Hashing to elliptic curves of j-invariant 1728

Koshelev Dmitrii ${ }^{\text {B }}$
Versailles Laboratory of Mathematics, Versailles Saint-Quentin-en-Yvelines University Algebra and Number Theory Laboratory, Institute for Information Transmission Problems
Department of Discrete Mathematics, Moscow Institute of Physics and Technology

Abstract

This article generalizes the simplified Shallue-van de Woestijne-Ulas (SWU) method of a deterministic finite field mapping $h: \mathbb{F}_{q} \rightarrow E_{a}\left(\mathbb{F}_{q}\right)$ to the case of any elliptic $\mathbb{F}_{q^{-}}$ curve $E_{a}: y^{2}=x^{3}-a x$ of j-invariant 1728. In comparison with the (classical) SWU method the simplified SWU method allows to avoid one quadratic residuosity test in the field \mathbb{F}_{q}, which is a quite painful operation in cryptography with regard to timing attacks. More precisely, in order to derive h we obtain a rational \mathbb{F}_{q}-curve C (and its explicit quite simple proper \mathbb{F}_{q}-parametrization) on the Kummer surface K^{\prime} associated with the direct product $E_{a} \times E_{a}^{\prime}$, where E_{a}^{\prime} is the quadratic \mathbb{F}_{q}-twist of E_{a}. Our approach of finding C is based on the fact that every curve E_{a} has a vertical $\mathbb{F}_{q^{2}}$-isogeny of degree 2 .

Key words: finite fields, pairing-based cryptography, elliptic curves of j-invariant 1728, Kummer surfaces, rational curves, Weil restriction, isogenies.

Introduction

Since its invention in the early 2000s, pairing-based cryptography (on an elliptic curve $E: y^{2}=f(x)$ over a finite field \mathbb{F}_{q} of characteristic p) has become more and more popular every year, for example in cryptocurrencies. One of the latest reviews of standards, commercial products and libraries for this type of cryptography is given in [1, §5].

Many pairing protocols (and some PAKE ones [2, §8.2.2]) use an efficiently computable mapping $h: \mathbb{F}_{q} \rightarrow E\left(\mathbb{F}_{q}\right)$ (by no means a group homomorphism) often called hashing or encoding. It should not be necessarily injective or surjective, but the bigger image $\operatorname{Im}(h)$ is of course better. Reviews of this topic are represented in [2, Chapter 8], [3]. Certainly, we can just change (e.g. randomly) a few bits of a given element $a \in \mathbb{F}_{q}$ such that $\sqrt{f(a)} \in \mathbb{F}_{q}$. Although the latter is true for about half $a \in \mathbb{F}_{q}$ (see, e.g., [2, §8.2.1]), this approach is nevertheless vulnerable to timing attacks [2, §8.2.2]. Another obvious method consists in the scalar multiplication $a \mapsto[a] P$ for some point $P \in E\left(\mathbb{F}_{q}\right)$. Despite its determinateness, it is also insecure [2, §8.1].

There are many safe (at least at first glance) constructions of the desired deterministic hashing such as Boneh-Franklin (bijective) hashing [4, §5.2] for supersingular curves of $j(E)=0$, Icart hashing [5] for $q \equiv 2(\bmod 3)$, or Elligator 2 [6, §5] provided that $2 \mid \# E\left(\mathbb{F}_{q}\right)$ and $j(E) \neq 1728$. However the unique method valid for arbitrary E and \mathbb{F}_{q} was proposed in [7] (based on [8, Theorem 14.1]) and improved in [9]. Now it is often called in honor of its authors: Shallue, van de Woestijne, and sometimes Ulas.

[^0]The SWU method consists in parametrizing a (possibly singular) rational \mathbb{F}_{q}-curve C (see, e.g., [10, §4.1]) lying on some Calabi-Yau \mathbb{F}_{q}-threefold T (see, e.g., [11]). The latter is a minimal singularity resolution of some generalized Kummer threefold (studied in [12, §4.2], [13, §4], [14, §4.1.1]), namely the geometric quotient of E^{3} under some action of $(\mathbb{Z} / 2)^{2}$. Looking at the definition, we obtain the affine model

$$
T: y^{2}=f\left(x_{0}\right) f\left(x_{1}\right) f\left(x_{2}\right) \quad \subset \quad \mathbb{A}_{\left(x_{0}, x_{1}, x_{2}, y\right)}^{4},
$$

where $\left(x_{i}, y_{i}\right)$ are three general points of E and $y:=y_{0} y_{1} y_{2}$. Having a point $P \in C\left(\mathbb{F}_{q}\right)$, for at least one coordinate $a_{i}:=x_{i}(P)$ the value $f\left(a_{i}\right)$ is a quadratic residue in \mathbb{F}_{q}. Therefore we get the points $\left(a_{i}, \pm \sqrt{f\left(a_{i}\right)}\right) \in E\left(\mathbb{F}_{q}\right)$.

According to [15, Theorem 2] the threefold T is not uniruled [16, Chapter 4], but can be represented in the form $(K \times E) /(\mathbb{Z} / 2)$ [17], where K is the Kummer surface of E^{2} (see, e.g., [18, §4]). By virtue of the latter and the Bogomolov-Tschinkel theorem [18, Theorem 1.1] the surface K and hence the threefold T are covered over $\overline{\mathbb{F}_{q}}$ by rational curves. We stress that over the field \mathbb{C} (unlike a prime characteristic) this would lead to a contradiction.

Also, for a quadratic non-residue $c \in \mathbb{F}_{q}$ (not necessarily from the image $f\left(\mathbb{F}_{q}\right)$) consider the surface

$$
K^{\prime}: y^{2}=f\left(x_{0}\right) f\left(x_{1}\right) c \quad \subset \quad \mathbb{A}_{\left(x_{0}, x_{1}, y\right)}^{3} .
$$

As one can see, this is the quadratic \mathbb{F}_{q}-twist of K, which in itself is the Kummer surface of $E \times E^{\prime}$, where $E^{\prime}: y^{2}=f(x) c$ is the quadratic \mathbb{F}_{q}-twist of E. If in the SWU method we take a rational \mathbb{F}_{q}-curve on K^{\prime} one obtains the so-called simplified $S W U$ method [19, §7].

Nevertheless, despite the Bogomolov-Tschinkel theorem finding a rational \mathbb{F}_{q}-curve C on $K^{\prime}($ unlike $T)$ is not a very simple task. For $j(E) \neq 0,1728$ a desired curve (even for a larger class of Kummer surfaces) was first constructed in [20] (see also [21], [22, §2]). Interestingly, Articles [20], [23, §1] then use C to prove some arithmetic results over the field \mathbb{Q}.

However among elliptic curves only the ordinary ones with $j(E)=0,1728$ are interesting in pairing-based cryptography [2, Chapter 4]. This is due to the existence of high-degree twists for them, leading to faster pairing computations [2, §3.3]. In [24, §4.3] for some curve E with $j(E)=0$ over the field $\mathbb{F}_{p}\left(\right.$ resp. $\left.\mathbb{F}_{p^{2}}\right)$ it is proposed to use an ascending $\mathbb{F}_{p^{\prime}}$-isogeny (resp. $\mathbb{F}_{p^{2}}$-isogeny) $\mathcal{E} \rightarrow E$ of degree 11 (resp. 3) from a certain auxiliary elliptic curve \mathcal{E} with $j(\mathcal{E}) \neq 0,1728$. Unfortunately, this approach highly depends on \mathbb{F}_{q}, that is in some cases there is no desired \mathbb{F}_{q}-isogeny of small degree, which could be rapidly computed.

In this work we resolve the problem of constructing a rational \mathbb{F}_{q}-curve $C \subset K^{\prime}$ for all elliptic \mathbb{F}_{q}-curves $E_{a}: y^{2}=x^{3}-a x$ with $j=1728$. The most famous example of such pairingfriendly curves are Kachisa-Schaefer-Scott (KSS) curves of embedding degree 16 [25, Example 4.2], which have become (according to [26], [27], [28]) a popular alternative for those of $j=0$. We emphasize once again that before us the (classical) SWU method, to our knowledge, was the only way to produce a hashing $h: \mathbb{F}_{q} \rightarrow E_{a}\left(\mathbb{F}_{q}\right)$ regardless of \mathbb{F}_{q}.

It is worth noting that to derive the curve C we originally used (among other things) the theory of Weil restriction (descent) [29, §8.1] for elliptic curves with respect to the extension $\mathbb{F}_{q^{2}} / \mathbb{F}_{q}$. The cryptographic community knows this operation as an instrument of cryptanalysis [30, $\S 22.3]$. However, in order to simplify the understanding of our construction we use an equivalent language, namely the "twisted" Frobenius endomorphism π from \$1.

Let us give a brief summary of our approach, commenting Figures 4 and 5, where the notation $D_{8} \subset A_{a}^{\prime} /[-1]$ is taken instead of $C \subset K^{\prime}$. First, we use the direct product $\psi: E_{a}^{2} \rightarrow$ $E_{a} \times E_{a}^{\prime}$ (from $\S \mathbb{1}$) of the trace and "twisted" trace maps with respect to $\mathbb{F}_{q^{2}} / \mathbb{F}_{q}$. Second, we take the direct product φ (from $\$ 3$) of the vertical $\mathbb{F}_{q^{2}}$-isogeny $\varphi_{+}: E_{+} \rightarrow E_{a}$ of degree 2 and its $\underline{\mathbb{F}_{q}}$-conjugate $\varphi_{-}: E_{-} \rightarrow E_{a}$, where $j\left(E_{ \pm}\right)=287496$. Further, it is considered the restrictions $\bar{\psi}$ and $\bar{\varphi}$ to the Kummer surfaces of ψ and φ respectively. By means of some technique we find in $\$ 3.1$ the proper π-invariant parametrization ω of the curve D_{1}, which is the inverse image (under the projection $p r: E_{+} \times E_{-} /[-1] \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ from $\$ 2$) of a π-invariant curve C_{1} of bidegree $(1,1)$. Thus we obtain the parametrization par $:=\psi \circ \bar{\varphi} \circ \omega: \mathbb{A}^{1} \simeq D_{8}$. It is proper according to Theorems 21 and 4 . Finally, it is defined over \mathbb{F}_{q} by virtue of Theorem 1 and the obvious fact that φ is π-invariant.

