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Abstract. The RLWE family algorithms submitted to the NIST post-
quantum cryptography standardization process have each merit in terms
of security, correctness, performance, and bandwidth. However, there is
no splendid algorithm in all respects. Besides, various recent studies have
been published that affect security and correctness, such as side-channel
attacks and error dependencies. To date, though, no algorithm has fully
considered all the aspects. We propose a novel Key Encapsulation Mech-
anism scheme called LizarMong, which is based on RLizard. LizarMong
combines the merit of each algorithm and state-of-the-art studies. As
a result, it achieves up to 85% smaller bandwidth and 3.3 times faster
performance compared to RLizard. Compared to the NIST’s candidate
algorithms with a similar security, the bandwidth is about 5-42% smaller,
and the performance is about 1.2-4.1 times faster. Also, our scheme re-
sists the known side-channel attacks.

Keywords: Lattice-based Cryptography · Ring-LWE · Ring-LWR.

1 Introduction

Among candidates for the National Institute of Standards and Technology (NIST)
post-quantum cryptography standardization process [12], the Ring Learning
With Error (RLWE) family† is the spotlight in Key Encapsulation Mechanism
(KEM) because of its proven hardness, small bandwidth, and good performance.

? These authors contributed equally to this work.
† Ring-LWE (RLWE), Ring-Learning With Rounding (RLWR), Module-LWE

(MLWE), Module-LWR (MLWR), Integer-MLWE (I-MLWE)
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The design factors of the RLWE family algorithms consist of the underlying
problems, the choice of ring, the dimensions of the lattice, the modulus, and
the error rate determined by the ratio between the standard deviation of the
error distribution and the modulus. These factors have trade-offs and determine
security, correctness, performance, and bandwidth. Looking at NIST’s candidate
algorithms from a trade-off perspective, we can see some notable characteristics.

First, the choice of the underlying problems and the ring determines the in-
nate temperament of the algorithm. The underlying problems are classified as
RLWE, Ring Learning With Rounding (RLWR), Module-LWE (MLWE), and
MLWR. RLWE has good performance and bandwidth. Also, RLWE has been
well-studied for the most prolonged time among the underlying problems of lat-
tice from algebraic structures and is used for other schemes such as homomorphic
encryption. Thus, RLWE can claim that it is more conservative security than
other underlying problems of the lattice from algebraic structures. MLWE can
reduce bandwidth because they are small and flexible in dimension choice, but
require more computation if into dimension the same as RLWE. RLWR and
MLWR discard some Least Significant Bits (LSBs) instead of error sampling,
resulting in better performance and bandwidth compare to RLWE and MLWE.
The ring is commonly chosen as the cyclotomic polynomial Xn + 1 due to per-
formance and security, where n is a power of two. Exceptionally, Round5 [8] uses
the Xn+1 − 1 cyclotomic polynomial. Since n + 1 is prime, this polynomial is
less constrictive in n choosing. So, it can choose an optimized n for each security
level. The required bandwidth can be reduced. However, Xn+1 − 1 is more ex-
pensive computation to polynomial modular reduction operation than common
polynomial. The algorithm with the smallest bandwidth among NIST’s candi-
dates is Round5, which based on RLWR and does not use Xn + 1 polynomial.
Thus, it is important to choose the underlying problem and the ring.

Another notable characteristic is the modulus size. Modulus size is the main
factor that affects the correctness, bandwidth, and performance of RLWE family
schemes. Large modulus (212−14) like Newhope [5] reach security-level by adding
relatively large error, but can maintain correctness because of a small error rate.
Large modulus, however, increases computation and bandwidth. Thus, they use
fast multiplication algorithms (e.g., NTT), public-key compression, and cipher-
text compression to solve this problem. Conversely, small modulus (28−12) like
LAC [24] can have relatively low bandwidth and good performance. However,
if a large error such as the large modulus is used, the correctness decreases as
the error rate increases. Thus, these are using tiny error and secret, and error
correction code to improve correctness.

