
Round-optimal Verifiable Oblivious
Pseudorandom Functions from Ideal Lattices

Martin R. Albrecht1, Alex Davidson2, Amit Deo1, and Nigel P. Smart3,4

1 Information Security Group, Royal Holloway, University of London
2 Cloudflare Portugal

3 COSIC-imec, KU Leuven, Belgium
4 Dept. Computer Science, University of Bristol, UK

martin.albrecht@royalholloway.ac.uk, adavidson@cloudflare.com,

amit.deo.2015@rhul.ac.uk, nigel.smart@kuleuven.be

Abstract. Verifiable Oblivious Pseudorandom Functions (VOPRFs) are
protocols that allow a client to learn verifiable pseudorandom function
(PRF) evaluations on inputs of their choice. The PRF evaluations are
computed by a server using their own secret key. The security of the pro-
tocol prevents both the server from learning anything about the client’s
input, and likewise the client from learning anything about the server’s
key. VOPRFs have many applications including password-based authen-
tication, secret-sharing, anonymous authentication and efficient private
set intersection. In this work, we construct the first round-optimal (on-
line) VOPRF protocol that retains security from well-known lattice hard-
ness assumptions. Our protocol requires constructions of non-interactive
zero-knowledge arguments of knowledge (NIZKAoK). For analogues of
Stern-type proofs in the lattice setting, we show that our VOPRF may be
securely instantiated in the quantum random oracle model. We construct
such arguments as extensions of prior work in the area of lattice-based
zero-knowledge proof systems.

1 Introduction

A verifiable oblivious pseudorandom function (VOPRF) is an interactive proto-
col between two parties; a client and a server. Intuitively, this protocol allows a
server to provide a client with an evaluation of a pseudorandom function (PRF)
on an input x chosen by the client using the server’s key k. Informally, the secu-
rity of a VOPRF, from the server’s perspective, guarantees that the client learns
nothing more than the PRF evaluated at x using k as the key. Security from the
perspective of the client guarantees the two conditions below:

1. the server learns nothing about the input x;

2. the client’s output in the protocol is indeed the evaluation on input x and
key k.

The second property makes the protocol a verifiable oblivious PRF. If we were
to remove this second requirement, the protocol would be an oblivious pseu-
dorandom function (OPRF). From a multi-party computation perspective, an
OPRF can be seen as a protocol that securely achieves the functionality g(x, k) =
(Fk(x),⊥) where F is a PRF and ⊥ indicates that the server receives no output.
(V)OPRFs have numerous applications including secure keyword search [25],
private set intersection [34], secure data de-duplication [35], password-protected
secret sharing [31,32], password-authenticated key exchange (PAKE) [33] and
privacy-preserving lightweight authentication mechanisms [19].

Many applications of (V)OPRFs have had recent and considerable real-world
impact. The work of Jarecki at al. [33] constructs a PAKE protocol, known
as OPAQUE, that can be integrated with TLS 1.3; the work of Davidson et
al. [19] constructs an authentication mechanism (known as Privacy Pass) for
anonymously bypassing Internet reverse Turing tests. The Privacy Pass proto-
col is currently used at scale by the web performance company Cloudflare [53].
Both schemes use discrete-log (DL) based (V)OPRF constructions that produce
notably performant protocols. In addition, there is an ongoing (V)OPRF stan-
dardisation effort being carried forward by the Crypto Forum Research Group
(CFRG) at the Internet Engineering Task Force (IETF) [20]. The aim of this
effort is to crystallise the design of performant DL-based OPRF constructions
for usage as primitives in wider protocols. The OPAQUE protocol is also up for
standardisation as a candidate in the CFRG PAKE selection process [36].

Unfortunately, and in spite of the practical value of VOPRFs, all of the available
constructions in the literature to date are based on classical assumptions such
as decisional Diffie-Hellman (DDH) and RSA. This means that all current VO-
PRFs would be insecure when confronted with an adversary that can run quan-
tum computations. Therefore, the design of a post-quantum secure (V)OPRF
is required to ensure that the applications above remain secure in these future
adversarial conditions. In fact, for full post-quantum security, both the PRF and
the VOPRF protocol itself must be secure in the quantum adversarial model.
While PRF constructions with claimed post-quantum security do exist, it re-
mains an open problem to translate these into secure (V)OPRF protocols.

Constructions of PRFs arising from lattice-based cryptography have been known
since the original work of Banerjee, Peikert and Rosen [4]. These construc-
tions are post-quantum secure assuming the hardness of the learning with errors
(LWE) problem against quantum adversaries. To get around the fact that the
LWE problem involves the addition of random small errors, carefully chosen
rounding is used to obtain deterministic outputs for PRFs based on the LWE
assumption [4,10,3]. These earlier works on LWE-based PRFs were followed by
constructions of more advanced variants of PRFs [16,14,48]. Despite this, there

2

is yet to be an OPRF protocol for any LWE-based PRF. The same is true for
variants of these constructions that are based on the ring LWE (RLWE) prob-
lem [3].

Contributions. In this work we instantiate a round-optimal5 VOPRF whose
security relies on hardness assumptions over lattices. Our basic VOPRF design
and proof assumes certain non-interactive zero knowledge arguments of knowl-
edge (NIZKAoKs). With the goal of creating an example instantiation of the
required NIZKAoKs, we adapt the usage of Stern’s protocol to argue knowledge
of the input and (small) key to a PRF evaluation from the Banerjee and Peikert
design [3] (henceforth BP14) in the ring setting. These same techniques may
also be used to prove in zero knowledge that a batch of RLWE samples all share
the same secret. Note that using a post-quantum secure commitment scheme
within Stern’s protocol implies that the zero-knowledge arguments are also post-
quantum. To obtain non-interactive arguments, we rely on the validity of the
Fiat-Shamir transform in the quantum random oracle model QROM [22,41].

We stress that our results show the feasibility of round-optimal VOPRF proto-
cols based on lattice assumptions rather than practicality. Our construction is
unlikely to represent a practically performant VOPRF due to the required size
of parameters. These parameter sizes are necessary for instantiating our con-
struction whilst ensuring that the underlying lattice assumptions are reasonable
– a consequence of using the BP14 PRF construction with the proof technique
we employ. In addition, we require heavy zero-knowledge proof computations for
ensuring that neither participant deviates from the protocol. As future work,
there may be potential for adaptations of more efficient zero knowledge tech-
niques [11,54] to replace our Stern proofs. One major difficulty in doing this is
the fact that these more efficient techniques assume a particular form of q that
appears incompatible with our VOPRF security proof [42,23,12].

Technical Overview. We design a VOPRF for a particular instantiation of
the BP14 PRF in the ring setting. Specifically, for a particular function aF :
{0, 1}L → R1×ℓ

q where Rq := Zq[X]/⟨Xn + 1⟩, we want to design a VOPRF for
the PRF

Fk(x) =

⌊
p

q
· aF (x) · k

⌉
where the key k ∈ Rq has small coefficients when represented in {−q/2, . . . , q/2}.
As mentioned above, the security of this construction can be reduced to the hard-
ness of RLWE. Consider the PRF for 2-bit inputs: then aF (x) = a1 · G−1 (a2)
where a1,a2 ∈ R1×ℓ

q are uniform, G = (1, 2, . . . , 2ℓ−1) and G−1 (a2) ∈ Rℓ×ℓ
2 is

binary. Informally, for small e, e′′ ∈ R1×ℓ
q , uniform e′ ∈ R1×ℓ

q /(Rq · G) and q

5 Meaning that only two messages are sent in the online (query) phase.

3

much larger than p, we can write⌊
p

q
· aF (x) · k

⌉
=

⌊
p

q
k · a1 ·G−1(a2)

⌉
=

⌊
p

q
(k · a1 + e) ·G−1(a2)

⌉
≈c

⌊
p

q
(u) ·G−1(a2)

⌉
(RLWE)

=

⌊
p

q
(u′G+ e′) ·G−1(a2)

⌉
=

⌊
p

q
(u′a2 + e′′) +

p

q
e′ ·G−1(a2)

⌉
≈c

⌊
p

q
u′′ +

p

q
e′ ·G−1(a2)

⌉
(RLWE)

=

⌊
p

q
ũ

⌉
where u,u′′, ũ are uniform in R1×ℓ

q and u′ is uniform in Rq.

To provide intuition for our VOPRF design, we describe a basic protocol below
that serves as a starting point. We assume that zero knowledge proofs of each
message are implicitly provided to ensure that the protocol is followed.

1. The server publishes some commitment to a small key k ∈ Rq.
2. On input x, the client picks invertible s ∈ Rq, small e ∈ R1×ℓ

q and sends

cx = aF (x) · s+ e.
3. On input small k ∈ Rq, the server sends dx = cx · k+ e for small e′ ∈ R1×ℓ

q .

4. The client outputs y =
⌊
p
q · dx · s−1

⌉
.

For server security, note that dx = aF (x) · s · k + e · k + e′. Suppose that
we choose e′ from a distribution that hides addition of terms e · k and es · s
(where es is identically distributed to e). Then, from the perspective of the
client, the server might as well have sent dx = (aF (x) · k + es) · s+ e′. Picking
es (and e) from an appropriate distribution [3] makes the term in brackets i.e.
aF (x) · k + es computationally indistinguishable from uniform random under a
RLWE assumption. This implies that the message dx leaks nothing about the
server’s key k.

For client security in the first message, we pick s from a valid RLWE secret
distribution and e from the same distribution as that of es. Similarly to the
above, this implies that cx = aF (x) · s + e is indistinguishable from uniform.
Finally, we must show that the client does indeed recover Fk(x) as its output y.
For correctness, we would like to say that⌊

p

q
· dx · s−1

⌉
=

⌊
p

q
· aF (x) · k + p

q
(e · k · s−1 + e′ · s−1)

⌉
=

⌊
p

q
· aF (x) · k

⌉
.

Thus, we guarantee correctness if all coefficients of p
q · a

F (x) · k are at least∣∣∣pq (e · k · s−1 + e′ · s−1
)∣∣∣
∞

away from Z+ 1
2 . It turns out that if all coefficients

4

of s−1 are small, then this condition is satisfied with extremely high probability
due to the 1-dimensional short integer solution (1D-SIS) assumption [15]. The
form of aF (x) is crucial to the connection with the 1D-SIS problem. In particular,
we rely on the fact that we can decompose aF (x) as a′1 · a′2 where a′1 ∈ R1×ℓ

q

is uniform random and a′2 ∈ Rℓ×ℓ
q has entries that are polynomials with binary

coefficients.

Unfortunately, this simplified protocol cannot quite be realised using standard
RLWE secret distributions. The problem is that (to our knowledge) there is
no standard RLWE secret distribution where samples from the distribution are
guaranteed to have small inverses in Rq. To overcome this issue, we apply a
technique for sampling “full” NTRU keys [30,50]. Firstly, we sample small ring
elements s and t from a Gaussian distribution. Secondly, we use the extended
GCD algorithm – in combination with Babai’s rounding algorithm – to recover
small u and v, such that u · s+ v · t = 1 mod Rq. To adapt the basic protocol to
our actual protocol, the client sends c1x = aF (x) · s+ e1, c

2
x = aF (x) · t+ e2 and

receives back

d1
x = c1x · k + e′1, d2

x = c2x · k + e′2.

The final output is then
⌊
p
q

(
u · d1

x + v · d2
x

)⌉
. In addition, the real protocol incor-

porates zero knowledge arguments of knowledge (that we show are instantiable
based on adaptations of Stern’s protocol) to prevent malicious parties from de-
viating from the protocol description.

Ultimately, the security of our VOPRF construction (using the Stern-style proofs)
holds in the QROM and relies on the hardness of RLWE and 1D-SIS which are
both at least as hard as certain lattice problems using appropriate parameters.
We discuss asymptotic parameter settings for which our protocol relies directly
on assumed hard lattice problems in Section 5.

Road map. We begin with preliminaries in Section 2. We draw attention to
Definition 1 which deviates from the usual MPC definition. In particular, we
argue security against malicious clients when k is sampled from a key distribution
for which the PRF is pseudorandom, rather than arguing security for arbitrary
fixed k. Next is the VOPRF construction (Section 3) followed by a high-level
description of the zero knowledge proof instantiations (Section 4). Finally we
give the security proof for our VOPRF protocol in Section 5.

Appendices. Our appendices consist of a more detailed account of our compu-
tational hardness assumptions (Appendix A) followed by a collection of miscella-
neous results (Appendix B) and more details of our zero knowledge instantiations
(Appendix C).

5

2 Preliminaries

All algorithms will be considered to be randomised algorithms unless explicitly
stated otherwise. A PPT algorithm is a randomised (i.e. probabilistic) algorithm
with polynomial running time in the security parameter κ. We consider the prob-
ability distribution of outputs of algorithms as being over all possible choices of
the internal coins of the algorithm. For a distribution D, we denote the sampling
of x according to distribution D by x← D. We write x← S for a finite set S to
indicate sampling uniformly at random from S. We use the notation D1 ≈c D2 to
mean the distributions D1 and D2 are computationally indistinguishable and ≈s

to denote statistical indistinguishability. We use the standard asymptotic nota-
tions. We let negl(κ) denote a negligible function (i.e. a function that is κ−ω(1))
and write r1 ≫ r2 as short-hand for r1 ≥ κω(1) · r2. We say a distribution D is
(B, δ)-bounded if Pr[∥x∥ ≥ B | x← D] < δ. If a distribution is (B, δ)-bounded
for a negligible δ, then we say that distribution is simply B-bounded.

