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Abstract

The recent advances and attention to quantum computing have raised serious security con-
cerns among IT professionals. The ability of a quantum computer to efficiently solve (elliptic
curve) discrete logarithm, and integer factorization problems poses a threat to current public key
exchange, encryption, and digital signature schemes. Consequently, in 2016 NIST initiated an
open call for quantum-resistant crypto algorithms. This process, currently in its second round,
has yielded nine signature algorithms for possible standardization. In this work, we are evalu-
ating two post-quantum signature use-cases and analyze the signature schemes that seem most
appropriate for them. We first consider Hash-Based Signatures for software signing and secure
boot. We propose suitable parameters and show that their acceptable performance makes them
good candidates for image signing. We then evaluate NIST candidate post-quantum signatures
for TLS 1.3. We show that Dilithium and Falcon are the best available options but come with an
impact on TLS performance. Finally, we present challenges and potential solutions introduced
by these algorithms.

Updates: Manuscript received Nov 3, 2019. Revised Nov 11, 2019 to include thoughts on OCSP
and SCT signatures and RSA2048 performance. Revised Feb 27, 2020 to include reference to [39]
in Section 4.

1 Introduction

Modern digital signature algorithms that are part of a public key infrastructure (PKI) rely on the
hardness of the integer factorization (IF) and elliptic curve discrete logarithm (ECDL) problems.
Assuming the existence of a large-scale quantum computer (QC), such problems can be solved in
polynomial time due to Shor’s quantum algorithm [36,38]. Thus, all algorithms that rely on those
problems would be vulnerable, and the majority of public key cryptography would be broken (e.g.,
PKI, software signing, encrypted tunnels), if a QC was available.

Evidently, due to the recent advances of quantum computing, the standardization of quantum-
resistant public key algorithms is time-critical. Along these lines, US NIST has initiated a public
project to standardize post-quantum (PQ) public key encapsulation and signature mechanisms,
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while ETSI has formed a Quantum-Safe Working Group [13] to make real-world deployment pro-
posals. In accordance, the IETF has received proposals that introduce, and study PQ schemes
in protocols [14, 19, 32, 43, 45]. Currently, the NIST project is in its second round where nine PQ
signature algorithms, and 17 key exchange schemes are studied for possible standardization [1].
However, the actual integration of such schemes in PKI protocols and use-cases can be proven
challenging for today’s Internet due to the key size overhead, and significant latency related to the
heavier computational performance of these schemes.

Industry research teams from Google, Cloudflare, Microsoft, and NXP Semiconductors are
actively studying the impact of PQ schemes on TLS [23–25, 27]. These efforts focus mainly on
evaluating the impact of PQ key exchange (not authentication) on TLS because of its urgency;
decryption of stored communications can take place after a QC is available, while impersonation
cannot. We, on the other hand, focus on authentication because PKI refresh cycles are long and
algorithm migration can take years (ECDSA was standardized in 2005 [3] but its adoption was still
not broad a decade later).

We also study PQ Hash-Based signatures (HBS) for image signing and secure boot. In secure
boot, there are two or three signature verifications as the booting process is passed from boot 0 code
to a bootloader and then the OS. The signatures that are validated in each step are usually classical
RSA signatures which would not be quantum-secure. Given that the boot process is amenable to
short delays, we study efficient HBS parameters that would introduce quantum resistance to the
secure boot.

The main contributions of our work include:

• We establish sample HBS parameter sets suitable for different software signing use-cases.

• We analyze their impact for software signing and show that it is immaterial on the verifier
and acceptable on the signer.

• We identify two good signatures candidate algorithms from NIST’s Round 2 list for TLS 1.3
authentication and compare them to RSA3072.

• We establish secure tunnel use-cases where these algorithms could be integrated relatively
easily. In addition, we present use-cases where they should be carefully considered.

• We discuss challenges introduced by these algorithms and potential solutions that will opti-
mize permanent adoption into TLS.