Meanwhile, NIST’s standardization process has recently been making impres-
sive results by promoting a study on the RLWE family. In particular, the study
that disproves the independent assumptions about the failure of individual bits
to calculate the overall failure rate [16], as well as various side-channel attack
studies, is meaningful because of affecting most RLWE family algorithms. To
date, however, many algorithms do not include most of those studies.
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As mentioned above, each algorithm complements the trade-off with bril-
liant techniques. Unfortunately, however, choosing one excellent algorithm in all
aspects (security, performance, bandwidth, and correctness) is a hard decision.
Furthermore, considering the recent studies, it is almost infeasible to choose one.

In this paper, we propose a novel key encapsulation mechanism scheme called
LizarMong that is excellent in all aspects. It combines each merit of NIST’s
candidate algorithms with state-of-the-art studies.

Contributions The contributions of this study can be summarized as follow:

• To improve bandwidth and performance, we set small dimensions and mod-
ulus, and apply ciphertext and public-key compression.

• We adopt the error correction code called XE5 [8] to compensate for the
reduced correctness due to small modulus.

• Resistance to known side-channel attacks, we devise a sparse polynomial
multiplication with hiding. Also, we do not use the Cumulative Distribution
Table (CDT) technique as the error sampler.

• We estimate the correctness more conservatively by calculating the decryp-
tion failure rate considering the dependency of each bit error.

2 Preliminaries

2.1 Notation

The log indicates the logarithm with base 2. For a positive integer q, we use
Z
⋂

(−q/2, q/2] as a representative of Zq. We denote by Rq the ring Zq[X]/(Xn+
1). Bold lower-case letters represent polynomials with coefficients in Rq. For a
polynomial a, we write a(i) to denote it’s the coefficient of order i. Multiplication
in Rq is represented by ∗. bre is the rounding to the nearest integer to real
r, and bae is the rounding to the nearest integer for each coefficient in the
polynomial a. ‖x‖ means the l2 norm. x ‖ y is the concatenation of x and y.
There are two distributions used in this paper, HWTn (h) and ψcb. HWTn (h)
is the uniform distribution over the subset of {−1, 0, 1}n whose elements contain
n − h number of zeros. ψcb is the centered binomial distribution with mean
zero and standard deviation

√
cb/2. SHAKE256(m, len) is a hash function that

receives m and outputs a byte-string of the length len. eccENC and eccDEC are
functions for encoding and decoding using the error correction code.

2.2 RLizard

RLizard is the KEM and PKE based on RLWE and RLWR submitted to the
NIST standardization process 1round. RLizard uses RLWE for key-generation,
considering relatively conservative security, and RLWR for encryption and de-
cryption to improve bandwidth and performance. Another effort to ensure robust
security in key-generation is the adoption of CDT from Gaussian distribution
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as an error sampler. It is a high precision sampler that does not damage the
original RLWE. The ring is chosen as the common form Xn + 1. RLizard uses a
small modulus and sparse ternary secret, which improved correctness and perfor-
mance. Moreover, for providing IND-CCA2 PKE and KEM, they use a variant of
Fujisaki-Okamoto transformation [18]. As a result, RLizard supports IND-CCA2
PKE and KEM and enjoys fast encryption and decryption, robust security, and
high correctness. However, the bandwidth is relatively large.

3 LizarMong

In this section, we detail our KEM scheme called LizarMong. Our goal is to
satisfy both security and correctness while making excellent performance and
bandwidth. To achieve the goal, LizarMong was designed by adequately com-
bining the design elements of NIST’s candidate algorithms and their superior
techniques that are used to compensate for the trade-off. Our scheme also con-
sidered recent studies such as side-channel attacks and dependency error issues.

3.1 Design Element Selection

Choice of the Ring We use f(X)=Xn + 1 in Rq := Zq[X]/(f(X)), where n
is the power of two. It is the common choice used by most of NIST’s candidate
algorithms and RLizard. The common ring has the advantage in that the poly-
nomial modular reduction operation is straightforward, and there have been no
known attacks exploit it [23].

Modulus selection We select q = 256, which is small and to the power of two.
Intuitively, this choice enjoys a small bandwidth and improved performance. It
also provides very efficient modulo operation and memory usage and is suitable
for single instruction multiple data (SIMD) implementations such as AVX2 and
NEON. Even though the modulus is small, it can not affect the security since
we maintain the error rate by selecting proper error distribution [24,27]. The
modulus p used for RLWR and the modulus k used for ciphertext compression
are also to the power of two. It improve performance by replacing b(p/q) · xe
with ADD and AND operations [13].