In this work we will use power of two cyclotomic rings. In particular, for some
integer q, we will be considering polynomials in the power-of-two cyclotomic ring
R = Z[X]/⟨Xn + 1⟩ and Rq := R/qR where n is a power-of-two. R≤c is the set
of elements of R where all coefficients have an absolute value at most c. We also
use a rounding operation from Zq to Zq′ where q

′ < q. For x ∈ Zq, this rounding
operation is defined as

⌈x⌋q′ := ⌈(q′/q) · x⌋

where ⌈·⌋ denotes rounding to the nearest integer (rounding down in the case
of a tie). If q′ divides q, we can lift rounded integers back up to Zq by simply
multiplying by q/q′. Note that lifting the result of a rounding takes an x ∈ Zq to
the nearest multiple of q/q′. Therefore, the difference between x and the result
of this rounding then lifting is at most q/(2 · q′). Polynomials and vectors are
rounded component-wise. We write ∥·∥ for the Euclidean norm and ∥·∥∞ for the
infinity norm. We define the norms of ring elements by considering the norms of
their coefficient vectors. Vectors whose entries are ring elements will be denoted
using bold characters and integer vectors will be indicated by an over-arrow e.g.
v has ring entries and #»w has integer entries. Suppose v = (v1, . . . , vn). A norm
of v is the norm of the vector obtained by concatenating the coefficient vectors
of v1, . . . , vn.

Gaussian distributions. For any σ > 0, define the Gaussian function on Rn

centred at c ∈ Rn with parameter σ to be:

∀x ∈ Rn, ρσ,c(x) = e−π·∥x−c∥
2/σ2

.

Define ρσ(Z) :=
∑

i∈Z ρσ(i). The discrete Gaussian distribution over Z, denoted
χσ assigns probability ρσ(i)/ρσ(Z) to each i ∈ Z and probability 0 to each non-
integer point. The discrete Gaussian distribution over R, denoted as R(χσ),
is the distribution over R where each coefficient is distributed according to χσ.

6

Using the results of [26,13], χσ can be sampled in polynomial time. Moreover the
Euclidean norm of a sample from R(χσ) can be bounded using an instantiation
of Lemma 1.5 of [2]. We state this lemma next.

Lemma 1. Let σ > 0 and n = poly(κ). Then

Pr
[
∥x∥ ≥ σ

√
n
∣∣ x← R(χσ)

]
< negl(κ) .

In addition, following the same reasoning as in [21] we have the following “drown-
ing/smudging” lemma.

Lemma 2. Let σ > 0 and y ∈ Z. The statistical distance between χσ and χσ+y
is at most |y|/σ.

2.1 Verifiable Oblivious Pseudorandom Functions

Recall that the main goal of our work is to build a verifiable oblivious pseu-
dorandom function (VOPRF). A VOPRF is a protocol between two parties: a
server S and a client C, securely realising the ideal functionality in Figure 1.
The functionality consists of two phases, the initialisation phase and the query
phase. In the event that the functionality FVOPRF receives an input k from party
S (i.e. the server) during the initialisation phase, it stores the key for use during
the query phase. This models a server in a real protocol committing to a PRF
key k. Next comes the query phase, where the client C sends some value x to
FVOPRF. Once this value x has been received, the server S either sends the func-
tionality an instruction to abort or to deliver the value y = Fk(x) to C. Finally,
the functionality carries out this instruction. Importantly, (assuming that no
abort is triggered) the client has the guarantee that its output is indeed Fk(x)
i.e. the output of the client is verifiably correct when interacting with FVOPRF.

This is a two party functionality between a server S and a client C. We assume
there is a fixed PRF function defined by Fk(x).

Init: On input of init from both parties the functionality waits for an input k
from party S. If S returns abort then the functionality aborts. Otherwise the
functionality stores the value k.

Query: On input of (query, x) from the client C, if x ̸=⊥ then functionality waits
for an input from party S. If S returns deliver then the functionality sends
y = Fk(x) to party C. If S returns abort then the functionality aborts.

Figure 1. The Ideal Functionality FVOPRF

7

We now describe the distributions that arise in the security requirement. We con-
sider malicious adversaries throughout that behave arbitrarily. We begin with
the distributions of interest when a server has been corrupted. First, we con-
sider a “real” world protocol Π between C(x) and S(k) along with an adver-
sary A. We denote realΠ,A,S(x, k, 1

κ) to be the joint output distribution of A(k)
when corrupting S(k) and C(x) where C(x) behaves as specified by Π. In this
setting, A interacts directly with C. Now we introduce a simulator denoted
Sim that lives in the “ideal” world. Specifically, still assuming A corrupts a
server, Sim interacts with A on one hand and with C(x) via FVOPRF on the other
hand. Considering this setting, for any client/server input pair (x, k), we define
idealFVOPRF,Sim,A,S(x, k, 1

κ) to be the joint output distribution of A(k) and the
honest client C(x) when A(k) interacts via Sim. Informally, one may interpret
Sim as an attacker-in-the-middle between A and the outside world that inter-
acts with FVOPRF external to the view of A. Security will argue that whatever A
can learn/affect in the real protocol can be emulated via Sim in the ideal world
setting.

Next, we describe the distributions of interest when a client has been corrupted
by an adversary A. We let K denote the key distribution under which PRF
security of F holds. First, consider a “real” world case where A corrupts C(x)
and directly interacts with honest S(k) which follows the specification of protocol
Π. In this case, we use realΠ,A,C(x,K, 1κ) to denote the joint output distribution
of A(x) and S(k) where k ← K. Now consider an alternative “ideal” world case
where we introduce a simulator Sim interacting with A on one hand and with
S(x) via FVOPRF on the other hand. Once again, one may wish to interpret the
simulator as an attacker-in-the-middle interacting with FVOPRF external to the
view ofA. In this alternative case, we denote the joint output distribution ofA(x)
and S(k) where A interacts via Sim and k ← K as idealFVOPRF,Sim,A,C(x,K, 1κ).

Finally, for protocol Π, let output(Π,x, k) denote the output distribution of a
client with input x running protocol Π with a server whose input key is k.
Using the notation established above, we are ready to present our definition of
a VOPRF.

Definition 1. A protocol Π is a verifiable oblivious pseudorandom function if
all of the following hold:

1. Correctness: For every pair of inputs (x, k),

Pr[output(Π,x, k) ̸= Fk(x)] ≤ negl(κ) .

2. Malicious server security: For any PPT adversary A corrupting a server,
there exists a PPT simulator Sim such that for every pair of inputs (x, k):

idealFVOPRF,Sim,A,S(x, k, 1
κ) ≈c realΠ,A,S(x, k, 1

κ).

8

3. Average case malicious client security: For any PPT adversary A cor-
rupting a client, there exists a PPT simulator Sim such that for all client
inputs x:
– idealFVOPRF,Sim,A,C(x,K, 1κ) ≈c realΠ,A,C(x,K, 1κ).
– If A correctly outputs Fk(x) with all but negligible probability over the

choice k ← K when interacting directly with S(k) using protocol Π, then
A also outputs Fk(x) with all but negligible probability when interacting
via Sim.

We now discuss this definition. Note that the correctness and malicious server
security requirements are the standard ones used in MPC. Therefore, we restrict
this discussion to the condition that we call average case malicious client security.
The motivation for this non-standard property is that an honest server will
always sample a key from distribution K as it wishes to provide pseudorandom
function evaluations. In particular, PRF security holds with respect to this key
distribution K. Therefore, it makes sense to ask what a malicious client may
learn/affect only in the case where k ← K which leads to the first point of
our average case malicious client security requirement. The second point of the
requirement captures the fact that adversaries may have access to an oracle that
checks whether the PRF was evaluated correctly or not. Suppose that we give
the adversary A access to an oracle which can check an input/output pair to
the PRF is valid or not. Then A should not be able to distinguish whether
it is interacting with a real server S or a simulation Sim. Note that our proof
structure relies heavily on our alternative malicious client security definition. In
particular, the definition above allows us to argue over the entropy of secret keys
when making indistinguishability claims.

2.2 Computational assumptions

Here we present the presumed quantum hard computational problems that will
be used in our security proofs. Evidence that these problems are indeed quantum
hard follows via reductions from standard lattice problems (see Appendix A).
These reductions from lattice problems will be used when setting parameters for
our VOPRF. The first is the standard decisional RLWE problem [45].

Definition 2. (RLWE problem) Let q,m, n, σ > 0 depend on κ (q,m, n are
integers). The decision-RLWE problem (dRLWEq,n,m,σ) is to distinguish between:

(ai, ai · s+ ei)i∈[m] ∈ (Rq)
2

and (ai, ui)i∈[m] ∈ (Rq)
2

for ai, ui ← Rq; s, ei ← R(χσ).

We sometimes write dRLWEq,n,σ, leaving the parameter m (representing the
number of samples) implicit.

9

The second problem is slightly less standard. It is the short integer solution
problem in dimension 1 (1D-SIS). The following formulation of the problem
was used in [15] in conjunction with a lemma attesting to its hardness. See
Appendix A for more details.

Definition 3. (1D-SIS, [15, Definition 3.4]) Let q,m, t depend on κ. The one-
dimensional SIS problem, denoted 1D-SISq,m,t, is the following: Given a uniform
v ← Zm

q , find z ∈ Zm
p′ such that ||z||∞ ≤ t and ⟨v,z⟩ ∈ [−t, t] + qZ.

2.3 Non-interactive zero-knowledge arguments of knowledge

The foundations of zero-knowledge (ZK) proof systems were established in a
number of works [24,29,28,9]. At a high level, a ZK proof system for language L
allows a prover P to convince a verifier V that some instance x is in L, without
revealing anything beyond this statement. Further, a ZK argument of knowledge
(ZKAoK) system allows P to convince V that they hold a witness w attesting to
the fact that x is in L (where the L is defined by a relation predicate PL(x,w)).

Definition 4. (NIZKAoK) Let P be a prover, let V be a verifier, let L be a
language with accompanying relation predicate PL(·, ·). Let WL(x) be a generic
set of witnesses attesting to the fact that x ∈ L, i.e. ∀x ∈ L, and w ∈ WL(x) we
have PL(x,w) = 1. Let nizk = (Setup,P,V) be a tuple of algorithms defined as
follows:

– crs← nizk.Setup(1κ): outputs a common random string crs
– π ← nizk.P(crs, x, w): on input crs, a word x ∈ L and a witness w ∈ WL(x);

outputs a proof π ∈ {0, 1}poly(κ)
.

– b← nizk.V(crs, x, π): on input crs, a word x ∈ L and a proof π ∈ {0, 1}poly(κ)
;

outputs b ∈ {0, 1}.

Definition 5. (NIZKAoK Security) We say that nizk is a non-interactive zero-
knowledge argument of knowledge (NIZKAoK) for L if the following holds.

1. (Completeness): Consider x ∈ L and w ∈ WL(x), where PL(x,w) = 1.
Then:

Pr
[
1← nizk.V(crs, x, π)

∣∣∣crs←nizk.Setup(1κ)
π←nizk.P(crs,x,w)

]
≥ 1− negl(κ) .

2. (Computational knowledge extraction): The proof system satisfies computa-
tional knowledge extraction with knowledge error κ̄ if, for any PPT prover

10

P∗ with auxiliary information aux, the following holds. There exists a PPT
algorithm nizk.Extract and a polynomial p such that, for any input x, then:

Pr[1← PL(x,w
′)|w′ ← nizk.Extract(P∗(crs, x, aux))] ≥ ν − κ̄

p(|x|)

is satisfied, where ν is the probability that nizk.V(crs, x,P∗(crs, x, aux)) out-
puts 1.

3. (Computational zero-knowledge): There exists a simulated setup algorithm
nizk.SimSetup(1κ) outputting crsSim and a trapdoor T along with a PPT al-
gorithm nizk.Sim(crsSim, T , x) satisfying{
crs←nizk.Setup(1κ)
π←nizk.P(crs,x,w)

}
≈c

{ crsSim
πSim←nizk.Sim(crsSim,T ,x)

∣∣(crsSim, T)← nizk.SimSetup(1κ)
}

∀x ∈ L and w ∈ WL(x).

Interactive proof systems. An interactive proof system is one where the
proving algorithm (P) requires interaction with the verifier. Such an interaction
could be an arbitrary protocol, with many message exchanges, but a typical
(in the honest verifier case) scenario is a three-move protocol consisting of a
commitment (from the prover), a uniformly chosen challenge (from the verifier)
and then a response (from the prover).

Fiat and Shamir [24] established a mechanism of switching a (constant-round)
honest verifier zero-knowledge interactive proof of knowledge into a non-interactive
zero-knowledge proof of knowledge in the random oracle model (ROM). In par-
ticular, the random challenge provided by the verifier is replaced with the output
of a random oracle evaluation taking as input the statement x and the provers
initial commitment. It was recently shown that the standard Fiat-Shamir trans-
form is also secure in the quantum ROM (QROM) [22,41].

