
Threshold Schemes from Isogeny Assumptions

Luca De Feo1 and Michael Meyer2,3?

1 IBM Research Zürich, Switzerland
2 University of Applied Sciences Wiesbaden, Germany

3 University of Würzburg, Germany

Abstract. We initiate the study of threshold schemes based on the
Hard Homogeneous Spaces (HHS) framework of Couveignes. Quantum-
resistant HHS based on supersingular isogeny graphs have recently be-
come usable thanks to the record class group precomputation performed
for the signature scheme CSI-FiSh.
Using the HHS equivalent of the technique of Shamir’s secret sharing in
the exponents, we adapt isogeny based schemes to the threshold setting.
In particular we present threshold versions of the CSIDH public key
encryption, and the CSI-FiSh signature schemes.
The main highlight is a threshold version of CSI-FiSh which runs almost
as fast as the original scheme, for message sizes as low as 1880 B, public
key sizes as low as 128 B, and thresholds up to 56; other speed-size-
threshold compromises are possible.

Keywords: Threshold cryptography · Hard homogeneous spaces · Iso-
geny-based cryptography · CSIDH · CSI-FiSh

1 Introduction

Threshold cryptography and secret sharing are large areas of interest in the
cryptographic community since the late 1970s, when Shamir [51] and Blakley [7]
published the first secret sharing schemes. In 1989, Desmedt and Frankel [21]
constructed a practical threshold cryptosystem based on Shamir’s secret sharing
and ElGamal encryption [26].

The goal of a k-out-of-n, or (k, n)-threshold scheme is to split a secret key
into multiple shares and distribute them among n parties, each party receiving
one share. Then, for a certain threshold k ≤ n, any k collaborating parties must
be able to compute the cryptographic operation, e.g. decrypt or sign, without
learning the secret key, while any set of less than k parties must be unable to do
so.

After the publication of Desmedt and Frankel’s scheme, several other thresh-
old protocols were proposed; among others, a threshold variant of ElGamal
signatures by Harn [34], a threshold DSA scheme by Gennaro et al. [32], and
Desmedt and Frankel’s and Shoup’s threshold RSA signature schemes [22,53].
More recently, applications of threshold schemes in the context of blockchains

? Supported by Elektrobit Automotive, Erlangen, Germany.

and cryptocurrencies led to a renewed interest in threshold ECDSA schemes
[24,31].

However, all of these schemes are either based on discrete logarithm or integer
factorization problems, and are thus not quantum-resistant, since they fall prey
to Shor’s algorithm [52]. Only very recently, Cozzo and Smart [14] reviewed the
post-quantum signature schemes that entered the second round of the NIST
PQC standardization process [43] for threshold variants. Their main observation
is that only the multivariate-based schemes LUOV [5] and Rainbow [23] allow
for a natural threshold construction.

Another popular family of post-quantum schemes is provided by isogeny-
based cryptography [36,35]. While this family is not represented in the NIST
PQC track for signatures, isogeny-based signatures have recently attracted much
attention [16,19,4]. In this work we introduce the first isogeny-based threshold
encryption and signature schemes, based on Shamir’s secret sharing.

Our schemes are simple adaptations of Desmedt and Frankel’s and related
schemes to the Hard Homogeneous Spaces (HHS) framework. This framework
was introduced by Couveignes [13], to generalize both discrete logarithm and
isogeny-based schemes. Encryption schemes for HHS were first proposed by Cou-
veignes [13] and Rostovtsev and Stolbunov [49], then improved by De Feo, Kief-
fer and Smith [17], eventually lead to the development of CSIDH by Castryck,
Lange, Martindale, Panny, and Renes [10].

The possibility of signature schemes based on HHS was first suggested by
Couveignes [13] and Stolbunov [55,56], although no instantiation was known until
recently, when Beullens, Kleinjung, and Vercauteren introduced CSI-FiSh [4].
Before that, an alternative signature scheme based on a weaker notion of HHS,
named SeaSign, was presented by De Feo and Galbraith [16].

Our Contributions. We introduce threshold variants of the Couveignes–Ro-
stovtsev–Stolbunov encryption and signature schemes, based on Shamir’s se-
cret sharing. To make the results more easily accessible to non-experts, we first
present our schemes in an abstract way, using the language of HHS, and only
later we analyze their instantiation using CSIDH / CSI-FiSh.

The encryption scheme is a direct adaptation of [21]; its security can only be
proven in a honest-but-curious security model [9], we thus spend little time on it.
The signature scheme is similar to threshold versions of Schnorr signatures [50];
we prove its security in a static corruptions model, under a generalization of
the Decision Diffie-Hellman Group Action (DDHA) assumption of Stolbunov,
however it does not achieve robustness.

We conclude with an analysis of the instantiations of the schemes based on
isogeny graphs, in particular on the supersingular isogeny graphs used in CSIDH
and CSI-FiSh.

We view this work as an initial step towards practical threshold schemes
based on HHS and isogenies. Several technical improvements, such as better
security properties and proofs, are necessary before these protocols can be con-
sidered truly practical. We discuss these issues at the end of this work.

2

Outline. Section 2 recalls basic facts on secret sharing, threshold cryptography,
and HHS. Section 3 then introduces threshold encryption and signature schemes
based on HHS, and reviews their security features. In Section 4, we give details
about the instantiation of these threshold schemes using isogeny graphs. We
conclude by summarizing open problems towards practical applications of our
schemes.

2 Preliminaries

We briefly recall here two fundamental constructions in group-theoretic cryptog-
raphy. The first, Shamir’s secret sharing [51], lets a dealer split a secret s into n
shares, so that any k shares are sufficient to reconstruct s; it is a basic primitive
upon which several threshold protocols can be built.

The second, Couveignes’ Hard Homogeneous Spaces (HHS) [13], is a general
framework that abstracts some isogeny protocols, and that eventually inspired
CSIDH [10]. Although most popular isogeny-based primitives are not, strictly
speaking, instances of HHS, the protocols introduced in this work require an
instance of an HHS in the strictest sense, and will thus be presented using that
formalism.

2.1 Shamir’s secret sharing & threshold cryptosystems

Shamir’s scheme relies on polynomial interpolation to construct a k-out-of-n
threshold secret sharing, for any pair of integers k ≤ n.

Concretely, a prime q > n is chosen, and the secret s is sampled from Z/qZ. To
break the secret into shares, the dealer samples random coefficients c1, . . . , ck−1 ∈
Z/qZ and forms the polynomial

f(x) = s+

k−1∑
i=1

cix
i;

then they form the shares s1 = f(1), . . . , sn = f(n) and distribute them to the n
participants, denoted by P1, . . . ,Pn. We shall call i the identifier of a participant
Pi, and si his share.

Any k participants, but no less, can reconstruct f using Lagrange’s inter-
polation formula, and then recover s by evaluating f at 0. Explicitly, a set of
participants Pi, with indices taken from a set S ⊂ {1, . . . , n} of cardinality at
least k, can recover the secret s in a single step through the formula

s = f(0) =
∑
i∈S

f(i) ·
∏
j∈S
j 6=i

j

j − i
.

Shamir’s secret sharing enjoys perfect or information theoretic security, mean-
ing that less than k shares provide no information on the secret. Indeed, assuming
that k−1 participants, w.l.o.g. P1, . . . ,Pk−1, put their shares together, the map

(s, c1, . . . , ck−1) 7→
(
f(0), f(1), . . . , f(k − 1)

)
3

is, by Lagrange’s formula, an isomorphism of (Z/qZ)-vector spaces; hence, each
tuple

(
s = f(0), f(1), . . . , f(k − 1)

)
is equally likely to occur.

Threshold schemes. A major step towards practical threshold schemes based
on Shamir’s secret sharing was Desmedt and Frankel’s threshold variant of El-
Gamal decryption [21]; a similar approach to design threshold signatures was
proposed by Harn [34]. Many other threshold protocols follow a similar pattern,
colloquially referred to as secret sharing in the exponents, that we are now going
to briefly recall.

Let the secret s ∈ Z/qZ and the shares si be distributed as above. Let G
be a cyclic group of order q, and let g be a generator. Assuming that discrete
logarithms are hard in G, the participants’ goal is to compute the shared key gs

without letting anyone learn the secret s. We can again use Lagrange interpola-
tion, but this time in the exponent:

gs = g
∑
si

∏ j
j−i .