Distribution The RLWE family can sample secret polynomial s and error poly-
nomial e using different Seed in the same distribution for efficient implementa-
tion. Also, this variant has proven to be equivalent to the original RLWE prob-
lem [6]. For the above reason, most of NIST’s candidate algorithms use the same
distribution for error and secret sampling. Recently, however, a fault-attack [29]
attempted to analyze by manipulating the Seed to make s and e the same value.
Therefore, we sample e and s from each distribution, like the original RLWE, to
remove the fault-attack point [29].

• Error distribution We use the centered binomial distribution with the
standard deviation 1/

√
2, i.e. the range of the distribution is {-1, 0, 1}.
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Although the original RLWE is defined as a Gaussian distribution, switching
to the centered binomial distribution is known to have a negligible impact
on security [5]. Also, the best-known attacks against RLWE depend not on
the type of the distribution but the standard deviation [5,9].

• Secret distribution We use a sparse ternary secret with a Hamming weight,
such as RLizard. [13] and [8] proved the hardness of the sparse ternary secret
variants LWE and LWR. Multiplication of sparse ternary secret polynomials
can be replaced with addition (subtraction) to improve performance [1]. It
also maintains correctness by preventing decryption errors from increasing.

Adopt error correction code Our analysis in Section 4.3 shows that 4-5 bits
error correction capability is needed. Therefore, we adopted XE5 [8] that is
specialized in the RLWE family. Since XE5 avoids table look-up and branch
conditions, it resists timing attacks [8]. XE5 has a block size of 490 bits, of
which 256 bits is the message, and 234 bits is parity check. Our scheme differs
in message length from HILA5 [32] and Round5, which previously used XE5. δ,
used in place of PKE messages in the IND-CCA2 KEM, has a significant impact
on the security of the scheme. Thus, we match the length of the δ (messages)
to the overall security level. The 512-bit δ (messages) in the Strong parameter
seems to constrain the use of XE5, but we can solve it very simply. Divide the
512-bit δ (messages) in half, encode it with XE5, and concatenate it. Decoding is
in reverse order. This process does not affect security and makes our calculation
of correctness more conservative in our Strong parameters.

Compress Public-key and Ciphertext NIST’s candidate algorithms com-
monly use compression techniques. RLizard can also use these techniques [23],
although it does not include in the version submitted to NIST. Public-key com-
pression means sending only the Seed instead of a in Rq, and the receiver re-
covers a using the hash function. This reduces the public-key size from 2n log q
to size-of-Seed + n log q. Ciphertext compression is similar to the RLWR idea
of discarding a few LSBs in c2. IND-CCA2 KEM also can do the same.

3.2 Algorithm Specifications

3.2.1 IND-CPA PKE

Algorithm 1 IND-CPA.KeyGen

Input: The set of public parameters
Output: Public key pk = (Seeda ‖ b), Private Key sk = (s)

1: Seeda
$←− {0, 1}256

2: a← SHAKE256(Seeda, n/8)

3: s
$←− HWTn(hs) and e

$←− ψn
cb

4: b← −a ∗ s + e
5: pk ← (Seeda ‖ b) and sk ← s
6: return pk, sk
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Algorithm 2 IND-CPA.Encryption

Input: pk, Message M ∈ {0, 1}d
Output: Ciphertext c = (c1 ‖ c2)

1: r
$←− HWTn(hr) and M′ ← eccENC(M)

2: Seeda,b← Parsing(pk)
3: a← SHAKE256(Seeda, n/8)
4: c1 ← b(p/q) · a ∗ re and c2 ← b(k/q) · ((q/2) ·M′ + b ∗ r)e
5: c← (c1 ‖ c2)
6: return c

Algorithm 3 IND-CPA.Decryption

Input: sk, Ciphertext c = (c1 ‖ c2)
Output: Message M̂
1: c1, c2 ← Parsing(c)
2: M̂′ ← b(2/p) · ((p/k) · c2 + c1 ∗ s)e
3: return M̂← eccDEC(M̂′)

3.2.2 IND-CCA2 KEM

We design IND-CCA KEM using the transformation technique by Jiang et al.
[21]. We use a hash function H : R2 → HWTn(h), and a hash function G :
{0, 1}∗ → {0, 1}n for Jiang’s transformation technique.