2.4 Lattice PRF

We will use an instantiation of the lattice PRF from [3]. Below, we present
relevant definitions/results, all of which are particular cases of definitions/results
from [3]. We set ℓ = ⌈log2 q⌉ throughout. The construction from [3] makes use
of gadget matrices that can be found in many previous works [46,3,15,27].

Gadgets G,G−1. Define G : Rℓ×ℓ
q → R1×ℓ

q to be the linear operation corre-

sponding to left multiplication by (1, 2, . . . , 2ℓ−1). Further, define G−1 : R1×ℓ
q →

Rℓ×ℓ
q to be the bit decomposition operation that essentially inverts G i.e. the ith

column of G−1(a) is the bit decomposition of ai ∈ Rq into binary polynomials.

The PRF from [3] is defined as Fk(x) = ⌊ax · k⌉p for ax ∈ R1×ℓ
q as defined below.

11

Definition 6. Fix some a0,a1 ← R1×ℓ
q . For any x = (x1, . . . , xL) ∈ {0, 1}L.

We define ax ∈ R1×ℓ
q as

ax := ax1 ·G−1
(
ax2 ·G−1

(
ax3 ·G−1

(
. . .

(
axL−1

·G−1 (axL
)
))))

∈ R1×ℓ
q .

The pseudorandomness of this construction follows from the ring learning with
errors assumption.

Theorem 1 ([3]). Sample k ← R(χσ). If q ≫ p ·σ ·
√
L ·n · ℓ, then the function

Fk(x) = ⌊ax · k⌉p is a PRF under the dRLWEq,n,σ assumption.

When we eventually prove security of our VOPRF, it will be useful to define
a special error distribution such that ax · k + e remains indistinguishable from
uniform (under RLWE) when e is sampled from this special error distribution.
To this end, we introduce the distributions Ea0,a1,x,σ followed by a lemma that
is implicit in the pseudorandomness of the PRF from [3].

Definition 7. For a0,a1 ∈ R1×ℓ
q , define

ax\i := G−1
(
axi+1 ·G−1

(
axi+2 ·G−1

(
· · ·

(
axL−1

·G−1 (axL
)
)
· · ·

)))
∈ Rℓ×ℓ

q .

Furthermore, let Ea0,a1,x,σ be the distribution that is sampled by choosing ei ←
R(χσ)

1×ℓ
for i = 1, . . . , L and outputting

e =
L−1∑
i=1

ei · ax\i + eL.

Lemma 3 (Implicit in [3]). If a0,a1 ← R1×ℓ
q , e← Ea0,a1,x,σ and s← R(χσ),

then for any fixed x ∈ {0, 1}L,

(a0, a1, ax · s+ e)

is indistinguishable from uniform random by the dRLWEq,n,σ assumption.

In addition to introducing Ea0,a1,x,σ, it will be useful to write down an upper
bound on the infinity norm on errors drawn from this distribution. The following
lemma follows from the fact that for y ← χσ, ∥y∥∞ ≤ σ

√
n with all but negligible

probability by Lemma 1. In fact, we could use the result that ∥y∥∞ ≤ σnc′ with
probability at least 1−c ·exp(−πn2c′) for any constant c′ > 0 and some universal
constant c to reduce the upper bound, but we choose not to for simplicity.

Lemma 4 (Bound on errors). Let x ∈ {0, 1}L, ℓ = ⌈log2 q⌉ and n = poly(κ).
Samples from Ea0,a1,x,σ have infinity norm at most L · ℓ · σ · n3/2 with all but
negligible probability.

12

3 A VOPRF Construction From Lattices

In this section, we provide a construction emulating the DH blinding construction

ga = ((gr)
a
)
1/r

. In what follows, we will initially ignore the zero-knowledge
proofs establishing that all computations are performed honestly. A detailed
description of the protocol is in Figure 2 but the main high-level idea follows.

Recall that we are working with power-of-two cyclotomic rings. Informally, sup-
pose a client wants to obtain a · k + e ∈ Rq (where e is relatively small) from
a server holding a short k without revealing a ∈ Rq. One way to achieve this is
for the client to sample s, t, e0, e1 ← R(χσ). The client then also samples short
u, v such that u · s+ v · t = 1 ∈ Rq (we discuss how below). The client submits
a · s + e0 and a · t + e1 and obtains (a · s + e0) · k + e′0 and (a · t + e1) · k + e′1
from the server where e1, e

′
1 are small. Finally the client can compute:

r = u ·
(
(a · s+ e0) · k + e′0

)
+ v ·

(
(a · t+ e1) · k + e′1

)
= a · (u · s+ v · t) · k + u · e0 · k + u · e′0 + v · e1 · k + v · e′1
= a · k + u · e0 · k + u · e′0 + v · e1 · k + v · e′1
≈ a · k.

To compute tuples s, t, u, v such that u · s+ v · t = 1 and all elements are short,
we may use known techniques for sampling “full” NTRU private keys [30,50] on
input of (s, t) ∈ R2. From now on we use: res(·, ·) to refer to the computation
of the resultant of two polynomials; xgcd(·, ·) to refer to the computation of the
extended GCD of two integers; and s⋆ to refer to the conjugate of s in R. In
particular, fullNTRU(s, t) runs the following steps.

1. Compute rs = res(s,Xn + 1) ∈ Z and u′ ∈ R s.t. u′ · s = rs.
2. Compute rt = res(t,Xn + 1) ∈ Z and v′ ∈ R s.t. v′ · t = rt.
3. Compute r, u′′, v′′ = xgcd(rs, rt). If r ̸= 1: abort
4. Set u = u′′ · u′ ∈ R and v = v′′ · v′ ∈ R.
5. Run Babai’s inverting and rounding algorithm [1]:

(a) Compute

r =

⌊
v · s⋆ − u · t⋆

s · s⋆ + t · t⋆

⌉
.

(b) Update (u, v) = (u+ r · t, v − r · s) ∈ R2.
6. Return u, v.

Note that it might be significantly more efficient to implement rational arithmetic
using floating point arithmetic as in [50] which might entail repeatedly computing
r. Finally, using the same heuristic arguments as in [30, Appendix A], we may
expect the norm of u, v to satisfy ∥(u, v)∥ ≈

√
n/12 · ∥(s, t)∥. However, for the

13

CRS SetUp: To set up the CRS execute the following steps:
– Pick a0,a1 ← R1×ℓ

q

– crs0 contains a ∈ Rq

– crs1 and crs2 are for proof systems P1 and P2 respectively
Init: The initialization procedure is executed by the server S and the client C both

with initial input crs0.
1. The server S executes the following steps

– k, e← R(χσ).
– c← a · k + e mod q.
– π0 ← P0(k, e : crs0).

and sends (c, π0) to the client C.
2. On receipt of (c, π0) the client executes

– b← V0(crs0, c, π0).
– Output abort if b = 0, otherwise store c.

Query: This is a two round protocol between the client and the server, with the
client going first.
1. On input of (x ∈ {0, 1}L, crs1, crs2) the client C executes the following steps

– s, t← R(χσ).
– If fullNTRU(s, t) aborts: go back to previous step

else: (u, v)← fullNTRU(s, t).
– ax = ax1 ·G−1

(
· · ·

(
axL−1 ·G

−1 (axL)
)
· · ·

)
mod q.

– e1, e2 ← Ea0,a1,x,σ.
– c1x ← ax · s+ e1 mod q.
– c2x ← ax · t+ e2 mod q.
– π1 ← P1(x, s, t, e1,e2 : crs1, c

1
x, c

2
x,a0,a1).

and sends (c1x, c
2
x, π1) to the server S.

2. On receipt of (c1x, c
2
x, π1) the server S executes the following steps

– b← V1(crs1, c
1
x, c

2
x,a0,a1, π1).

– Output abort if b = 0
– e′

1, e
′
2 ← R(χσ′)1×ℓ.

– d1
x = c1x · k + e′

1 mod q.
– d2

x = c2x · k + e′
2 mod q.

– π2 ← P2(k, e
′
1, e

′
2, e : crs0, crs2, c,d

1
x,d

2
x, c

1
x, c

2
x).

and sends (d1
x,d

2
x, π2) to the client C.

3. On receipt of (d1
x,d

2
x, π2) the client C executes

– b← V2(crs0, crs2, c,d
1
x,d

2
x, c

1
x, c

2
x, π2).

– Output abort if b = 0.
– yx = ⌊u · d1

x + v · d2
x⌉p.

– Output yx.

Figure 2. VOPRF construction

14

purposes of our security proofs, we use the upper bound ||(u, v)||∞ ≤ nσ (see
Appendix B.2 for details).

Suppose we sample (s, t)← R(χσ)
2. Then there is a chance that s and t are not

co-prime, causing the above algorithm to abort. However, it is shown in Lemma
4.4 in the full version6 of [51] that discrete Gaussian s and t will be co-prime

with non-negligible probability as long as σ ≥ 7 · n3/2 · ln3/2(n). In addition,
an algorithm solving RLWE with two discrete Gaussian coprime secrets (s, t)
with non-negligible advantage would also solve RLWE where the two secrets are
sampled independently from Gaussian distributions, with non-negligible proba-
bility. Therefore, the sampling algorithm above results in a secret distribution
for which RLWE is believed to be hard if (s, t)← R(χσ)

2.

As mentioned above, a more detailed formulation of our construction is given
in Figure 2. In this description, Pi and Vi prover and verifier algorithms for three
different zero-knowledge proof systems indexed by i ∈ {0, 1, 2}.

3.1 Zero Knowledge Argument of Knowledge Statements

The arguments of Pi algorithms fall into two groups separated by a colon. Argu-
ments before a colon are intended as “secret” information pertaining to a witness
for a statement. Arguments after a colon should be interpreted as “public” in-
formation describing the statement that is being proved.

Client Proof. The client proof denoted P1(x, s, t, e1, e2 : crs1, c
1
x, c

2
x,a0,a1)

should prove knowledge of

– x ∈ {0, 1}L
– s, t ∈ R where ∥s∥∞, ∥t∥∞ ≤ σ ·

√
n

– e1,e2 ∈ R1×ℓ where ∥e1∥∞, ∥e2∥∞ ≤ L · ℓ · σ · n3/2

such that

c1x = ax · s+ e1 mod q,

c2x = ax · t+ e2 mod q.

Server Proofs. The server proof in the initialisation phase denoted P0(k, e :
crs0) has the purpose of proving knowledge of k, e ∈ R where ∥k∥∞, ∥e∥∞ ≤
σ ·
√
n such that

c = a · k + e mod q,

6 available at http://perso.ens-lyon.fr/damien.stehle/NTRU.html

15

http://perso.ens-lyon.fr/damien.stehle/NTRU.html

where crs0 contains (a, b).

The server proof in the query phase denoted by

P2(k, e
′
1, e
′
2, e : crs0, crs2, c,d

1
x,d

2
x, c

1
x, c

2
x)

has the purpose of proving that there is some

– k, e ∈ R where ∥k∥∞, ∥e∥∞ ≤ σ ·
√
n

– e′1,e
′
2 ∈ R1×ℓ where ∥e′1∥∞, ∥e′2∥∞ ≤ σ′ ·

√
n

such that

c = a · k + e mod q,

d1
x = c1x · k + e′1 mod q, (1)

d2
x = c2x · k + e′2 mod q.

It is important to note that both d1
x and d2

x each consist of ℓ ring elements.
Therefore, the above system consists of a total of 1+2ℓ noisy products of public
ring elements and k. Note that the well-definedness of normal form RLWE (where
the secret is drawn from the error distribution) implies that the witnesses used
by the prover in π0 and π2 share the same value k.

The security proof of our VOPRF construction can be found in Section 5, as
in the next section we turn to discussing possible instantiations of the required
zero-knowledge proofs.

3.2 Correctness

Before proving correctness, we present a lemma that we will apply below. The
proof of this lemma is in Appendix B.1.

Lemma 5. Fix any x ∈ {0, 1}L. Suppose there exists a PPT algorithm D(x,a0,a1)
that outputs r ∈ R such that ∥r∥ ≤ B and at least one coefficient of ax · r is in
the set (q/p) · Z+ [−T, T] with non-negligible probability (over a uniform choice
of a0,a1 ← Rℓ

q and its random coins). Then there exists an efficient algorithm
solving 1D-SISq/p,nℓ,max{nℓB,T}.

Lemma 6 (Correctness). Adopt the notation of Figure 2, assuming an honest
client and server. Define T := σn2(Lℓσ2n5/2 + σ′). For any x ∈ {0, 1}L, k ∈ Rq

such that ∥k∥∞ ≤ σ ·
√
n, we have that

Pr[yx ̸= Fk(x)] ≤ negl(κ)

over the choice of PRF parameters a0,a1 ← R1×ℓ
q assuming the hardness of

1D-SISq/p,nℓ,T .

16

Proof. Fix an arbitrary x. Assume that there exists a k such that ∥k∥ ≤ σ ·√
n and Pr[yx ̸= Fk(x)] is non-negligible over the choice of a0,a1 ← R1×ℓ

q .
Expanding d1

x and d2
x, we have that

yx = ⌊ax · k + u · (e1 · k + e′1) + v · (e2 · k + e′2)⌉p .