To make this idea into a protocol, each party computes gsi from its share si,
and sends it to all other parties. Given k shares si of the key with i ∈ S and
#S ≥ k, any party can then compute the shared key as

gs =
∏
i∈S

(gsi)L
S
0,i ,

where the exponents

LSl,i =
∏
j∈S
j 6=i

j − l
j − i

mod q (1)

can be precomputed from public information.

If broadcasting the shares gsi to all participants is too expensive, an alterna-
tive is to send them to a central combiner, who is then in charge of computing
gs and finalizing the protocol. As we shall see later, this flexibility will be lost
in our setting.

Secret sharing in rings. The proof of perfect security of Shamir’s secret
sharing scheme fundamentally relies on Z/qZ being a field. For reasons that will
become apparent later, we shall need to adapt the scheme to non-prime q, and
thus to general rings of modular integers. This presents two problems: ensuring
that no impossible inversions happen when computing the coefficients LSl,i in
Eq. (1), and proving security in the more general setting. These obstacles are
not difficult to overcome, as already highlighted in, e.g., RSA-based threshold
schemes [53]; we briefly explain how this is done.

4

Impossible inversions arise during the reconstruction of the shared secret when-
ever one of the denominators (j − i) in Lagrange’s formula is not coprime to
q. If q1 is the smallest prime factor of q, then there can be at most q1 dis-
tinct values modulo q1; however, any identifier i congruent to 0 modulo q1 must
be prescribed, since otherwise f(i) mod q1 would leak information on s mod q1.
Hence, at most q1 − 1 participants can take part to Shamir’s scheme in Z/qZ;
for example, using 1, 2, . . . , q1− 1 as identifiers ensures that no difference of two
of them shares a common factor with q.

Perfect security of the scheme is also achieved by restricting the identifiers to
1, 2, . . . , q1 − 1, or any other set of integers distinct and non-zero modulo all
divisors of q, thus restricting the number of participants to n < q1. We formally
prove this below.

Proposition 1. Let q be an integer with prime factorization q =
∏
qeii . As-

sume q1 is the smallest of the prime factors, let k ≤ n < q1, and sample
s, c1, . . . , ck−1 ∈ Z/qZ uniformly at random. Let

f(x) = s+

k−1∑
i=1

cix
i

and let x1, . . . xk−1 ∈ Z/qZ be distinct and non-zero modulo all qi. Associate a
random variable S to s, and random variables Yi to each f(xi).

The random variables S, Y1, . . . Yk−1 are independent; in particular Shamir’s
(k, n)-secret sharing scheme over Z/qZ is perfectly secure, in the sense that, given
the shares f(x1), . . . , f(xk−1), every secret s is equally likely to have originated
them.

Proof. Consider the map

ρ : (s, c1, . . . , ck−1) 7→
(
f(0), f(x1), . . . , f(xk−1)

)
;

since all xi mod qj are distinct and non-zero, its reduction modulo qj is an
isomorphism of Z/qjZ-vector spaces; thus, by the Chinese Remainder Theorem,
ρ is an isomorphism of Z/qZ-modules.

Introducing random variables Y0 for f(0) and Ci for the ci’s, we have that

P{Y0 = f(0), Y1 = f(x1), . . . , Yk−1 = f(xk−1)}
= P{S = s, C1 = c1, . . . , Ck−1 = ck−1} = q−k,

from which we deduce that P{Yi = f(xi)} = q−1. In particular, since s = f(0),

P{S = s, Y1 = f(x1), . . . , Yk−1 = f(xk−1)}
= P{S = s} · P{Y1 = f(x1)} · · ·P{Yk−1 = f(xk−1)}

for any s, f(x1), . . . , f(xk−1), implying that S and the Yi’s are independent.

5

2.2 Hard homogeneous spaces

Hard Homogeneous Spaces (HHS) were introduced by Couveignes in [13] as a
generalization of Diffie-Hellman schemes. A principal homogeneous space, or G-
torsor is a set E endowed with a faithful and transitive group action by a group
G.4 In other words, it is defined by a mapping

G × E → E ,
g ∗ E = E′,

satisfying the following properties:

– Compatibility: g′ ∗ (g ∗ E) = (g′g) ∗ E for any g, g′ ∈ G and E ∈ E ;
– Identity: e ∗ E = E if and only if e ∈ G is the identity element;
– Transitivity: for any E,E′ ∈ E there exists a unique g ∈ G such that g ∗E =
E′;

In particular, if G is finite, these axioms imply that #G = #E .
Couveignes defines a HHS as a finite principal homogeneous space with some

additional algorithmic properties. He requires that the following problems can
be solved efficiently (e.g., in polynomial time):

– Group operations: decide whether a string g represents an element of G,
decide whether g = g′, compute g−1 and gg′;

– Sampling: sample uniformly random elements from G;
– Membership: decide whether a string E represents an element of E , decide

whether E = E′;
– Action: Given g and E, compute g ∗ E.

Furthermore, the following problems should be hard (e.g., not known to be solv-
able in polynomial time):

– Vectorization: Given E,E′ ∈ E , find g ∈ G such that g ∗ E = E′;
– Parallelization: Given E,E′, F ∈ E , such that E′ = g ∗ E, find F ′ = g ∗ F .

As a simple example, let E be a group of prime order q, then G = (Z/qZ)×

acts on E\{1} by a∗g = ga. In this case, the Vectorization problem is the discrete
logarithm problem in E , and the Parallelization problem is the Computational
Diffie–Hellman problem. Hence any discrete logarithm group is also a HHS.

Couveignes’ original proposal used as HHS sets of ordinary elliptic curves
over finite fields, with complex multiplication by a quadratic imaginary order
O; indeed, these are torsors for the class group cl(O), and the Vectorization and
Parallelization problems are not known to be easily solvable. Based on this HHS,
he defined key exchange as a straightforward generalization of the Diffie–Hellman
protocol, and he also sketched an interactive identification scheme.

4 The reader will excuse our extravagant notation for set and group elements: our goal
is to be consistent with the notation used in Section 4 for isogeny-based HHS.

6

However, Couveignes’ proposal presents several difficulties, as neither the
group action nor random sampling are known to be easily computable. Inde-
pendently from Couveignes, Rostovtsev and Stolbunov [49,55] proposed a key-
exchange scheme based on the same group action, but with a different representa-
tion of elements of cl(O). This proposal had the benefit of making key-exchange
feasible, if not practical, and subsequent research [17] eventually led to the de-
velopment of CSIDH [10], an efficient key exchange scheme based on the action
of a quadratic class group on a set of supersingular curves.

Nevertheless, none of these constructions satisfies exactly the axioms of a
HHS, since, for example, the cost of evaluating g ∗ E in CSIDH is in the worst
case exponential in the size of g. While every group element has an equivalent
representation that permits to efficiently evaluate the action, computing such
representation is difficult in general. This is not a problem for key-exchange
schemes based on CSIDH, but, for example, it makes identification and signature
schemes more involved and less efficient than what Couveignes had originally
envisioned [16,19].

The roadblock in all these constructions is the fact that the structure of the
class group cl(O) is unknown, and it is thus impossible to have a unique rep-
resentation for its elements. The best algorithm for computing the class group
structure runs in sub-exponential time, and is thus neither practical nor scal-
able; nevertheless the application to isogeny-based signatures motivated Beul-
lens, Kleinjung and Vercauteren [4] to run an intensive computation for the
CSIDH-512 parameter set, which allowed them to construct CSI-FiSh, the most
efficient isogeny-based signature to date.

Currently, CSI-FiSh is the only known instance of HHS based on isogenies:
group elements have unique representation, the group action can be evaluated
efficiently, and the Vectorization and Parallelization problems are believed to
be hard, both classically and quantumly. Unfortunately, parameter generation
requires exponential time in the security parameter, thus CSI-FiSh is a HHS
only in a practical sense for a specific security level, but not in the asymptotic
sense.

In the next sections we are going to introduce threshold schemes based on
HHS; then we will give more details on CSI-FiSh, and look at how the threshold
schemes can be instantiated with it.

3 Threshold schemes from HHS

We now present threshold schemes based on Hard Homogeneous Spaces.