Interestingly, coefficients of our functions defining par are almost entirely some powers of 2 and 3 . This allows to compute the corresponding hashing $h: \mathbb{F}_{q} \rightarrow E_{a}\left(\mathbb{F}_{q}\right)$ very quickly. Finally, let us remark that at worst h is $8: 1 \mathrm{map}$ (as the classical SWU one), that is for every point from $E_{a}\left(\mathbb{F}_{q}\right)$ its inverse image (under h) contains at most 8 elements.

The article is organized as follows. In Paragraphs 1 and 2 we recall basic facts about the Weil restriction of elliptic curves (with respect to $\mathbb{F}_{q^{2}} / \mathbb{F}_{q}$) and respectively about the Kummer surface for the direct product of two elliptic curves. Next, $\S 3$ is dedicated to the new construction of a (singular) rational \mathbb{F}_{q}-curve on K^{\prime} in the case of elliptic curves E_{a}, providing in $\$ 3.1$ explicit formulas for its proper \mathbb{F}_{q}-parametrization. Finally, in $\$ 4$ we make some remarks and conclusions, including the computation of an algebraic complexity for the hashing $h: \mathbb{F}_{q} \rightarrow E_{a}\left(\mathbb{F}_{q}\right)$ and the estimation of cardinality for its image.

Acknowledgements. The author expresses his deep gratitude to his scientific advisor M. Tsfasman and thanks K. Loginov, K. Shramov for their help and useful comments.

Contents

Introduction 1
1 The Weil restriction of an elliptic $\mathbb{F}_{q^{2}}$-curve 3
2 Kummer surfaces 6
3 Constructing a rational \mathbb{F}_{q}-curve on the Kummer surface $\quad \mathbf{8}$
3.1 Proper \mathbb{F}_{q}-parametrization of the curve . 12

4 Remarks and conclusions 14

References	16

1 The Weil restriction of an elliptic $\mathbb{F}_{q^{2}}$-curve

In this paragraph we freely use some terms from the language of abelian varieties (for details see [31]). For a prime $p>3$ and any its power q consider the finite field extension $\mathbb{F}_{q^{2}}=$
$\mathbb{F}_{q}(\sqrt{\gamma})$, where $\gamma \in \mathbb{F}_{q}, \sqrt{\gamma} \notin \mathbb{F}_{q}$, and hence $(\sqrt{\gamma})^{q}=-\sqrt{\gamma}$. Besides, for $i \in\{0,1\}$ consider two elliptic $\mathbb{F}_{q^{2}}$-curves $\overline{E_{i}}$ given by the affine Weierstrass forms

$$
E_{i}: y_{i}^{2}=x_{i}^{3}+a^{q^{i}} x_{i}+b^{q^{i}} \quad \subset \quad \mathbb{A}_{\left(x_{i}, y_{i}\right)}^{2} .
$$

In other words, $\overline{E_{i}}=E_{i} \sqcup\left\{P_{\infty}\right\} \subset \mathbb{P}^{2}$, where $P_{\infty}:=(0: 1: 0)$. These curves are obviously isogenous by means of the Frobenius maps $\operatorname{Fr}: E_{0} \rightarrow E_{1}, \operatorname{Fr}: E_{1} \rightarrow E_{0}$ over \mathbb{F}_{q} and $j\left(E_{0}\right)=$ $j\left(E_{1}\right)^{q}$.

Consider the Weil restriction $R_{i}\left(\right.$ resp. $\left.\overline{R_{i}}\right)$ of E_{i} (resp. $\overline{E_{i}}$) with respect to $\mathbb{F}_{q^{2}} / \mathbb{F}_{q}$ (see, e.g., [29, §8.1]). We stress that $\overline{R_{i}} \not 千 R_{i} \cup\left\{P_{\infty}\right\}$ even over $\overline{\mathbb{F}_{q}}$, however we will identify E_{i} (resp. R_{i}) with $\overline{E_{i}}$ (resp. $\overline{R_{i}}$) for simplicity of the notation. Let $A:=E_{0} \times E_{1}$ and

$$
a:=a_{0}+a_{1} \sqrt{\gamma}, \quad b:=b_{0}+b_{1} \sqrt{\gamma}, \quad x_{0}:=u_{0}+u_{1} \sqrt{\gamma}, \quad y_{0}:=v_{0}+v_{1} \sqrt{\gamma},
$$

where $a_{0}, a_{1}, b_{0}, b_{1} \in \mathbb{F}_{q}$. By definition $R_{i}\left(\mathbb{F}_{q}\right)=E_{i}\left(\mathbb{F}_{q^{2}}\right)$ and

$$
R_{i}:\left\{\begin{array}{l}
v_{0}^{2}+\gamma v_{1}^{2}=u_{0}^{3}+3 \gamma u_{0} u_{1}^{2}+a_{0} u_{0}+(-1)^{i} a_{1} \gamma u_{1}+b_{0}, \\
2 v_{0} v_{1}=\gamma u_{1}^{3}+3 u_{0}^{2} u_{1}+a_{0} u_{1}+(-1)^{i}\left(a_{1} u_{0}+b_{1}\right)
\end{array} \subset \quad \mathbb{A}_{\left(u_{0}, v_{0}, u_{1}, v_{1}\right)}^{4} .\right.
$$

Although j-invariants of the curves E_{i} may be different (i.e., $j\left(E_{i}\right) \notin \mathbb{F}_{q}$), we always have the involution

$$
s: \mathbb{A}^{4} \xrightarrow{\longrightarrow} \mathbb{A}^{4}, \quad\left(u_{0}, v_{0}, u_{1}, v_{1}\right) \mapsto\left(u_{0}, v_{0},-u_{1},-v_{1}\right)
$$

such that $s: R_{0} \xrightarrow{\leadsto} R_{1}$ and $\left.s\right|_{R_{0}\left(\mathbb{F}_{q}\right)}=\left.\operatorname{Fr}\right|_{E_{0}\left(\mathbb{F}_{q^{2}}\right)}$. Thus we will also identify R_{0} with R_{1}, omitting the index. Besides, there is an $\mathbb{F}_{q^{2}}$-isomorphism

$$
\theta: \mathbb{A}_{\left(u_{0}, v_{0}, u_{1}, v_{1}\right)}^{4} \xrightarrow{\sim} \mathbb{A}_{\left(x_{0}, y_{0}, x_{1}, y_{1}\right)}^{4} \quad \text { s.t. } \quad \theta: R \xrightarrow{\sim} A
$$

given by the matrix

$$
\theta:=\left(\begin{array}{cccc}
1 & 0 & \sqrt{\gamma} & 0 \\
0 & 1 & 0 & \sqrt{\gamma} \\
1 & 0 & -\sqrt{\gamma} & 0 \\
0 & 1 & 0 & -\sqrt{\gamma}
\end{array}\right), \quad \text { where } \quad \theta^{-1}=\frac{1}{2 \sqrt{\gamma}}\left(\begin{array}{cccc}
\sqrt{\gamma} & 0 & \sqrt{\gamma} & 0 \\
0 & \sqrt{\gamma} & 0 & \sqrt{\gamma} \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right) .
$$

Consider the permutation

$$
s^{\prime}:=\theta \circ s \circ \theta^{-1}: \mathbb{A}^{4} \leadsto \mathbb{A}^{4}, \quad\left(x_{0}, y_{0}, x_{1}, y_{1}\right) \mapsto\left(x_{1}, y_{1}, x_{0}, y_{0}\right)
$$

and the "twisted" Frobenius endomorphism

$$
\pi: \mathbb{A}^{4} \rightarrow \mathbb{A}^{4}, \quad\left(x_{0}, y_{0}, x_{1}, y_{1}\right) \mapsto\left(x_{1}^{q}, y_{1}^{q}, x_{0}^{q}, y_{0}^{q}\right) \quad \text { s.t. } \quad \pi: A \rightarrow A .
$$

It is easily checked that $\theta^{-1} \circ \pi \circ \theta$ is the (usual) Frobenius endomorphism. Thus π-invariant (hence $\mathbb{F}_{q^{2}}$-rational) curves $C \subset A$ and maps $\varphi: A \rightarrow \mathbb{A}_{\left(x_{0}, y_{0}, x_{1}, y_{1}\right)}^{4}$ correspond to $\mathbb{F}_{q^{-}}$-ones

$$
\theta^{-1}(C) \subset R, \quad \theta^{-1} \circ \varphi \circ \theta: R \rightarrow \mathbb{A}_{\left(u_{0}, v_{0}, u_{1}, v_{1}\right)}^{4}
$$

This means that

$$
C=s^{\prime}\left(C^{(1)}\right), \quad \varphi=\left(\varphi_{x_{0}}, \varphi_{y_{0}}, \varphi_{x_{0}}^{(1)} \circ s^{\prime}, \varphi_{y_{0}}^{(1)} \circ s^{\prime}\right),
$$

where $C^{(1)}$ is the \mathbb{F}_{q}-conjugate curve to C and $\varphi_{x_{0}}^{(1)}, \varphi_{y_{0}}^{(1)}$ are the \mathbb{F}_{q}-conjugate functions to some $\varphi_{x_{0}}, \varphi_{y_{0}} \in \mathbb{F}_{q^{2}}(A)$.