Algorithm 4 IND-CCA2-KEM.KeyGen

Input: The set of public parameters
Output: Public Key pk = (Seeda ‖ b), Private Key sk = (skcpa ‖ u)
1: pk, skcpa := IND-CPA.KeyGen (Algorithm 1)

2: u
$←− R2

3: return pk, sk ← (skcpa ‖ u)

Algorithm 5 IND-CCA2-KEM.Encapsulation

Input: pk
Output: Ciphertext c = (c1 ‖ c2), Shared Key K

1: δ
$←− {0, 1}sd

2: r← H(δ)
3: δ′ ← eccENC(δ)
4: c1 ← b(p/q) · a ∗ re
5: c2 ← b(k/q) · ((q/2) · δ′ + b ∗ r)e
6: c← (c1 ‖ c2)
7: K← G(c, δ′)
8: return c,K
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Algorithm 6 IND-CCA2-KEM.Decapsulation

Input: pk, sk, Ciphertext c
Output: Shared Key K
1: c1, c2 ← Parsing(c)
2: skcpa,u← Parsing(sk)
3: δ̂′ ← b(2/p) · ((p/k) · c2 + c1 ∗ skcpa)e
4: δ̂ ← eccDEC(δ̂′)
5: r̂← H(δ̂)
6: δ̂′′ ← eccENC(δ̂)
7: ĉ← b(p/q) · a ∗ r̂e ‖ b(k/q) · ((q/2) · δ̂′′ + b ∗ r̂)e
8: if c 6= ĉ then K← G(c,u) else K← G(c, δ̂′′)
9: return K

3.3 Parameter Selection

We construct a Comfort version that satisfies category1 security level (128-bit)
and a Strong version that satisfies category5 security level (256-bit) as required
by the NIST standardization process. The assessment of the security level re-
flected the computational complexity of all known attacks described in Section
4.2. Table 1 shows the detailed parameters of each security level and the band-
width according to each security level is summarized in Table 2.

n is the dimension of the lattice, q is the modulus of RLWE, p is the modulus
of RLWR, k is the modulus used for ciphertext compression, hs is the Hamming
weight of the secret key, hr is the Hamming weight of the ephemeral secret used
to encapsulation. d is the length of the message, and sd is the length of δ used
in the IND-CCA2 conversion. cb is a variable used for the centered binomial
distribution.

Table 1: The detail parameters for each security level
parameters n q p k hs hr d sd cb

Comfort

(128-bit)
512 256 64 16 128 128 256 256 1

Strong

(256-bit)
1024 256 64 16 128 128 512 512 1

Table 2: Size of pk, sk, and ciphertext of LizarMong in bytes
Security level Ciphertext Public key Secret key

Comfort 640 544 544 (210)*

Strong 1280 1056 1088 (290)*

* skcpa can be encoded by storing only non-zero indexes. Thus, optionally, sk can be
compressed with encoding(skcpa), a flag of -1, and u (for IND-CCA2 KEM).
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4 Security Analysis

4.1 Security Proofs of IND-CPA and IND-CCA2

We proved the IND-CPA security of the IND-CPA PKE version of LizarMong
under the assumption of the IND-CPA security of RLizard.CPA [13].

Theorem 1. The IND-CPA PKE version of LizarMong is IND-CPA secure
under the hardness assumption of RLWE and RLWR problem for a given pa-
rameter, and the assumption that SHAKE256 is a random oracle model.