Let a group G and a set E be given, such that G acts faithfully and transitively
on E and the HHS axioms are satisfied. We are going to require an additional
property: that an element g ∈ G of order q is known, and we shall write q1 for
the smallest prime divisor of q. In particular, these hypotheses imply that there
is an efficiently computable embedding Z/qZ ↪→ G defined by a 7→ ga, which we
are going to exploit to embed Shamir’s secret sharing in the HHS.

7

Notation. From now on we will use capital letters E,F, . . . to denote elements
of the HHS E , and gothic letters a, b, g, . . . to denote elements of the group G.
Following [4], it will be convenient to see Z/qZ as acting directly on E : we will
write [a] for ga, and [a]E for ga ∗E, where g is the distinguished element of order
q in G.5 Be wary that under this notation [a][b]E = [a+ b]E.

Remark 1. The additional hypothesis excludes, in particular, HHS of unknown
order, such as CSIDH (outside of the parameter set shared with CSI-FiSh).

Note that, assuming the factorization of q is known, given any element of G
it is easy to test whether it is of order q. Nevertheless, in some instances it may
be difficult to decide whether an element g′ ∈ G belongs to 〈g〉; this may happen,
for example, if G ' (Z/qZ)2. This will not impact the protocols we define here,
but is an important property to consider when designing threshold protocols in
the general HHS setting. At any rate, for instantiations based on CSI-FiSh it is
always easy to test membership of 〈g〉.

On the other hand, unless G = 〈g〉, it is a well known hard problem (exponen-
tial in log q) to decide whether given E,E′ ∈ E there exists a ∈ Z/qZ such that
E′ = [a]E. Indeed, a generic solution to this problem would imply an efficient
generic algorithm for solving many instances of discrete logarithms [10].

We now describe a distributed algorithm to compute the group action of
〈g〉 on E in a threshold manner, and explain how it impacts the communication
structure of threshold protocols. Then we present two simple threshold protocols,
a KEM and a signature, directly adapted from their non-threshold counterparts.

3.1 Threshold group action

Like in Section 2, we assume that the participants P1,P2, . . . possess shares
si = f(i) of a secret s ∈ Z/qZ; their goal is to evaluate the group action [s]E0

for any given E0 ∈ E , without communicating their shares si.
Let S ⊂ {1, . . . , n} be a set of cardinality at least k, and recall the definition

of the Lagrange coefficients in Eq. (1):

LSl,i =
∏
j∈S
j 6=i

j − l
j − i

mod q.

Then the participants Pi for i ∈ S determine the shared secret by s =
∑
i∈S si ·

LS0,i. For the sake of simplicity, we will assume that S = {1, ..., k}.
The participants coordinate as follows. First, E0 is sent to P1, who starts by

computing
E1 =

[
s1 · LS0,1

]
E0.

The resulting E1 is passed on to P2, who continues by computing

E2 =
[
s2 · LS0,2

]
E1 =

[
s2 · LS0,2 + s1 · LS0,1

]
E0.

5 Note that this action is only transitive if g generates G.

8

This procedure repeats analogously for the parties P3, ...,Pk−1, and at last Pk
can compute

Ek =
[
sk · LS0,k

]
Ek−1 =

[∑
i∈S

si · LS0,i

]
E0 = [s]E0.

Communication structure. Comparing the algorithm to classical threshold Diffie-
Hellman protocols as in Section 2.1, it is obvious that there are differences in
their structures. There, each party Pi computes gi = gsi from its secret share si

and a common generator g. Anyone can then compute g
LS

0,i

i for each i ∈ S, and
multiply the results to obtain gs.

In our HHS setting, the situation is different. First,
[
si · LS0,i

]
E cannot be

computed from the knowledge of [si]E and LS0,i, thus only Pi can compute it.
Consequently, each participant has to know in advance the set S of parties taking
part to the computation, in order to apply LS0,i.

Further, it is not possible to introduce a combiner, who could proceed as in
the classical case by receiving the different

[
si · LS0,i

]
E0 and combining them to

obtain [s]E0, since in general the set E is not equipped with a compatible group
operation E×E → E . Therefore, it is necessary to adopt a sequential round-robin
communication structure:

E0,S−→ P1
E1,S−→ P2

E2,S−→ ...
Ek−1,S−→ Pk

[s]E0−→ .

Note that the order of the Pi can be changed without affecting the final result.
However, this means that Pk is the only party who ends up knowing the result

of the group action. If a cryptographic protocol needs to handle this element
secretly, our algorithm is only suitable for situations where only one participant
is required to know the secret result. Algorithm 1 summarizes the described
approach in the general case.

Algorithm 1: Threshold variant of the group action computation.

Input : E0 ∈ E , set of participants S.
Output: [s]E0.

1 Set E ← E0.
2 foreach i ∈ S do
3 If E /∈ E , participant Pi outputs ⊥ and the algorithm stops.

4 Participant Pi outputs E ←
[
si · LS0,i

]
E.

5 return E.

In a different setting where all participants are required to secretly know
the final result, several modifications are possible. For example, when encrypted
channels between the participants exist, the last participant can simply distribute
through them the resulting [s]E0.

9

Alternatively, k parallel executions of Algorithm 1, each arranging the partic-
ipants in a different order, let all participants know the final result. The cost of
this modification is rather high: O(k2) elements of E need to be transmitted, and
O(k2) group actions evaluated. This can be improved to O(k log k) transmitted
elements of E (but still O(k2) group actions) using a binary splitting strategy.

Remark 2. Algorithm 1 does nothing to prevent corrupted participants from
leading to an incorrect output. While threshold schemes based on discrete log-
arithms can often detect and correct malicious behavior (using, e.g., error cor-
recting codes [32]), this is more difficult for HHS. Indeed, there seems to be no
way for a participant to verify the previous participant’s output in Algorithm 1,
outside of generic zero-knowledge techniques.

3.2 Threshold HHS ElGamal decryption

The first application we present for our threshold group action is threshold de-
cryption, a direct adaptation of [21].

Inspired by the classical ElGamal encryption scheme [26], a PKE protocol in
the HHS settings was first introduced by Stolbunov [49,55,56]. We briefly recall
it here, using the terminology of KEMs.

Public parameters: A HHS (E ,G), a starting element E0 ∈ E , and a hash
function H from E to {0, 1}λ.

Keygen: Sample a secret key a ∈ G, output a and the public key Ea = a ∗ E0.
Encaps: Sample b ∈ G, output K = H(b ∗ Ea) and Eb = b ∗ E0.
Decaps: Given Eb, if Eb ∈ E output K = H(a ∗ Eb), otherwise output ⊥.

The Decaps routine is easily adapted into a threshold algorithm requiring k
participants to collaborate in order to recover the decryption key K. This also
requires modifying Keygen, which must now be executed by a trusted dealer
and integrate Shamir’s secret sharing.

Public parameters: A HHS (E ,G) with a distinguished element g ∈ G of order
q, a starting element E0 ∈ E , and a hash function H from E to {0, 1}λ.

Keygen:
– Sample a secret s ∈ Z/qZ and generate shares si ∈ Z/qZ using Shamir’s

secret sharing;
– Distribute privately si to participant Pi;
– Output public key Ea = [s]E0.

Encaps: Sample b ∈ G, output K = H(b ∗ Ea) and Eb = b ∗ E0.
Decaps: Given Eb and a set S of participants, #S ≥ k, run Algorithm 1 to

compute E = [s]Eb; output ⊥ if the algorithm returns ⊥, otherwise output
K = H(E).

The asymmetry of the scheme will not be lost on the reader: while the shared
secret for the threshold group is restricted to be in 〈g〉, there are no restrictions
for Encaps. Although it would be completely possible (maybe even desirable

10

for practical reasons) to restrict secrets to 〈g〉 also in the encapsulation, we do
not do so because there is no known way for decapsulation to test whether Eb
has been generated this way.

It is clear that this scheme achieves the stated goal of threshold decryption:
upon receiving a ciphertext, at least k participants must agree to decrypt in order
to recover the key K; only the last participant in the chain learns K. If less than
k participants agree to decrypt, the key K cannot be recovered; however this
security property is only guaranteed when all participants behave honestly.

When allowing for corruptions, the scheme immediately becomes broken.
Indeed in Algorithm 1, when a participant beyond the first receives an input,
they are unable to link it to the ciphertext Eb. This makes it possible to trick an
unwilling participant P into helping decrypt a message: let c be such a message,
a group of k−1 participants only has to wait for a message c′ that P is willing to
decrypt; when P agrees, they submit to it an intermediate value of a computation
for c, which P is unable to distinguish from one for c′. Contrast this to the
original El Gamal threshold decryption of Desmedt and Frankel [21], where each
participant performs its computation directly on the input.