The rest of this work is organized as follows. Section 2 summarizes the PQ signature algorithms
of interest. Section 3 discusses the experiments and findings of using HBS for software signing.
Section 4 presents the data and evaluation of PQ signatures in TLS 1.3. Section 5 concludes this
paper and

2 PQ candidate signature algorithms

2.1 Hash-Based Signatures

The Hash-Based Signature (HBS) family of algorithms relies on one or few-time-signature (OTS/FTS),
and Merkle trees used with secure cryptographic hash functions. The first related scheme was in-
troduced in the late 1970s [6], and it is known as the Merkle signature scheme (MSS). Using Merkle
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Signature Public Key Size Private Key Size Signature Size

Scheme (Bytes) (Bytes) (Bytes)

Falcon [15] 897 1281 690

Dilithium [12] 1184 2800 2044

qTesla (provable) [2] 14880 5184 2592

LUOV [5] 32 11500 239

MQDSS [8] 46 13 20854

Rainbow [10] 58144 92960 64

GeMSS [7] 352190 13440 258

Picnic [18] 33 49 34036

SPHINCS+ [4] 32 64 16976

Table 1: Post-Quantum Signature Algorithms and Key/Signature Sizes (NIST Security Level 1).

trees with hash functions and OTS/FTS to generate signatures is a reliable, and well-understood
process. HBS schemes generate keypairs for the OTS/FTS. The OTS/FTS signs a message and
the corresponding public key becomes a leaf in the Merkle tree. The public key is the root of the
resulting Merkle tree. An HBS signature consists of the OTS/FTS signature and the path to the
root of the tree. The signature is verified by using the OTS/FTS public key and the authentication
path to construct the root of the Merkle tree.

Currently, the most mature HBS schemes are stateful LMS [29] and XMSS [21] and stateless
SPHINCS+, one of the NIST signature candidates [4]. A stateful HBS relies on an OTS and the
signer needs to ensure that the OTS private key state is never reused. The state management
requirement is an important disadvantage that has been often brought up in IETF and NIST
fora [26,41]. While stateless SPHINCS+ alleviates this issue, it also produces larger signatures and
reduces overall performance.

2.2 Lattice-based Schemes: Dilithium and Falcon

Table 1 shows the key and signature sizes for all NIST Round 2 PQ signature candidates at Level 1
(128-bit security). The majority of the PQ signature schemes significantly increase the sizes of keys
and signatures used by in protocols. The most promising ones, that could even be considered for
immediate replacement of the currently used schemes are the lattice-based ones [30, 33]. A lattice
is a set of integer linear combinations of linearly independent vectors. The cryptography-related
NP-hard problems regarding lattices include the closest vector, the shortest vector and the lattice
basis reduction problems. Among the NIST PQ signature candidates Dilithium [11], qTesla [2],
and Falcon [15] are the ones that rely on lattice-based cryptography. In this work, we focus on
Dilithium, and Falcon, as the significantly larger public key of qTesla is expected to greatly affect
performance especially in the context of encrypted tunneling protocols (TLS, IKEv2).

The rest of the submitted PQ signature algorithms rely on various hard problem families that
include HBS (SPHINCS+ [4]), multivariate quadratic equations (MQDSS [8], LUOV [5], Rainbow
[10], GeMSS [7]), and zero-knowledge proofs (Picnic [18]). We evaluated all of these schemes for
TLS 1.3 and saw that their signature sizes or public keys are significantly larger than conventional
ones which makes them significantly less appealing. While signature and public key size may not
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be a big concern for image signing since images are often large, they will have a significant impact
on live protocol negotiations in protocols like TLS.

3 Hash-Based Software Image Signing

We initially investigate the use of HBS for image signing. HBS signatures offer well-established
security guarantees but come with relatively big signatures and slower performance. For the image
signing use-cases where software is usually several megabytes, adding a 10-40KB signature will have
minimal impact on the total size. Additionally, booting an image or an OS usually takes several
seconds. Thus, signature verification performance at the millisecond range will be immaterial to
the whole process.

