g(x) = δsj · xd+1 to receive T . Notice that the challenge query g(x)
satisfies g(x) 6∈ JQ1K× JQ2K× JQ2K−1, since sj is independent. Then B generates
the ciphertext CT for Mb = (m1|| . . . ||mn) by exploiting the received elements

as c0 = ĉ0
r′ , {ci = ĉi

r′Gmii }
j−1
i=1 , cj = T r

′
G
mj
j (REAL), and {ci = ĉi

r′Gµii }ni=j+1

(FAKE). Finally, B computes ψ by computing as ψ = ψ̂1
r′

· ψ̂2, and returns
CT = {ci}ni=1, ψ and π to A.

Enc2: B can respond to A’s queries same as Enc1.

Guess: Finally, A outputs a guess b′ ∈ {0, 1}. Algorithm B concludes its own
game by outputting a guess as follows. If b = b′ then B outputs 1 meaning
T = Ggc(xxx). Otherwise, it outputs 0 meaning T is random in GT .

When the input tuple is sampled from T1 = Ggc(xxx), and B’s guess with the
probability of 1

n is correct as j = j′, then A’s view is identical to its view in a
real attack game and therefore A satisfies 1

n · |Pr[b = b′] − 1/2| ≥ ε. When the
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input tuple is sampled from T0
$← G1, then Pr[b = b′] = 1/2. Therefore, with

G,H uniform in BG, xxx uniform in Z∗p, and T uniform in GT we have that

|Pr[B(BG, qi(xxx), Ggc(xxx)) = 0]

− Pr[B(BG, qi(xxx), T ) = 0]| ≥ |(1/2 + nε)− 1/2| = nε

as required, which completes the proof of the theorem.

6.2 Encryption Soundness

In this section, we prove the soundness of π and CT in Verify Enc, indicating that
the M which is encrypted to CT is indeed included in the I/O of the conjoined
pairing-based SNARK [Gro16]. Formally, we show that the probability of any
adversary forging (π∗, CT ∗, Φ̂∗) where Φ̂∗ = {φn+1, · · · , φl} which passes the
V erify Enc but Dec(CT ∗) 6= M or (M, Φ̂∗, w) 6∈ R is negligible.

Theorem 2. Suppose the batch − PKE assumption holds, and the soundness
of conjoined pairing-based zk-SNARK [Gro16] holds. Then SAVER satisfies the
encryption knowledge soundness.

To prove the theorem, we show that any adversary which breaks the sound-
ness of the SAVER can break the batch-PKE assumption or SNARK-snd, i.e.,
soundness of the conjoined SNARK [Gro16]. Formally, for all PPT adversaries
A there exists a PPT algorithm B, C and a PPT extractor χB such that

Advsound
SAVER,A(λ) = Pr[(CRS, τ)← Setup(R), (PK,SK, V K)← KeyGen(CRS),

(π∗, CT ∗, Φ̂∗)← A(CRS,PK, V K), (M,w)← χA(transA) :

Verify Enc(CRS, π∗, CT ∗, Φ̂∗) = 1 ∧ (Dec(CT ∗) 6= M ∨ (M, Φ̂∗, w) 6∈ R)]

≤ Advbatch-PKE
R,B,χB (λ) + Advsound

Πsnark,C,χC (λ).

First, since SAVER requires additional G−γ in the CRS, it is necessary to
assure that the soundness of the zk-SNARK [Gro16] still holds with the extended
CRS. Fortunately, this issue is resolved instantly from the fact that the security
proof in [Gro16] also considers γ term, according to the affine prover strategy. In
the statistical knowledge soundness of [Gro16], the element A is demonstrated
as:

A = Aαα+Aββ +Aγγ + aδδA(x) +

l∑
i=0

Ai
yi(x)

γ
+

m∑
i=l+1

Ai
yi(x)

δ
+Ah(x)

t(x)

δ

Observe that the Aγγ is included, indicating that the Gγ is within the con-
sideration of ingredients. Since the Aγ term is eliminated in the proof, adding
G−γ in the CRS of [Gro16] does not affect the soundness of the SNARK. Similar
to [Gro16], we now view the verification equations as an equality of multi-variate
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Laurent polynomials. By the Schwartz-Zippel lemma the prover has negligible
success probability unless both verification equations hold.