Because of this, the security of the protocol can only be proven in a honest-
but-curious model. We skip the easy security proof, and leave the search for more
refined threshold decryption protocols for future work.

3.3 Threshold signatures

An identification scheme in the HHS framework was first sketched by Cou-
veignes [13]; in his PhD thesis [56] Stolbunov also suggested applying the Fiat-
Shamir transform [29] to it to obtain a signature scheme. Nevertheless these
schemes stood out of reach until recently, when the class group computation
for CSIDH-512 was completed [4]; CSI-FiSh is effectively Stolbunov’s scheme,
combined with optimizations introduced in SeaSign [16].

CSI-FiSh and its ancestors can be easily adapted into threshold protocols.
We start by recalling the basic interactive zero-knowledge identification scheme:
a prover Peggy wants to convince a verifier Vic that she knows a secret element
a ∈ G such that Ea = a ∗ E0. They proceed as follows:

– Peggy samples a random b ∈ G and commits to Eb = b ∗ E0.
– Vic challenges with a random bit c ∈ {0, 1}.
– If c = 0, Peggy replies with z = b; otherwise she replies with z = ba−1.
– If c = 0, Vic verifies that z∗E0 = Eb; otherwise, he verifies that z∗Ea = Eb.

It is immediately seen that the scheme is correct, thanks to the properties
of homogeneous spaces, and that it has soundness 1/2. For the zero-knowledge
property, it is crucial that elements in G can be sampled uniformly, and that
they have unique representation. See [56,16,4] for detailed proofs.

We now adapt this scheme into a threshold signature by applying the Fiat-
Shamir transform and Shamir’s secret sharing as before.

11

We let again (E ,G) be a HHS with a distinguished element g of order q, we fix
a starting element E0 ∈ E , and a hash function H : {0, 1}∗ → {0, 1}λ. We assume
that a trusted dealer has sampled a random secret s ∈ Z/qZ, securely distributed
shares si to the participants Pi, and published the public key Es = [s]E0.

Here is a sketch of how a participants P1, . . . ,Pk can cooperate to sign a
message m:

– In the commitment phase, the participants collaborate to produce a random
element [b]E0 in a way similar to Algorithm 1, by producing each a random
value bi ∈ Z/qZ and evaluating Ei = [bi]Ei−1.

– Once Ek = [b]E0 is computed, the challenge bit c is obtained from the hash
H(Ek,m).

– If c = 0, each Pi outputs zi = bi, else each Pi outputs zi = bi − si · LS0,i.
– The signature is (c, z =

∑
zi).

To verify the signature it suffices to check that H([z]E0,m) = 0 . . . , if c = 0,
or that H([z]Es,m) = 1 . . . , if c = 1. Of course, this sketch must be repeated λ
times, in order to ensure the appropriate level of security.

The complete signing algorithm is summarized in Algorithm 2. As presented
there, it is rather inefficient in terms of signature size and signing/verification
time. All the key/signature size compromises presented in CSI-FiSh [4] are com-
patible with our threshold adaptation, and would produce a more efficient sig-
nature scheme. The details are left to the reader.

Security analysis. We conclude with a study of the security of the threshold
signature scheme. We define the following existential forgery game (UF-CMA)
with static corruptions:

– The trusted dealer draws the secret s, distributes the shares si to the par-
ticipants, and publishes the public key [s]E0.

– The adversary chooses k− 1 participants to corrupt, and learns their shares
si.

– After that, the adversary can query a threshold signing oracle, which receives
a set S of at least k participants and a message m, and outputs a signature
on m by the set S, and all the messages sent by the participants in S during
the execution of the protocol.

– The adversary wins if they produce a valid signature for a message m that
was not submitted to the oracle.

We will prove the security of the signature scheme under a new assumption,
that we call Power-DDHA. This decision version of the Scalar-HHS problem of
Felderhoff [28] is a generalization of the Decision Diffie–Hellman Group Action
(DDHA) introduced by Stolbunov [55], and is related to the P -DDH assumption
introduced by Kiltz for discrete logarithm groups [38].

Problem 1 (Power-DDHA problem). Let (E ,G) be a HHS. Let E ∈ E and 1 <
a < #G an integer; let s be a uniformly random element in G. The a-Power-
DDHA problem is: given (a,E, s ∗ E,F), where F ∈ E is an element, either

12

Algorithm 2: Threshold HHS signature.

Input : Message m, participant set S.
Output: A signature on m.

1 Set (E0
1 , . . . , E

0
λ)← (E0, . . . , E0).

2 Let k ← 0.
3 foreach i ∈ S do
4 Let k ← k + 1.
5 foreach 1 ≤ j ≤ λ do
6 If Ej /∈ E , participant Pi outputs ⊥ and aborts the protocol.
7 Pi samples bi,j ∈ Z/qZ uniformly at random.

8 Pi outputs Ekj ← [bi,j]E
k−1
j .

9 Let c1 · · · cλ ← H(Ek1 , . . . , E
k
λ,m).

10 foreach i ∈ S do
11 foreach 1 ≤ j ≤ λ do
12 if cj = 0 then
13 Pi outputs zi,j = bi,j .

14 else
15 Pi outputs zi,j = bi,j − si · LS0,i.

16 foreach 1 ≤ j ≤ λ do
17 Let zj =

∑
i∈S zi,j .

18 return the signature (c1 · · · cλ, z1, . . . , zλ).

sampled from the uniform distribution on E , or F = sa ∗ E, decide from which
distribution F is drawn.

Remark 3. The special case of (−1)-Power-DDHA where the HHS is instantiated
with a graph of Fp-isomorphism classes of supersingular curves, and E is the
special curve E : y2 = x3 +x, is known to be solvable efficiently. Other “special”
curves in the graph also enjoy this property, see [11].

This obstacle is easy, but tedious, to circumvent in the proof of the next
theorem. We leave the details to the reader.

Felderhoff proved that the search version of Power-DDHA (Scalar-HHS) is
equivalent to Parallelization whenever the order of G is known and odd [28].
We also recall the formal definition of the Vectorization problem, also known as
Group Action Inverse Problem [55].

Problem 2 (GAIP). Let (E ,G) be a HHS, let E,F be uniformly random elements
of E . The Group Action Inverse Problem asks to compute a ∈ G such that
E = a ∗ F .

It is clear that GAIP is harder than Power-DDHA: given a GAIP solver one
can simply apply it to (E, s∗E), and then use the answer to solve Power-DDHA.

13

Theorem 1. Under the Power-DDHA assumption, the signature scheme of Al-
gorithm 2 is UF-CMA secure, when the hash function H is modeled as a random
oracle.

Proof. We will reduce the security of the threshold scheme to that of the original
non-threshold scheme of Stolbunov, which is known to be secure under the GAIP
assumption in the ROM [56,4]. Because the reduction relies on Power-DDHA,
which is easier than GAIP, the statement follows. The reduction consists of a
sequence of games, the first one being the original UF-CMA game. We only
sketch the proof.

In the second game we replace the threshold signing oracle as follows. When
the adversary asks for the shares of the k− 1 corrupted participants, we sample
si ∈ Z/qZ at random and send them back. We also sample the shared secret
s ∈ Z/qZ, which uniquely determines a polynomial f of degree k − 1 such that
f(i) = si. When the adversary asks for a signature, we simply use the signing
algorithm 2. This game is thus indistinguishable from the original one for the
adversary.

The third game is identical to the second, however we change the way the replies
to the adversary are computed.

Along with the signature (c1 · · · cλ, z1, . . . , zλ), we compute the sequence

E0
s = E0,

Ekis =
[
si · LS0,i

]
Eki−1s ,

for i ∈ S, where ki is the position of i in S, so that Es = Eks .
Then, for each 1 ≤ j ≤ λ, the participant messages zi,j are sent to the

adversary normally. The messages Ekij are recomputed as follows: if cj = 0 we

set Ekij = [bk1,j + bk2,j + · · ·+ bki,j]E0, as in Algorithm 2. If cj = 1 we set

Ekij = [zk1,j + zk2,j + · · ·+ zki,j]E
ki
s , which is immediately seen as being the

same as in Algorithm 2, thanks to bi,j = zi,j + si · LS0,i. An example of this
computation with three participants is pictured in Figure 1.