Note that e := u · (e1 · k + e′1) + v · (e2 · k + e′2) has infinity norm less than
T with all but negligible probability. Therefore, it must be that at least one
coefficient of ax · k is within T is in the set (q/p) ·Z+ [T, T] with non-negligible
probability, otherwise yx = ⌊ax · k⌉p. Applying Lemma 5 to the algorithm D(x)
that ignores a0,a1 and simply outputs k implies an efficient algorithm solving
1D-SISq/p,nℓ,max{n3/2ℓσ,T}. ⊓⊔

4 Lattice-based NIZKAoK Instantiations

We now describe instantiations of our zero knowledge proofs of knowledge. At a
high level, we may use Stern-based proofs for all proof systems (although there
may be other alternatives). In particular, we use the Fiat-Shamir transform on
parallel repetitions of Stern-based proofs as in [39]. We recall that the Fiat-
Shamir transform has recently been shown to be secure in the QROM [22,41].
We place most of our attention on discussing how to instantiate Proof System
1, as the other proof systems may be derived straight-forwardly using a subset
of the techniques arising in Proof System 1. For more precise details on how to
instantiate Proof System 1 using Stern’s protocol, see Appendix C.

Proof System 0: Small secret RLWE sample

Let A ∈ Zn×n
q be the negacyclic matrices associated to multiplication by a ∈ Rq

respectively. Further, let #»c ∈ Zn
q be the coefficient vectors of c ∈ Rq respectively.

The first proof aims to prove in zero knowledge, knowledge of a short solution
#»x := (#»x 1,

#»x 2), where ∥ #»x∥∞ ≤ σ ·
√
n to the system

#»c = A · #»x 1 +
#»x 2.

The security of our VOPRF uses a very special form of q for security due to the
use of the 1D-SIS assumption (see Appendix A). In particular, q is neither an
integer permitting an NTT, nor a prime power. This is unfortunate because the
state-of-the-art for proving zero knowledge of short solutions to linear equations
use the fact that x(x − 1) = 0 mod q if and only if x ∈ {0, 1} to prove that
witness vectors have binary entries [54] (or utilise NTTs and similar algebraic
relations for ternary entries [11]). Since our composite q is not amenable to these
techniques, we can either use Stern’s protocol as described in [40], or rejection
sampling techniques [43,44] to perform this zero knowledge proof. However, due

17

to the soundness gap suffered when using rejection sampling (i.e. the fact that
the infinity norm of the extractable witness may be a small constant factor
times larger than intended), one can imagine the use of the less efficient Stern’s
protocol for the sake of keeping our VOPRF security proofs conceptually simpler.
In addition, attempting to use the protocol of Beullens [7] for our choice of q
leads to superpolynomially sized proofs.

Proof System 1: Non-interactive proofs of PRF evaluations

At a high level, we will run Stern’s protocol [52] O(κ) times in parallel and ap-
ply the Fiat-Shamir heuristic in the QROM. We do not actually present Stern’s
protocol itself in this work, but we do highlight the sufficient requirements that
are required for the use of an abstraction of Stern’s protocol. This abstraction is
both presented and proven to be a ZKAoK in [37] with respect to a computation-
ally binding commitment scheme. If a statistically binding commitment scheme
is used, the Stern protocol is a ZKPoK. For simplicity, we use the abstraction of
Stern’s protocol in a FCom-hybrid model where the functionality of a perfectly
binding commitment scheme is provided, rather than using any post-quantum
perfectly binding commitment scheme explicitly. In this model, security holds
in the QROM. Note that perfectly binding lattice-based commitment schemes
do exist [6,5]. For some set VALID and a matrix M representing a set of linear
equations over the integers modulo a natural number, the abstraction of Stern’s
protocol allows a prover to argue knowledge of a solution #»w ∈ VALID to a system
M · #»w = #»y in zero knowledge. In order to apply Stern’s protocol, there must be
a set of permutations Γ = {Γϕ : ϕ ∈ S} acting on the entries of #»w such that
both of the following key properties hold.

Key properties:

1. For every ϕ ∈ S, #»w ∈ VALID ⇐⇒ Γϕ(
#»w) ∈ VALID.

2. For every #»w ∈ VALID, the distribution of Γϕ(
#»w) (for ϕ← S) is uniform over

the set VALID.

Therefore, in order to apply the abstract Stern’s protocol, we must rewrite our
problem as a linear system of equations and describe a set VALID alongside a
set of permutations Γ possessing the key properties above. The details of how
this is done are presented in Appendix C, but we now give a short high-level
summary of the technique.

First note that we can compute ax recursively by setting variables Bi ∈ Rℓ×ℓ
q

for i = L − 1, . . . , 0 via BL−1 = G−1(axL−1
), and Bi = G−1(axi · Bi+1) for

i = L − 2, . . . , 0. Using this, we have ax = G · B0. We can therefore use the
system G·Bi = axi ·Bi−1 to facilitate computation of ax along with the equation

18

yx = G · B0 · k + e (where e represents a rounding error) to fully describe a
PRF evaluation. However, the resulting system is over ring elements and is not
linear in unknowns. To solve these issues, we simply replace ring multiplication
by integer matrix-vector products and then linearise the resulting system using
known techniques [38,39]. At this point, we carefully describe the set VALID,
noting the structure that linearisation/ring structure introduces. We also make
use of bit-decompositions to bound the infinity norms of valid solutions. From
this, we use known techniques [38,39] (extended to the ring setting) to describe
Γ satisfying the key properties above.

Proof System 2: Non-interactive proofs of secret equivalence

Recall that we wish to prove existence of a solution to Equations (1). Note
that d1

x,d
2
x from the protocol in Section 3 are vectors holding ℓ ring elements.

Therefore, Equations (1) can be expressed as a system

ci = aik + ei, i = 1, . . . , 1 + 2ℓ

where ∥e1∥∞, ∥k∥∞ ≤ σ ·
√
n, ∥e2∥∞, . . . , ∥e1+2ℓ∥∞ ≤ σ′ ·

√
n. In order to instan-

tiate this proof system, we may use the abstract Stern protocol again. Note that
in Appendix 4, we implicitly show how to prove knowledge of RLWE secrets.
Therefore, using the same techniques, we can straight-forwardly obtain abstract
Stern proofs for Proof System 2.

5 Security Proof

In this section, we show that the protocol in Figure 2 is a VOPRF achieving
security against malicious adversaries. In particular, corrupted clients and servers
that attempt to subvert the protocol learn/affect only as much as in an ideal
world, where they interact via the functionality FVOPRF.

Theorem 2. (Security) Assume p|q. The protocol in Figure 2 is a secure VO-
PRF protocol (according to Definition 1) if the following conditions hold:

– dRLWEq,n,σ is hard,
– q

2p ≫ σ′ ≫ L · ℓ · σ2 · n3,
– 1D-SISq/(2p),n·ℓ,4·σ′·σ·n5/2 is hard.

Note that correctness of our protocol with respect to honest clients and servers
is shown in Section 3.2. Therefore, what remains is to show average malicious
client security and malicious server security.

19

Correctness of non-aborting malicious protocol runs. During the mali-
cious client proof, it will be useful to call upon the fact that any non-aborting
protocol transcript allows the computation of Fk(x) (with all but negligible prob-
ability).

Lemma 7. Assume that dRLWEq,n,σ is hard, σ and n are poly(κ), and q
2p ≫

σ′ ≫ L ·ℓ ·σ2n3. For any x ∈ {0, 1}L, consider a non-aborting run of the protocol
in Figure 2 between a (potentially malicious) efficient client C∗ and honest server
S. Consider any u, v ∈ Rq, such that ∥u∥∞, ∥v∥∞ ≤ σ · n and u · s + v · t = 1,
where s, t are extracted from C∗’s proof in its message to S. Then, the value of⌊
u · d1

x + v · d2
x

⌉
p
is equal to ⌊ax · k⌉p with all but negligible probability.

Proof. We use the notation from Figure 2. First note that for a non-aborting pro-
tocol run, any efficient client C∗ must have produced c1x and c2x correctly using
some x ∈ {0, 1}L, s, t, e1,e2 where ∥s∥∞, ∥t∥∞ ≤ σ ·

√
n and ∥e1∥∞, ∥e2∥∞ ≤

L · ℓ · σ · n3/2. To complete the proof, we will use the fact that p
q (ax · k + e)

is computationally indistinguishable from uniform random over p
qR

1×ℓ
q when

e ← Ea0,a1,x,σ assuming the hardness of dRLWEq,n,σ (Lemma 3). This implies
that every coefficient in p

q (axk+e) is at least T ′ away from Z+1/2 with all but

negligible probability for any T ′ ≪ 1. We will use this fact twice to complete
the proof. With this in mind, a client computing the output as prescribed in
Figure 2 obtains⌊

p

q
(u · d1

x + v · d2
x)

⌉
=

⌊
p

q
ax · k +

p

q
u · (e1 · k + e′1)

+
p

q
v · (e2 · k + e′2)

⌉
. (2)

The quantity
⌊
p
q (ax · k + e)

⌉
can be shown to be equal to Equation (2) (with

all but negligible probability) using the negligible value of

T ′0 =
3p

q
σn2(L · ℓ · σ2 · n5/2 + σ′) ≥

∥∥∥∥pq u(e1 · k + e′1) +
p

q
v(e2 · k + e′2)−

p

q
e

∥∥∥∥
∞
.

Furthermore,
⌊
p
q (ax · k + e)

⌉
is equal to

⌊
p
qax · k

⌉
with all but negligible prob-

ability, using the negligible value of

T ′1 =
p

q
· L · ℓ · σ · n3/2 ≥

∥∥∥∥pqe
∥∥∥∥
∞
.

. ⊓⊔

20

5.1 Malicious Client Proof

Lemma 8 (Average-case malicious client security). Assume that σ and n
are poly(κ), and p|q, and let conditions (i) and (ii) be as follows:

(i) dRLWEq,n,σ is hard,
(ii) q

2p ≫ σ′ ≫ L · ℓ · σ2 · n3.

If the above conditions hold, then the protocol in Figure 2 has average-case se-
curity against malicious clients according to Definition 1.

Proof. We describe a simulation S that communicates with the functionality
FVOPRF (environment) on one hand, and the malicious client C∗ on the other. S
carries out the following steps:

1. During CRS.SetUp, publish honest a0,a1, crs1 and (dishonest) simulated
versions of crs0 and crs2. Denote the simulated CRS elements by crs′0 and
crs′2.

2. During the Init phase, send C∗ a uniform c ← Rq with a simulated proof
π0,Sim and pass the init message onto FVOPRF. Initialise an empty list received.

3. During the Query stage, for each message (c1x, c
2
x, π1) from C∗, do the fol-

lowing:
(a) b ← V1(crs1, c

1
x, c

2
x,a0,a1, π1). If b = 0 send abort to the functionality

and abort the protocol with the malicious client. If b = 1 continue to the
next step.

(b) Extract the values x, s, t from π1 using the ZKAoK extractor and send
(query, x) to the functionality.

(c) – If FVOPRF aborts:
S aborts.

– If FVOPRF returns y ∈ R1×ℓ
p and ∀y∗, (x,y∗) /∈ received:

(i.e. if this is the first time x is queried) uniformly sample

yq ← R1×ℓ
q ∩

(
q

p
y +R1×ℓ

≤ q
2p

)
and do received.add(x,yq).

– If FVOPRF returns y ∈ Rℓ
p and ∃y∗s.t.(x,y∗) ∈ received:

(i.e. x was previously queried) Then set yq = y∗.
(d) Next pick ē′1, ē

′
2 ← χσ′ and set

d̄
1
x = yq · s+ ē′1 mod q,

d̄
2
x = yq · t+ ē′2 mod q.

Finally, produce a simulated proof π2,Sim using crs′2 and send (d̄
1
x, d̄

2
x,

π2,Sim) to C∗.

21

We now argue that C∗ cannot decide whether it is interacting with S or with a
genuine server. Firstly, recognise that crs′0, crs

′
2 is indistinguishable from honestly

created crs0, crs2. Secondly, the malicious client cannot distinguish the simula-
tor’s uniform c1, c2 that it sends during the Init phase from the real protocol
by the dRLWEq,n,σ assumption (condition (i)). This implies that both the SetUp
and Init phases that S performs are indistinguishable from the real protocol.

The most challenging step is arguing that the simulator’s behaviour in the
Query phase is indistinguishable from the real protocol from the malicious
client’s point of view. We will analyse the behaviour of the simulator assum-
ing that no abort is triggered. We begin by arguing that the server message in
the real protocol with respect to any triple (x, s, t) can be replaced by a related
message (ax · k + ex) · s + ê′1 where ex ← Ea0,a1,x,σ and ê′1 ← R(χσ′)1×ℓ (and
similarly for the message depending on t) without detection by the following
statistical argument. For brevity, consider the quantities that depend on s, i.e.
c1x and d1

x (a similar argument holds for the quantities depending on t). We have
that the server response in the real protocol has d1

x of the form

(ax · s+ e1) · k + e′1 (3)

where e1 ← Ea0,a1,x,σ and e′1 ← R(χσ′)1×ℓ. By Lemma 2, the message distribu-
tion in Equation (3) is statistically indistinguishable (condition (ii)) from

ax · k · s+ e′′1 (4)

where e′′1 ← R(χσ′)1×ℓ due to the fact that σ′ ≫ L · ℓ · σ2 · n3. By a similar
argument, the quantity given in Equation (4) is statistically close in distribution
to

(ax · k + ex) · s+ e′′′1 . (5)

where ex ← Ea0,a1,x,σ and e′′′1 ← R(χσ′)1×ℓ.

