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Abstract

In [1] Gómez describes a new public key cryptography scheme based on ideas
from multivariate public key cryptography using hidden irreducible polynomials.
We show that the scheme’s design has a �aw which lets an attacker recover the
private key directly from the public key.
Keywords— Multivariate Public-key Cryptography, Univariate Polynomial Fac-
torization

1 Introduction
For several decades public-key cryptography schemes whose security based on the
hardness of solving multivariate polynomial systems over �nite �elds. One of the �rst
such schemes was in 1988C∗ by Matsumoto and Imai [3], which was broken by Patarin
in 1995 [4]. From this point onwards many multivariate schemes, mostly signature
schemes, evolved, for example, HFE [5], FLASH [6], UOV [2]. These and other systems
come in many di�erent variations of these systems. Especially multivariate signature
schemes are stand the test of time, some of them also part of the ongoing post-quantum
standardization process by the National Institute of Standards and Technology (NIST).

Still, designing multivariate encryption schemes is a harder task since most of the
proposed systems have been successully analyzed and broken. In [1] Gómez describes
a new public key cryptography scheme based on ideas from multivariate public key
cryptography using hidden irreducible polynomials. The fundamental idea behind the
system is polynomial multiplication and factorization.
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1.1 Our Contribution
We show that the design of the Hidden Irreducible Polynomials scheme itself reveals
the private key which leads to a full break. We state two possible attacks.

1.2 Organization
The paper is organized as follows: In Section 2 we shortly review the Hidden Irreducible
Polynomials scheme. In Section 3 we show how the private key is extracted from the
construction of the scheme. We then give two possible attacks: One based on linear
algebra, the other one directly reading o� the private key from the public one. In
Section 4 we conclude the full break of the scheme.

2 Description of the scheme
We start with a short review of the construction of the Hidden Irreducible Polynomials
scheme:

De�nition 1.

1. Let p be a prime number, for a givenm ∈ N we set q := pm.1 We consider the �eld
extension Fqn

∼= Fq[x]/h(x) =: K for some irreducible polynomial h ∈ Fq[x] of
degree deg(h) = n.

2. We �x two polynomials

f(x) := y1 + y2x + · · · + yk+1x
k,

g(x) := yk+2 + yk+3x + · · · + y2(k+1)x
k.

in K of degree deg(f) = deg(g) = k for some prime number k ∈ N such that
2k < n− 1 and yi ∈ Fq for all 1 ≤ j ≤ 2(k + 1).2

3. The private map F is given by

F : Fqn × Fqn → Fqn ,

(f(x), g(x)) 7→ f(x) · g(x).

4. For u(x) = c0 + c1x+ · · · cn−1xn−1 ∈ K we de�ne the one-to-one map

ϕ : K → Fn
q ,

u(x) 7→ (c0, . . . , cn−1).

5. T ∈ GL (Fq, (2k + 1)× (2k + 1)) denotes the transformation matrix.

1In [1] the author uses n instead of m. Since m denotes also a di�erent property in [1], we made the
distinction by using di�erent letters.

2In [1] the authors uses p(x) and q(x) instead of f(x) and g(x). Again, p(x) and q(x) denote in [1]
other polynomials.
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6. The public map P is given by:

P : F2(k+1)
q → Fqn ,(

t1, . . . , t2(k+1)

)
7→

∑2k
i=0 pi

(
t1, . . . , t2(k+1)

)
xi.

where the pi ∈ Fq[y1, y2, . . . , y2(k+1)] are constructed via(
p1
(
y1, . . . , y2(k+1)

)
, . . . , p2k+1

(
y1, . . . , y2(k+1)

)
, 0, . . . , 0

)
:=

ϕ−1 ◦ T ◦ ϕ ◦ F (f(x), g(x))

with n− 2k − 1 zeroes at the end.

Applying the scheme for encryption and decryption one needs to implement the
following steps. Here we assume that Alice generates the private and the public map
and distributes the public map. Bob now uses the public map to encrypt a message to
Alice, which she then decrypts using the private map.

De�nition 2.

1. With the above de�nitions Alice would create the private map F, construct a random
transformation matrix T and generate from these a corresponding public map P.

2. Bob is able to use Alice’s public map P: He constructs two irreducible polynomials
p, q ∈ K both of degree k. Bob wants to share p and q with Alice secretly.

3. Using the map ϕ, Bob can map the coe�cients of p and q to coe�cient vectors
in Fk+1

q ⊂ Fn
q . Concatenating ϕ(p) and ϕ(q) we receive a coe�cient vector

v := ϕ(p)||ϕ(q) ∈ F2(k+1)
q . In other words, the information of both polynomials

is encoded in one long vector of corresponding coe�cients.