Since the values sent to the adversary are the same as in the previous game,
this game is still indistinguishable from the original one.

In the fourth game we generate the signature as in the previous game, however we
avoid using the knowledge of the uncorrupted shares to compute the elements
Ekis . For simplicity, we will assume that querying sets S are always sorted in
increasing order, so that the relative order of the participants’ actions does not
change between queries.

If S contains only one uncorrupted participant Pi, it is easy to perfectly
simulate the messages: assume Pi is in position ki in S, for any k′ < ki we can
compute Ek

′

s directly :

Ek
′

s =

 ∑
i∈S,ki≤k′

si · LS0,i

E0,

14

E0 E1
s E2

s Es

E1
j

E2
j

E3
j

• •

•

s1L
S
0,1 s2L

S
0,2 s3L

S
0,3

b1

b2

b3

z1 z1

z2

z1

z2

z3

Fig. 1. Recomputation of Ekij given zi,j .

whereas for all k′ ≥ ki we can compute it backwards:

Ek
′

s =

 ∑
i∈S,ki>k′

−si · LS0,i

Es.
When S contains more than one uncorrupted participant, we will resort to

random sampling. Like above, we start one direct chain from E0, and one back-
wards from Es; both chains stop when they encounter an uncorrupted participant
Pi. Now, let Eki−1s be the last curve in the direct chain, we set the next curve
Ekis = [ri]E0, where ri is sampled uniformly from Z/qZ. We also store ri in
association with S, and keep it for reuse the next time the adversary queries for
the set S.

We continue the direct chain from Ekis , either using the knowledge of si ·LS0,i
for corrupted participants, or sampling a random ri for uncorrupted ones; we
stop when we meet the backwards chain. An example of this process is pictured
below:

E0 E1
s E2

s E3
s E4

s Es
r1 s2L

S
0,2 r3 r4 s4L

S
0,4

we write in bold data that is obtained through random sampling; the value r4
is implicitly determined by the other four values.

After we have determined this data, we answer all signing queries for S as in
the previous game (see Figure 1). Now, the adversary’s view is no longer indis-
tinguishable from the original game, however we argue that it still is computa-
tionally indistinguishable assuming Power-DDHA. Indeed, when cj = 1, the ad-

versary is able to recover Ekis from Ekij as Ekis = [−zk1,j − zk2,j − · · · − zki,j]E
ki
j .

This means that the adversary will collect many pairs of the form
(
E,
[
si · LS0,i

]
E
)

(when Pi is the only uncorrupted participant in S), and many others of the form

(E′, [ri]E
′) (where the expected relation would be

(
E′,
[
si · LS

′

0,i

]
E′
)

instead).

15

In general, it will be the case that E′ = [b]E for some b ∈ Z/qZ not necessar-
ily known to the adversary; however, by subtracting known factors coming from
corrupted players, the adversary can reduce to a distinguishing problem between
([
∑
s′i]E0, [

∑
s′iai]E0) and ([

∑
s′i]E0, [r]E0), where the s′i are unknowns related

to uncorrupted shares si, the ai are known (and possibly 0), and r is random.
This is an instance of a problem more general than Power-DDHA, and is thus
at least as hard as Power-DDHA.

Hence, with non-negligible probability, either the adversary succeeds in dis-
tinguishing (generalized) Power-DDHA, or it produces a forged signature.

In the final game we replace the signature generation procedure with a signing
oracle for the non-threshold scheme.

We still generate k− 1 shares si ∈ Z/qZ for the corrupted participants, how-
ever now the shared secret s ∈ Z/qZ is only implicitly determined by the public
key [s]E0. This data fully determines the shares of the uncorrupted participants.

When the adversary sends a query for a signature, we pass it to the signing
oracle, which returns a valid signature (c1 · · · cλ, z1, . . . , zλ). From this signature,
for any j, we draw zi1,j , . . . , zik−1,j at random, and set zik,j = zj − zi1,j − · · · −
zik−1,j .

We then proceed as in the previous game, thus producing exactly the same
distribution. If the adversary produces a forgery, it is also a valid forgery for the
non-threshold oracle. This proves that, assuming Power-DDHA, the threshold
UF-CMA game is at least as hard as the non-threshold one.

Remark 4. It is evident from the proof that the security of the (n, n)-threshold
signature scheme can be proven without assuming Power-DDHA. The appear-
ance of this surprising assumption seems an artifact related to the limitations of
the HHS framework; indeed, the analogous scheme based on discrete logarithms
can be proven as hard as standard Schnorr signatures without additional as-
sumptions [54]. We hope that further research will improve the state of security
proofs for HHS threshold schemes.

Remark 5. Although our scheme is unforgeable under static corruptions, it is
obviously non-robust : any participant can lead to an invalid signature without
being detected. Robustness can be added using generic zero-knowledge tech-
niques, however it would be interesting to achieve it in a more efficient bespoke
fashion.

Another desirable improvement would be to prove security in a stronger
adaptive corruptions model, where the adversary can query the signing oracle
before choosing which participants to corrupt.

4 Instantiations based on isogeny graphs

We now describe an instantiation of the previous schemes based on a principal
homogeneous space of supersingular elliptic curves defined over a finite field Fp.

16

It was first observed by Delfs and Galbraith [20] that the set of all supersin-
gular curves defined over a prime field Fp partitions into one or two levels, each
level being a principal homogeneous space for the class group of an order of the
quadratic imaginary field Q(

√
−p), in a way analogous to the well known theory

of complex multiplication.
These principal homogeneous spaces were first used for a cryptographic pur-

pose in the key-exchange scheme CSIDH [10], however only the precomputation
performed recently by Beullens et al. for the signature scheme CSI-FiSh [4] per-
mits to turn one of these into a true HHS.

We now briefly recall some key facts on CSIDH and CSI-FiSh, before turning
to the instantiation of our threshold schemes. More details on the mathematical
background of isogeny-based cryptography can be found in [15].

4.1 Supersingular complex multiplication

From now on we let p be a prime, Fp the field with p elements, and F̄p an
algebraic closure. An elliptic curve E defined over Fp is said to be supersingular
if and only if #E(Fp) = p + 1. It is well known that there are approximately
p/12 isomorphism classes of supersingular curves, all defined over Fp2 ; of these,
O(
√
p) are defined over Fp.

Let E be a supersingular curve defined over Fp, an endomorphism is an
isogeny from E to itself, and it is said to be defined over Fp (or Fp-rational) if it
commutes with the Frobenius endomorphism π. The Fp-rational endomorphisms
of E form a ring, denoted by EndFp

(E), isomorphic to an order6 of Q(
√
−p);

more precisely, it is isomorphic to either Z[
√
−p] or Z[(

√
−p + 1)/2]. Let O be

such an order, the class group cl(O) is the quotient of the group of invertible
ideals of O by the group of its principal ideals; it is a finite abelian group.

The set of all supersingular curves with EndFp
(E) isomorphic to a given

order O ⊂ Q(
√
−p) is called the horizontal isogeny class associated to O. A

straightforward extension to the theory of complex multiplication states that the
horizontal isogeny class of O, up to Fp-isomorphism, is a principal homogeneous
space for cl(O). To make this into a HHS, an efficient (e.g., polynomial in log(p))
algorithm to evaluate the action of cl(O) is needed. This is where isogenies play
an important role. Fix an isomorphism EndFp

(E) ' O, for any invertible ideal a,
the action a ∗E can be computed as follows: first define the a-torsion subgroup
of E as

E[a] = {P ∈ E(F̄p) | α(P) = 0 for all α ∈ a},

this is a finite subgroup of E, and it is stabilized by the Frobenius endomorphism
π; then the unique isogeny φ : E → E/〈E[a]〉 with kernel E[a] is such that
a ∗E = E/〈E[a]〉. It follows that, if a and b are two ideals in the same class, i.e.,
such that a = (α) · b for some element α ∈ O, then E/〈E[a]〉 ' E/〈E[b]〉.