Using Lemma 3 and condition (i), we have that the term in front of s in
Equation (5) is indistinguishable from random by the hardness of dRLWEq,n,σ

(Lemma 3). In particular, from an efficient C∗’s point of view, d1
x cannot be

distinguished from
ux · s+ e1

where ux ← R1×ℓ
q and e1 ← R(χσ′)1×ℓ. Similarly, d2

x cannot be distinguished

from ux · t + e2 for the same ux as above and e2 ← R(χσ′)1×ℓ. Note that on
repeated queries, the errors sampled from R(χσ)

1×ℓ are fresh. The fact that S
samples yq as a uniformly chosen element of a uniformly chosen interval implies
the indistinguishability part of average-case malicious client security.

Next, we show that if the malicious client can indeed compute the correct value
from the messages it receives from the honest server (in the real protocol), then
it can do the same with the messages that it receives from the simulator. In
Lemma 7, we show that a malicious client which does not cause an abort can

22

compute ⌊ax · k⌉p from the messages it receives from the honest server with all
but negligible probability. We now show that this is also the case with the mes-
sages it receives from S. Consider yq sampled by S and also the corresponding

values d̄
1
x and d̄

2
x. In addition, define e := yq− (q/p) ·y ∈ R1×ℓ

≤ q
2p

so that e follows

the uniform distribution over R1×ℓ
≤ q

2p
. We have that⌊

p

q
(u · d̄1

x + v · d̄2
x)

⌉
=

⌊
y +

p

q
(e+ u · ē′1 + v · ē′2)

⌉
. (6)

We also know that with all but negligible probability, ∥u·ē′1+v·ē′2∥∞ ≤ σ·σ′·n5/2
(since no abort occurred) and that ∥e∥∞ is less than q/(2p) − T with all but
negligible probability as long as T ≪ (q/2p). Taking T = σ · σ′ · n5/2, we get
that with all but negligible probability,∥∥∥∥pq · (e+ u · ē′1 + v · ē′2)

∥∥∥∥
∞
≤ 1

2
,

implying that the quantity in Equation (6) rounds correctly to y with all but
negligible probability. Therefore, both the real protocol and simulator enable
correct evaluation of the PRF. ⊓⊔

5.2 Malicious Server Proof

Lemma 9. Let conditions (i),(ii) and (iii) be as follows:

(i) dRLWEq,n,σ is hard,
(ii) σ′ ≫ L · ℓ · σ2 · n5/2,
(iii) 1D-SISq/(2p),n·ℓ,4·σ′·σ·n5/2 is hard.

If the above conditions hold, then the protocol in Figure 2 is secure in the presence
of malicious servers.

Proof. We construct a simulator S interacting with the malicious server S∗ on
one hand and with the functionality FVOPRF on the other. The simulator S
behaves as follows:

1. During the CRS.SetUp phase, publish honest a0, a1, crs0, crs2 and (dishonest)
simulated crs′1 to use with the proof systems.

2. During the Init phase, if S∗ sends c ∈ Rq and an accepting proof π0, then
use the zero knowledge extractor to obtain a key k′ from π0 and forward this
on to the functionality. If the message is not of the correct format, or the
proof does not verify, then abort.

23

3. During the Query phase, select two uniform random values u1,u2 ← R1×ℓ
q ,

and using the ZK simulator, produce a simulated proof π1,Sim using crs′1. Send

the message (u1,u2, π1,Sim). Wait for a response of the form (d̃
1

x, d̃
2

x, π̃2) from
S∗. If the proof π̃2 verifies7, forward on deliver to FVOPRF. Otherwise, forward
abort to FVOPRF.

We will show that the joint output of an honest client C and S∗ in the real
world (where they interact directly) and the ideal world (where they interact via
FVOPRF and S) are computationally indistinguishable. We begin by arguing that
the malicious server S∗ cannot distinguish whether it is interacting with a real
client or S, as described above. Firstly, replacing crs1 by crs′1 is indistinguishable
from the point of view of S∗ by definition of a simulated CRS. Importantly, if S∗
can produce valid proofs in the Init phase, the key k′ obtained by the simulator
is the unique ring element consistent with c by the uniqueness of normal form
RLWE solutions.

All that is left to consider is the Query phase. Note that in the real protocol,
the client produces two values c1x, c

2
x that are pseudorandom under the hardness

of dRLWEq,n,σ by Lemma 3. Therefore, the malicious server S∗ cannot distin-
guish a real (c1x, c

2
x) from the pair (u1,u2) that S uses. By the properties of a

ZK simulator, it follows that a real client message (c1x, c
2
x, π1) and crs1 is indis-

tinguishable from (u1,u2, π1,Sim) and crs′1. Next, if the response from S∗ has a
valid proof, then S forwards on deliver. This means that the ideal functionality
passes a PRF evaluation to the client using the server key k′. We now argue that
this emulates the output on the client side when running the real protocol with
malicious server S∗.

The case where the proof verification fails is trivial since the client aborts in the
real and ideal worlds. As a result, we focus on the case where the zero knowledge
proof produced by S∗ verifies correctly. Let e1, e2 ← Ea0,a1,x,σ be sampled by
the honest client. For this honest client interacting with malicious S∗ in the real
protocol, observe that

p

q

(
u · d1

x + v · d2
x

)
=
p

q
axk

′ +
p

q
(e1k

′ + e′1)u+
p

q
(e2k

′ + e′2)v (7)

for k′, e′1, e
′
2 chosen by S∗ where ∥k′∥∞ ≤ σ ·

√
n and ∥e′1∥∞, ∥e′2∥∞ ≤ σ′ ·

√
n.

Therefore, rounding the quantity in Equation (7) is guaranteed to result in the
correct value if every coefficient of p

q · ax · k′ is further than∥∥∥∥pq (e1k′ + e′1)u+
p

q
(e2k

′ + e′2)v

∥∥∥∥
∞

7 Alternatively, if d̃
1

x, d̃
2

x is consistent with k′

24

away from Z + 1/2. In other words if S∗ can force incorrect evaluation, it has
found k′ ≤ σ ·

√
n such that a coefficient of axk

′ is within a distance∥∥∥(e1 · k′ + e′1) · u+ (e2 · k′ + e′2) · v
∥∥∥
∞

≤ 2
(
L · ℓ · σ · n5/2 · σ ·

√
n+ σ′ ·

√
n
)
· σ · n2

condition(ii)

≤ 4 · σ′ · σ · n5/2

of q
pZ+

q
2p ⊂

q
2pZ. At this point we apply Lemma 5 with 2 ·p, T = 4 ·σ′ ·σ ·n5/2 to

show that S∗ forcing incorrect evaluation with non-negligible probability violates
the assumption that

1D-SISq/2p,n·ℓ,max{n3/2·ℓ·σ,4·σ′·σ·n5/2}

is hard. Therefore, condition (iii) enforces correct evaluation with all but negli-
gible probability when the parameters satisfy condition (ii). ⊓⊔

5.3 Setting the parameters

Let κ be the security parameter. Theorem 2 requires the following conditions:

– q
2p ≫ σ′ ≫ L · ℓ · σ2 · n3

– dRLWEq,n,σ is hard

– 1D-SISq/(2p),nℓ,4·σ′·σ·n5/2 is hard.

We will be using the presumed hardness of SIVPγ for approximation factors

γ = 2o(
√
n). The SIVPγ lattice dimension associated to RLWE will be n = κc (for

some constant c); the dimension associated to 1D-SIS hardness will be n′ := κ.

We first choose σ = poly(n) and σ′ = σ · κω(1), and then set q = p ·
∏n′

i=1 pi
by picking coprime p, p1, . . . , pn′ = 4σ′σn5/2 · ω(

√
nn′ log q logn′). Having made

these choices, it should be clear that the first of the three conditions is satisfied.
We can apply Theorem 3 to argue RLWE hardness via SIVP for sub-exponential

approximation factors 2Õ(n1/c) (for c > 2), noting that σ = poly(n) and

q = (4 · σ′ · σ · n5/2)n
′
ω((n · n′ · log q · log n′)n

′/2)

= 2(2+2 log σ+ω(1) log κ+(5/2) logn)·n1/c

· ω((n · n′ · log q · log n′)n
′/2)

= 2ω(1)·n1/c·logn · ω((n1+ 1
c · log q · log n)n

1/c/2)

= 2Õ(n1/c).

25

Finally for the 1D-SIS condition, we note that q/p =
∏n′

i=1 pi and

p1 = 4 · σ′ · σ · n · ω(
√
n · n′ log q · log n′)

= 4 · σ2 · κω(1)n · ω(
√
n · n′ · log q · log n′)

= (n′)ω(1) · ω(
√
n′1+c · log q · log n′).

So applying Lemma 10, we get hardness of our 1D-SIS instance via the presumed

hardness of SIVP on n′-dimensional lattices for (n′)
ω(1) · poly(n′) approximation

factors. We summarise the parameters of our construction in Table 1.

Parameter Description Requirement Asymptotic

n ring dimension n = poly(κ) poly(κ)

q original modulus q = p · σ′ · κω(1) κω(1)

p rounding modulus — poly(κ)

ℓ log2(q) — log2(κ
ω(1))

σ secret/error distribution q/σ = 2o(
√
n) poly(κ)

σ′ drowning distribution σ′ = Lℓσ2n · κω(1) κω(1)

L bit-length of PRF input — —

Table 1. Parameters of our VOPRF

Acknowledgements

The research of Albrecht was supported by EPSRC grants EP/S020330/1 and
EP/S02087X/1, and by the European Union Horizon 2020 Research and Innova-
tion Program Grant 780701; the research of Deo was supported by the EPSRC
and the UK government as part of the Centre for Doctoral Training in Cyber
Security at Royal Holloway, University of London (EP/K035584/1); the research
fof Smart was supported by ERC Advanced Grant ERC-2015-AdG-IMPaCT and
by the FWO under an Odysseus project GOH9718N.

References

1. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica 6(1), 1–13 (1986), https://doi.org/10.1007/BF02579403 13

2. Banaszczyk, W.: New bounds in some transference theorems in the geometry of
numbers. Mathematische Annalen 296(1) (Dec 1993) 7

3. Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom
functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol.
8616, pp. 353–370. Springer, Heidelberg (Aug 2014) 2, 3, 4, 11, 12

26

https://doi.org/10.1007/BF02579403

4. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (Apr 2012) 2

5. Baum, C., Damg̊ard, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient
commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R.
(eds.) SCN 18. LNCS, vol. 11035, pp. 368–385. Springer, Heidelberg (Sep 2018) 18

6. Benhamouda, F., Krenn, S., Lyubashevsky, V., Pietrzak, K.: Efficient zero-
knowledge proofs for commitments from learning with errors over rings. In: Pernul,
G., Ryan, P.Y.A., Weippl, E.R. (eds.) ESORICS 2015, Part I. LNCS, vol. 9326,
pp. 305–325. Springer, Heidelberg (Sep 2015) 18

7. Beullens, W.: On sigma protocols with helper for mq and pkp, fishy signature
schemes and more. Cryptology ePrint Archive, Report 2019/490 (2019), https:
//eprint.iacr.org/2019/490 18

8. Biasse, J.F., Espitau, T., Fouque, P.A., Gélin, A., Kirchner, P.: Computing gen-
erator in cyclotomic integer rings - A subfield algorithm for the principal ideal
problem in L|∆K|(

1
2
) and application to the cryptanalysis of a FHE scheme. In:

Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp.
60–88. Springer, Heidelberg (Apr / May 2017) 31

9. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: 20th ACM STOC. pp. 103–112. ACM Press (May
1988) 10

10. Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic
PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (Aug 2013) 2

11. Bootle, J., Lyubashevsky, V., Seiler, G.: Algebraic techniques for short(er) exact
lattice-based zero-knowledge proofs. Cryptology ePrint Archive, Report 2019/642
(2019), https://eprint.iacr.org/2019/642 3, 17

12. Bootle, J., Lyubashevsky, V., Seiler, G.: Algebraic techniques for short(er) ex-
act lattice-based zero-knowledge proofs. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 176–202. Springer, Heidelberg (Aug
2019) 3

13. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th
ACM STOC. pp. 575–584. ACM Press (Jun 2013) 7

14. Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private constrained PRFs
(and more) from LWE. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS,
vol. 10677, pp. 264–302. Springer, Heidelberg (Nov 2017) 2

15. Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from stan-
dard lattice assumptions - or: How to secretly embed a circuit in your PRF. In:
Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 1–30.
Springer, Heidelberg (Mar 2015) 5, 10, 11, 30, 31

16. Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC1 from LWE.
In: Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210,
pp. 446–476. Springer, Heidelberg (Apr / May 2017) 2

17. Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators of
principal ideals in cyclotomic rings. In: Fischlin, M., Coron, J.S. (eds.) EURO-
CRYPT 2016, Part II. LNCS, vol. 9666, pp. 559–585. Springer, Heidelberg (May
2016) 31

