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Abstract. MPC over rings like Z232 or Z264 has received a lot of attention
recently due to their potential benefits in implementation and performance.
Several protocols for active security over these rings have been proposed
recently, including an implementation in the dishonest majority setting
due to Damg̊ard et al. (S&P 2019) and in the popular three-party and one
corruption setting. However, to this date, no concretely-efficient protocol
for arithmetic computation over rings in the honest majority setting,
which works for any number of parties, have been proposed.
In this work, we present a new compiler for MPC over the ring Z2k in
the honest majority setting, that takes several building blocks, which can
be essentially instantiated using semi-honest protocols, and turn them
into a maliciously secure protocol. Our compiler follows the framework
of Chida et al. (CRYPTO 18) for finite fields, and makes it compatible
for rings using techniques from the work of Cramer et al. (CRYPTO 18),
with only small additional overhead. Per multiplication gate, our compiler
requires only two invocations of a semi-honest multiplication protocol
over the larger ring Z2k+s , where s is the statistical security parameter.
As with previous works in this area aiming to achieve high efficiency, our
protocol is secure with abort and does not achieve fairness, meaning that
the adversary may receive output while the honest parties do not.
We provide two efficient instantiations for our compiler. The first instanti-
ation is for the three-party case and is based on replicated secret sharing,
where the resulting protocol requires each party to send just 2(k + s)
bits per multiplication gate. To the best of our knowledge, this is the
most efficient three-party protocol for large rings to this date. Our second
instantiation is for any number of parties. In this case we manage to
instantiate our compiler with a variant of Shamir secret sharing that
was recently proposed by Abspoel et al. (TCC 2019). We show that
the theoretical constructions from Abspoel et al. (TCC 2019) can be
instantiated efficiently and prove that they satisfy the properties required
by our building blocks. The resulting protocol requires each party to
send just 14(k + s) logn bits per multiplication gate. To the best of our
knowledge, this is the first concretely-efficient protocol for MPC over
rings with an honest majority that works for any number of parties.
We implemented our two protocols, run extensive experiments to measure
their performance and report their efficiency. Our results prove that
efficient honest-majority MPC over rings is possible.
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1 Introduction

Multiparty Computation (MPC) is a cryptographic tool that allows multiple
parties to compute a given function on private inputs whilst revealing only
its output; in particular, parties’ inputs and the intermediary values of the
computation remain hidden. MPC has by now been studied for several decades,
and different protocols have been developed throughout the years. These protocols
can classified based on two orthogonal properties: the capabilities of the adversary,
and how many parties the adversary can corrupt.

With regard to the former, the adversary is typically specified as either
actively or passively corrupting parties. A passive adversary (also called honest-
but-curious or semi-honest in the literature) tries to learn additional information
by inspecting the protocol transcript, but is otherwise forced to follow the
protocol as specified. An active adversary on the other hand is allowed to
arbitrarily deviate from the protocol description. With regard to the latter, the
two main settings usually considered are honest majority (where the adversary
can control strictly less than half of the parties participating in the protocol) and
dishonest majority (where the adversary can control any number of parties). In
the dishonest majority setting, it has been shown that the security cannot be
unconditional (i.e. it must rely on computational assumptions) and furthermore,
an active adversary may cause the protocol to abort. On the other hand, when
the adversary controls a minority of the participants, unconditional security
is achievable and, furthermore, guaranteed output delivery (i.e. all parties get
output in spite of arbitrary adversarial behavior) can be ensured.

Most MPC protocols are “general purpose”, meaning that they can in principle
compute any function. This generality is typically obtained by representing the
function as an arithmetic circuit modulo some integer p. Note that implied in
this representation, is a set of integers on which computation can be performed.
Traditionally, MPC protocols are classified as being either boolean or arithmetic,
where the former have p = 2 and the latter has p > 2. However, most of
the existing arithmetic MPC protocols, independently of their security, require
the modulus to be a prime (and for some protocols this prime must be large)
[BTH06,BFO12,DKL+13,KOS16,FLNW17,CGH+18,LN17].