The curve E/〈E[a]〉 can be efficiently computed using an isogeny evaluation
algorithm [57,27], however the complexity of this operation is polynomial in

6 In this context, an order is a Z-module isomorphic to Z⊕ωZ ' Z[ω] for some ω /∈ Q.

17

the degree of the isogeny, or, equivalently, in the norm N(a) = #(O/a). This
implies that the action of an element a ∈ cl(O) can only be efficiently computed
when a representative of small norm of a is known, or, more generally, when a
decomposition

a =
∏
i

li

with all li of small norm is known.

Now, for any prime `, the ideal (`) ⊂ O is either prime, or it splits into a
product of two (possibly equal) conjugate prime ideals l̄l = (`) of norm `. In
the former case, there are no invertible ideals of norm ` in O; in the latter, l
and l̄ are the only ideals of norm `, and they are the inverse of one another in
cl(O). Asymptotically, about 50% of the primes ` split, thus we may hope to
form a basis of generators of cl(O) of norms bounded by polylog(p), such that
any element of cl(O) can be represented as a product of polylog(p) elements of
the basis.7

This representation for the elements of cl(O) using a smooth basis is at the
heart of the Couveignes–Rostovtsev–Stolbunov key exchange scheme, and of
CSIDH. However, having a smooth basis may not be enough: to have a HHS,
one still needs to be able to rewrite any element of cl(O) as a compact product
of smooth elements. This is the key difference between CSIDH and CSI-FiSh, as
we shall see next.

4.2 CSIDH and CSI-FiSh

CSIDH was designed to make evaluating the group action of cl(O) as efficient
as possible. To this end, a prime p of the form

p+ 1 = 4

n∏
i=1

`i

is selected, where `1, . . . , `n−1 are the first n− 1 odd primes, and `n is chosen so
to make p prime. This choice guarantees several desirable properties:

– The curve E : y2 = x3 + x has Fp-rational endomorphism ring isomorphic
to Z[π], where π =

√
−p is the image of the Frobenius endomorphism of E;

– All curves in the horizontal isogeny class of Z[π] can be written in the form
y2 = x3 + Ax2 + x, and the coefficient A uniquely characterizes the Fp-
isomorphism class;

– All `i split in Z[π] as (`i) = līli = 〈`i, π − 1〉 · 〈`i, π + 1〉;
– For any curve E, the li-torsion subgroup is easily found as E[li] = E[`i] ∩
E(Fp).

7 Jao, Miller and Venkatesan [37] showed that it is indeed possible to bound the norms
by O(log2(p)), assuming the Generalized Riemann Hypothesis.

18

The first two properties ensure that supersingular isomorphism classes are easy
to construct and represent uniquely, the third guarantees8 that a number expo-
nential in n of ideal classes of Z[π] can be efficiently represented and its action
evaluated, the fourth enables some important optimizations for computing iso-
genies of degree `i.

In CSIDH and optimized variants [42,41,44,12], all ideal classes are implicitly
represented as products

a =

n∏
i=1

leii ,

with the exponents ei in some box [−Bi, Bi] (negative exponents are interpreted
as powers of l̄i). Explicitly, the representation of an ideal class a is simply the
vector of exponents (e1, . . . , en). The action of such ideals can be evaluated in
time poly(Bi, ei, n) using isogeny formulas.

In practice, a single parameter set has been fully specified for CSIDH, cor-
responding to the NIST post-quantum level 1.9 The set has n = 74, `73 = 373,
and `74 = 587, yielding a prime p of approximately 512 bits; we shall refer to
it as CSIDH-512. Protocols based on CSIDH-512 usually sample exponents in
a box [−5, 5], which heuristically covers almost all the class group, and which
permits to evaluate one class group action in under 30ms [42].

However, based on this data only, CSIDH is not a HHS. Indeed, all axioms
of an HHS are satisfied but two: it is not possible to efficiently evaluate the
action of any element of cl(Z[π]), and it is not always possible to test equality of
two elements of cl(Z[π]). Take for example the exponent vector (2128, 0, . . . , 0),

corresponding to the ideal a = 〈3, π − 1〉2128 ; this is a valid element of cl(Z[π]),
however without further knowledge its action can only be evaluated through 2128

isogeny evaluations. Hopefully, a has an equivalent representation on the basis
l1, . . . , ln with much smaller exponents, however we have no way to compute it
and, even if we were given it, we could not test their equality.

These problems go away once we have computed the group structure of
cl(Z[π]). More precisely, we need to know the relation lattice of l1, . . . , ln, i.e.,
the lattice

Λ =

{
(e1, . . . , en)

∣∣∣∣∣
n∏
i=0

leii = 1

}
,

which yields a representation of the class group as cl(Z[π]) ' Zn/Λ. Now, equal-
ity of two exponent vectors e,f can be tested by checking that e− f ∈ Λ, and
any exponent vector e can be evaluated efficiently by finding an (approximate)
closest vector f ∈ Λ and evaluating e− f instead.

Neither computing the relation lattice, nor computing a good reduced basis
for it are easy tasks: the former requires subexponential time in log(p), and the

8 This guarantee is only heuristic: it is possible, although unlikely, that all li have
small order in cl(Z[π]), and thus generate a small subgroup.

9 NIST defines the security of level 1 as being equivalent to AES-128.

19

latter exponential time in n.10 Nevertheless, the computation for the CSIDH-512
parameter set happens to be just within reach of contemporary computers, as
proven by Beullens et al. [4]: they managed to compute the structure of the class
group, which happens to be cyclic of order

#cl(Z[π]) = 3 · 37 · 1407181 · 51593604295295867744293584889·
31599414504681995853008278745587832204909 ≈ 2257.136,

(2)

and a BKZ-reduced basis for the relation lattice. In particular, they found out
that the ideal l1 = 〈3, π − 1〉 generates cl(Z[π]).

Thanks to CSI-FiSh, we thus dispose of a HHS with quantum security es-
timated at the NIST-1 security level, although scaling to higher security levels
currently looks problematic.

4.3 Instantiation of the threshold schemes

Given the CSI-FiSh data, we can now instantiate our threshold schemes. How-
ever, it is evident by Eq. (2) that the full group 〈l1〉 = cl(Z[π]) is not suitable
for them, because the smallest prime factor of its order is 3, thus limiting the
schemes to just 2 participants. We may instead choose as generator l31, which
limits the schemes to 36 participants, or l1111 , allowing more than a million par-
ticipants.11

Efficiency. The performance of our schemes can be readily inferred from that
of the CSI-FiSh signature scheme.

To evaluate the action of an ideal in cl(Z[π]), CSI-FiSh first solves an approx-
imate closest vector problem using Babai’s nearest plane algorithm [1], and an
algorithm by Doulgerakis, Laarhoven and de Weger [25]; then uses the isogeny
evaluation algorithm of CSIDH. The average cost for one evaluation is reported
to be 135.3 · 106 cycles (40–50ms on a commercial CPU), which is only 15%
slower than the original CSIDH evaluation.12

In the encryption scheme, each participant computes exactly one class group
action. Since the participants must do their computations sequentially, the total
time for decryption is multiplied by the number of participants; the time for
encryption, on the other hand, is unaffected by the number of participants,
indeed the threshold nature of the protocol is transparent to the user.

10 Using a quantum computer, the relation lattice can be computed in polynomial time,
however lattice reduction still requires exponential time.

11 An alternative way to allow up to 36 participants is to use the action of cl(Z[(π +
1)/2]) on the horizontal isogeny class of y2 = x3 − x: the class group is 3 times
smaller than cl(Z[π]), and still generated by 〈3, π − 1〉. Because the two class group
actions are compatible, the CSI-FiSh data can easily be repurposed for this variant
without additional computations. This approach is detailed in [18].

12 Benchmarks in [4] are based on the original CSIDH implementation [10]. A speed-up
of roughly 30% is to be expected using the techniques in [42].

20

In the signature scheme, using the optimization described in [4], depending
on the choice of parameters each participant computes between 6 and 56 group
actions. Since the group action largely dominates the cost of the whole signing
algorithm, we can expect to complete a (k, n)-threshold signature in approxi-
mately k · t ·135.3 ·106 cycles, where 6 ≤ t ≤ 56. However, the t group actions by
a each participant are independent and can be computed in parallel; since the
round-robin evaluation in the threshold scheme leaves plenty of idle cycles for
participants while they wait for other participants’ results, by carefully stagger-
ing the threshold group evaluations the k participants can evaluate the t group
actions with the same efficiency as the non-threshold scheme, as long as k ≤ t.
According to [4, Tables 3,4], this would provide, for example, quantum-resistant
threshold signatures for up to 16 participants in under 1 second, with public
keys of 4 KB and signature size of only 560 B. Another example are 1880 B
signatures with public key size of 128 B and k up to 56 in under 3 seconds; other
interesting compromises are possible. These numbers compare favorably to other
post-quantum threshold signatures that are expected to run in seconds [14], and
may be especially interesting for side-channel protected implementations of CSI-
FiSh.