18. Cramer, R., Ducas, L., Wesolowski, B.: Short stickelberger class relations and ap-
plication to ideal-SVP. In: Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part I. LNCS, vol. 10210, pp. 324–348. Springer, Heidelberg (Apr / May 2017) 31

27

https://eprint.iacr.org/2019/490
https://eprint.iacr.org/2019/490
https://eprint.iacr.org/2019/642

19. Davidson, A., Goldberg, I., Sullivan, N., Tankersley, G., Valsorda, F.: Privacy pass:
Bypassing internet challenges anonymously. PoPETs 2018(3), 164–180 (2018) 2

20. Davidson, A., Sullivan, N., Wood, C.: Oblivious pseudorandom func-
tions (oprfs) using prime-order groups. Internet-Draft draft-irtf-cfrg-voprf-
01, IETF Secretariat (July 2019), http://www.ietf.org/internet-drafts/

draft-irtf-cfrg-voprf-01.txt 2
21. Dodis, Y., Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Public-

key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC 2010.
LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (Feb 2010) 7

22. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir trans-
formation in the quantum random-oracle model. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 356–383. Springer, Heidelberg
(Aug 2019) 3, 11, 17

23. Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge
proofs: New techniques for shorter and faster constructions and applications. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol. 11692, pp.
115–146. Springer, Heidelberg (Aug 2019) 3

24. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (Aug 1987) 10, 11

25. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (Feb 2005) 2

26. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC.
pp. 197–206. ACM Press (May 2008) 7

27. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (Aug 2013) 11

28. Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP-statements in zero-
knowledge, and a methodology of cryptographic protocol design. In: Odlyzko, A.M.
(ed.) CRYPTO’86. LNCS, vol. 263, pp. 171–185. Springer, Heidelberg (Aug 1987)
10

29. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: 17th ACM STOC. pp. 291–304. ACM Press
(May 1985) 10

30. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSIGN: Digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-
RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (Apr 2003) 5,
13

31. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret
sharing and T-PAKE in the password-only model. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 233–253. Springer, Heidelberg
(Dec 2014) 2

32. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: Highly-efficient and composable
password-protected secret sharing (or: How to protect your bitcoin wallet online).
In: EuroS&P. pp. 276–291. IEEE (2016) 2

33. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: An asymmetric PAKE protocol se-
cure against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EU-

28

http://www.ietf.org/internet-drafts/draft-irtf-cfrg-voprf-01.txt
http://www.ietf.org/internet-drafts/draft-irtf-cfrg-voprf-01.txt

ROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 456–486. Springer, Heidelberg
(Apr / May 2018) 2

34. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications
to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (Mar 2009) 2

35. Keelveedhi, S., Bellare, M., Ristenpart, T.: Dupless: Server-aided encryption for
deduplicated storage. In: Presented as part of the 22nd USENIX Security Sym-
posium (USENIX Security 13). pp. 179–194. USENIX, Washington, D.C. (2013)
2

36. Krawczyk, H.: The opaque asymmetric pake protocol. Internet-Draft
draft-krawczyk-cfrg-opaque-02, IETF Secretariat (July 2019), http:

//www.ietf.org/internet-drafts/draft-krawczyk-cfrg-opaque-02.txt,
http://www.ietf.org/internet-drafts/draft-krawczyk-cfrg-opaque-02.txt

2
37. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes

with efficient protocols and dynamic group signatures from lattice assumptions.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032,
pp. 373–403. Springer, Heidelberg (Dec 2016) 18

38. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Zero-knowledge argu-
ments for matrix-vector relations and lattice-based group encryption. In: Cheon,
J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 101–131.
Springer, Heidelberg (Dec 2016) 19, 36, 37, 39

39. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based PRFs and applications to E-cash. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017, Part III. LNCS, vol. 10626, pp. 304–335. Springer, Heidelberg
(Dec 2017) 17, 19, 34, 36, 37

40. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (Feb / Mar
2013) 17, 40

41. Liu, Q., Zhandry, M.: Revisiting post-quantum Fiat-Shamir. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 326–355.
Springer, Heidelberg (Aug 2019) 3, 11, 17

42. Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks.
In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg
(Mar 2008) 3

43. Lyubashevsky, V.: Fiat-Shamir with aborts: Applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (Dec 2009) 17

44. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Jo-
hansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (Apr 2012) 17

45. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (May / Jun 2010) 9

46. Peikert, C.: A decade of lattice cryptography. Cryptology ePrint Archive, Report
2015/939 (2015), http://eprint.iacr.org/2015/939 11

47. Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of ring-LWE
for any ring and modulus. In: Hatami, H., McKenzie, P., King, V. (eds.) 49th ACM
STOC. pp. 461–473. ACM Press (Jun 2017) 31

29

http://www.ietf.org/internet-drafts/draft-krawczyk-cfrg-opaque-02.txt
http://www.ietf.org/internet-drafts/draft-krawczyk-cfrg-opaque-02.txt
http://www.ietf.org/internet-drafts/draft-krawczyk-cfrg-opaque-02.txt
http://eprint.iacr.org/2015/939

48. Peikert, C., Shiehian, S.: Privately constraining and programming PRFs, the LWE
way. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp.
675–701. Springer, Heidelberg (Mar 2018) 2

49. Pellet-Mary, A., Hanrot, G., Stehlé, D.: Approx-SVP in ideal lattices with pre-
processing. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS,
vol. 11477, pp. 685–716. Springer, Heidelberg (May 2019) 31

50. Pornin, T., Prest, T.: More efficient algorithms for the ntru key generation using the
field norm. Cryptology ePrint Archive, Report 2019/015 (2019), https://eprint.
iacr.org/2019/015 5, 13

51. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47.
Springer, Heidelberg (May 2011) 15

52. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson,
D.R. (ed.) CRYPTO’93. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (Aug
1994) 18

53. Sullivan, N.: Cloudflare supports privacy pass. Cloudflare Blog (November 09
2017), https://blog.cloudflare.com/cloudflare-supports-privacy-pass/.
Accessed Aug 2019 2

54. Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-based
zero-knowledge arguments with standard soundness: Construction and applica-
tions. Cryptology ePrint Archive, Report 2019/747 (2019), https://eprint.iacr.
org/2019/747 3, 17

A Computational Lattice Problems

An n-dimensional lattice Λ is a discrete subgroup of Rn. The ith successive
minimum of a lattice Λ, denoted by λi(Λ), is the radius of the smallest ball
centred at the origin containing at least i linearly independent lattice vectors.
Note that λ1(Λ) is the the length of the shortest non-zero lattice vector. In
addition to the 1D-SIS and RLWE problems, it is useful to define the 1D-SISR
problem:

Definition 8. ([15, Definition 3.6]) Let q = p ·
∏

i∈[n] pi where p1 < · · · < pn
and p are all co-prime. Further, let m ∈ N. The 1D-SIS-Rq,p,m,t problem is the
following: Given v ← Zm

q , find z ∈ Zm with ||z||∞ ≤ t such that ⟨v, z⟩ ∈
[−t, t] + (q/p)Z.

Next we recall some standard lattice problems.

Definition 9. (SVPγ) The γ-approximate shortest vector problem, denoted SVPγ ,
asks that given any basis B of an n-dimensional lattice Λ, and γ = γ(n) ≥ 1
that one finds a v ∈ Λ\{0} such that ∥v∥∞ ≤ γ · λ1(Λ).

Definition 10. (GapSVPγ) The γ-gap shortest vector problem, denoted GapSVPγ

is the following: Given any basis B of an n-dimensional lattice Λ, γ = γ(n) ≥ 1,

30

https://eprint.iacr.org/2019/015
https://eprint.iacr.org/2019/015
https://blog.cloudflare.com/cloudflare-supports-privacy-pass/
https://eprint.iacr.org/2019/747
https://eprint.iacr.org/2019/747

and r ∈ R+, output 1 if λ1(Λ) ≤ r, and 0 if γ · r ≤ λ1(Λ). If γ · r ≤ λ1(Λ) ≤ r,
then any output is acceptable.

Definition 11. (SIVPγ) The γ-shortest independent vectors problem, denoted
SIVPγ is the following: Given any basis B of an n-dimensional lattice Λ, find n
linearly independent vectors v1, . . . ,vn such that max(∥vi∥2) ≤ γ · λn(Λ).

Writing A ≥ B to denote that there is a polynomial time reduction from B
to A, we rely on the following reductions: 1D-SIS-Rq,p,m,t ≥ 1D-SISq,m,t ≥
(GapSVPγ , SIVPγ) and dRLWEq,n,m,σ ≥ SIVPγ . This is formalised in the fol-
lowing lemma statements.

Lemma 10. ([15, Corollary 3.5]) Let n ∈ N and q =
∏

i∈[n] pi where all p1 <

. . . , < pn are co-prime. Let m ≥ cn log q (for some universal constant c). Assum-
ing that p1 ≥ t · ω(

√
mn log n), 1D-SISq,m,t is at least as hard as SIVPt·Õ(

√
mn)

and GapSVPt·Õ(
√
mn).

Lemma 11. ([15, Corollary 3.7]) Let q, p, t,m be as in Definition 8. Then the
1D-SIS-Rq,p,m,t problem is at least as hard as 1D-SISq/p,m,t. Further, if p1 ≥
t · ω(

√
mn log n), then 1D-SIS-Rq,p,m,t is at least as hard as SIVPt·Õ(

√
mn) and

GapSVPt·Õ(
√
mn).

For hardness, we require that the approximation factors t · Õ(
√
mn) be sub-

exponential (in the lattice dimension) for the general lattice problems in the
corollary above (see below the next lemma). We also recall a reduction from
lattice problems to the RLWE problem:

Theorem 3. ([47], Corollary 6.3) Let q = q(n) ≥ 2 and σ < q be such that
σ ≥ ω(1). Then RLWEq,n,σ is at least as hard as SIVPγ over ideal lattices where
γ ≤ max{ω(

√
n log n · q/σ), 2

√
n}.

Previous work [8,17,18,49] shows that the best known algorithms solving SVPγ

for γ = 2o(
√
n) have a superpolynomial cost in both the classical and quantum

computing models. Therefore, we make the assumption that SIVPγ for γ =

2o(
√
n) cannot be solved efficiently.

B Various Results

31

B.1 Proof of Lemma 5

Proof. We will explicate a reduction from the related 1D-SIS-R,,, problem and
then use Lemma 11 to complete the proof. Consider the following algorithm A
using D as a sub-routine that attempts to solve 1D-SIS-Rq,p,nℓ,max{n·ℓ·B,T} on

input v ∈ Znℓ
q :

1. Let j ∈ {0, 1} denote the first bit of x and set wj := v ∈ Znℓ
q .

2. Sample wj̄ ← Znℓ
q

3. For i = 0, . . . , ℓ− 1:
(aj)i =

∑n−1
k=0 w

j
in+kX

k

(aj̄)i =
∑n−1

k=0 w
j̄
in+kX

k

4. Run r ← D(x,a0,a1).
5. If there is no coefficient of ax · r in the set (q/p) · Z+ [−T ′, T ′], then abort.
6. Otherwise let x′ be the input x with the first bit removed. There is a coef-

ficient of ax · r = aj · G−1(ax′) · r in (q/p) · Z + [−T, T] meaning that for
some k∗, there is a column of G−1(ax′) · r, say y ∈ Rℓ

q such that the Xk∗

coefficient of ⟨aj ,y⟩ is in (q/p) · Z+ [−T, T].
7. Let 1(·) be an indicator function. Noting that the coefficient of Xk∗

of ⟨aj ,y⟩
is equal to

ℓ−1∑
i=0

n−1∑
k=0

vin+k · (−1)1k>k∗ (yi)k∗−k mod n,

output z ∈ Znℓ
q where zin+k = (−1)1k>k∗ (yi)k∗−k mod n for i = 0, . . . , ℓ − 1,

k = 0, . . . , n− 1.