Proof. Note that in this proof, we call the IND-CPA PKE version of LizarMong
as LizarMong. An encryption of m can be generated from an encryption of zero
by the homomorphic property of LizarMong. Hence, it is enough to show that the
pair of public information pk and the encryption of zero is computationally in-
distinguishable from the uniform distribution. Let LizarMong′ be an algorithm
that is the same as LizarMong except for the ciphertext compression. First, we

Algorithm 7 KeyGen’

Input: The set of public parameters
Output: Public key pk′ = (a,b)
1: pk = (Seeda,b)← LizarMong.KeyGen
2: a← SHAKE256(Seeda, n)
3: pk′ ← (a,b)
4: return pk′

show that LizarMong′ is IND-CPA secure. Define KeyGen′ as Algorithm 7.
Define distribution D0, D1, and D2 as followings:

D0 = {(pk′, C) :pk′ ← KeyGen′(params),

C = (c1, c2)← LizarMong.Encpk(0)}
D1 = {(pk,C) : pk ← RLizard.KeyGen(params),

C = (c1, c2)← RLizard.Encpk(ecc(0))}
D2 = {(pk,C) : pk ← Ring,

C = (c1, c2)← Ring}

Since SHAKE is a random oracle model, distribution of pk′ and pk are com-
putationally indistinguishable. CLizarMong′ ← LizarMong′.Encpk(0) for pk =
(Seeda, b) and CRLizard ← RLizard.Encpk

′(ecc(0)) for pk′ = (SHAKE256(Seeda,
n), b) are same by the definition of RLizard and LizarMong′ (i.e. CLizarMong =
CRLizard). Thus, D0 and D1 are computationally indistinguishable.

Lemma 1 (See [13]). RLizard.CPA is IND-CPA secure under the hardness
assumption of RLWE and RLWR problem for a given parameter.
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By Lemma 1, D1 and D2 are computationally indistinguishable. Therefore,
D0 and D2 are computationally indistinguishable. In conclusion, LizarMong′

IND-CPA secure. Since ciphertext compression does not affect the security of
LWE and LWR based public-key cryptography [24], LizarMong is IND-CPA
secure.

By Theorem 1, IND-CPA PKE version of LizarMong is IND-CPA secure
PKE. We make IND-CCA2 KEM version of LizarMong by using Jiang et al.
transformation [21]. Thus IND-CCA2 KEM version of LizarMong is IND-CCA2
secure.

4.2 Security Analysis against Known Attacks

Our security analysis is based on the pessimistic approach of the BKZ lattice
basis reduction algorithm [5]. Also, we use the attack complexity calculation and
the online LWE estimator by Albrecht et al. [3,4]. Those are common methods
used by most RLWE family algorithms. The BKZ algorithm proceeds by reduc-
ing a lattice basis using the SVP oracle repeatedly. There are several discussions
about measuring the number of iterations. The core SVP method ignores re-
peated calls for SVP oracle, which is a pessimistic estimation from the defender
point of view. We use the quantum sieve as the SVP oracle, which is also a
pessimistic approach [5]. The computational complexity of the BKZ lattice basis
reduction algorithm is 2cn, where n is a dimension of lattice, and c is a constant
value such that c = 0.292 in the classical environment and c = 0.265 in the
quantum environment.

We considered the attack on the RLWE family studied in [3] and the spe-
cific attack on the sparse ternary secret in [2]. The computational complexity
for RLWR attacks is the same as RLWE attacks with the same dimensions,
same RLWE modulus q, and error rates p−1

√
π/6 [13]. Hence, the computa-

tional complexities for RLWR attacks are calculated similarly to the RLWE
attacks. The online LWE estimator helped the complexity calculation for these
attacks. The Python code for calculating computational complexity can be found
at https://github.com/LizarMong.

Table 3: Computational complexity of best RLWE and RLWR attacks
Parameters Claim Security Attacks Classical Quantum

Comfort
NIST Category 1

(AES 128-bit)

Primal
RLWE 133 121

RLWR 144 131

Dual
RLWE 165 154

RLWR 180 170

Strong
NIST Category 5

(AES 256-bit)

Primal
RLWE 256 236

RLWR 269 249

Dual
RLWE 304 275

RLWR 328 301

https://github.com/LizarMong
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We concluded that the primal attack [2] that uses the BKZ algorithm is the
best. Table 3 shows the computational complexities of the best attacks. In sum-
mary, LizarMong.Comfort satisfies NIST’s category1 security level (AES128),
and Strong satisfies category5 security level (AES256).