It is also worth noting that on A there are natural involutions $[-1]$ and $[-1]^{i} \times[-1]^{i+1}$ (for $i \in\{0,1\}$), which are transformed to R by θ as

$$
\begin{aligned}
\left(u_{0}, v_{0}, u_{1}, v_{1}\right) & \mapsto\left(u_{0},-v_{0}, u_{1},-v_{1}\right) \\
\left(u_{0}, v_{0}, u_{1}, v_{1}\right) & \mapsto\left(u_{0},(-1)^{i} \sqrt{\gamma} v_{1}, u_{1},(-1)^{i}(\sqrt{\gamma})^{-1} v_{0}\right)
\end{aligned}
$$

respectively.
Hereafter we assume that $a, b \in \mathbb{F}_{q}$ (i.e., $E:=E_{0}=E_{1}$). In this case $s^{\prime}: E^{2} \leadsto E^{2}$. Let $\Delta, \Delta^{\prime} \subset E^{2}$ be the diagonal and antidiagonal respectively. Besides, we have the quadratic \mathbb{F}_{q}-twist of E :

$$
E^{\prime}: \gamma y^{2}=x^{3}+a x+b, \quad \sigma: E^{\prime} \xrightarrow{\longrightarrow} E, \quad(x, y) \mapsto(x, \sqrt{\gamma} y)
$$

The curves E, E^{\prime} are naturally embedded in R as

$$
\theta^{-1}(\Delta)=R \cap\left\{u_{1}=v_{1}=0\right\}=E, \quad \theta^{-1}\left(\Delta^{\prime}\right)=R \cap\left\{u_{1}=v_{0}=0\right\}=E^{\prime}
$$

Consider the exact sequences

$$
0 \rightarrow E \hookrightarrow R \xrightarrow{\tau^{\prime}} E^{\prime} \rightarrow 0, \quad 0 \rightarrow E^{\prime} \hookrightarrow R \xrightarrow{\tau} E \rightarrow 0
$$

of $\mathbb{F}_{q^{-}}$(homo)morphisms, where $\tau:=[1]+s, \tau^{\prime}:=[1]-s$. Note that $\left.\tau\right|_{R\left(\mathbb{F}_{q}\right)}$ is just the trace map on E with respect to $\mathbb{F}_{q^{2}} / \mathbb{F}_{q}$. As a result, we obtain the \mathbb{F}_{q}-rational $(2,2)$-isogeny

$$
\chi:=\tau \times \tau^{\prime}: R \rightarrow E \times E^{\prime} \quad \text { with } \quad \operatorname{ker}(\chi)=E \cap E^{\prime}=E[2]=E^{\prime}[2] .
$$

Finally, the (2, 2)-isogenies

$$
\psi:=\chi \circ \theta^{-1}: E^{2} \rightarrow E \times E^{\prime}, \quad \psi=\left(\begin{array}{cc}
1 & 1 \\
\sigma^{-1} & -\sigma^{-1}
\end{array}\right)
$$

and $\widehat{\chi}: E \times E^{\prime} \rightarrow R$ (dual to χ) have the kernels

$$
\operatorname{ker}(\psi)=\Delta \cap \Delta^{\prime}=\Delta[2]=\Delta^{\prime}[2], \quad \operatorname{ker}(\widehat{\chi})=\Gamma \cap \Gamma^{\prime}=\Gamma[2]=\Gamma^{\prime}[2]
$$

where Γ, Γ^{\prime} are the graphs of σ and $-\sigma=\operatorname{Fr} \circ \sigma \circ \mathrm{Fr}^{-1}$ respectively.
Theorem 1. It is easily checked that $(\mathrm{Fr} \times \mathrm{Fr}) \circ \psi=\psi \circ \pi$. In particular, π-invariant points and curves on E^{2} are transformed by means of ψ to \mathbb{F}_{q}-ones on $E \times E^{\prime}$.

2 Kummer surfaces

In this paragraph we handle some concepts of two-dimensional algebraic geometry, which can be found, for example, in [32, Chapter V]. For $i \in\{0,1\}$ consider any two elliptic $\mathbb{F}_{q^{-}}$ curves $\overline{E_{i}} \subset \mathbb{P}^{2}$ given by the Weierstrass forms

$$
E_{i}: y_{i}^{2}=f_{i}\left(x_{i}\right):=x_{i}^{3}+a_{i} x_{i}+b_{i} \quad \subset \quad \mathbb{A}_{\left(x_{i}, y_{i}\right)}^{2}
$$

and their direct product

$$
A:=E_{0} \times E_{1} \subset \mathbb{A}_{\left(x_{0}, y_{0}, x_{1}, y_{1}\right)}^{4}, \quad \bar{A}=\overline{E_{0}} \times \overline{E_{1}} \hookrightarrow \mathbb{P}^{8},
$$

where the second map is the Segre embedding. For $j \in\{0,1,2\}$ let r_{j} (resp. s_{j}) are roots of $f_{0}\left(\right.$ resp. $\left.f_{1}\right)$ and $P_{r_{j}}:=\left(r_{j}, 0\right)$ (resp. $\left.P_{s_{j}}:=\left(s_{j}, 0\right)\right)$ are order 2 points on E_{0} (resp. E_{1}). Also, let $\infty:=(1: 0)$ and $P_{\infty}:=(0: 1: 0)$. Note that

$$
\bar{A}=A \sqcup\left(\overline{E_{0}} \times\left\{P_{\infty}\right\} \cup\left\{P_{\infty}\right\} \times \overline{E_{1}}\right) .
$$

Hereafter we will identify $E_{0}, \overline{E_{0}}, \overline{E_{0}} \times\left\{P_{\infty}\right\}$ (resp. $E_{1}, \overline{E_{1}},\left\{P_{\infty}\right\} \times \overline{E_{1}}$), and A, \bar{A}.
By definition, the Kummer surface K_{A} of A (see, e.g., [18, §4]) is the minimal singularity resolution $b l$ of the geometric quotient $A /[-1]$, which is sometimes called (singular) Kummer surface. In other words, $b l$ is blowing up 16 nodes, which form the image of $A[2]$ to $A /[-1]$. If $E_{0} \simeq E_{1}$, then at least over $\overline{\mathbb{F}_{q}}$ the Kummer surface K_{A} is birationally isomorphic to a quartic in \mathbb{P}^{3} with 12 nodes. It is so-called desmic surface, which is related to the desmic system of three tetrahedrons (for more details see, e.g., [33, §B.5.2]).

There are also natural models

$$
\begin{array}{ll}
A /[-1]: y^{2}=f_{0}\left(x_{0}\right) f_{1}\left(x_{1}\right) & \subset \\
\mathbb{A}_{\left(x_{0}, x_{1}, y\right)}^{3} \\
K_{A}: y_{0}^{2} f_{1}\left(x_{1}\right)=y_{1}^{2} f_{0}\left(x_{0}\right) & \subset
\end{array} \mathbb{A}_{\left(x_{0}, x_{1}\right)}^{2} \times \mathbb{P}_{\left(y_{0}: y_{1}\right)}^{1}
$$

and the two-sheeted maps

$$
\begin{array}{ll}
\rho: A \rightarrow A /[-1], & \left(x_{0}, y_{0}, x_{1}, y_{1}\right) \mapsto\left(x_{0}, x_{1}, y_{0} y_{1}\right), \\
\rho^{\prime}: A \rightarrow K_{A}, & \left(x_{0}, y_{0}, x_{1}, y_{1}\right) \mapsto\left(\left(x_{0}, x_{1}\right),\left(y_{0}: y_{1}\right)\right) .
\end{array}
$$

Therefore blowing up and blowing down maps have the form

$$
\begin{array}{ll}
b l=\rho \circ\left(\rho^{\prime}\right)^{-1}: K_{A} \rightarrow A /[-1], & \left(\left(x_{0}, x_{1}\right),\left(y_{0}: y_{1}\right)\right) \mapsto\left(x_{0}, x_{1}, f_{1}\left(x_{1}\right) \frac{y_{0}}{y_{1}}\right)=\left(x_{0}, x_{1}, f_{0}\left(x_{0}\right) \frac{y_{1}}{y_{0}}\right), \\
b l^{-1}=\rho^{\prime} \circ \rho^{-1}: A /[-1] \rightarrow K_{A}, & \left(x_{0}, x_{1}, y\right) \mapsto\left(\left(x_{0}, x_{1}\right),\left(y: f_{1}\left(x_{1}\right)\right)\right)=\left(\left(x_{0}, x_{1}\right),\left(f_{0}\left(x_{0}\right): y\right)\right)
\end{array}
$$

respectively. Further, the involutions $[1] \times[-1],[-1] \times[1]$ on A are induced to $A /[-1]$ as $\left(x_{0}, x_{1}, y\right) \mapsto\left(x_{0}, x_{1},-y\right)$. Since $E_{i} /[-1]=\mathbb{P}^{1}$, the quotient of $A /[-1]$ under this new involution is $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and the corresponding natural map is denoted by $p r$. In simple words, it is the projection to the coordinates x_{0}, x_{1}.