4. Bob uses P, the system of quadratic multivariate polynomial equations. Each
polynomial pi in P takes 2(k + 1) variables, so Bob applies v to all the pi and
gets an element w := P(v) ∈ F2k+1

q . Bob further applies ϕ−1 to w to receive the
encrypted message z ∈ K , a univariate polynomial of degree deg(z) = 2k.

5. Bob sends z to Alice. Alice �rst uses ϕ to get the coe�cient vector of z. Then she can
apply the inverse of the privately known transformation matrix T . Finally, applying
ϕ−1, she receives a polynomial r ∈ K of degree deg(r) = 2k. This univariate
polynomial can now be factorized, and Alice receives Bob’s input polynomials p, q.

Remark 3.

1. One would assume due to the idea of the scheme, that p and q are multiplied to
a polynomial r(x) = p(x) · q(x) and then v is the coe�cient vector of r. This is
done under the hood, as F is nothing else but multiplying the input polynomials
which are encoded as one long coe�cient vector.

2. Note that the factorization step also does not hold any private information: If the
factorization would not be e�cient, Alice could not recover Bob’s p and q. So anyone
who gets r also gets p and q.
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3 Breaking the scheme
In the last section we gave a review on how the hidden irreducible polynomials
scheme is constructed, how encryption and decryption works. There are two main
observations:

Remark 4.

1. f, g, the ingredients to construct the private map are known and unique once k is
�xed. The coe�cients yi cannot be further speci�ed but need to be parameters in
order to be used in the public map P as the variables of the multivariate quadratic
polynomials pi. So F is known to anybody.

2. Looking again at Step 5 in De�nition 2 Alice only uses ϕ (publicly known) and T
to receive r. Thus the only secret part of the scheme is T , an invertible matrix

This leads to the �rst possible attack.

Attack 5 (Using linear algebra only). By de�nition it holds that

P = ϕ−1 ◦ T ◦ ϕ ◦ F .

Thus we can get T via linear algebra computing

ϕ ◦P = T ◦ (ϕ ◦ F) .

Here, all data besides T is publicly known.

It turns out that we do not even need to relinearize the system via de�ning new
variables yi,j := yiyj and solve the system of linear equations, we can do even better.

We have seen in De�nition 1.3 that F consists of the product r of the two arbitrary
univariate polynomials f and g, both of degree k, so we get

r(x) = y1,k+2x
0

+ (y1,k+3 + y2,k+2)x
1

+ (y1,k+4 + y2,k+3 + y3, k + 2)x2

+
...

+ (yk,2k+2 + yk+1,2k+1)x
2k−1

+ yk+1,2k+2x
2k.

For the sake of an easier notation let us de�ne the following notion.

De�nition 6. Let k ∈ N.. We de�ne themth coe�cient sum to be

Ym :=
∑

(i,j)∈Im

yi,j

such that Im := {(i, j) | 1 ≤ i ≤ k + 1, k + 2 ≤ j ≤ 2k + 2, i+ j = m+ k + 2} for
1 ≤ m ≤ 2k + 1.
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With De�nition 6 we can represent r(x) in a more natural way:

r(x) =

2k∑
i=0

Yi+1x
i. (1)

Even more, we can easily proof the following statement.

Lemma 7. I` ∩ Im = ∅ ⇐⇒ ` 6= m.

Proof. Both directions follow directly by the structure of f and g (De�nition 1.2) and
the de�nition of r(x) = f(x) · g(x).

This new representation of the main data structures of the hidden irreducible
polynomials scheme leads to another attack.

Attack 8 (Reading o� T from P). Applying ϕ to F we get with Equation 1

ϕ ◦ F =



Y1

Y2

...

Y2k

Y2k+1


∈ F2k+1

q ⊂ Fn
q .

By De�nition 1(6) we have that ϕ ◦P = T ◦ ϕ ◦ F. Thus rewriting ϕ ◦P using the
notation of coe�cient sums (De�nition 6) we get

ϕ ◦P =


∑2k+1

`=1 t1,`Y`

...∑2k+1
`=1 t2k+1,`Y`

 .

Since by Lemma 7 all I` are disjoint, given P, none of the appearing coe�cients in front
of the Y` are interfered, but exactly the matrix entries ti,j . Thus, we can directly read o�
T from P.