Attacks. The security of the threshold schemes is essentially the same as that
of the original single-participant signature and encryption schemes.

The fact that secrets are sampled in a subgroup of cl(Z[π]) of index 3 or 111
has a minor impact on security, as cryptanalyses can exploit this information to
speed-up their searches.

In the classical setting, the best algorithm for both Vectorization and Paral-
lelization is a random-walk approach [20] that finds a path between two super-
singular curves in O(

√
#cl(Z[π])) = O(4

√
p). If, like in our case, we restrict to a

vertex set that is x times smaller, the random walk algorithm will find a collision
approximately

√
x times faster. Hence, we expect a loss in classical security of

less than 4 bits.13

Note that this gain is optimal: if an algorithm could solve the Vectorization
problem in a subgroup of size N/x more than O(

√
x) times faster, then by a

divide and conquer approach the Vectorization problem in the full group of size
N could be solved in less than O(

√
N) operations.

A similar gain can also be obtained in the best quantum algorithm for solv-
ing the Vectorization problem [40,39,48]. However, since its complexity is sub-
exponential, the final gain is even less than 4 bits. The exact quantum security
of CSIDH and CSI-FiSh is currently debated [10,3,6,8,47], nevertheless what-
ever the final consensus turns out to be, the quantum security of our threshold
schemes will be extremely close to it.

13 In reality, it is well known that the size of the search space can also be reduced
by 3 in the original CSIDH, by walking to the surface. Thus, the only reduction in
security comes from the factor of 37.

21

5 Conclusion

We introduced threshold variants of encryption and signature schemes based
on Hard Homogeneous Spaces, and efficient quantum-safe instantiations thereof
based on isogeny graphs of supersingular curves (CSIDH).

Our schemes are similar to well known Diffie–Hellman-style theshold schemes,
however they are sharply different in the communication structure: whereas clas-
sical schemes have participants output messages in parallel with little coordina-
tion, our schemes impose a strictly sequential round-robin message passing style.
Apparently, this limitation trickles down, negatively affecting many aspects: se-
curity properties, security proofs, efficiency.

In our El Gamal-style decryption algorithm, only one participant learns the
cleartext, and we are only able to prove security in a honest-but-curious setting.
The security of our signature scheme can be proven in a stronger security model
with static corruptions, however it is not robust. Interesting questions for future
research are efficient protocols where all participants learn the cleartext, or with
stronger security properties, such as the ability to detect malicious participants.

Another topic we did not address in this work are verifiable distributed key
generation algorithms, which would allow to run the threshold schemes without
resorting to a trusted dealer. As observed by Benaloh [2], Shamir’s secret sharing
is (+,+)-homomorphic: given two secrets s and s′ with respective shares si
and s′i, the sums of shares si + s′i form valid shares of s + s′. Based on this
observation, Pedersen [45] constructed a DKG scheme without a trusted dealer,
by having each party set up its own (k, n)-Shamir secret sharing scheme, and
then combining these schemes using the homomorphic property.

While the same homomorphic property also applies to HHS threshold schemes,
it seems difficult to achieve verifiability of the DKG like in [46,33,30]. An inter-
esting research question is the construction of a verifiable DKG in the general
HHS framework, or for specific isogeny-based instantiations.

Finally, the instantiation of our schemes is limited by the feasibility of pa-
rameter generation: to the present date the only available parameter set is the
CSIDH-512 HHS, as computed by Beullens et al., with security currently esti-
mated at the NIST-1 level. Higher security levels would require extremely inten-
sive computations that are currently out of reach.

Acknowledgment. We thank Gustavo Banegas, Tanja Lange, Chloe Martin-
dale, and Dustin Moody for raising the topic of threshold cryptography at the
Oxford PQC workshop. Further, we thank Jörn Steuding and the organizers of
the summer school “Cryptography meets Graph Theory” in Würzburg for sup-
porting Luca De Feo’s visit, and thereby helping to bootstrap this collaboration.

References

1. Babai, L.: On Lovász lattice reduction and the nearest lattice point problem. Com-
binatorica 6(1), 1–13 (1986)

22

2. Benaloh, J.C.: Secret Sharing Homomorphisms: Keeping Shares of a Secret Secret.
In: Odlyzko, A.M. (ed.) Advances in Cryptology - CRYPTO ’86. pp. 251–260.
Springer (1986)

3. Bernstein, D.J., Lange, T., Martindale, C., Panny, L.: Quantum circuits for the
CSIDH: optimizing quantum evaluation of isogenies. In: Ishai, Y., Rijmen, V. (eds.)
Advances in Cryptology - EUROCRYPT 2019. pp. 409–441 (2019)

4. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: Efficient Isogeny based
Signatures through Class Group Computations. Cryptology ePrint Archive, Report
2019/498 (2019), https://eprint.iacr.org/2019/498

5. Beullens, W., Preneel, B., Szepieniec, A., Vercauteren, F.: LUOV. Round 2 sub-
mission, NIST Post-Quantum Cryptography Standardization (2019)

6. Biasse, J.F., Jacobson Jr, M.J., Iezzi, A.: A note on the security of CSIDH. In:
Chakraborty, D., Iwata, T. (eds.) Progress in Cryptology - INDOCRYPT 2018.
pp. 153–168. Springer (2018)

7. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the National
Computer Conference. vol. 48 (1979)

8. Bonnetain, X., Schrottenloher, A.: Submerging CSIDH. Cryptology ePrint Archive,
Report 2018/537 (2018), https://eprint.iacr.org/2018/537

9. Brando, L.T.A.N., Mouha, N., Vassilev, A.: Threshold Schemes for Crypto-
graphic Primitives: Challenges and Opportunities in Standardization and Vali-
dation of Threshold Cryptography. NISTIR 8214 (2018), https://nvlpubs.nist.
gov/nistpubs/ir/2019/NIST.IR.8214.pdf

10. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: An effi-
cient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.)
Advances in Cryptology - ASIACRYPT 2018. pp. 395–427. Springer (2018)

11. Castryck, W., Panny, L., Vercauteren, F.: Rational isogenies from irrational
endomorphisms. Cryptology ePrint Archive, Report 2019/1202 (2019), https:

//eprint.iacr.org/2019/1202

12. Cervantes-Vázquez, D., Chenu, M., Chi-Domı́nguez, J.J., De Feo, L., Rodŕıguez-
Henŕıquez, F., Smith, B.: Stronger and Faster Side-Channel Protections for CSIDH.
To appear at LATINCRYPT 2019 (2019), https://eprint.iacr.org/2019/837

13. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006), https://eprint.iacr.org/2006/291

14. Cozzo, D., Smart, N.P.: Sharing the LUOV: Threshold Post-Quantum Signatures.
Second PQC Standardization Conference (2019), https://csrc.nist.gov/

CSRC/media/Events/Second-PQC-Standardization-Conference/documents/

accepted-papers/cozzo-luov-paper.pdf

15. De Feo, L.: Mathematics of isogeny based cryptography (2017), http://arxiv.

org/abs/1711.04062

16. De Feo, L., Galbraith, S.D.: SeaSign: Compact isogeny signatures from class group
actions. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT
2019. pp. 759–789 (2019)

17. De Feo, L., Kieffer, J., Smith, B.: Towards practical key exchange from ordinary
isogeny graphs. In: Peyrin, T., Galbraith, S. (eds.) Advances in Cryptology - ASI-
ACRYPT 2018. pp. 365–394. Springer (2018)

18. Decru, T., Castryck, W.: CSIDH on the surface (2019), in preparation.

19. Decru, T., Panny, L., Vercauteren, F.: Faster seasign signatures through improved
rejection sampling. In: Ding, J., Steinwandt, R. (eds.) Post-Quantum Cryptography
- 10th International Conference, PQCrypto 2019. pp. 271–285. Springer (2019)