For $r \in\left\{r_{0}, r_{1}, r_{2}, \infty\right\}, s \in\left\{s_{0}, s_{1}, s_{2}, \infty\right\}$ let

$$
L_{r}:=\rho\left(\left\{P_{r}\right\} \times E_{1}\right), \quad M_{s}:=\rho\left(E_{0} \times\left\{P_{s}\right\}\right)
$$

and $E_{r, s}$ be the exceptional (-2)-curve on K_{A} corresponding to the point $\rho\left(P_{r}, P_{s}\right)$. For $r, s \neq \infty$ it is easily seen that

$$
L_{r}=\left\{x_{0}=r, y=0\right\}, \quad M_{s}=\left\{x_{1}=s, y=0\right\}, \quad E_{r, s}=\left\{x_{0}=r, x_{1}=s\right\}
$$

Since Ram $:=\bigsqcup_{r, s}\left(L_{r} \cup M_{s}\right)$ is exactly the ramification locus of $p r$, we will identify the lines $L_{r}, \operatorname{pr}\left(L_{r}\right)$ and $M_{s}, \operatorname{pr}\left(M_{s}\right)$. Note that

$$
\bar{A} /[-1]=A /[-1] \sqcup\left(L_{\infty} \cup M_{\infty}\right), \quad \mathbb{P}^{1} \times \mathbb{P}^{1}=\mathbb{A}_{\left(x_{0}, x_{1}\right)}^{2} \sqcup\left(L_{\infty} \cup M_{\infty}\right)
$$

It is well known that K_{A} is a K3 surface [34], i.e., its canonical class and the first cohomology space $\mathrm{H}^{1}\left(K_{A}, \mathcal{O}_{K_{A}}\right)$ of the structure sheaf $\mathcal{O}_{K_{A}}$ are zero. According to [35, §2.8.4] and [34, §17.2], [36, Proposition 3.1] we have:

$$
\mathrm{NS}(A) \simeq \mathbb{Z}\left[E_{0}, E_{1}\right] \oplus \operatorname{Hom}\left(E_{0}, E_{1}\right) \quad \mathrm{NS}\left(K_{A}\right) \simeq \operatorname{Pic}\left(K_{A}\right) \simeq \operatorname{NS}(A) \oplus \mathbb{Z}\left[\left\{E_{r, s}\right\}\right]^{\mathrm{Fr}}
$$

In particular, ranks of these free groups (i.e., Picard \mathbb{F}_{q}-numbers) satisfy the inequalities

$$
2 \leqslant \rho(A) \leqslant 6, \quad 8 \leqslant \rho\left(K_{A}\right) \leqslant 22
$$

If $\rho(A)=2$, then the curves E_{0}, E_{1} are not isogenous over \mathbb{F}_{q}. At the same time, from $\rho(A)=6$ it follows that E_{0}, E_{1} are supersingular [36, §2] and the surface K_{A} is geometrically unirational [34, Remark 18.3.14].

For an absolutely irreducible (possibly singular) \mathbb{F}_{q}-curve $C \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$ (s.t. $C \not \subset R a m$) we denote by r_{C} the count of branches B [37, §4.3] on C such that the intersection number $\mathrm{I}_{P}(B, R a m)$ is odd, where P is the centre of B. It is known that branches on C are in the natural bijective correspondence with points of the singularity resolution of C, i.e., with discrete valuations of the function field $\overline{\mathbb{F}_{q}}(C)$. Denoting by ν the discrete valuation corresponding to B, by virtue of [21, §1] we get

$$
\mathrm{I}_{P}(B, \text { Ram })=\left\{\begin{array}{lll}
\nu\left(f_{0}\left(x_{0}\right) f_{1}\left(x_{1}\right)\right) & \text { if } & P \in \mathbb{A}_{\left(x_{0}, x_{1}\right)}^{2}, \tag{1}\\
\nu\left(1 /\left(x_{0} x_{1}\right)\right) & \text { if } & P \in L_{\infty} \cup M_{\infty}
\end{array}\right.
$$

Thus in order to calculate the value r_{C} we can choose any of the two given equivalent notions.
Theorem 2 ([21, Proposition 1.2.3]). Suppose that $C \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$ is a rational \mathbb{F}_{q}-curve. Let $D:=p r^{-1}(C)$ and k be one of the fields $\mathbb{F}_{q}, \mathbb{F}_{q^{2}}$.

1. If $r_{C}=0$, then D consists of two absolutely irreducible rational curves D_{0}, D_{1} defined at most over $\mathbb{F}_{q^{2}}$. Moreover, D is reducible over k if and only if $y=\sqrt{f_{0}\left(x_{0}\right) f_{1}\left(x_{1}\right)} \in k(C)$. In this case pr: $D_{0} \rightarrow C$, pr: $D_{1} \rightarrow C$ are birational k-morphisms.
2. If $r_{C}>0$, then D is an absolutely irreducible (possibly singular) \mathbb{F}_{q}-curve of geometric genus $r_{C} / 2-1$ (in particular, $2 \mid r_{C}$). Moreover, for $r_{C}>2$ the curve D is hyperelliptic.

Theorem 3 ([18, Lemma 4.1], [21, §2.1]).

1. A curve $D \subset A /[-1]$ is rational if and only if $H:=\rho^{-1}(D) \subset A$ is a (possibly singular) hyperelliptic curve such that the hyperelliptic involution on H is the restriction of $[-1]$.
2. Moreover, if the image $C:=\operatorname{pr}(D)$ is of bidegree $(1,1)$ and $r_{C}=2$, then geometric genus $g(H)=2$ and H also has a non-hyperelliptic involution i such that $H / i=E_{0}$, $H /-i=E_{1}$ (such hyperelliptic curves are studied in detail, e.g., in [38]).

Suppose that E_{0}, E_{1} are $\mathbb{F}_{q^{-}}$-conjugate elliptic $\mathbb{F}_{q^{2}}$-curves as in $\S 1$ (hence we will use its notation). Let K_{R} be the Kummer surface of the Weil restriction R and

$$
Q:=K_{R} /\langle[1] \times[-1]\rangle=R /\langle[1] \times[-1],[-1] \times[1]\rangle .
$$

Looking at the transformation $\theta: R \xrightarrow{\leadsto} A$, we see that in affine coordinates the natural twosheeted maps have the form

$$
\begin{array}{ll}
\rho: R \rightarrow R /[-1], & \left(u_{0}, v_{0}, u_{1}, v_{1}\right) \mapsto\left(u_{0}, u_{1}, v_{0}^{2}-\gamma v_{1}^{2}\right), \\
p r: R /[-1] \rightarrow Q, & \left(u_{0}, u_{1}, v\right) \mapsto\left(u_{0}, u_{1}\right) .
\end{array}
$$

Besides, denote by $\bar{\theta}, \overline{\bar{\theta}}$ isomorphisms over $\mathbb{F}_{q^{2}}$ that are the restrictions of θ to $R /[-1] \subset$ $\mathbb{A}_{\left(u_{0}, u_{1}, v\right)}^{3}$ and Q respectively. Thus we obtain the commutative diagram

Note that $\overline{\bar{\theta}}=\left(u_{0}+u_{1} \sqrt{\gamma}, u_{0}-u_{1} \sqrt{\gamma}\right)$ is the standard transformation between affine open subsets of the elliptic and hyperbolic quadratic surfaces (see, e.g., [39, Theorem 18]). As a result, Q is the first one, which is also the Weil restriction of \mathbb{P}^{1} with respect to $\mathbb{F}_{q^{2}} / \mathbb{F}_{q}$ [29, Exercise 8.1.6.iii]. Finally, $\bar{\theta}$ is given by the same formulas as $\overline{\bar{\theta}}$ with the coordinate v remaining in place (i.e. $y:=v$).

3 Constructing a rational \mathbb{F}_{q}-curve on the Kummer surface

We will often use notation and results from $\$ 1 / 2$. Consider a finite field \mathbb{F}_{q} of characteristic $p>3$. We are interested in elliptic \mathbb{F}_{q}-curves $E_{a}: y^{2}=f(x):=x^{3}-a x$ of j-invariant 1728 . According to [40, Example V.4.5] they are ordinary if and only if $p \equiv 1(\bmod 4)$, i.e., $\sqrt{-1} \in$
\mathbb{F}_{p}. For definiteness, we will suppose this condition, because for pairing-based cryptography supersingular curves are insecure at the moment.

Any two \mathbb{F}_{q}-curves of $j=1728$ are isomorphic (at most over $\mathbb{F}_{q^{4}}$) by the map

$$
E_{a} \xrightarrow{\leadsto} E_{a^{\prime}}, \quad(x, y) \mapsto\left(\sqrt{\alpha} x, \sqrt[4]{\alpha^{3}} y\right)
$$

where $\alpha:=a^{\prime} / a$. From now on we assume that $\sqrt{a} \notin \mathbb{F}_{q}$ (hence $\sqrt[4]{a} \notin \mathbb{F}_{q^{2}}$). Therefore the curves $E_{a^{i}}$ (for $i \in \mathbb{Z} / 4$) are unique ones (up to \mathbb{F}_{q}-isomorphism) of $j=1728$. For E_{1}, E_{a} there are the quadratic \mathbb{F}_{q}-twists

$$
E_{1}^{\prime}: a y^{2}=x^{3}-x, \quad E_{a}^{\prime}: a y^{2}=x^{3}-a x
$$

and the corresponding $\mathbb{F}_{q^{2}}$-isomorphisms $\sigma: E_{1}^{\prime} \xrightarrow{\sim} E_{1}, \sigma: E_{a}^{\prime} \xrightarrow{\sim} E_{a}$. It is obvious that

$$
E_{1}^{\prime} \xrightarrow{\sim} E_{a^{2}}, \quad E_{a}^{\prime} \xrightarrow{\leadsto} E_{a^{3}}, \quad(x, y) \mapsto\left(a x, a^{2} y\right) .
$$

The curves $E_{a^{i}}$ are pairwise non-isogenous over $\mathbb{F}_{q}[2$, Proposition 2.5]. Hence, in particular, the Picard \mathbb{F}_{q}-numbers of the Kummer surfaces $K_{E_{1} \times E_{1}^{\prime}}$ and $K_{E_{a} \times E_{a}^{\prime}}$ are equal to 18 and 12 respectively. In this paragraph we focus on constructing a rational \mathbb{F}_{q}-curve only on $K_{E_{a} \times E_{a}^{\prime}}$, because this is more difficult than analogous task for $K_{E_{1} \times E_{1}^{\prime}}$.