It was only until very recently that practical protocols in the arithmetic setting
for a non-prime modulus were developed. The SPDZ2k protocol securely evaluates
functions in the dishonest majority case [CDE+18], and several other works focus
on honest majority case [FLNW17,CGH+18,ACD+19,EKO+19]. Computation
over Z2k is appealing due to its practical benefits compared to computation over
fields, as verified in [DEF+19], and it has been used in many applications of MPC
[MR18,MZ17,BEDK19,WGC18]. This stems from the fact that arithmetic over
rings like Z232 or Z264 can be implemented more efficiently in modern hardware
than arithmetic over Fp, which requires a software implementation for reduction
modulo p. Also, non-arithmetic operations like comparison and truncation become
simpler and more efficient in this setting [DEF+19,MR18].
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1.1 Our Contributions

In this work we develop efficient protocols over Z2k by presenting a generic
compiler that transforms any passively secure protocol for computation over
Z2k+s that is only vulnerable to additive attacks, to a protocol over the ring
Z2k which is actively secure with abort and provides roughly s bits of statistical
security.5 Both the input and output protocols are secure in the honest majority
setting. The amortized cost of our compiler per multiplication gate is just two
invocations of the passively secure protocol over the ring Z2k+s . Furthermore,
our compiler preserves the important property shared by some honest-majority
multiplication protocols, which is that dot-products on shared vectors have
the same communication cost as one single multiplication. This is crucial for
many applications like secure array indexing [BKY19], or even more importantly
applications relying on matrix arithmetic like SVMs or neural networks, as shown
for example in [MR18].

We apply our compiler to two passively secure protocols over Z2k that are
secure up to additive attack, and thus obtain two protocols.

The first protocol works for an arbitrary number of parties, and to the best of
our knowledge we obtain the first actively secure protocol over Z2k that provides
concrete efficiency in this setting. It is based on a version of Shamir secret sharing
over rings [ACD+19]. We demonstrate the efficiency with an implementation,
showing that looking only on the online computation, we are able to process a
circuit of 1 million multiplications in depth-20 over the ring Z264 in overall 5
seconds (with 3 parties in a LAN networok), from which only 240ms are spent
on the online computation. Because the size of the shares of our secret-sharing
scheme is k log n bits, each party needs to communicate 14(k + s) log n bits per
multiplication gate. We thus obtain quasi-linear communication complexity in
the number of parties.

The second protocol works in the three-party setting and is highly efficient.
It is based on a protocol that uses replicated secret sharing and which is known
to be very efficient [AFL+16]. Our compiled protocol for the three-party case
requires each party to send just two elements in the ring Z2k+s per multiplication
gate, i.e., communicating 2(k + s) bits per party. Furthermore, this protocol is
the first actively secure three-party protocol over rings with the property that
arbitrarily long secure dot products can be computed at the communication
cost of one single multiplication, which, as we already argued, is an essential
property for many applications. This is not the case for previous protocols like
[EKO+19,FLNW17], which make use of Beaver-based preprocessing to achieve
active security, do not achieve this important property.

We compare both protocols to other works, both theoretically and empirically.
For the three-party case, our protocol yields the lowest overall bandwidth per
multiplication gate for large rings to this date, improving upon the previous best
result of [EKO+19]. Our implementation shows that million multiplications (with

5 Although our protocols are statistically secure in principle, some efficient instantiations
might make use of computational assumptions.
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the same circuit as above) over the ring Z264 can be processed in 400ms in a
LAN network.

Furthermore, our implementation of the first protocol includes an implemen-
tation of the secret-sharing scheme over Z2k via Galois rings of [ACD+19], which
may have applications going beyond MPC. We demonstrate the practical viability
of these techniques.

Our proof-of-concept implementation shows also that our compiled protocols
perform well with respect to their field counterpart [CGH+18], which illustrates
the benefits of working over the ring Z2k in terms of concrete efficiency. Specifically,
our experiments show that although we double the amount of sent data, we
provide in most cases faster computations.

1.2 Overview of our Techniques

The starting point of our work is the general compiler by Chida et al. [CGH+18],
which achieves a similar result to ours, but over fields. In that work, the authors
show that passively secure honest majority protocols over fields, which enjoy the
additional property of being secure up to additive attacks, can be compiled to
achieve active security without a noticeable loss in efficiency. The authors show
several instantiations of their compiler, based on the observation from [GIP+14]
that many existing passively secure protocols are already secure up to additive
attacks.

Ideally, one would try to apply the results from [CGH+18] to compiler pro-
tocols over Z2k . However, their techniques do not extend directly to the ring
setting, mainly because the security of their compiler is based on the property
that the code x→ (x, r · x) for a random r is resilient to additive attacks that
are independent of x and r, and this does not hold for rings like Z2k .