23

https://eprint.iacr.org/2019/498
https://eprint.iacr.org/2018/537
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8214.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8214.pdf
https://eprint.iacr.org/2019/1202
https://eprint.iacr.org/2019/1202
https://eprint.iacr.org/2019/837
https://eprint.iacr.org/2006/291
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/cozzo-luov-paper.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/cozzo-luov-paper.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/cozzo-luov-paper.pdf
http://arxiv.org/abs/1711.04062
http://arxiv.org/abs/1711.04062

20. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular elliptic
curves over Fp. Designs, Codes and Cryptography 78(2), 425–440 (Feb 2016).
https://doi.org/10.1007/s10623-014-0010-1

21. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) Ad-
vances in Cryptology - CRYPTO ’89. pp. 307–315. Springer (1990)

22. Desmedt, Y., Frankel, Y.: Shared generation of authenticators and signatures. In:
Feigenbaum, J. (ed.) Advances in Cryptology - CRYPTO ’91. pp. 457–469. Springer
(1991)

23. Ding, J., Chen, M.S., Petzoldt, A., Schmidt, D., Yang, B.Y.: Rainbow. Round 2
submission, NIST Post-Quantum Cryptography Standardization (2019)

24. Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Secure two-party threshold ECDSA
from ECDSA assumptions. In: 2018 IEEE Symposium on Security and Privacy
(SP). pp. 980–997. IEEE (2018)

25. Doulgerakis, E., Laarhoven, T., de Weger, B.: Finding closest lattice vectors us-
ing approximate Voronoi cells. In: Ding, J., Steinwandt, R. (eds.) Post-Quantum
Cryptography - 10th International Conference, PQCrypto 2019. pp. 3–22. Springer
(2019)

26. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE transactions on information theory 31(4), 469–472 (1985)

27. Elkies, N.D.: Elliptic and modular curves over finite fields and related compu-
tational issues. In: Computational perspectives on number theory (Chicago, IL,
1995). Studies in Advanced Mathematics, vol. 7, pp. 21–76. AMS International
Press, Providence, RI (1998)

28. Felderhoff, J.: Hard homogenous spaces and commutative supersingular isogeny
based Diffie–Hellman (2019), https://perso.ens-lyon.fr/joel.felderhoff/

work/M2_report.pdf

29. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) Advances in Cryptology - CRYPTO
’86. pp. 186–194. Springer (1987)

30. Fouque, P.A., Stern, J.: One Round Threshold Discrete-Log Key Generation with-
out Private Channels. In: Kim, K. (ed.) Public Key Cryptography - 4th Interna-
tional Workshop on Practice and Theory in Public Key Cryptosystems, PKC 2001.
pp. 300–316. Springer (2001)

31. Gennaro, R., Goldfeder, S.: Fast Multiparty Threshold ECDSA with Fast Trustless
Setup. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. pp. 1179–1194. ACM (2018)

32. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold DSS sig-
natures. In: Maurer, U. (ed.) Advances in Cryptology - EUROCRYPT ’96. pp.
354–371. Springer (1996)

33. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure Distributed Key Gener-
ation for Discrete-Log Cryptosystems. In: Stern, J. (ed.) Advances in Cryptology
- EUROCRYPT ’99. pp. 295–310. Springer (1999)

34. Harn, L.: Group-oriented (t, n) threshold digital signature scheme and digital mul-
tisignature. IEE Proceedings-Computers and Digital Techniques 141(5), 307–313
(1994)

35. Jao, D., Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess, B.,
Jalali, A., Koziel, B., LaMacchia, B., Longa, P., Naehrig, M., Renes, J., Soukharev,
V., Urbanik, D., Pereira, G.: SIKE. Round 2 submission, NIST Post-Quantum
Cryptography Standardization (2019)

24

https://doi.org/10.1007/s10623-014-0010-1
https://perso.ens-lyon.fr/joel.felderhoff/work/M2_report.pdf
https://perso.ens-lyon.fr/joel.felderhoff/work/M2_report.pdf

36. Jao, D., De Feo, L.: Towards Quantum-Resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.Y. (ed.) Post-Quantum Cryptography. Lecture
Notes in Computer Science, vol. 7071, pp. 19–34. Springer Berlin / Heidelberg,
Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_2

37. Jao, D., Miller, S.D., Venkatesan, R.: Expander graphs based on GRH with an ap-
plication to elliptic curve cryptography. Journal of Number Theory 129(6), 1491–
1504 (Jun 2009). https://doi.org/10.1016/j.jnt.2008.11.006

38. Kiltz, E.: A tool box of cryptographic functions related to the diffie-hellman
function. In: Rangan, C.P., Ding, C. (eds.) Progress in Cryptology — IN-
DOCRYPT 2001. pp. 339–349. Springer Berlin Heidelberg, Berlin, Heidelberg
(2001). https://doi.org/10.1007/3-540-45311-3_32

39. Kuperberg, G.: Another subexponential-time quantum algorithm for the dihe-
dral hidden subgroup problem. TQC, Volume 22 of LIPIcs, pages 22-34. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2013)

40. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM Journal on Computing 35(1), 170–188 (2005)

41. Meyer, M., Campos, F., Reith, S.: On Lions and Elligators: An efficient constant-
time implementation of CSIDH. In: Ding, J., Steinwandt, R. (eds.) Post-Quantum
Cryptography - 10th International Conference, PQCrypto 2019. pp. 307–325.
Springer (2019)

42. Meyer, M., Reith, S.: A faster way to the CSIDH. In: Chakraborty, D., Iwata, T.
(eds.) Progress in Cryptology - INDOCRYPT 2018. pp. 137–152. Springer (2018)

43. National Institute of Standards and Technology (NIST): Submission requirements
and evaluation criteria for the post-quantum cryptography standardization process
(2016)

44. Onuki, H., Aikawa, Y., Yamazaki, T., Takagi, T.: (Short Paper) A Faster Constant-
Time Algorithm of CSIDH Keeping Two Points. In: Advances in Information and
Computer Security - 14th International Workshop on Security, IWSEC 2019. pp.
23–33. Springer (2019)

45. Pedersen, T.P.: A Threshold Cryptosystem without a Trusted Party. In: Davies,
D.W. (ed.) Advances in Cryptology - EUROCRYPT ’91. pp. 522–526. Springer
(1991)

46. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) Advances in Cryptology - CRYPTO ’91. pp.
129–140. Springer (1991)

47. Peikert, C.: He Gives C-Sieves on the CSIDH. Cryptology ePrint Archive, Report
2019/725 (2019), https://eprint.iacr.org/2019/725

48. Regev, O.: A subexponential time algorithm for the dihedral hidden subgroup
problem with polynomial space. arXiv preprint quant-ph/0406151 (2004), https:
//arxiv.org/abs/quant-ph/0406151

49. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryp-
tology ePrint Archive, Report 2006/145 (2006), http://eprint.iacr.org/2006/
145

50. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) Advances in Cryptology - CRYPTO ’89. pp. 239–252. Springer (1989)

51. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

52. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM review 41(2), 303–332 (1999)

25

https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1016/j.jnt.2008.11.006
https://doi.org/10.1007/3-540-45311-3_32
https://eprint.iacr.org/2019/725
https://arxiv.org/abs/quant-ph/0406151
https://arxiv.org/abs/quant-ph/0406151
http://eprint.iacr.org/2006/145
http://eprint.iacr.org/2006/145

53. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) Advances in Cryp-
tology — EUROCRYPT 2000. pp. 207–220. Springer Berlin Heidelberg, Berlin,
Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_15

54. Stinson, D.R., Strobl, R.: Provably secure distributed schnorr signatures and a (t,
n) threshold scheme for implicit certificates. In: Varadharajan, V., Mu, Y. (eds.)
Australasian Conference on Information Security and Privacy - ACISP 2001. pp.
417–434. Springer (2001)

55. Stolbunov, A.: Constructing public-key cryptographic schemes based on class group
action on a set of isogenous elliptic curves. Advances in Mathematics of Commu-
nications 4(2), 215–235 (2010)

56. Stolbunov, A.: Cryptographic schemes based on isogenies (2012)
57. Vélu, J.: Isogénies entre courbes elliptiques. C.R. Acad. Sc. Paris, Série A. 271,

238–241 (1971)

26

https://doi.org/10.1007/3-540-45539-6_15

	Threshold Schemes from Isogeny Assumptions