Obviously,

$$
E_{a}[2]=E_{a}^{\prime}[2]=\left\{P_{0}, P_{ \pm}, P_{\infty}\right\}, \quad P_{0}:=(0,0), \quad P_{ \pm}:=(\pm \sqrt{a}, 0) .
$$

According to the Vélu formulas [41, §25.1.1] we obtain:

$$
E_{a} /\left\langle P_{0}\right\rangle \simeq_{\mathbb{F}_{q}} E_{a}, \quad E_{ \pm}:=E_{a} /\left\langle P_{ \pm}\right\rangle: y^{2}=x^{3}-11 a x \mp 14 a \sqrt{a},
$$

where $j\left(E_{ \pm}\right)=287496$, and the corresponding vertical dual to each other 2-isogenies

$$
\widehat{\varphi_{ \pm}}: E_{a} \rightarrow E_{ \pm}, \quad \varphi_{ \pm}: E_{ \pm} \rightarrow E_{a}
$$

have the form

$$
\widehat{\varphi_{ \pm}}=\left\{\begin{array}{l}
x:=x+\frac{2 a}{x \mp \sqrt{a}}, \\
y:=\left(1-\frac{2 a}{(x \mp \sqrt{a})^{2}}\right) y,
\end{array} \quad \varphi_{ \pm}=\left\{\begin{array}{l}
x:=\left(x+\frac{a}{x \pm 2 \sqrt{a}}\right) / 4, \\
y:=\left(1-\frac{a}{(x \pm 2 \sqrt{a})^{2}}\right) y / 8 .
\end{array}\right.\right.
$$

For compactness we will often use the value $\alpha_{ \pm}:=1 \pm 2 \sqrt{2}$. Note that

$$
E_{+}[2]=\left\{Q_{0}^{(0)}, Q_{ \pm}^{(0)}, P_{\infty}\right\}, \quad E_{-}[2]=\left\{Q_{0}^{(1)}, Q_{ \pm}^{(1)}, P_{\infty}\right\}
$$

where

$$
Q_{0}^{(i)}:=\left((-1)^{(i+1)} 2 \sqrt{a}, 0\right), \quad Q_{ \pm}^{(i)}:=\left((-1)^{i} \alpha_{ \pm} \sqrt{a}, 0\right) .
$$

Clearly,

$$
\begin{array}{ll}
\widehat{\varphi_{+}}\left(P_{0}\right)=\widehat{\varphi_{+}}\left(P_{-}\right)=Q_{0}^{(0)}, & \varphi_{+}\left(Q_{ \pm}^{(0)}\right)=P_{+} \\
\widehat{\varphi_{-}}\left(P_{0}\right)=\widehat{\varphi_{-}}\left(P_{+}\right)=Q_{0}^{(1)}, & \varphi_{-}\left(Q_{ \pm}^{(1)}\right)=P_{-}
\end{array}
$$

and hence

$$
E_{a}=E_{+} /\left\langle Q_{0}^{(0)}\right\rangle=E_{-} /\left\langle Q_{0}^{(1)}\right\rangle
$$

Finally, letting

$$
A_{ \pm}:=E_{+} \times E_{-}, \quad A_{a}:=E_{a} \times E_{a}, \quad A_{a}^{\prime}:=E_{a} \times E_{a}^{\prime}
$$

consider the dual to each other $(2,2)$-isogenies

$$
\widehat{\varphi}:=\widehat{\varphi_{+}} \times \widehat{\varphi_{-}}: A_{a} \rightarrow A_{ \pm}, \quad \varphi:=\varphi_{+} \times \varphi_{-}: A_{ \pm} \rightarrow A_{a}
$$

which are π-invariant.
Next, let

$$
\begin{array}{ll}
\bar{\varphi}:=\rho \circ \varphi \circ \rho^{-1}: A_{ \pm} /[-1] \rightarrow A_{a} /[-1], & \bar{\psi}:=\rho \circ \psi \circ \rho^{-1}: A_{a} /[-1] \rightarrow A_{a}^{\prime} /[-1], \\
\bar{\varphi}:=p r \circ \bar{\varphi} \circ p r^{-1}: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}, & \overline{\bar{\psi}}:=p r \circ \bar{\psi}: A_{a} /[-1] \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1},
\end{array}
$$

where ψ is taken from §1. These maps form a commutative diagram represented in Figure 4. Note that $\bar{\psi}$ does not descend to any map $\mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$. Looking at the formulas of the isogeny φ, we obtain:

$$
\bar{\varphi}=\left\{\begin{array}{l}
x_{0}:=\left(x_{0}+\frac{a}{x_{0}+2 \sqrt{a}}\right) / 4 \\
x_{1}:=\left(x_{1}+\frac{a}{x_{1}-2 \sqrt{a}}\right) / 4 \\
y:=\left(1-\frac{a}{\left(x_{0}+2 \sqrt{a}\right)^{2}}\right)\left(1-\frac{a}{\left(x_{1}-2 \sqrt{a}\right)^{2}}\right) y / 64
\end{array}\right.
$$

At the same time, using the famous formulas of addition and subtraction on elliptic curves (see, e.g., [41, §9.1]) yields:

$$
\overline{\bar{\psi}}=\left\{\begin{array}{l}
x_{0}=\frac{x_{0}^{2} x_{1}+x_{0} x_{1}^{2}-a\left(x_{0}+x_{1}\right)-2 y}{\left(x_{0}-x_{1}\right)^{2}} \\
x_{1}=\frac{x_{0}^{2} x_{1}+x_{0} x_{1}^{2}-a\left(x_{0}+x_{1}\right)+2 y}{\left(x_{0}-x_{1}\right)^{2}}
\end{array}\right.
$$

Below we will often use the computer algebra system Magma to produce equations or formulas and check theoretical facts (see the corresponding code in [42]). Consider on $\mathbb{A}_{\left(x_{0}, x_{1}\right)}^{2} \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$ the π-invariant conic

$$
C_{1}: 6 x_{0} x_{1}-11 \sqrt{a} x_{0}+11 \sqrt{a} x_{1}-20 a=0,
$$

which is the unique bidegree $(1,1)$ curve passing through the points

$$
(-2 \sqrt{a}, 2 \sqrt{a}), \quad\left(\alpha_{+} \sqrt{a},-\alpha_{-} \sqrt{a}\right), \quad\left(\alpha_{-} \sqrt{a},-\alpha_{+} \sqrt{a}\right)
$$

Using Magma, one can compute the defining polynomial of $C_{2}:=\overline{\bar{\varphi}}\left(C_{1}\right)$, namely

$$
C_{2}: 24 x_{0}^{2} x_{1}+25 \sqrt{a} x_{0}^{2}-24 x_{0} x_{1}^{2}-62 \sqrt{a} x_{0} x_{1}-40 a x_{0}+25 \sqrt{a} x_{1}^{2}+40 a x_{1}+16 a \sqrt{a}=0
$$

This is a π-invariant cubic (of bidegree $(2,2)$) having the node $(\sqrt{a},-\sqrt{a})$.
Looking at Formula (1) or Figures 1, 2 of C_{1}, C_{2} respectively, we obtain $r_{C_{1}}=r_{C_{2}}=2$. Therefore by Theorem 22 the π-invariant curves

$$
D_{1}:=p r^{-1}\left(C_{1}\right) \subset A_{ \pm} /[-1], \quad D_{2}:=p r^{-1}\left(C_{2}\right)=\bar{\varphi}\left(D_{1}\right) \subset A_{a} /[-1]
$$

are rational. It turns out that the restriction $\overline{\bar{\varphi}}: C_{1} \rightarrow C_{2}$ (and hence $\bar{\varphi}: D_{1} \rightarrow D_{2}$ by [10, Lemmas 2.41, 2.42]) is invertible. Indeed, Magma gives the formulas

$$
(\overline{\bar{\varphi}})^{-1}: C_{2} \rightarrow C_{1}, \quad(\overline{\bar{\varphi}})^{-1}=\left\{\begin{array}{l}
x_{0}:=\frac{24 x_{0}^{2}-24 x_{0} x_{1}-49 \sqrt{a} x_{0}+25 \sqrt{a} x_{1}+26 a}{6\left(x_{0}-\sqrt{a}\right)} \\
x_{1}:=\frac{11 \sqrt{a} x_{0}+\sqrt{a} x_{1}-10 a}{6\left(x_{0}-\sqrt{a}\right)}
\end{array}\right.
$$