Going forward in this paper, we focus on stateful LMS and SPHINCS+. The metrics we are
interested in are public key and signature size which could pose a challenge to the verifier. We are
also interested in the verifier code in RAM and singing and verification time. We assume that a
software signer will likely be more robust without significant resource constraints.

3.1 HBS Experiments

For our experiments, we picked our own HBS tree parameters. We assumed that an image signing
case would not exceed 34 trillion (235) signatures. According to our design, LMS would achieve
that by leveraging a two level architecture with height h = 20 and h = 15 respectively or with
an HSS tree with three levels of height h1 = 15, h2 = 10, h3 = 10. SPHINCS+ can achieve
235 signatures multiple ways. We generated SPHINCS+ parameters for 192 and 256-bit security
levels by using the Sage script that generated the SPHINCS+ NIST submission parameters. The
actual parameters were picked by balancing security level, performance, total signature count and
signature size.

Table 2 shows the results of our experiments. We ran all our tests in a Google Cloud [40]
instance with an Intel(R) Xeon(R) CPU 2.20GH with 2 cores and 7.68GB RAM. To compile our
code we used gcc version 7.4.0. The tests were run 1000 times for each parameter set. Evidently,
all the private and public key sizes are of negligible size. It is also clear that verifier code of a
few KB would not practically impact most image signature verifiers. Additionally, we see that
LMS/HSS offers smaller signatures that stay below 8KB. SPHINCS+ signatures grow to almost
23KB for 128-bit PQ security level parameters with w = 16. 23KB signatures are small enough
for most image signing use-cases. In rare scenarios where small signatures are required LMS/HSS
would be preferable. In terms of signing, we observe that all signatures take less than one second
which would suffice for almost all software signing use-cases where signing takes place out-of-band.
In terms of verification, none of the proposed parameters exceed 7ms which is satisfactory. As
expected, parameters with W = 4 (LMS) or w = 16 (SPHINCS+) verify signatures significantly
faster than with W = 8 or w = 256 respectively.

3.2 Discussion about HBS software image signing

We showed that HBS performance would have minimal impact on secure boot technologies today.
Signers with common hardware could sign in less than one second for either scheme. Verification
would take just a few milliseconds which is fast for secure boot and software signing uses.
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Parameter
PK
(B)

Sig
(KB)

Verifier
code (KB)

Sign
(ms)

Verify
(ms)