In the Comfort parameters, our security is overshoots with the requirements
of the security level. It is a security margin that we knowingly made. Attacks
against RLWE and RLWR have not been enough studied yet, so the security
margin prepares for unknown and vital attacks. In Strong parameters, on the
other hand, it has no security margin. Since the 256-bit security level is very
high, the NIST standardization process focuses on up to the 192-bit security
level. So, the Strong parameter is robust in itself.

4.3 Correctness Analysis

The failure probability calculations of the RLWE family designed so far have
been analyzed on the assumption that errors in each bit occur independently.
However, D′Anvers et al. proved [16] theoretically and experimentally that the
error between each bit does not occur independently. According to D′Anvers
et al. [16], even if the probability of error occurrence between each bit is not
independent, the calculation based on the independence assumption is valid when
the error correction code is not used. However, It is inappropriate when the error
correction code is used.

Since LizarMong uses the error correction code, we calculate the probability
of failure under the assumption that the error of each bit occurs dependently
[16]. Cheon et al. showed that RLizard decryption fails when |e∗r+s∗f | ≥ q

4−
q
2p

where f = a∗r−(q/p) ·c1 in [14]. Because of ciphertext compression, LizarMong
has more errors than RLizard. That is the difference between c2 := b(k/q)·((q/2)·
M′ + b ∗ re and ĉ2 := (p/k) · c2. Hence, decryption failure of LizarMong occurs
when |e ∗ r + s ∗ f + g| ≥ q

4 −
q
2p where g = c2 − ĉ2. We define S = (s, e)T ,

C = (f , r)T to calculate the probability of decryption failure. On the assumption
that the error of each bit occurs dependently, the probability of decryption failure
is calculated according to the equation (1). Note that Pr[Fail] is the probability
of decryption failure, Pr[Fi] is the probability that an error occurs in the ith bit,

Binom(k, n, p) =
∑k

i=0

(
n
i

)
pi(1− p)n−i, pb = Pr[F0 | ‖S‖, ‖C‖], lm is the length

of encoded message, and d is error correcting capability. Since we use XE5 as an
error correction code, d = 5.

Pr[Fail] ≈
∑
‖S‖,‖C‖

(1−Binom(d, lm, pb)) · Pr[‖S‖] · Pr[‖C‖] (1)

We can calculate pb = Pr[F0 | ‖S‖, ‖C‖] as equation (2) by [15].

pb =
∑
l

∑
g0

( Pr[|CTS + g|0 > q/4− q/2p | |CTSs|0 = l,g0]·

Pr[|CTS|0 = l | ‖S‖, ‖C‖] · Pr[g0]) (2)
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The above calculation process is implemented in Python and can be found
at https://github.com/LizarMong. According to our calculation, the decryption
failure probability of LizarMong is 2−179 in the Comfort and 2−302 in the Strong.

4.4 Side-Channel Attacks

The strategy for making LizarMong resistant to known side-channel attacks is
as follows. First, we ruled out the operations targeted by the known attacks at
the design element selection stage, Section 3.1. Second, for unavoidable vulner-
abilities, we added a strategy that internalizes efficient countermeasures.

According to the first strategy, LizarMong resists known cache and timing
attacks, as well as some differential and fault attacks. The timing attack of
[26] performs the attack by using the time difference depending on whether the
modulus is operating or not. This attack does not apply to LizarMong, however,
because LizarMong uses all of the moduli to the power of two to replace the
modulo operation with ADD and AND operations. Moreover, LizarMong does
not use the CDT technique in order to resist the timing attack by Kim et al. [22]
and the cache attack of [11], which exploits the CDT technique used by RLizard.
The fault attack of citeravi2019number, which attacks the situation of sampling
s and e within the same distribution, does not apply to LizarMong, which is
designed to sample s and e within each distribution. Also, the differential attack
of [28] targeting NTT does not apply to LizarMong, which does not use NTT.
Despite efforts to minimize attack points at the design element selection stage,
some differential attacks and fault attacks are still applicable, as shown in Table
4. Therefore, according to the second strategy, we added countermeasures against
the remaining attacks in our scheme.