Finally, denote by $C_{2}^{(1)}\left(\right.$ resp. $\left.D_{2}^{(1)}=p r^{-1}\left(C_{2}^{(1)}\right)\right)$ the curve \mathbb{F}_{q}-conjugate to $C_{2}\left(\right.$ resp. $\left.D_{2}\right)$.
Again, by means of Magma we get the image $C_{8}:=\overline{\bar{\psi}}\left(D_{2}\right)=\overline{\bar{\psi}}\left(D_{2}^{(1)}\right)$ given by the symmetric \mathbb{F}_{q}-polynomial

$$
\begin{aligned}
& C_{8}: 5764801 a^{3} s_{1}^{8}-921984 a^{2} s_{1}^{6} s_{2}^{2}+3471884416 a^{3} s_{1}^{6} s_{2}+6914880000 a^{4} s_{1}^{6}+36864 a s_{1}^{4} s_{2}^{4}- \\
& 6463336448 a^{2} s_{1}^{4} s_{2}^{3}+216401113088 a^{3} s_{1}^{4} s_{2}^{2}-1634869760000 a^{4} s_{1}^{4} s_{2}+2073600000000 a^{5} s_{1}^{4}+ \\
& 966524928 s_{1}^{2} s_{2}^{5}-3811311616 a^{2} s_{1}^{2} s_{2}^{4}-941125009408 a^{3} s_{1}^{2} s_{2}^{3}+10180198400000 a^{4} s_{1}^{2} s_{2}^{2}- \\
& 14745600000000 a^{5} s_{1}^{2} s_{2}-37748736 s_{2}^{7}+1124073472 a s_{2}^{6}-56463720448 a^{2} s_{2}^{5}+ \\
& 757642297344 a^{3} s_{2}^{4}-15920005120000 a^{4} s_{2}^{3}+26214400000000 a^{5} s_{2}^{2}=0,
\end{aligned}
$$

where $s_{1}:=x_{0}+x_{1}, s_{2}:=x_{0} x_{1}$ are the elementary symmetric polynomials. Note that $\operatorname{bideg}\left(C_{8}\right)=(8,8)$. Since $r_{C_{8}}=0$ (see [42] or Figure 3) it follows from Theorem 2, 1] that the inverse image $p^{-1}\left(C_{8}\right)$ consists of two different rational curves $D_{8}:=\bar{\psi}\left(D_{2}\right)$ and $D_{8}^{\prime}:=\bar{\psi}\left(D_{2}^{(1)}\right)$ such that the restrictions pr: $D_{8} \rightarrow C_{8}, p r: D_{8}^{\prime} \rightarrow C_{8}$ are birational. Moreover, D_{8}, D_{8}^{\prime} are defined over the field \mathbb{F}_{q}, since $D_{2}, D_{2}^{(1)}$ are π-invariant. This is an immediate corollary from Theorem 1 .

Such the long way to obtain a rational \mathbb{F}_{q}-curve on $A_{a}^{\prime} /[-1]$ is justified by the following lemma, which can be checked by a reasonable exhaustive search.

Lemma 1. Let $C \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$ be an absolutely irreducible \mathbb{F}_{q}-invariant (resp. π-invariant) $(1,1)$-curve such that $r_{C} \in\{0,2\}$ with respect to $\{ \pm \sqrt{a}, 0, \infty\}$. Then $r_{C}=0$ and $p r^{-1}(C) \subset$ $A_{a}^{\prime} /[-1]\left(\right.$ resp. $\left.\mathrm{pr}^{-1}(C) \subset A_{a} /[-1]\right)$ consists of two \mathbb{F}_{q}-conjugate (resp. π-conjugate) curves.

Further, according to the Magma computation we obtain

Lemma 2.

1. The curve $C_{8} \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$ has exactly 42 singular points, where $(0,0),(\infty, \infty)$ are unique ones from the ramification locus Ram.
2. The point $(0,0)$ is a non-ordinary singularity of multiplicity 4 with two different tangents (each one of multiplicity 2).
3. The point (∞, ∞) is a node, whose tangents are the lines L_{∞}, M_{∞}. Moreover, this point is an inflexion one with respect to each of the two local branches.

Figure 1: The curve C_{1}
Figure 2: The curve C_{2}
Dotted arrows denote the action of the endomorphism π : blue ones if $\sqrt{2} \in \mathbb{F}_{q}$, violet ones if $\sqrt{2} \notin \mathbb{F}_{q}$, and red ones in both cases. Also, the green lines are two tangents to C_{8} at $(0,0)$.

By Theorem 3 the inverse images

$$
H_{i}:=\rho^{-1}\left(D_{i}\right), \quad H_{2}^{(1)}:=\rho^{-1}\left(D_{2}^{(1)}\right), \quad H_{8}^{\prime}:=\rho^{-1}\left(D_{8}^{\prime}\right)
$$

where $i \in\{1,2,8\}$, are hyperelliptic curves. Note that the maps

$$
\varphi: H_{1} \rightarrow H_{2}, \quad \psi: H_{2} \rightarrow H_{8}, \quad \psi: H_{2}^{(1)} \rightarrow H_{8}^{\prime}
$$

are birational and hence all these curves have geometric genus 2 and a non-hyperelliptic involution. We now have everything to represent Figure 5 .

3.1 Proper \mathbb{F}_{q}-parametrization of the curve

Now we are going to parametrize the curve C_{8}. Note that C_{1} has the π-invariant point $(-5 / 3 \sqrt{a}, 5 / 3 \sqrt{a})$ and the projection from it gives:
$p r_{C_{1}}: C_{1} \simeq \mathbb{A}_{x}^{1}, \quad x:=\frac{3 \sqrt{a}\left(x_{0}+x_{1}\right)}{3\left(x_{0}-x_{1}\right)+10 \sqrt{a}} \quad$ s.t. $\quad p r_{C_{1}}^{-1}: \mathbb{A}_{x}^{1} \simeq C_{1}, \quad\left\{\begin{array}{l}x_{0}:=\frac{-5 \sqrt{a} x+6 a}{3(x-\sqrt{a})}, \\ x_{1}:=\frac{5 \sqrt{a} x+6 a}{3(x+\sqrt{a})} .\end{array}\right.$
Substituting (with the help of Magma) the last formulas in the equation of $A_{ \pm} /[-1]$, we obtain the \mathbb{F}_{q}-curve

$$
D_{1}^{\prime}: 3^{6} x^{6} y^{2}+2^{6} a^{3} x^{6}-3^{7} a x^{4} y^{2}-2^{4} 3^{2} a^{4} x^{4}+3^{7} a^{2} x^{2} y^{2}+3^{4} a^{5} x^{2}-3^{6} a^{3} y^{2}=0 \quad \subset \quad \mathbb{A}_{(x, y)}^{2}
$$

Figure 4

Figure 5

Thus there are birational isomorphisms

$$
\chi:=\operatorname{pr}_{C_{1}} \times \mathrm{id}_{y}: D_{1} \simeq D_{1}^{\prime}, \quad \chi^{-1}=\operatorname{pr}_{C_{1}}^{-1} \times \mathrm{id}_{y}: D_{1}^{\prime} \simeq D_{1} .
$$

Further, Magma allows to compute the anticanonical map from D_{1}^{\prime} to the \mathbb{F}_{q}-conic

$$
Q: 2^{6} a^{3} u^{2}+3^{6} v^{2}-2^{6} a^{4}=0 \quad \subset \quad \mathbb{A}_{(u, v)}^{2}
$$

given by the \mathbb{F}_{q}-formulas
$\varphi_{-K}: D_{1}^{\prime} \simeq Q,\left\{\begin{array}{l}u:=x, \\ v:=\frac{2^{3} a^{3}\left(3^{2} a-2^{3} x^{2}\right) x}{3^{6}\left(x^{2}-a\right) y}\end{array} \quad\right.$ s.t. $\quad \varphi_{-K}^{-1}: Q \simeq D_{1}^{\prime}, \quad\left\{\begin{array}{l}x:=u, \\ y:=\frac{\left(2^{3} u^{2}-3^{2} a\right) u v}{2^{3}\left(u^{2}-a\right)^{2}} .\end{array}\right.$
Finally, the projection from the point $\left(2^{3} a^{2} / 3^{3}, 0\right) \in Q\left(\mathbb{F}_{q}\right)$ has the form
$p r_{Q}: Q \simeq \mathbb{A}_{t}^{1}, \quad t:=\frac{3^{3} v-2^{3} a^{2}}{3^{3} u} \quad$ s.t. $\quad p r_{Q}^{-1}: \mathbb{A}_{t}^{1} \simeq Q, \quad\left\{\begin{array}{l}u:=\frac{-2^{4} 3^{3} a^{2} t}{2^{6} a^{3}+3^{6} t^{2}}, \\ v:=\frac{2^{3} a^{2}\left(2^{6} a^{3}-3^{6} t^{2}\right)}{3^{3}\left(2^{6} a^{3}+3^{6} t^{2}\right)} .\end{array}\right.$
Thus we obtain the \mathbb{F}_{q}-rational map

$$
\text { par }:=\overline{\bar{\psi}} \circ \bar{\varphi} \circ \omega: \mathbb{A}_{t}^{1} \rightarrow C_{8}, \quad \text { where } \quad \omega:=\chi^{-1} \circ \varphi_{-K}^{-1} \circ p r_{Q}^{-1}: \mathbb{A}_{t}^{1} \simeq D_{1} .
$$

Magma allows to simplify its defining functions as follows:

$$
\text { par }=\left\{\begin{array}{l}
x_{0}:=\frac{\left(3^{8} t^{2}+2^{6} a^{3}\right)^{2} g(t)}{2^{14} 3^{2} a^{4}\left(3^{7} t^{2}-2^{6} a^{3}\right)^{2} t}, \\
x_{1}:=\frac{\left(3^{4} t^{2}+2^{6} a^{3}\right)^{2} g(t)}{2^{8} 3^{6} a\left(3^{5} t^{2}-2^{6} a^{3}\right)^{2} t^{3}},
\end{array} \quad \text { where } \quad g(t):=t^{2}\left(3^{12} t^{2}-2^{7} 3^{4} 7 a^{3}\right)+2^{12} a^{6} .\right.
$$