Let us recall the example given in Section 6 in [1] to show how Attack 8 works:

Example 9. In the given example we have q = 2 and k = 7. T is thus given as the
15× 15 F2-matrix
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0 1 0 1 0 0 0 1 0 1 1 1 1 1 1

1 1 1 1 1 0 0 1 1 1 1 0 0 1 0

1 1 1 0 1 1 1 1 1 0 1 1 1 1 1

1 1 0 1 0 0 1 0 1 1 1 0 0 0 1

1 0 0 1 1 1 0 0 1 1 0 0 1 1 1

1 1 0 1 0 1 0 0 1 0 0 1 1 0 0

1 0 0 0 1 0 1 0 1 1 0 0 0 0 1

1 0 0 0 0 0 1 1 1 1 0 0 0 1 1

0 1 0 1 1 1 1 1 0 1 1 0 1 0 1

0 0 0 0 1 0 0 0 1 1 1 1 1 0 0

1 0 1 0 1 1 0 0 0 1 1 0 0 0 1

1 1 0 1 1 0 0 1 1 0 1 1 1 1 0

1 0 0 1 1 1 0 0 1 1 1 1 0 0 1

1 0 0 1 0 1 0 1 0 1 1 0 0 1 1

1 1 0 1 1 1 1 0 0 1 0 1 0 1 0





T =

Looking at P we get the following system of 15 multivariate quadratic equations in the
variables y1, . . . , y16:

y2y9 + y4y9 + y8y9 + y1y10 + y3y10 + y7y10 + y2y11 + y6y11 + y8y11

+y1y12 + y5y12 + y7y12 + y8y12 + y4y13 + y6y13 + y7y13 + y8y13 + y3y14

+y5y14 + y6y14 + y7y14 + y8y14 + y2y15 + y4y15 + y5y15 + y6y15 + y7y15

+y8y15 + y1y16 + y3y16 + y4y16 + y5y16 + y6y16 + y7y16 + y8y16,

y1y9 + y2y9 + y3y9 + y4y9 + y5y9 + y8y9 + y1y10 + y2y10 + y3y10

+y4y10 + y7y10 + y8y10 + y1y11 + y2y11 + y3y11 + y6y11 + y7y11 + y8y11

+y1y12 + y2y12 + y5y12 + y6y12 + y7y12 + y8y12 + y1y13 + y4y13 + y5y13

+y6y13 + y7y13 + y3y14 + y4y14 + y5y14 + y6y14 + y2y15 + y3y15 + y4y15

+y5y15 + y8y15 + y1y16 + y2y16 + y3y16 + y4y16 + y7y16,

...

y1y9 + y4y9 + y6y9 + y8y9 + y3y10 + y5y10 + y7y10 + y2y11 + y4y11

+y6y11 + y8y11 + y1y12 + y3y12 + y5y12 + y7y12 + y8y12 + y2y13 + y4y13

+y6y13 + y7y13 + y1y14 + y3y14 + y5y14 + y6y14 + y2y15 + y4y15 + y5y15

+y8y15 + y1y16 + y3y16 + y4y16 + y7y16 + y8y16,

y1y9 + y2y9 + y4y9 + y5y9 + y6y9 + y7y9 + y1y10 + y3y10 + y4y10

+y5y10 + y6y10 + y2y11 + y3y11 + y4y11 + y5y11 + y8y11 + y1y12 + y2y12

+y3y12 + y4y12 + y7y12 + y1y13 + y2y13 + y3y13 + y6y13 + y8y13 + y1y14

+y2y14 + y5y14 + y7y14 + y1y15 + y4y15 + y6y15 + y8y15 + y3y16 + y5y16 + y7y16.
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Simply applying Lemma 6 the system gets way easier:

Y1 + Y3 + Y7 + Y9 + Y10 + Y11 + Y12 + Y13 + Y14,

Y0 + Y1 + Y2 + Y3 + Y4 + Y7 + Y8 + Y9 + Y10 + Y13,

...

Y0 + Y3 + Y5 + Y7 + Y9 + Y10 + Y13 + Y14,

Y0 + Y1 + Y3 + Y4 + Y5 + Y6 + Y9 + Y11 + Y13.

Writing down, for example, p14 (second to last one) in a dense representation we get:

1·Y0+0·Y1+0·Y2+1·Y3+0·Y4+1·Y5+0·Y6+1·Y7+0·Y8+1·Y9+1·Y10+0·Y11+0·Y12+1·Y13+1·Y14.

Reading o� the corresponding coe�cient vector we get exactly the 14th row of T :

1 0 0 1 0 1 0 1 0 1 1 0 0 1 1

[ ]
.

4 Conclusion
In this paper we have shown a full break of the Hidden Irreducible Polynomials scheme
introduced by Gómez in [1]. We have shown that the private key is publicly known
by the design of the system. Moreover, we have shown that due to the construction
of the private map, namely univariate polynomial multiplication, one can even easily
read o� the transformation matrix for the system of multivariate quadratic polynomial
equations such that not even linear algebra is needed for attacking the scheme.
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