Since π∗, CT ∗, Φ̂∗ passes the verification, it passes the two equations in Ver-
ify Enc as stated below:

e(c1, H
t1)× · · · × e(cn, Htn) = e(ψ,H) (1)

e(A,B) = e(Gα, Hβ)× e(
n∏
i=0

ci ·
l∏

i=n+1

Gφii , H
γ)× e(C,Hδ) (2)

When we see the equation 1, there always exists ti, since they are fixed in the
expression itself as Hti . Therefore, ψ must consist of yi(x)ti and δt0+

∑n
j=1 δtjsj

since the only terms which include ti in the CRS and PK are Gt11 , · · · , Gtnn and

Gδt0+
∑n
j=1 δtjsj . Let us express auxiliary indeterminate for each variable as X,

which is yet ambiguous. Then, the exponents linearly satisfy the equation below:

Xt0 +Xt1+ · · ·+Xtn =

Xy1(x) · t1 + · · ·+Xyn(x) · tn +X(δt0 +

n∑
j=1

δtjsj)
(3)

When observing equation 3 above, note that the terms with yi(x) · ti and
δt0+

∑n
j=1 δtjsj must both exist, since they are the only terms which can balance

the t1, · · · , tn and t0 on the left of equal sign. Then, to meet the terms with
y1(x), · · · , yn(x), there must also exist yi(x) in each term with t1, · · · , tn on the
left of equal sign. For the unknown coefficients η′i, this leads to:

Xt0 + (X+η′1y1(x)) · t1 + · · ·+ (X + η′nyn(x)) · tn =

Xy1(x) · t1 + · · ·+Xyn(x) · tn +X(δt0 +

n∑
j=1

δtjsj)
(4)

Since only δt0 +
∑n
j=1 δtjsj includes δt0, the t0 term on the left must only

include δ to generate δt0. Finally, there remains δtjsj in
∑n
j=1 δtjsj ; X in each

tj term must be related to δsj to generate δtjsj . For the unknown coefficients
η′0 and η′′i , this leads to:

(η′0δ)t0 + (η′1δs1 + η′′1 y1(x))t1 + · · ·+ (η′nδsn + η′′nyn(x))tn =

Xy1(x) · t1 + · · ·+Xyn(x) · tn +X(δt0 +
n∑
j=1

δtjsj)
(5)

Now we can complete the equation with filling up each auxiliary X on the
right side with unknown coefficients η′0, {η′i, η′′i }ni=1. Especially, since the term
with δt0 +

∑n
j=1 δtjsj is unique, the coefficients for δt0 and δsiti (i.e. η′0, · · · , η′n)

must be same as η′. Therefore, for the unknown coefficients η′ and η′′i , the equa-
tion can be arranged as:
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(η′δ)t0 + (η′δs1 + η′′1 y1(x))t1 + · · ·+ (η′δsn + η′′nyn(x))tn =

η′′1 y1(x) · t1 + · · ·+ η′′nyn(x) · tn + η′(δt0 +

n∑
j=1

δtjsj)
(6)

When representing the coefficients of t0, · · · , tn on the left as a0, · · · , an (i.e.
a0t0 + a1t1 + · · ·+ antn), each ai can be viewed as a value from a multi-variate
polynomial fi(xxx) which consists of coefficients η′0 and η′′i . Let us represent C
from π∗ as Gb. Putting this into the verifying equation 1 gives us:

e(Ga1 , Ht0)× · · · × e(Gan , Htn) = e(Gb, H) (7)

Observe that equation 6 above is equivalent to the check in batch-PKE where
ti corresponds to αi: therefore there exists an extractor χB which can extract
all the coefficients η′0 and η′′i from ai = fi(xxx). With the knowledge of η′0, η

′′
i in

equation 6, it is obvious that η′ is equivalent to r and η′′i is equivalent to mi,
since the equation is in the same form as the original scheme with c0 = Gδr, c1 =
Gδs1r ·Gy1(x)m1 , · · · , cn = Gδsnr ·Gyn(x)·mn . If Dec(CT ∗) 6= M , then there exists
m∗i = η′′i 6= mi; the extractor failed as η′′i 6= [A(τ)] which breaks the batch-PKE.