It is easily seen that $g(t)$ has no multiple roots and the functions are in the reduced form, that is the numerators and denominators have no common roots. By [10, Theorem 4.21] we get

Theorem 4. The map par (or, equivalently, $\left.\overline{\bar{\psi}}\right|_{D_{2}}$) is birational.
Another proof consists in applying the projection formula [16, §1.2] with respect to $\overline{\bar{\psi}}$. Interestingly, according to [10, Corollary 6.14] the curve C_{8} is not polynomial, i.e., it cannot be parametrized by two polynomials (even over $\overline{\mathbb{F}_{q}}$). Finally, the inverse map par $^{-1}: C_{8} \simeq \mathbb{A}_{t}^{1}$ and the maps par $:=p r^{-1} \circ$ par: $\mathbb{A}_{t}^{1} \simeq D_{8}, D_{8}^{\prime}$ (or, equivalently, the functions $\left.\pm \sqrt{a f\left(x_{0}\right) f\left(x_{1}\right)} \in \mathbb{F}_{q}(t)\right)$ can be also computed, but we do not write out them here for the sake of compactness (as above, see the Magma code [42]).

4 Remarks and conclusions

Let us keep a notation of previous paragraphs. First of all, we would like to deal with the case $\sqrt{a} \in \mathbb{F}_{q}$ (in fact, it is sufficient to take $a=1$). Let $E_{-}^{\prime}, E_{a}^{\prime}$ be the quadratic \mathbb{F}_{q}-twists of E_{-}, E_{a} respectively (by the $\mathbb{F}_{q^{2}}$-isomorphism σ) and

$$
A_{ \pm}^{\prime}:=E_{+} \times E_{-}^{\prime}, \quad A_{a}^{\prime}:=E_{a} \times E_{a}^{\prime}
$$

By means of

$$
[1] \times \sigma: A_{ \pm}^{\prime} \xrightarrow{\leadsto} A_{ \pm}, \quad[1] \times \sigma: A_{a}^{\prime} \xrightarrow{\sim} A_{a}
$$

the morphisms $\varphi, \bar{\varphi}$ are identically transformed to

$$
A_{ \pm}^{\prime} \rightarrow A_{a}^{\prime}, \quad A_{ \pm}^{\prime} /[-1] \rightarrow A_{a}^{\prime} /[-1]
$$

respectively, hence we save the notation. Finally, for $i \in\{1,2\}$ consider the \mathbb{F}_{q}-curves

$$
H_{i}^{\prime}:=\left([1] \times \sigma^{-1}\right)\left(H_{i}\right), \quad D_{i}^{\prime}:=\rho\left(H_{i}^{\prime}\right)=p r^{-1}\left(C_{i}\right) .
$$

Thus $D_{2}^{\prime}=\bar{\varphi}\left(D_{1}^{\prime}\right)$ is a desired rational \mathbb{F}_{q}-curve on the Kummer surface of A_{a}^{\prime} and we obtain the commutative diagrams

Now we return to the more interesting case $\sqrt{a} \notin \mathbb{F}_{q}$. In particular, under the condition $q \equiv 5(\bmod 8)$ it is sufficient to take $a \in\{2,8\}$, because it is known that the Legendre symbol

$$
\left(\frac{2}{p}\right)=2^{\frac{p^{2}-1}{8}}=\left\{\begin{array}{lll}
1 & \text { if } \quad p \equiv 1,7(\bmod 8), \\
-1 & \text { if } \quad p \equiv 3,5(\bmod 8),
\end{array} \quad\left(\frac{2}{q}\right)=\left\{\begin{array}{lll}
1 & \text { if } & 2 \mid \log _{p}(q) \\
\left(\frac{2}{p}\right) & \text { if } & 2 \nmid \log _{p}(q)
\end{array}\right.\right.
$$

Fortunately, for $q \not \equiv 1(\bmod 8)$ a square root in \mathbb{F}_{q} can be computed by means of one exponentiation in \mathbb{F}_{q} (see, e.g., [2, §5.1.7]), hence the simplified SWU method can be implemented quite efficiently.

It is time to clarify which sign of the square root $y=\sqrt{r}$ (for a quadratic residue $r \in \mathbb{F}_{q}^{*}$) should be chosen by default. Let $\mathbb{F}_{q}=\mathbb{F}_{p}(\gamma)$ and $y=\sum_{i=0}^{n-1} y_{i} \gamma^{i} \in \mathbb{F}_{q}^{*}$, where $0 \leqslant y_{i}<p$. If i_{0} is the minimal index with $y_{i_{0}} \neq 0$, then we take y such that the value from $\left\{y_{i_{0}}, p-y_{i_{0}}\right\}$ is even (or odd). Another way is to compare when the value is greater than $(p-1) / 2$.

Let $U:=\mathbb{P}^{1} \backslash p a r^{-1}($ Ram $)$ and

$$
h^{\prime}: C_{8}\left(\mathbb{F}_{q}\right) \backslash \operatorname{Ram} \rightarrow E_{a}\left(\mathbb{F}_{q}\right) \backslash E_{a}[2], \quad\left(x_{0}, x_{1}\right) \mapsto\left\{\begin{array}{lll}
\left(x_{0}, \sqrt{f\left(x_{0}\right)}\right) & \text { if } & \sqrt{f\left(x_{0}\right)} \in \mathbb{F}_{q}, \\
\left(x_{1},-\sqrt{f\left(x_{1}\right)}\right) & \text { if } & \sqrt{f\left(x_{1}\right)} \in \mathbb{F}_{q}
\end{array}\right.
$$

Thus the parametrization par: $\mathbb{P}^{1} \rightarrow C_{8}$ from $\$ 3.1$ induces the hashing

$$
h:=h^{\prime} \circ \operatorname{par}: U\left(\mathbb{F}_{q}\right) \rightarrow E_{a}\left(\mathbb{F}_{q}\right) .
$$

Of course, we could extend h to all the field \mathbb{F}_{q}, but let us simplify the paragraph, not dealing with the exceptional cases. The defining polynomial of C_{8} is symmetric, hence both points $\pm h(t)$ are in the image of h. More precisely, it can be checked that $h\left(2^{6} a^{3} /\left(3^{6} t\right)\right)=-h(t)$. Finally, since the curve C_{8} is of bidegree $(8,8)$, for any point $P \in E_{a}\left(\mathbb{F}_{q}\right)$ it follows that $\left|h^{-1}(P)\right| \leqslant 8$.

Theorem 5. We have the bounds

$$
\frac{q-54}{8} \leqslant|\operatorname{Im}(h)| \leqslant\left|E_{a}\left(\mathbb{F}_{q}\right)\right|-2
$$

Proof. By the adjunction formula [32, Exercise V.1.3.a] arithmetic genus $p_{a}=49$ for the curve $C_{8} \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$, because a canonical divisor $K_{\mathbb{P}^{1} \times \mathbb{P}^{1}}$ is of bidegree $-(2,2)$. Besides, for a point $P \in C_{8}\left(\mathbb{F}_{q}\right)$ consider the values

$$
\alpha_{P}:=\left|\operatorname{par}^{-1}(P)\left(\mathbb{F}_{q}\right)\right|, \quad \delta_{P}^{\prime}:= \begin{cases}0 & \text { if } \alpha_{P}=0 \\ \alpha_{P}-1, & \text { otherwise }\end{cases}
$$

and δ_{P} [32, Example V.3.9.3]. Using [43, Lemma 2.2], Theorem 4 and [32, Example V.3.9.2], we obtain the inequalities

$$
\left|\operatorname{par}\left(\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right)\right|=q+1-\sum_{P \in C_{8}\left(\mathbb{F}_{q}\right)} \delta_{P}^{\prime} \geqslant q+1-\sum_{P \in C_{8}\left(\mathbb{F}_{q}\right)} \delta_{P} \geqslant q+1-p_{a}=q-48 .
$$

Thus

$$
\frac{q-54}{8} \leqslant \frac{\left|\operatorname{par}\left(\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right)\right|-\left|\left(C_{8} \cap \operatorname{Ram}\right)\left(\mathbb{F}_{q}\right)\right|}{8} \leqslant|\operatorname{Im}(h)|
$$

and the upper bound is trivial.
To be more precise the formula for $\left|E_{a}\left(\mathbb{F}_{q}\right)\right|$ is given in [2, Proposition 2.5], [44, Theorem 18.5]. The lower bound can be probably improved by the Chebotarev density theorem (in the function field case) as well as this is done for some other hashings (see [45, §3.2]).

We say that an arbitrary map has an algebraic (worst-case) complexity

$$
n_{S} S+n_{M_{c}} M_{c}+n_{M} M+n_{I} I+n_{Q R T} Q R T+n_{S R} S R
$$

if for all arguments it can be computed by means of (at most) n_{S} squarings, $n_{M_{c}}$ multiplications by a constant $c \in \mathbb{F}_{q}, n_{M}$ general ones (with different non-constant multiples), n_{I} inversions, $n_{Q R T}$ quadratic residuosity tests, and $n_{S R}$ square roots, where all operations are in \mathbb{F}_{q}. Additions and subtractions in \mathbb{F}_{q} are not considered, because they are very easy to compute. We also do not take account (in $n_{M_{c}}$) for multiplications by a constant $c \in \mathbb{F}_{p}$ such that $c(\bmod p) \leqslant 7$, because they are not more difficult than a few additions. Implementation details of the operations mentioned see, for example, in [2, §5.1], [30, Chapter II].