Differential Attacks [7] and [20] used polynomial multiplication between pub-
lic and secret keys as the point of attack. Since the polynomial multiplication is
necessary for the RLWE family algorithms, it is necessary to design additional
countermeasures. Known countermeasures include masking [25,30,31] and hiding
schemes [10]. Masking schemes include a general method of construction using
random values and a decoder and a unique method of using a homomorphism
under the addition of the RLWE family. Hiding schemes include shuffling the
order of multiplication operations or adding dummy operations between real
operations. In the RLWE family, masking methods such as masked decoders
or additively homomorphic masking are relatively expensive. Thus, we devised

Table 4: Known side-channel attacks and countermeasures of LizarMong
Attack methods Attacks Attack Points Countermeasures

Differential Attacks
[7]

Multiplication hiding scheme[20]

Template Attacks [10]

Fault Attacks [17] Error sampling Loop index check

https://github.com/LizarMong
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Algorithm 8 Sparse Polynomial Multiplication with Hiding Countermeasure

Input: a =
∑n−1

i=0 a(i) · xi ∈ Rq, r =
∑n−1

i=0 r(i) · x
i ∈ HWTn (h),

d = [i0, . . . , ig−1, ig, . . . , ih−1] with d [k] = ik such that r(ik) = 1 for k ∈ [0, g) and
r(ik) = −1 for k ∈ [g, h)

Output: v = a ∗ r =
∑n−1

i=0 v(i) · xi ∈ Rq

1: initialize v to zero polynomial . size of v = 2n

2: m
$←− {0, 1, . . . , h− 1} . random starting index

3: for i ∈ {0, . . . , h− 1}, j ∈ {0, . . . , n− 1} do
4: if m+ i (mod h) < g then
5: v(d [m+ i (mod h)] + j) = v(d [m+ i (mod h)] + j) + a(j)
6: else
7: v(d [m+ i (mod h)] + j) = v(d [m+ i (mod h)] + j)− a(j)
8: for i ∈ {0, . . . , n− 1} do
9: v(i) = v(i)− v(n+ i)

10: return v

the sparse polynomial multiplication with the hiding scheme, like Algorithm 8.
It combines the fast sparse polynomial multiplication algorithm of [1] with the
hiding scheme of [10]. This method has fewer overheads than shuffling tasks since
that it uses only one random value.

Fault Attacks Known fault attacks targeting the RLWE family exploit the
process of generating s and e. s and e are generated by loops after extracting
random values. [17] frustrates the loop by injecting a fault and makes s and e the
initial values of zero. LizarMong is vulnerable to this attack because it generates
s and e using the above method. Therefore, our scheme resists the fault attack
of [17] by applying statistical tests of [19]. The statistical test we use consists
of a straightforward operation that compares the expected index with the final
index after the loop statement is done, so there is negligible overhead.

5 Evaluation

We evaluate security (computational complexity), correctness (failure probabil-
ity of decryption), bandwidth (size of ciphertext and public-key), and perfor-
mance (CPU cycle of encryption, decryption, and key-generation) in comparison
with NIST’s candidate algorithms and RLizard.

Our comparison is based on the NIST official documents. The result of eval-
uation is shown in Table 5 and Fig. 1. In Table 5, the three rows for each
algorithm correspond to 128, 192, and 256-bit security levels. (i.e., our scheme
and NewHope do not support the 192-bit security level.)

Note that the performance evaluation used each optimization code, and the
evaluation environment is Intel i7-9700K@3.2GHz CPU, ubuntu 16.04.11, GCC
5.4.0 with option −O3, and the value is the average for 1000 iterations. Also,
our implementation codes are available to https://github.com/LizarMong.

https://github.com/LizarMong/LizarMong
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Fig. 1: Comparison of bandwidth and performance based on IND-CCA2 KEM.
(left) 128-bit security level (right) 256-bit security level (Note: • are algorithms
with security and correctness similar to each security level, and × are not.)

Security The security of some algorithms seems to be slightly lacking to each
security level (see Table 5). However, LizarMong.Comfort reaches 128-bit secu-
rity level and LizarMong.Strong reaches 256-bit security level. In the Comfort,
the security overshoots the requirements of the security level. It is a security
margin that we knowingly made from a conservative perspective. Strong has no
security margin because the 256-bit security level is regarded as very highly. Un-
fortunately, our scheme does not support the 192-bit security level, but Strong
has a competitive bandwidth and performance compared with the 192-bit se-
curity level of other algorithms. Therefore, Strong can sufficiently replace the
192-bit security level of other algorithms.