It is clear that if A does not abort, it outputs a vector z ∈ Znℓ
q such that

⟨v, z⟩ ∈ (q/p) · Z+ [−T, T]. Furthermore, if no abort occurs, then the entries of
z (up to a sign) correspond to the coefficients of a column of r ·G−1(ax′) where
∥r∥∞ ≤ B with non-negligible probability. Recalling that G−1(ax′) ∈ Rℓ×ℓ

q is a
binary decomposition of polynomials, we can see that,

||z||∞ ≤ ℓ · n ·B

with non-negligible probability. In other words,A solves the 1D-SIS-Rq,p,nℓ,max{nℓB,T}
problem in polynomial time with non-negligible probability. To complete the
proof, we use Lemma 11. ⊓⊔

B.2 Upper Bound on u, v

Babai’s rounding technique is an efficient way of obtaining a candidate solution
to CVP. Given a target point t ∈ Rn and a lattice Λ with basis B (which need

32

not be an invertible square matrix), Babai’s rounding technique outputs the
lattice vector w = B⌊(BTB)−1BT t⌉. The offset vector obtained can therefore
be written as

t−w = B ·
(
(BTB)−1BT t− ⌊(BTB)−1BT t⌉

)
∈ B ·

[
−1

2
,
1

2

]n
. (8)

Let b′i denote the ith row of B. From Equation (8), we have that

||t−w||∞ ≤
1

2
·max

i
||b′i||1 ≤

√
n

2
·max

i
||b′i||2. (9)

We now use this analysis to give an upper bound on ||(u, v)||∞ that is computed
in the algorithm from Section 3. At a high level, the first four steps find a
(potentially very long) pair (u, v) ∈ R such that u · s + v · t = 1 mod Rq

and the final two steps update this (u, v) using Babai’s rounding technique. In
particular, suppose we define S, T ∈ Zn×n

q to be the negacyclic matrices denoting
multiplication by s and t respectively. Then the final two steps run Babai’s
rounding technique on the lattice Λ = {z ∈ Z2n : [S|T] · z = 0 mod q} and
target point t = (u, v) (using the coefficient embedding), and update (u, v) to be
the resulting offset. The basis for Λ used is B = [T | − S]T ∈ Z2n×n (which has
linearly independent columns by invertibility of s, t in the field Q(X)/⟨Xn+1⟩).
Therefore, bounding the infinity norm of the offset (via Equation (9)) gives us a
bound for the final value of ||(u, v)||∞. Noting that each row of our basis consists
of the coefficients of s, t← χσ, we obtain the bound

||(u, v)||∞ ≤
√
n

2
· ||(s, t)||2 ≤

√
n

2
· 2σ
√
n = nσ

that holds with all but negligible probability over the choice of s and t.

C Our Stern Protocol for Proof System 1

In this section we outline how we rewrite our problem in the Stern proof as a
linear system of equations and describe a set VALID alongside a set of permuta-
tions Γ possessing the relevant properties given in Section 4. We recall the key
properties:

1. For every ϕ ∈ S, #»w ∈ VALID ⇐⇒ Γϕ(
#»w) ∈ VALID.

2. For every #»w ∈ VALID, the distribution of Γϕ(
#»w) (for ϕ← S) is uniform over

the set VALID.

33

(Randomised) PRF Evaluation and the ZK Relation. Recall that G−1

is the non-linear binary decomposition operation, and G is the powers of two
matrix that undoes G−1. Also recall that in the query phase, the client computes
the function F ′k;e : {0, 1}L → R1×ℓ

q where

F ′k;e(x) = ax0 ·G−1
(
ax1 ·G−1

(
ax2G

−1 (. . .)
))
· k + e mod q. (10)

Note that this function is similar to, but not exactly the same as the PRF F
from Section 2.4. In particular, the function F ′ is a randomised version of F
where the error e is not obtained in a deterministic fashion. Note, however, that
the techniques of this section can be straight-forwardly adapted to prove the
analogous relation that uses F instead of F ′ (see [39]). In terms of the function
F ′, the relation we are interested in providing a ZKPoK for is

R = {(a0,a1,y1,y2), (s, t, x, e1, e2) ∈ (R1×ℓ
q)4 ×

(
(R)2, {0, 1}L, (R1×ℓ)2

)
: y1 = F ′k;e1

(x),y2 = F ′k;e2
(x)

∥s∥∞, ∥t∥∞ ≤ β1,
∥e1∥∞, ∥e2∥∞ ≤ β2}.

To begin with, we can describe the computation of F ′s,e1
(x) and F ′t,e2

(x) recur-
sively using

BL−1 = G−1(axL−1
)

BL−2 = G−1(axL−2
·BL−1)

BL−3 = G−1(axL−3
·BL−2)

...

B0 = G−1(ax0 ·B1)

Fs;e1(x) = G ·B0 · s+ e1

Ft,e2(x) = G ·B0 · t+ e2

where each equation is considered over the ring Rq. Importantly, Bi ∈ Rℓ×ℓ
2

represent binary decompositions and a ∈ R1×ℓ
q .

Evaluation of F ′ as a System of Linear Equations. However, the system
of equations above is not linear since G−1 is not a linear operator. In the hope of
deriving a linear system of equations that we can use Stern’s protocol on, we first
multiply by the linear operator G ∈ R1×ℓ

q or equivalently gT = (1, 2, . . . , 2ℓ−1) ∈

34

R1×ℓ
q . In doing so, we can set b0 = (gT ·B0) ∈ Rℓ

q to obtain

gT ·BL−1 = axL−1
(11)

gT ·BL−2 = axL−2
·BL−1

gT ·BL−3 = axL−3
·BL−2

...

bT0 = ax0 ·B1 (12)

F ′s;e1
(x) = b0 · s+ e1

F ′t;e2
(x) = b0 · t+ e2.

We now wish to come up with a ZKPoK allowing to prove knowledge of {(Bi)
L−1
i=1 ,

b0, s, t, e1, e2} (where s, t, e1, e2 are short, and Bi ∈ Rℓ×ℓ
2) satisfying the above

system of linear equations.

Three Problems with the Linear System. In order to use Stern’s protocol,
the witness must be a vector with entries Zq that solves some publicly known lin-
ear system. Considering the current formulation, we have three initial problems
to solve:

1. The Bi’s are matrices, rather than vectors,
2. The “witness” {(Bi)

L−1
i=1 , b0, s, t, e1, e2} consists of vectors/matrices with en-

tries in Rq rather than Zq.
3. The system is quadratic in unknowns, rather than linear.

Solving the First Problem. To get the unknowns Bi ∈ Rℓ×ℓ
2 in vector-

form rather than matrix-form, we can introduce some tensor products. For
i = 1, . . . , L − 1, define bi ∈ Rℓ2

2 to be the vector consisting of the columns
of Bi stacked on top of each other. Inserting the appropriate tensor products,
Equations (11)-(12) end up being of the form

(Iℓ ⊗ gT) · bi = (Iℓ ⊗ axi) · bi+1,

b0 = (Iℓ ⊗ ax0) · b1.

Solving the Second Problem. We would like to replace all multiplications
in Rq by a matrix-vector multiplication over Zq. To do so we simply use the
well known negacyclic matrices over Zq that represent multiplication in Rq. We
define A0 ∈ Zn×nℓ

q (and A1) to be the horizontal concatenation of the negacyclic

matrices corresponding to the entries of a0 ∈ R1×ℓ
q (resp. a1). Furthermore, we

define S ∈ Zn×n
q (and T) to be the negacyclic matrices representing s ∈ Rq (resp.

35

t). Note that this turns part of our witness back into a matrices, but we will show
how to deal with this using the techniques of [38] later. Also, for i = 0, . . . , L−1,

let
#»

b i be the vertical concatenation of the coefficients in the ring entries of bi
and let #»e 1 (resp. #»e 2) be the vertical concatenation of coefficients in the entries
of e1 (resp. e2). Further, let

#»y 1 and #»y 2 be the vertical concatenation of the
coefficients in F ′s,e1

(x) and F ′t,e2
(x) respectively. Setting G⊗ = Iℓ ⊗ (gT ⊗ In)

for gT = (1, . . . , 2ℓ) ∈ Z1×ℓ
q , A⊗xi

= Iℓ ⊗Axi ∈ Znℓ×nℓ2
q and

#»

b L to be the binary

vector with a 1 in each block of nℓ entries (at the (i− 1)n+ 1th position in the
ith block), we end up with the following system of equations mod q:

G⊗ · #»

b L−1 = A⊗xL−1

#»

b L (13)

G⊗ · #»

b L−2 = A⊗xL−2
· #»

b L−1

G⊗ · #»

b L−3 = A⊗xL−3
· #»

b L−2 (14)

...
#»

b 0 = A⊗x0
· #»

b 1 (15)

#»y 1 = (Iℓ ⊗ S) · #»

b 0 +
#»e 1 (16)

#»y 2 = (Iℓ ⊗ T) · #»

b 0 +
#»e 2. (17)

where
#»

b 0 ∈ Znℓ
q ,

#»

b i ∈ {0, 1}nℓ
2

for i ̸= 0 and S,T have small entries.

Solving the Third Problem. We very briefly overview the techniques of [39]
to indicate how one can linearise Equations (13) to (15). The idea is to represent

A⊗xi
· #»

b i+1 by writing

A⊗xi
· #»

b i+1 = [A⊗0 |A
⊗
1] ·

[
x̄i

#»

b i+1

xi
#»

b i+1.

]
In order to make use of this, we treat unknowns xi and

#»

b i+1 together by con-
sidering the single unknown

#»

b̃ i =

[
x̄i

#»

b i+1

xi
#»

b i+1

]
(18)

In doing so, Equations (13) - (14) end up being of the form

[G⊗|G⊗] ·
#»

b̃ i−1 = [A⊗0 |A
⊗
1] ·

#»

b̃ i.

where for i = 1, . . . , L− 1, valid solutions
#̃»

b i are of the form given in (18) i.e. a
binary vector where the top half or bottom half of entries are 0. Equation (15)
becomes

#»

b 0 = [A⊗0 |A
⊗
1] ·

#»

b̃ 1. (19)

36

Now we turn our attention to Equations (16) and (17). The high level idea for
obtaining equations linear in unknowns is the same. We essentially rewrite the
equations in terms of a new single unknown that depends quadratically in the
old unknowns and then take note of the structure that this induces on valid
solutions. We only consider the term (Iℓ ⊗S) · #»

b 0 from Equation (16) since the
quadratic term in Equation (17) can be dealt with in exactly the same way. For

the ring element s =
∑n−1

i=0 six
i ∈ Rq corresponding to S ∈ Zn×n

q , it is clear that

if we know the products si · (
#»

b 0)j for every (i, j) ∈ {0, . . . , n− 1} × {1, . . . , nℓ},
then we can calculate (Iℓ⊗S) · #»b 0 since every entry will be a linear combination
of these products. Therefore, letting #»s ∈ Zn

q be the coefficient vector of s, we

can write #»z s =
#»

b 0 ⊗ #»s so that

(Iℓ ⊗ S) · #»

b 0 = Q · #»z s mod q

where Q ∈ Znℓ×n2ℓ
2 is some known constant matrix. Note that this methodology

is the same as in [38] apart from the fact that Q is defined using the structure

of Rq in our case. It is also useful here to express
#»

b 0 in terms of its binary

decomposition vector. In particular, we define
#»

b̃ 0 ∈ {0, 1}nℓ
2

to be the vertical

concatenation of the binary decomposition of entries in
#»

b 0. We can also rewrite
#»s using a special binary decomposition. In particular, set δj = ⌊(β1 +2j−1)/2j⌋
for j = 1, . . . , ⌊log β1⌋ + 1, i.e. powers of two in reverse order plus β1, and
set Dβ = In ⊗ (δ1, . . . , δ⌊log β1⌋+1). As in [39], we can efficiently find a vector
#»s ′ ∈ {−1, 0, 1}n(⌊log β1⌋+1) such that Dβ1

#»s ′ = #»s for any #»s ∈ {−β1, . . . , β1}n.
In addition,

∑⌊log β1⌋+1
i=1 δi = β1 so for any #»s ′ ∈ {−1, 0, 1}n(⌊log β1⌋+1), ∥Dβ1 ·

#»s ′∥∞ ≤ β1. Defining Hq := (1, 2, . . . , 2ℓ−1) ⊗ Inℓ, we have that Hq

#»

b̃ 0 =
#»

b 0.

Similarly, defining R := Q · (Hq ⊗Dβ) and
#»z ′s :=

#»

b̃ 0 ⊗ #»s ′ we can write

(Iℓ ⊗ S) · #»

b 0 = R · #»z ′s mod q.

Note that we can derive a similar equation for t. We can also define Dβ2 similarly
to Dβ2 to decompose #»e 1,

#»e 2 into trinary #»e ′1,
#»e ′2.

The Final Linear System. Finally, we arrive at the following system modulo
q:

[G⊗|G⊗] ·
#»

b̃ L−1 = [A⊗0 |A
⊗
1] ·

#»

b̃ L (20)

[G⊗|G⊗] ·
#»

b̃ L−2 = [A⊗0 |A
⊗
1] ·

#»

b̃ L−1

...

Hq ·
#»

b̃ 0 = [A⊗0 |A
⊗
1] ·

#»

b̃ 1

#»y 1 = R · #»z ′s +Dβ2 · #»e ′1
#»y 2 = R · #»z ′t +Dβ2 · #»e ′2 (21)

37

where valid solutions are such that:

–
#»

b̃ L = (1, 0)T ⊗ #»c or (0, 1)T ⊗ #»c where for ĉi =

i−1︷ ︸︸ ︷
(0, . . . , 0, 1

ℓ−i︷ ︸︸ ︷
, 0, . . . , 0),

#»c = (ĉ1||ĉ2, || . . . ||ĉℓ)T ⊗

n︷ ︸︸ ︷
(1, 0, . . . , 0)T (22)

– for i = 1, . . . , L− 1,
#»

b̃ i ∈ {0, 1}2nℓ
2

and either the first or second nℓ2 entries
are 0

–
#»

b̃ 0 ∈ {0, 1}nℓ
2

– #»z ′s =
#»

b̃ 0 ⊗ #»s ′ for some #»s ′ ∈ {−1, 0, 1}n(⌊log β1⌋+1)

– #»z ′t =
#»

b̃ 0 ⊗
#»
t ′ for some

#»
t ′ ∈ {−1, 0, 1}n(⌊log β1⌋+1)

– #»e ′1,
#»e ′2 ∈ {−1, 0, 1}nℓ·(⌊log β2⌋+1)

The Building Block Extensions and Permutations. Now we will show
how to use Stern’s protocol to prove knowledge of a valid solution/witness

#»

ψ =

#»

b̃ L

...
#»

b̃ 0
#»

b̃ 0 ⊗ #»s ′
#»

b̃ 0 ⊗
#»
t ′

#»e ′1
#»e ′2

(23)

to the system M · #»

ψ = #»y implicit in Equations (20)-(21). We do this in the
standard way by extending the witness vector (and updating the system), and
then defining a set VALID along with a set of permutations Γ such that the two
key properties from Section 4 hold. We begin by describing an extension and
permutation for each section of the witness.