∴ Pr[Dec(CT ∗) 6= M ] = Advbatch-PKE
R,B,χB (λ) (8)

The remaining case is where (M, Φ̂∗, w) 6∈ R. In this case, we start with the
fact that π∗, CT ∗, Φ̂∗ passes equation 2, revisited as follows.

e(A,B) = e(Gα, Hβ)× e(
n∏
i=0

ci ·
l∏

i=n+1

Gφii , H
γ)× e(C,Hδ) (2)

Since equation 8 let CT ∗ satisfy Dec(CT ∗) = M , we can write CT as a
original form, i.e., c0 = Gδr, ci = Gδsir ·Gmi . Putting this into equation 2 gives
us:

e(A,B) = e(Gα, Hβ)

× e(Gδr ·
n∏
i=1

(Gδsir ·Gyi(x)·mi) ·
l∏

i=n+1

Gφii , H
γ)× e(C,Hδ)

(9)

Observe that e(Gδr·
∏n
i=1(Gδsir·Gyi(x)·mi)·

∏l
i=n+1G

φi
i , H

γ) always generates
γδsi term. To neutralize γδsi, the only possible way is either by also generating
γδsi in e(A,B) on the left of equal sign, or by generating the same term in
e(C,Hδ) on the right to eliminate γδsi.

Case 1 - generating γδsi in e(A,B) = e(Ga, Hb) on the left:

When considering the term with αβ which exists in e(Gα, Hβ) on the right
side, a must include α and b must include β, since there are no Hα in the G2



28 Jiwon Lee, Jaekyoung Choi, Jihye Kim, and Hyunok Oh

of CRS,PK, V K. From the fact that there are no δsi in G2, the only way to
generate the γδsi term is to include δsi in a and include γ in b as follows:

a = Xαα+Xδsiδsi + · · · , b = Xββ +Xγγ + · · ·

However, this let e(Ga, Hb) create αγ and βδsi, which does not exist in
equation 9. Therefore, γ cannot exist in a nor b, which indicates that Case 1
cannot exist.

Case 2 - generating γδsi in e(C,Hδ) = e(Gc, Hδ) on the right:

The remaining case is where c includes γsi to generate γδsi in e(Gc, Hδ) and

eliminate the γδsi term. The only term which includes γsi isR = G−γ·(1+
∑n
j=1 sj),

and therefore c must include −γ(1+
∑n
j=1 sj). We can write c as c = η · (−γ(1+∑n

j=1 sj) +Ax), where η is an unknown coefficient, and Ax is a remaining aux-
iliary polynomial. Putting this into equation 9 gives us:

e(A,B) = e(Gα, Hβ)

× e((Gδr ·G
∑n
i=1 δsir ·G

∑n
i=1 yi(x)·mi) ·

l∏
i=n+1

Gφii , H
γ)

× e(Gη·(−γ(1+
∑n
j=1 sj)) ·GAx , Hδ)

(10)

To balance γδsi, the
∑n
i=1 δsir term must meet η · (−γ(1 +

∑n
j=1 sj)) to

cancel out, and therefore η = r. This leads to:

e(A,B) = e(Gα, Hβ)

× e(G
∑n
i=1 yi(x)·mi ·G

∑
i=n+1lyi(x)·φi , Hγ)× e(GAx , Hδ)

(11)

When observing equation 11 above, G
∑n
i=1 yi(x)·mi · G

∑
i=n+1lyi(x)·φi can

be combined into G
∑
i=1naiyi(x), since m1, · · · ,mn and φn+1, · · · , φl are Φ∗ =

{a1, · · · , al}. This let equation 11 equivalent to the verification of the original
pairing-based SNARK [Gro16] for the proof elements (A,B,C = GAx) and Φ∗.
If (M, Φ̂∗, w) 6∈ R, then there exists mi or φi which is not in the relation, but
passes the verification of [Gro16]. This breaks the soundness of the SNARK,
which concludes the proof as below:

∴ Pr[(M, Φ̂∗, w) 6∈ R] = Advsound
Πsnark,C,χC (λ)

6.3 Rerandomizability

In this section, we show that a new rerandomized proof and ciphertext π′, CT ′
takes a same distribution as the original proof and ciphertext π, CT with a fresh
random, which can assure the security of rerandomized proofs. The rerandom-
ization of CT to CT ′ is as follows:
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CT = (Xr
0 , X

r
1G

m1
1 , · · · , Xr

nG
mn
n , P r1

n∏
j=1

Y
mj
j )

r′
$← Z∗p

CT ′ = (Xr
0 ·Xr′

0 , X
r
1G

m1
1 ·Xr′

1 , · · · , Xr
nG

mn
n ·Xr′

n , P
r
1

n∏
j=1

Y
mj
j · P r

′

1 )

∴ CT ′ = (Xr+r′

0 , Xr+r′

1 Gm1
1 , · · · , Xr+r′

n Gmnn , P r+r
′

1

n∏
j=1

Y
mj
j )

It is easy to see that CT ′ is a valid ciphertext with a fresh random r + r′.