LMS SHA256 M32 H15 with
LMOTS SHA256 N32 W8

60 1.63 2.15 6.24 1.30

LMS SHA256 M32 H20 with
LMOTS SHA256 N32 W4

60 2.83 2.57 1.46 0.17

HSS L = 3 with LMS256H15W4,
LMS256H10W4, LMS256H10W4

60 7.80 3.15 1.71 0.48

SPHINCS+ n = 24, H = 15,
d = 3, k = 18, a = 13 w = 256

48 8.30 4.41 150.9 3.20

SPHINCS+ n = 24, H = 20,
d = 4, k = 18, a = 13 w = 16

48 11.49 4.46 83.4 0.63

SPHINCS+ n = 24, H = 35,
d = 5, k = 20, a = 12 w = 16

48 13.22 4.50 96.6 0.72

SPHINCS+ n = 32, H = 15,
d = 3, k = 19, a = 16 w = 256

64 14.11 4.47 677.8 4.19

SPHINCS+ n = 32, H = 20,
d = 4, k = 19, a = 16 w = 16

64 19.58 4.54 595.6 0.80

SPHINCS+ n = 32, H = 35,
d = 5, k = 21, a = 15 w = 16

64 22.62 4.53 370.2 0.95

Table 2: HBS Key, Signature Sizes, Memory footprint and Performance

On the other hand, stateful HBS state management is a valid concern. NIST is, at the time of
this writing, working on a Special Publication document to describe the characteristics of use-cases
for stateful HBS. Software signing is believed to be one of these use-cases. Even though the state
can be properly managed, it would not be trivial for crypto policy authors and testers to ensure
that the right precautions are taken by a signer to prevent state reuse. NIST may add stateful
HBS in their FIPS compliant algorithms for certain uses, but it is not clear how testing labs would
test and ensure that the state is properly protected. If a testing lab cannot verify proper state
management, then another concern could be raised about how could a verifier trust that none
of the signatures issued by a vendor used the same state. It remains to be seen whether these
signatures will be added in the FIPS-approved list and how state management will be attested
to, but until then, stateless SPHINCS+ seems to offer a more straightforward solution at the cost
of worse performance and bigger signatures. Verifiers that cannot use such signatures because of
memory and performance constraints will inevitably need to evaluate stateful HBS.

A smooth transition to the new PQ signatures is also an important consideration. A vendor that
switches to a new signature scheme will still have a lot of deployed devices that use classical RSA
signatures. Thankfully, PKCS#7 [22] allows for including multiple signatures in a SignedData

content type. It is common for dual signatures to be included with an image, a feature that is
supported by many code signing vendors. Signers that add HBS signature support could include
these signatures along with classical RSA ones in signed images. A verifier that does not support

4



HBS would still verify the RSA signature. HBS capable verifiers could verify the PQ signature.
If HBS were not chosen by the industry, eight more PQ signature candidates in NIST’s Round 2

could serve as alternatives. Falcon, Dilithium and some qTesla, LUOV, MQDSS, and Picnic variants
could offer PQ signature alternatives to HBS. Given that HBS is the most mature, conservative
and well-analyzed option and based on the analysis in this work, we believe that HBS is the best
option for software signing and secure boot use-cases.

4 PQ Authenticated Tunnels

Next, we focus on the TLS 1.3 handshake pieces affected by PQ algorithms. We assume a classic web
scenario where the client is not authenticated. The TLS 1.3 ClientHello message will negotiate
the desired PQ signature algorithm using the signature algorithms extensions. The PQ X.509
certificate/chain transmission by the server with the ServerCertificate message will now include
PQ certificates. The server will also sign the transcripts of the handshake and transmit a PQ
CertificateVerify message that contains a PQ signature which the client will verify along with
the signatures in the certificate chain. As usual, when a certificate chain exceeds 16 KB of length,
TLS will utilize Record Fragmentation to split packets before sending them [37].

A transition to PQ authentication will require new AlgorithmIdentifiers [9,35] for X.509. A
PQ certificate will carry the subject’s PQ public key and the specific PQ signature algorithm used
to create the signature. The certificate will be signed by the issuer using his PQ private key and
the PQ signature is appended in the Signature field. The addition of the PQ public key and PQ
signature to the X.509 certificate will increase the size of the certificate and thus the size of the
related certificate chains (see Table 1).

4.1 PQ Authenticated TLS 1.3 Experiments

In this section we present the TLS 1.3 performance of each PQ signature scheme. To integrate
PQ signatures into X.509 and TLS we utilized the OQS OpenSSL [35] library, which is a fork of
OpenSSL that introduces post-quantum algorithms from the liboqs library [34, 42]. The OQS

OpenSSL version we used was based on OpenSSL version 1.1.1c. Readers should note that in our
evaluation we test PQ certificates but we do not consider the impact of PQ signatures employed
in OCSP staples and SCT Timestamps. PQ SCT and OCSP signatures would add significant data
to the handshake and requires further testing, but simple caching techniques at the client could
significantly alleviate their impact.