Extension for
#»

b̃ L.

It turns out that we do not need to extend the part of the witness comprising
#»

b̃ L.
All we need to do is define the permutations indexed by bit b, πb : {0, 1}2nℓ

2 →
{0, 1}2nℓ2 . Writing #»v = (#»v 0,

#»v 1) where
#»v 0,

#»v 1 ∈ {0, 1}nℓ
2

, we define πb via the
equation πb(

#»v) = (#»v b,
#»v b̄). In words, this permutation either does nothing or

switches a valid
#»

b̃ L to the other valid option according to the value of b ∈ {0, 1}.

38

Extension for
#»

b̃ 1, . . . ,
#»

b̃ L−1.

Recalling that either the second or first half of entries in each of
#»

b̃ 1, . . . ,
#»

b̃ L−1
is 0, we define the extension Ext0 to act as follows on a vector #»v ∈ {0, 1}2n′

.
Writing #»v = (#»v 1,

#»v 2) where #»v 1,
#»v 2 ∈ {0, 1}n

′
and letting h be the hamming

weight of #»v , we define

Ext1(
#»v) =

(#»v 1,

n′−h︷ ︸︸ ︷
1, . . . , 1,

h︷ ︸︸ ︷
0, . . . , 0, #»v 2,

#»v 2) if
#»v 2 =

#»
0 ,

(#»v 1,
#»v 1,

#»v 2, 1, . . . , 1︸ ︷︷ ︸
n′−h

, 0, . . . , 0︸ ︷︷ ︸
h

) if #»v 1 =
#»
0 .

The corresponding permutations are given by πb ◦ τσ where τσ is indexed by
σ ∈ Sn′ where Sn′ is the symmetric group on n′ elements. Writing #»v 1 =
(v1,1, . . . , v1,n′) and #»v 2 = (v2,1, . . . , v2,n′), we define τσ(

#»v) := (v1,σ(1), . . . , v1,σ(n′),
v2,σ(1), . . . , v2,σ(n′)).

Extension for
#»

b̃ 0.
For a vector #»v = (v1, . . . , vn′) ∈ {0, 1}n′

, we define

Ext2(
#»v) = (v1, v̄1, v2, v̄2, . . . , vn′ , v̄n′) ∈ {0, 1}2n

′
.

The corresponding permutations ρ #»
d : {0, 1}2n′ → {0, 1}2n′

are indexed by
#»

d ∈
{0, 1}n′

. For #»w = (w1,0, w1,1, w2,0, w2,1, . . . , wn′,0, wn′,1), we define ρ #»
d (

#»w) :=
(w1,d1 , w1,d̄1

, . . . , wn′,dn′ , wn′,d̄n′). The crucial observation is that

#»w = Ext2(
#»v) ⇐⇒ ρ #»

d (
#»w) = Ext2(

#»v ⊕ #»

d).

Product extensions for
#»

b̃ 0 ⊗ #»s ′,
#»

b̃ 0 ⊗
#»
t ′.

In [38], an extension and permutation for products of two bits compatible with
Stern’s protocol is presented. Inspired by this, we first show an extension and
permutation that can handle products between c1 ∈ {0, 1} and c2 ∈ {−1, 0, 1}.
For c ∈ {1, 2}, we use the notation c+c

2 = c2 + c mod 3 and define

Ext3(c1, c2) := (c1c2, c1c
+1
2 , c1c

+2
2 , c̄1c2, c̄1c

+1
2 , c̄1c

+2
2) ∈ {−1, 0, 1}6. (24)

Let cyc denote the clockwise cyclic permutation on entries of a 3 dimensional
vector. The corresponding building-block permutations are indexed by b1 ∈
{0, 1}, b2 ∈ {−1, 0, 1}, and are defined by

T 3
b1,b2 : (#»v 0,

#»v 1) 7−→ (cycb2(#»v b1), cyc
b2(#»v b̄1))

where #»v i ∈ {−1, 0, 1}3 for i = 0, 1. This ensures that

#»v = Ext3(c1, c2) ⇐⇒ T 3
b1,b2(

#»v) = Ext3(c1 ⊕ b1, c2 ⊕3 b2) (25)

39

where ⊕3 denotes addition modulo 3 and #»v = (#»v 0,
#»v 1) ∈ {−1, 0, 1}6. This

permutation essentially one time pads both c1 and c2. We can generalise Ext3
and T 3

(,) to act on vectors #»a = (a1, . . . , an′) ∈ {0, 1}n′
and

#»

b = (b1, . . . , bn′′) ∈
{−1, 0, 1}n′′

as follows. Informally, the generalised extension Ext⊗3 is the vertical
concatenation of the Ext3((ai, bj)) ranging over i = 1, . . . , n′ and j = 1, . . . , n′′.
More precisely,

Ext3,⊗(
#»a ,

#»

b) =Ext3(a1, b1)||Ext3(a1, b2)|| . . . ||Ext3(a1, bn′′)|| . . . || . . . || . . .
. . . Ext3(an′ , b1)||Ext3(an′ , b2)|| . . . ||Ext3(an′ , bn′′).

Importantly, this generalised extension contains all entries arising in the tensor
product #»a ⊗ #»

b , so can be considered as an extension of #»a ⊗ #»

b . The generalised
permutations are indexed by #»c = (c1, . . . , cn′) ∈ {0, 1}n′

,
#»

d = (d1, . . . , dn′′) ∈
{−1, 0, 1}n′′

and are denoted T 3,⊗
#»c ,

#»
d
. Writing #»v = (#»v 1,1, . . . ,

#»v 1,n′′ , . . . , #»v n′,1, . . . ,
#»v n′,n′′) where each #»v i,j ∈ {−1, 0, 1}6, we define

T 3,⊗
#»c ,

#»
d
(#»v) :=(T 3

c1,d1
(#»v 1,1)||T 3

c1,d2
(#»v 1,2)|| . . . ||T 3

c1,dn′′ (
#»v 1,n′′)|| . . . || . . . || . . .

. . . ||T 3
cn′ ,d1

(#»v n′,1)||T 3
cn′ ,d2

(#»v n′,2)|| . . . ||T 3
cn′ ,dn′′ (

#»v n′,n′′)).

Using these definitions, we have

#»v = Ext3,⊗(
#»a ,

#»

b) ⇐⇒ T 3,⊗
#»c ,

#»
d
(#»v) = Ext3,⊗(

#»a ⊕ #»c ,
#»

b ⊕3
#»

d). (26)

Extension for #»e ′1,
#»e ′2.

Here we use the technique from [40]. For any #»v ∈ {−1, 0, 1}n′
with h−1, h0, h1

entries equal to −1, 0, 1 respectively, we define the extension

Ext′(#»v) = (#»v ||
n′−h−1︷ ︸︸ ︷
−1, . . . ,−1,

n′−h0︷ ︸︸ ︷
0, . . . , 0,

n′−h1︷ ︸︸ ︷
1, . . . , 1).

Note that this outputs a vector in {−1, 0, 1}3n′
with exactly n′ entries that

take each of the values −1, 0, 1. The corresponding permutations τ ′σ are indexed
by σ ∈ S3n′ where S3n′ is the symmetric group over 3n′ elements. For #»w =
(w1, . . . , w3n′), the permutation τ ′σ is defined via τ ′σ(

#»w) = (wσ(1), . . . , wσ(3n′)).

40

The Full Extension, Permutation and Valid Set. Using the extensions in
the previous section, we extend the witness of the form (23) to the following:

#»

ψ ′ =

#»

b̃ L

Ext1(
#»

b̃ L−1)
...

Ext1(
#»

b̃ 1)

Ext2(
#»

b̃ 0)

Ext3,⊗(
#»

b̃ 0 ⊗ #»s ′)

Ext3,⊗(
#»

b̃ 0 ⊗
#»
t ′)

Ext′(#»e ′1)
Ext′(#»e ′2)

(27)

This forces us to update the system of equations to M ′ · #»

ψ ′ = #»y . We now
conclude by defining the set VALID and set of permutations Γ satisfying the key
properties from Section 4.

We will say that #»v = (#»v 1,
#»v 2, . . . ,

#»v L,
#»v L+1,

#»v L+2,
#»v L+3,

#»v L+4,
#»v L+5) ∈ VALID

if and only if:

– #»v 1 ∈ {0, 1}2nℓ
2

is either (1, 0)T ⊗ #»c or (0, 1)T ⊗ #»c where #»c is defined in
Equation (22).

– #»v 2, . . . ,
#»v L ∈ {0, 1}4nℓ

2

have Hamming weight nℓ2 with either the first half
or second half of entries all 0.

– #»v L+1 ∈ {0, 1}2nℓ
2

and is consistent with the form of vector output by Ext2.

– Letting #»w be the valid preimage of #»v L+1 under Ext2,
#»v L+2 and #»v L+3 ∈

{−1, 0, 1}6n2ℓ2(log⌊β1⌋+1) are of the form Ext3,⊗(
#»w, #»s ′′) and Ext3,⊗(

#»w,
#»
t ′′)

respectively for some s′′, t′′ ∈ {−1, 0, 1}n(⌊log β1⌋+1)

– #»v L+4,
#»v L+5 ∈ {−1, 0, 1}3nℓ(⌊log β2⌋+1) have an equal number of −1, 0, 1 en-

tries

The permutation set Γ is
Γϕ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ = (ϕ1, ϕ2,1, ϕ2,2, . . . , ϕL,1, ϕL,2, ϕL+1, ϕL+2, . . . , ϕL+5),

ϕ1, ϕ2,1, ϕ3,1, . . . , ϕL,1 ∈ {0, 1}
ϕ2,2, . . . , ϕL,2 ∈ Snℓ2

ϕL+1 ∈ {0, 1}nℓ
2

ϕL+2, ϕL+3 ∈ {−1, 0, 1}n(⌊log β1⌋+1)

ϕL+4, ϕL+5 ∈ S3nℓ(⌊log β2⌋+1)

(28)

41

where

Γϕ :

#»v 1
#»v 2

...
#»v L+1
#»v L+2
#»v L+3
#»v L+4
#»v L+5

7−→

πϕ1(
#»v 1)

πϕ2,1 ◦ τϕ2,2(
#»v 2)

...
πϕL,1

◦ τϕL,2
(#»v L)

ρϕL+1
(#»v L+1)

T 3,⊗
ϕL+1,ϕL+2

(#»v L+2)

T 3,⊗
ϕL+1,ϕL+3

(#»v L+3)

τ ′ϕL+4
(#»v L+4)

τ ′ϕL+5
(#»v L+5)

(29)

Finally, we note that Γϕ acts on elements of VALID in the following way:

VALID ∋

#»v 1
#»v 2

...
#»v L

Ext2(
#»ν L+1)

Ext3,⊗(
#»ν L+1 ⊗ #»s ′′)

Ext3,⊗(
#»ν L+1 ⊗

#»
t ′′)

#»v L+4
#»v L+5

7→

πϕ1(
#»v 1)

πϕ2,1 ◦ τϕ2,2(
#»v 2)

...
πϕL,1

◦ τϕL,2
(#»v L)

Ext2(
#»ν L+1 ⊕ ϕL+1)

Ext3,⊗((
#»ν L+1 ⊕ ϕL+1)⊗ (#»s ′′ ⊕3 ϕL+2)

Ext3,⊗((
#»ν L+1 ⊕ ϕL+1)⊗ (

#»
t ′′ ⊕3 ϕL+3)

τ ′ϕL+4
(#»v L+4)

τ ′ϕL+5
(#»v L+5)

.

The above implies both the first and second key properties required for the
abstract version of Stern’s protocol. In particular, a random permutation from
Γ one-time pads the arguments of the Ext sections of the witness and randomly
permutes the remaining sections of the witness in a structure preserving way.
This observation implies that the second key property holds.

42

	Round-optimal Verifiable Oblivious Pseudorandom Functions from Ideal Lattices
	Introduction
	Preliminaries
	Verifiable Oblivious Pseudorandom Functions
	Computational assumptions
	Non-interactive zero-knowledge arguments of knowledge
	Lattice PRF

	A VOPRF Construction From Lattices
	Zero Knowledge Argument of Knowledge Statements
	Correctness

	Lattice-based NIZKAoK Instantiations
	Security Proof
	Malicious Client Proof
	Malicious Server Proof
	Setting the parameters

	Computational Lattice Problems
	Various Results
	Proof of Lemma 5
	Upper Bound on u,v

	Our Stern Protocol for Proof System 1