Correctness KYBER, SABER, LAC, and Round5 have smaller failure proba-
bility of decryption compared to the mapped security level. However, LizarMong
has negligible failure probability such as 2−179 in Comfort and 2−302 in Strong.
Also, our estimation is accurate than others because we consider dependency.

Bandwidth Bandwidth is one of the significant determinants of algorithm prac-
ticality in resource-constrained devices and poor communication environments.
In general, because the bandwidth of the RLWE family has a larger bandwidth
than the current public-key cryptography such as RSA and ECC, the evaluation
of bandwidth is a critical evaluation criterion. LizarMong is the best among the
key encapsulation mechanisms supporting IND-CCA2. Comfort and Strong are
smaller about 5% compared with LAC (which is ranked second in bandwidth).

Performance LizarMong has the best performance among NIST’s candidate
algorithms and RLizard. Comfort and Strong faster 1.25 times and 1.65 times
than ThreeBears that is ranked second in performance. The crucial point is
that the recorded performance of LizarMong includes all countermeasures of the
known side-channel attacks in Section 4.4.
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Table 5: Comparison KEM with NIST candidate algorithms and RLizard

Algorithms
Security

(log)

Correctness

(log)

Bandwidth

(Bytes)

Performance (K cycles)

Enc+Dec KeyGen

LizarMong
133 −179 1,184 137.5 42.4

256 −302 2,336 272.7 61.8

RLizard

147 −188 6,176 217.8 165.3

195 −246 8,240 416.9 232.7

318 −306 16,448 737.3 382.7

NewHope
112 −213 2,048 329.6 103.6

257 −216 4,032 673.5 209.2

KYBER

111 −178 1,536 278.2 97.5

181 −164 2,272 463.6 174.3

254 −174 3,136 656.0 263.1

SABER

125 −120 1,408 316.9 106.1

203 −136 2,080 587.6 213.6

283 −165 2,784 934.8 359.2

LAC

147 −116 1,256 341.2 90.0

286 −143 2,244 840.1 235.6

320 −122 2,480 1,101.6 266.6

Round5

(IND-CPA)

128 −88 994 384.4 114.6

193 −117 1,639 857.2 311.3

256 −64 2,035 1,794.9 643.4

Threebears

154 −156 1,721 167.8 52.1

235 −206 2,501 271.4 91.9

314 −256 3,281 402.5 148.2

6 Conclusion

Our scheme, called LizarMong, is the best of the RLWE family of key encap-
sulation algorithms to date. Our scheme achieves security levels 1 (128-bit) and
5 (256-bit), and compared with NIST’s candidate algorithms, the bandwidth is
about 5-42% smaller, and the performance is about 1.2-4.1 times faster. Also, it
resists known side-channel attacks.

We need to recall the goal of the NIST post-quantum cryptography stan-
dardization process. The purpose of this process is to design cryptography that
is compatible with current networks and protocols. Thus, there is a need for
algorithms that are excellent in all respects, such as RSA and ECC. The RLWE
family algorithms submitted to the NIST post-quantum cryptography standard-
ization process have each merit in terms of security, correctness, performance,
and bandwidth. Thus, choosing one optimal algorithm satisfying all aspects is
challenging. Besides, various recent studies have been published that affect secu-
rity and correctness, such as side-channel attacks and error dependencies. These
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studies are meaningful because it affects most RLWE family algorithms. To date,
however, many algorithms do not include most of those studies.

We consider to break down the barriers between candidate algorithms, merg-
ing unique strengths, and quickly reflecting the state-of-the-art studies, for ex-
cellent algorithm in all respects. LizarMong, based on the RLizard that was sub-
mitted to NIST 1round, muses each of the merit of NIST’s candidate algorithms.
Specifically, we have inspired by a small modulus of LAC, the error correction
code of Round5, and the centered binomial distribution of NewHope. We also
included recent studies such as side-channel attacks and error dependencies.

In conclusion, our scheme is an excellent key encapsulation mechanism that
combines each merit of NISTs candidate algorithms with state-of-the-art studies.
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