Lemma 3. The hashing h has an algebraic complexity

$$
7 S+2 M_{c}+10 M+2 I+Q R T+S R .
$$

Proof. It is easily checked that the functions $g(t), x_{0}(t), x_{1}(t)$ forming the parametrization par have an algebraic complexity

$$
S+M, \quad 2 S+M_{c}+3 M+I, \quad 2 S+M_{c}+4 M+I
$$

respectively (the value t^{2} is supposed to be known before calculating $x_{0}(t), x_{1}(t)$). In addition to $f\left(x_{0}\right)$ in the worst case (i.e., if $\left.\sqrt{f\left(x_{0}\right)} \notin \mathbb{F}_{q}\right)$ we must also compute $f\left(x_{1}\right)$. Each of these two substitutions is accomplished by $S+M$ operations. We emphasize once again that the quadratic residuosity test is unique. It remains to extract one square root $\sqrt{f\left(x_{0}\right)}$ or $\sqrt{f\left(x_{1}\right)}$. Thus we obtain the desired algebraic complexity for h.

In pairing-based cryptography non-supersingular (i.e., for $p \equiv 1(\bmod 3))$ elliptic \mathbb{F}_{q}-curves $E_{b}: y^{2}=x^{3}-b$ of j-invariant 0 are only used in practice at the moment [1, Table 1]. Thus it is tempting to generalize the simplified SWU method to them. More precisely, there is the following

Problem 1. Let E_{b} be any elliptic \mathbb{F}_{q}-curve of $j=0$ and E_{b}^{\prime} be its quadratic \mathbb{F}_{q}-twist. How to explicitly construct a rational \mathbb{F}_{q}-curve D on the Kummer surface K_{b}^{\prime} of the direct product $E_{b} \times E_{b}^{\prime}$ such that bidegree of the image $C:=\operatorname{pr}(D) \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$ does not depend on \mathbb{F}_{q} ?

Unfortunately, the approach of this work does not allow to resolve this problem, because in the case $\sqrt[3]{b} \notin \mathbb{F}_{q}$ it seems that there is no natural $\mathbb{F}_{q^{2}}$-isogeny from some elliptic curve of $j \neq 0$, that is an ascending $\mathbb{F}_{q^{2}}$-isogeny to E_{b}.

References

[1] Sakemi Y., Kobayashi T., Saito T., Wahby R. Pairing-friendly curves. // IETF Secretariat, 2020.
[2] El Mrabet N., Joye M. Guide to pairing-based cryptography. - New York.: Chapman and Hall, 2016.
[3] Faz-Hernandez A. et al. Hashing to elliptic curves. // IETF Secretariat, 2020.
[4] Boneh D., Franklin M. Identity-based encryption from the Weil pairing. // SIAM Journal on Computing, 2003. Vol. 32(3). P. 586-615.
[5] Icart T. How to hash into elliptic curves. // 29th Annual International Cryptology Conference, 2009. P. 303-316.
[6] Bernstein D., Hamburg M., Krasnova A., Lange T. Elligator: Elliptic-curve points indistinguishable from uniform random strings. // Conference on Computer \& Commun. Security, 2013. P. 967-980.
[7] Skałba M. Points on elliptic curves over finite fields. // Acta Arithmetica, 2005. Vol. 117. P. 293-301.
[8] Mordell L. Diophantine equations. - London.: Academic Press, 1969.
[9] Shallue A., van de Woestijne C. Construction of rational points on elliptic curves over finite fields. // 7th International Algorithmic Number Theory Symposium, 2006. P. 510-524.
[10] Sendra J., Winkler F., Pérez-Díaz S. Rational algebraic curves: A computer algebra approach. Berlin.: Springer-Verlag, 2008.
[11] Van der Geer G., Katsura T. On the height of Calabi-Yau varieties in positive characteristic. // Documenta Mathematica, 2003. Vol. 8(1). P. 97-113.
[12] Andreatta M., Wiśniewski J. On the Kummer construction. // Revista Matemática Complutense, 2010. Vol. 23(1). P. 191-215.
[13] Cynk S., Schütt M. Generalised Kummer constructions and Weil restrictions. // Journal of Number Theory, 2009. Vol. 129(8). P. 1965-1975.
[14] Donten M. On Kummer 3-folds. // Revista Matemática Complutense, 2011. Vol. 24(2). P. 465-492.
[15] Kollár J., Larsen M. Quotients of Calabi-Yau varieties. // Algebra, arithmetic, and geometry. Birkhäuser Boston, 2009. P. 179-211.
[16] Debarre O. Higher-dimensional algebraic geometry. - Berlin.: Springer-Verlag, 2001.
[17] Voisin C. Miroir set involutions sur les surfaces K3. // Astérisque, 1993. Vol. 218. P. 273-323.
[18] Bogomolov F., Tschinkel Y. Rational curves and points on K3 surfaces. // American Journal of Mathematics, 2005. Vol. 127(4). P. 825-835.
[19] Brier E., Coron J.-S., Icart T., Madore D., Randriam H., Tibouchi M. Efficient indifferentiable hashing into ordinary elliptic curves. // 30th Annual Cryptology Conference, 2010. P. 237-254.
[20] Mestre J.-F. Rang de courbes elliptiques d'invariant donné. // Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, 1992. Vol. 314(12). P. 919-922.
[21] Satgé P. Une construction de courbes k-rationnelles sur les surfaces de Kummer d'un produit de courbes de genre 1. // Rational points on algebraic varieties. - Birkhäuser Basel, 2001. P. 313-334.
[22] Ulas M. Rational points on certain hyperelliptic curves over finite fields. // Bulletin of the Polish Academy of Sciences. Mathematics, 2007. Vol. 55(2). P. 97-104.
[23] Kuwata M., Wang L. Topology of rational points on isotrivial elliptic surfaces. // International Mathematics Research Notices, 1993. Vol. 1993(4). P. 113-123.
[24] Wahby R., Boneh D. Fast and simple constant-time hashing to the BLS12-381 elliptic curve. // IACR Trans. on Crypto. Hardware and Embedded Systems, 2019. P. 154-179.
[25] Kachisa E., Schaefer E., Scott M. Constructing Brezing-Weng pairing-friendly elliptic curves using elements in the cyclotomic field. // 2nd Internat. Conf. on Pairing-Based Crypto., 2008. P. 126-135.
[26] Barbulescu R., El Mrabet N., Ghammam L. A taxonomy of pairings, their security, their complexity. // IACR Cryptology ePrint Archive, 2019.
[27] Barbulescu R., Duquesne S. Updating key size estimations for pairings. // Journal of Cryptology, 2018. P. 1-39.
[28] Ghammam L., Fouotsa E. Adequate elliptic curves for computing the product of n pairings. // International Workshop on the Arithmetic of Finite Fields, 2016. P. 36-53.
[29] Gorchinskiy S., Shramov C. Unramified Brauer group and its applications. - Providence.: American Mathematical Society, 2018.
[30] Cohen H., Frey G., Avanzi R., Doche C., Lange T., Nguyen K., Vercauteren F. Handbook of elliptic and hyperelliptic curve cryptography. - Boca Raton.: Chapman \& Hall, 2006.
[31] Milne J. Abelian varieties. // Arithmetic Geometry, 1986. P. 103-150.
[32] Hartshorne R. Algebraic geometry. - Berlin.: Springer, 1977.
[33] Hunt B. The geometry of some special arithmetic quotients. - Berlin.: Springer-Verlag, 1996.
[34] Huybrechts D. Lectures on K3 surfaces. - Cambridge.: Cambridge University Press, 2016.
[35] Ulmer D. Elliptic curves over function fields. // Arithmetic of L-functions, 2011. P. 211-280.
[36] Shioda T. Supersingular K3 surfaces. // Algebraic Geometry, 1979. P. 564-591.
[37] Hirschfeld J., Korchmáros G., Torres F. Algebraic curves over a finite field. - Princeton.: Princeton University Press, 2008.
[38] Gaudry P., Schost É. On the invariants of the quotients of the Jacobian of a curve of genus 2. // 14th Inter. Symp. on Applied Algebra, Algebraic Algorithms, and Error-Correct. Codes, 2001. P. 373-386.
[39] Koshelev D. Non-split toric codes. // Problems of Information Transmission, 2019. Vol. 55(2). P. 124-144.
[40] Silverman J. The arithmetic of elliptic curves. - New York.: Springer-Verlag, 2009.
[41] Galbraith S. Mathematics of public key cryptography. - New York.: Cambridge University Press, 2012.
[42] Koshelev D. Magma code. https://github.com/dishport/Hashing-to-elliptic-curves-of-j-invariant-1728.
[43] Aubry Y., Perret M. A Weil theorem for singular curves. // Arithmetic, Geometry and Coding Theory (AGCT-4), 1993. P. 1-7.
[44] Ireland K., Rosen M. A classical introduction to modern number theory. - New York.: Springer-Verlag, 1990.
[45] Fouque P.-A., Tibouchi M. Estimating the size of the image of deterministic hash functions to elliptic curves. // 1st Inter. Conference on Crypto. and Information Security in Latin America, 2010. P. 81-91.

[^0]: ${ }^{1}$ Web page: https://www.researchgate.net/profile/Dimitri_Koshelev
 Email: dishport@ya.ru
 This work was supported by a public grant as part of the FMJH project