For the rerandomization of π = (A,B,C) to π′ = (A′, B′, C ′), it is nec-
essary to show that the original proof and the rerandomized proof are both
within a uniform distribution. Let us decompose the proof elements (A,B,C) to
(Ga, Hb, Gc) as its original form (random r from SAVER denoted as r∗ to avoid
the duplication):

a = α+

m∑
i=0

aiui(x) + rδ b = β +

m∑
i=0

aivi(x) + sδ

c =

∑m
i=l+1 aiyi + h(x)t(x)

δ
+As+Br − rsδ − γ · (1 +

n∑
j=1

sj)r
∗

Observe that the randomness of a depends on r, and the randomness of b
depends on s. The randomness of c is determined by a and b; if a and b is gener-
ated appropriately, c is automatically determined within a uniform distribution.
Therefore, it is sufficient to show that a′ and b′ from the rerandomized proof are
appropriate randoms. When representing (A,B,C) as (Ga, Hb, Gc), the a′, b′, c′

in the rerandomized proof (Ga
′
, Hb′ , Gc

′
) are:

a′ = a · z1 b′ = b · z−11 + δ · z2 c′ = c+ a · z1z2 − γ · (1 +

n∑
j=1

sj)r
∗′

It is straightforward that a′ and b′ are within a uniform distribution, where
a′ depends on a fresh random z1, and b′ depends on a fresh random z2. Since
a′ and b′ are appropriate randoms, we can conclude that c′ is also determined
within a uniform distribution.

6.4 Decryption Soundness

In this section, we prove the soundness of the decryption proof ν in Verify Dec,
indicating that there cannot exist any ν∗ which is connected to the wrong ci-
phertext but still passes the Verify Dec.
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Theorem 3. In our SAVER scheme, there cannot exist any (M∗, ν∗, CT ∗) where
ν∗ verifies, but Dec(CT ∗) 6= M∗.

Let us violate the theorem and assume that there exists (M∗, ν∗, CT ∗) where
ν∗ verifies, but Dec(CT ∗) 6= M∗. More specifically, for CT ∗ = (c∗0, · · · , ψ∗) and
M∗ = (m∗1, · · · ,m∗n) there exists a block c∗j which is not decrypted to m∗j for
any j ∈ {1, · · · , n} while ν∗ passes the verifications in Verify Dec.

Since the decryption proof ν∗ verifies, the 2nd equation of Verify Dec holds
as follows:

e(c∗j , Vn+j)

e(ν∗, Vj)
= e(Gj , Vn+j)

m∗j (12)

However, since Dec(CT ∗) 6= M∗,

e(c∗j , Vn+j)

e(c∗0, Vj)
ρ
6= e(Gj , Vn+j)

m∗j (13)

When comparing equations 12 and 13, the only difference between two equa-
tions are e(ν∗, Vj) and e(c∗0, Vj)

ρ: therefore ν∗ 6= (c∗0)ρ.
However, this contradicts the first equation of Verify Dec:

e(ν∗, H) = e(c∗0, V0)

∴ ν∗ = (c∗0)ρ
(14)

Therefore, we conclude that there cannot exist any (m∗, ν∗, CT ∗) where ν∗

verifies and Dec(CT ∗) 6= M∗.

7 Vote-SAVER

We present a formal protocol for the voting system application in section 1.1,
named as Vote-SAVER. As described in the scenario, the Vote-SAVER consists
of series of interactions between multiple administrators and multiple voters,
with utilizing the SAVER in section 5 as a building block. For the additional
building blocks, we use the publicly-available BlockChain, a collision-resistant
hash function H, membership test functions MerkleTree, GetMerklePath,
GetMerkleRoot from Zerocash [BCG+14]. Note that sn, rt,path are also from
the membership test, where sn is a serial number, rt is a Merkle root, and path
is a vector of co-paths for constructing the Merkle tree. We use ID for each
user’s identity, and eid to distinguish each individual election.