Our experiments assume a classic web scenario where X.509 certificates are used to authenticate
the server. We utilize only full 1-RTT mode TLS 1.3 handshakes with no PSK resumption and a
classic X25519 elliptic curve Diffie-Hellman (ECDH) key exchange. The PQ authentication in TLS
is compared to currently used algorithms, and specifically against 3072-bit RSA. RSA operates at
128 bits of classical security, but would offer 0 bits of security in a post-quantum setting. Based on
our experiments, even RSA2048 or ECDSA certificates perform very similarly to RSA3072 because
a few hundred extra bytes in the certificate chain and less than 1ms signing and verification do not
add noticeable difference in the total handshake time. The experiments involved one local machine
and several cloud-based instances [40]. The local host machine was equipped with 16 GBs of RAM,
and an Intel i5-8350U processor, and the tests were implemented on a virtual machine running on
four cores (1.7 GHz each) and utilizing 8GBs of RAM. Google Cloud Platform (GCP) instances
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Figure 1: TLS 1.3 Handshake time per client-server distance using classic vs NIST Level 1 Dilithium
& Falcon certificates

were used as our remote servers, running on an Intel Xeon processor (2 cores, 2 GHz each) with 8
GBs of RAM. All instances were running Ubuntu 18.04 in an x86 64 architecture.

We first measured TLS 1.3 handshake performance. Fig. 1 shows the TLS 1.3 handshake times
for classical RSA3072, ECDSA384 and post-quantum NIST Level 1 Falcon and Dilithium with one
intermediate CA in the cert chain. We show the handshake time for different distances between
client and server. We can see that Dilithium and Falcon perform similarly to classic signature
algorithms. Falcon’s performance is worse for close distances between client and server primarily
because the signing time for Falcon is ∼6ms which is noticeable for small round-trips. For higher
hop counts both Falcon and Dilithium perform ∼5% slower than RSA3072 which is acceptable.

Next, we implemented a server that utilizes PQ certificates in TLS 1.3 to service multiple clients
that attempt to establish secure connections. The goal was to measure the performance of the server
under heavy load. To do so, an Nginx web server [31] was set up on one of the aforementioned cloud
instances. We used the Siege tool [16] to simulate multiple PQ authenticated TLS connections from
different clients. The client instances were located closely to each other in an attempt to emulate
location based content hosting and services.

Fig. 2 shows the testing results. The figure on the left shows the completed handshakes per
second with classical and PQ, NIST Level 1 signatures as the number of the simultaneous clients
attempting connections increases. The figure on the right shows the failure rate with the same

Figure 2: (Left) Handshakes/s per total clients, (Right) Handshake Failure rate per total clients
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Latency
(%)

Signature Algorithm

Falcon Dilithium Hash-based (SPHINCS+)

50th 7.9 6.3 321.1

95th 3.9 2.8 296.9

Table 3: Additional Latency of PQ NIST Level 1 Signatures in TLS Handshake over RSA at the
50th and 95th Percentile.

algorithms as the number of clients (and thus the server’s load) increses. Evidently, while still at
low load RSA3072 outperforms Dilithium and Falcon. At the server’s saturation point, we observe
that Dilithium allows the server to handle more connections per second compared to RSA3072,
mainly because Dilithium signing is faster than RSA3072 at the server side. Regarding Falcon,
the server’s saturation point is reached early, and at a much lower transaction rate than RSA and
Dilithium, which is due to Falcon’s computationally heavy signing that is over 6ms.

Finally, and by utilizing the same setup, our local client was set to uniformly perform 3000
handshakes with remote servers deployed worldwide for each examined algorithm in the course of
twenty-four hours. The goal was to study diverse topologies to measure TLS handshake latency ob-
served across a longer time-frame. Table 3 summarizes the average latency in the PQ-authenticated
TLS handshake when compared against RSA3072 at the 50th and 95th percentile. The observed
overhead of NIST Level 1 Dilithium was notably small making it the most pertinent for integration
into TLS. Level 1 Falcon 512 also showed small overhead over RSA3072. Regarding higher security
levels, the use of PQ authentication nearly doubled the handshake duration. We note that although
the percentage (%) increase seems high at Level 3 and 5, the absolute time increase is ∼140s at
the 50th percentile and ∼235ms at the 95th percentile.