Algorithm 3 represents a series of functions for the voter’s side, algorithm 4
represents a function (possibly smart-contract) for the BlockChain nodes, and
algorithm 5 represents functions for the administrator. For the scenario, the
election proceeds as follows.

Phase 0: init system. Before running the system, the CRS should be generated
from InitSystem. To be more accurate, this should be done by a trusted third
party or by a general consensus, rather than an individual administrator. Then,
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Algorithm 3 Voting system voter

GenKey(1κ, ID) :

sk
$← {0, 1}κ

skID ← ID||sk
pkID = H(skID)
return skID to voter
publish pkID

Vote(CRS,PKeid, eid, rt,pklist,M, pkID, skID) :

path← GetMerklePath(pkID,pklist)
sn← H(eid ‖ skID)
π, CT ← SAVER.Enc(CRS,PKeid,M, eid, sn, rt;path, skID)
send ballot = {eid, sn, π, CT } to BlockChain network

VerifyVote(CRS, π′ID, CT ′ID, eid, rt) :

sn← H(eid ‖ skID)
assert SAVER.Verify Enc(CRS, π′ID, CT ′ID, eid, sn, rt) = true

VerifyTally(CRS,PKeid, V Keid, {CT ′IDi}
N
i=1,Msum, ν) :

CT ′sum = CT ′ID1
◦ · · · ◦ CT ′IDN

assert SAVER.Verify Dec(CRS,PKeid, V Keid,Msum, ν, CT ′sum) = true

Algorithm 4 Voting system nodes

PostVote(CRS,PKeid, rt, ballot) :

parse ballot = {eid, sn, π, CT }
assert sn 6∈ BlockChain
assert SAVER.Verify Enc(CRS, π, CT , eid, sn, rt) = true
π′, CT ′ ← SAVER.Rerandomize(PKeid, π, CT )
upload (eid, sn, π′, CT ′) on BlockChain

every voter who participates in the system runs GenKey to generate his own
skID and publish his pkID.

Phase 1: open election. If an administrator wants to open an election, she first
selects a list of participants for the election by collecting pkID of each voter.
Then she opens an election distinguished as eid, by calling Election.

Phase 2: cast vote. After the election eid is initiated, a voter can run Vote to
cast a vote, by sending the transaction ballot to the BlockChain network. The
BlockChain node runs PostVote to verify the proof, rerandomize the ballot, and
post the rerandomized ballot on the BlockChain (the posting can be realized
as mining of the block). Then, the voter runs VerifyVote with taking the posted
ballot of sn as an input, to ensure the individual verifiability.

Phase 3: tally results. When the election is over, the administrator runs Tally
with collecting posted ballots as inputs, to publish the result of the election eid.
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Algorithm 5 Voting system administrator

relation(m1, . . . ,mn, e, sn, rt; path, skID) :

pkID ← H(skID)
rt←MerkleTree(path, pkID)
sn← H(e ‖ skID)
assert mi ∈ {0, 1} for i = 1 to n
assert

∑n
i=1mi = 1

InitSystem(relation) :

CRS ← SAVER.Setup(relation)
upload CRS on BlockChain

Election(CRS, 1κ, {pkIDi}Ni=1) :

pklist← {pkIDi}Ni=1 for total N voters
rt← GetMerkleRoot(pklist)

eid
$← {0, 1}κ

SKeid, PKeid, V Keid ← SAVER.KeyGen(CRS)
return SKeid to admin
upload pklist, PKeid, V Keid, eid, rt on BlockChain

Tally(CRS, SKeid, V Keid, {CT ′i}Ni=1) :

CT ′sum = CT ′1 ◦ · · · ◦ CT ′N
Msum, ν ← SAVER.Dec(CRS, SKeid, V Keid, CT ′sum)
publish (Msum, ν)

Then all the observers can run VerifyTally to ensure the universal verifiability of
the result.

7.1 Midterm Audit

In the proposed Vote-SAVER, the administrator can decrypt the ballots and
audit the ongoing election results. In certain circumstances, it may even be nec-
essary to prevent such midterm audits. This problem occurs because there is a
single administrator who fully holds the decryption key ρ. It can be prohibited
by introducing multi-administrators. Unless all administrators collude, auditing
the ongoing result is not possible. For the ciphertext for which all administra-
tors provide the decryption information or ν in algorithm 2, the decryption is
applicable.

Assume that there are c administrators. Each administrator ADi chooses
ρi randomly at KeyGen. And then each ADi publishes V Ki which is based on
ρi instead of ρ. Then V K becomes

∏c
i=1 V Ki. At Dec, each ADi publishes

νi = (
∏q
j=p ci,0)ρi . By combining νi, everyone computes ν =

∏c
i=1 νi. Using ν,

the plaintext is decrypted from the summed ciphertext.
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8 Experiment

We implement the proposed SAVER, with respect to the voting relation which
is described in section 7. In the relation, Ajtai hash function is adopted as a hash
function [Ajt96, KZM+15a] and the tree height is 16. The experiment results are
measured on the Ubuntu 18.04 machine with Intel-i5 (3.4GHz) quad-cores and
24GB memory. For the zk-SNARK, we utilized the libsnark [SL14] library.

Table 1: Execution times and parameter sizes in the Vote-SAVER. ref. |M | = message
size, |m| = 4 bits, Πsnark = [Gro16]

time
|M | (bits)

size
|M | (bits)

256 512 1024 2048 256 512 1024 2048

Setup 2.67s 2.67s 2.69s 2.72s CRS 16MB 16MB 16MB 16MB

KeyGen 0.01s 0.02s 0.04s 0.09s SK 32B

Enc (sep) 1.6ms 2.4ms 7.4ms 8.8ms PK 1246B 2321B 4465B 8753B

Πsnark.Prove 0.73s 0.73s 0.73s 0.74s V K 1126B 2184B 4296B 8520B

Verify Enc 8.2ms 12.7ms 21.7ms 39.8ms CT 477B 749B 1293B 2381B

Dec 37.7ms 75.2ms 149.7ms 300.4ms π 128B

Verify Dec 14.8ms 28.3ms 55.5s 110.1ms ν 32B

Rerandomize 0.02ms 0.03ms 0.04ms 0.06ms

Table 1 shows the execution time for each algorithm, and size for the param-
eters. We vary the message size from 256 bits to 2048 bits, where the message is
a ballot for list of candidates. For instance, an integer vote in which 4 bytes data
is used for each candidate can represent 8 candidates. We fix the message block
size as |m| = 32bits for all message spaces. For example, 256-bit M consists of 8
blocks of messages. The block size determines the ciphertext size and decryption
time. A larger block size can yield less number of total blocks, which leads to
less number of ciphertext blocks to decrease the ciphertext size. However, as a
trade-off, it increases the decryption time due to the increased computation of
discrete log search. Since we fix the block size, the decryption time is strictly
linear to the message size which determines the number of message blocks.

The Enc in SAVER consists of a normal encryption and Πsnark.Prove for the
voting relation (i.e. membership tests and range checks); Enc (sep) is a separated
time for the normal encryption. The zk-SNARK proving time takes 0.74s, which
is dominant in the total encryption time, while the normal encryption takes
less than 8ms for |M | = 2048bits. In the SAVER, the number of elements for
PK, V K and CT is determined by the number of message blocks. Therefore it is
shown in the result that PK, V K, CT size increases along with the message size.
For the fixed relation, CRS size remains as 16MB for all message sizes, which is
practical to be stored in the portable devices.
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9 Conclusion

This paper proposes SAVER: Snark-friendly, Additively-homomorphic, and Ver-
ifiable Encryption and decryption with Rerandomization, which is universal
verifiable encryption achieved from connecting zero-knowledge succinct non-
interactive arguments of knowledge (zk-SNARK) and verifiable encryption. The
proposed SAVER satisfies many useful functionalities. It is snark-friendly, to be
compatible with the pairing-based zk-SNARKs. It is additively-homomorphic,
so that the ciphertexts can be merged additively. It is a verifiable encryption,
which can prove arbitrary properties of the message. It is a verifiable decryption,
which can prove validity of the decryption. It provides rerandomization, where
the ciphertext can be rerandomized as a new encryption. The security of the
proposed SAVER is formally proved.

This paper also represents a Vote-SAVER achieved by applying the proposed
SAVER, which satisfies the ideal properties required by voting systems. The
Vote-SAVER satisfies receipt-freeness, eligibility verifiability, individual verifia-
bility, and universal verifiability altogether, which resolves long-lasting problem
on the conflict between receipt-freeness and individual verifiability. The experi-
ment results show that the proposed SAVER yields the encryption time of 8.8ms
excluding proving time and the CRS size of 16MB for 2048-bit message, which
is very practical compared to the encryption-in-the-circuit approach.
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