4.2 Discussion about PQ Authenticated Tunnels

PQ signatures would have an impact on authenticated tunnels like (D)TLS and IKEv2/IPSec.
These protocols provide fragmentation mechanisms to allow for lengthy certificate chains, but as we
showed above, larger chains and potentially slower algorithms will impact the tunnel establishment.
Applications with lower connection rates and tunnels that stay up longer will be less impacted than
applications that establish short and quick connections. Thus, per connection overhead is important
to be considered for the migration to PQ signature algorithms.

VPN tunnels usually stay up for long periods of time. For the vast majority of IKEv2/ IPSec
VPN applications, a connection establishment that would take an extra ∼1s would not have a
material impact on the tunnel. Similarly, WebVPN applications establish a TLS control connection
and subsequently established data DTLS connections over a duration of a few seconds. Onward,
these tunnels stay up for long sessions that usually last hours or more. A connection establishment
slowdown of a few hundreds of milliseconds will not impact these connections. Thus, most PQ
signature algorithms (including Dilithium and Falcon) are not likely to be a significant overall
performance concern for VPN tunnels. The caveat with such use-cases is that the head-end that
terminates these connections could be affected by slow performing sign/verify operations. Dilithium
seems to be a better candidate than Falcon in that regard.

Web connections perform differently since they are usually fetched using short-lived connec-
tions [20]. A few KB of extra authentication data per TLS connection has low amortization over
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1-2KB of actual web content [20]. In summary of our testing, we found that NIST Level 1 Dilithium
and Falcon could be deployed in Web TLS X.509 certs without detrimentally impacting time-
sensitive TLS applications. Dilithium is preferable over Falcon, at least until further optimizations
or hardware offloading is available. Note that Level 1 Dilithium and Falcon claim a classical security
level of ∼100 and ∼114 bits, which are below today’s 128-bit status-quo. At higher security levels,
Dilithium and Falcon could still be used if applications were amenable to approximately double the
TLS handshake time or if mechanisms like [44] were widely deployed.

If Dilithium and Falcon are not standardized, tunnelling protocols will be significantly affected
by the rest of the PQ signature algorithms. Given that the industry is constantly striving for faster
handshakes and better performance [17, 44], it is unlikely that the impact of the PQ signature
algorithms (excluding Dilithium and Falcon) will be acceptable. In that case, more drastic changes
may be necessary. These could include intermediate CA cert caching and suppression [44], adjust-
ments of the protocol to use KEMs for authentication, use of central infrastructure (e.g., DNS or
CT logs [28]) to provide the certificates offline. We consider such changes less straightforward and
drastic accounting for how related protocols work today.

For more information on PQ Authentication in TLS 1.3, refer to [39].

5 Conclusion

In this work, we evaluated the impact of using post-quantum hash-based signatures for software
signing. We introduced parameter sets at different security levels that would be useful for dif-
ferent software signing use-cases and experimentally showed that the impact of switching to such
signatures will be insignificant for the verifier compared to conventional RSA used today. We also
showed that the signer will be more impacted but still at an acceptable level and we discussed
practical issues with migrating the HBS signatures and their alternatives.

We also integrated PQ signature algorithms into TLS 1.3 and evaluated the TLS handshake
latency observed by a client, along with the throughput of a PQ authenticated server by considering
realistic network conditions. We proved that signature and certificate chain size have some impact
on the total handshake time. Our results reveal that for time-sensitive protocols like HTTPS,
the PQ algorithms that present the best performance are Dilithium and Falcon. Other protocols
that do not require frequent connection establishments could use one of the other PQ signature
algorithms as well. We showed that even slightly slower sign operations could significantly impact
the total throughput of a server. However, as optimizations and hardware accelerations improve
signing performance, we expect signature and key size to have the most impact on the handshake
and total server throughput.
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