Our main observation is that a similar issue appears in the dishonest majority
scenario, in which a MAC scheme is required in order to enforce correct behavior
from the parties when reconstructing. More precisely, the MAC scheme used
in SPDZ-like protocols for dishonest majority relies on the same property as
above, and its generalization to the ring setting was not clear until the work
of [CDE+18], where the authors showed how to generalize this authentication
scheme to Z2k , using a novel idea of extending the algebraic structure from Z2k

to Z2k+s to provide some “extra room” for authentication.
At a very high level, our compiler is obtained by following the template from

[CGH+18], using the “SPDZ2k trick” from [CDE+18] for the underlying AMD
code, and it is described and analyzed in Section 4. However, extending the code
(x, r ·x) to Z2k is not the only critical piece of the compiler that fails when ported
to the ring setting. For example, one of the critical steps in the compiler is to
check whether a given shared value is 0, without revealing anything else about it
(in particular, if the underlying value is not 0, nothing about it can be revealed).
Over the field, this is done by multiplying the shared value by a secret random
element, and opening this value. Clearly, with high probability, the opened value
is zero if and only if the original value was zero, and if this is not the case then
the opened value will look random.
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Unfortunately, the check above does not work over Z2k (for example, if the
original value is even and non-zero, then the opened value is even, which reveals
the parity, with probability 1/2, of the original value). In this work we take a
different path and show in Section 3.3 a novel check against zero that works
over rings, which may be of independent interest. In a nutshell, our check works
by bit-decomposing the shared value and checking that each bit is zero, which
can be achieved by checking that the OR of the bits is zero. This idea stems
from [DEF+19], where it was introduced in the dishonest majority setting for the
particular type of secret sharing scheme used in the SPDZ2k protocol [CDE+18].
Here we extend this approach to the case of an arbitrary honest-majority secret
sharing scheme that satisfies the conditions from Section 2.1. The resulting check
is clearly more expensive than the one over fields, but since this is used only once
in any execution of the protocol, this cost is amortized away.

Similarly to [CGH+18], we apply our compiler to two passively secure pro-
tocols: one based on replicated secret sharing and one based on Shamir secret
sharing. For the first protocol, we simply observe in Section 5 that the proof
presented in [LN17], which shows that replicated secret sharing over fields is
secure up to additive attacks, also holds over Z2k . This is natural since this
scheme only uses the additive structure of the field, which is the same as Z2k .

Now, for the second protocol, we rely on the recent work of [ACD+19] that
extends Shamir secret sharing to the ring setting. In that work, the authors
construct a protocol for the t < n/2 setting based on the protocol from [BTH06].
Since the goal of [ACD+19] is to construct a protocol with guaranteed output
delivery, their techniques are quite complex and the concrete efficiency is not so
clear. In this work we are interested in passively secure protocols with security up
to additive attacks, so instead of directly compiling the protocol from [ACD+19],
we use their core ideas together with techniques from [DN07] to develop in Section
6 a passively secure protocol over Z2k that is secure up to additive attacks.

Although the construction of the protocol is relatively straightforward given
the tools presented in [ACD+19], the main complications arise in proving that
this protocol is secure up to additive attacks, given that the protocol uses a
Galois ring extension to be able to use polynomial interpolation and therefore, in
principle, the adversary may inject non-additive errors by using elements that
do not lie in the base ring, as shown in [ACD+19]. To remedy this issue, we
tweak the basic “DN07” multiplication protocol so that it is ensured that the
only possible attack by an active adversary is an additive attack over the base
ring. We do this by a simple but novel approach to Shamir-based computation
over an extension field/ring, which consists of sending one single base field/ring
element to the “king”, instead of a full field/ring extension element.

1.3 Related Work

In this section, we compare our protocol to the best concrete-efficient protocols
for arithmetic computation over rings currently known. The only previous general
compiler with concrete efficiency in this setting, to the best of our knowledge, is
the compiler of [DOS18], which was improved recently by [EKO+19]. However,
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their compiler does not preserve the threshold when moving from passive to
active security. Thus, our compiler has a real qualitative advantage over thiers.
In addition, in [DOS18] and [EKO+19] the compiler was instantiated for the
3-party case only.

The only concrete-efficient protocol for arithmetic computation over rings
which works for any number of parties is the so-called “SPDZ2k” protocol [CDE+18]
which was proven to be practical in [DEF+19]. This protocol is for the dishonest
majority and thus requires the use of much heavier machinery, which makes it or-
ders of magnitudes slower than ours. However, they deal with a more complicated
setting and provide stronger security.

In the three-party setting with one corruption, there are several works which
provide high efficiency for arithmetic computations over rings. The Sharemined
protocol [BLW08] is being used to solve real-world problems but provides only
semi-honest security. The actively secure protocol of [FLNW17], which was opti-
mized and implemented in [ABF+17], is based on the “cut–and–choose” approach.
This protocol requires each party to send 7 ring elements per multiplication gate.
The advantage of their approach is that this amount stays the same also when
working over small rings (e.g., boolean circuits). Thus, while we achieve lower
bandwidth for large rings such as Z232 and Z264 , their protocol will be favorable
when working over small rings. The protocol of [CCPS19] has a slightly overall
higher bandwidth than [ABF+17], but focuses on minimizing online (input-
dependent) cost. Indeed, the online communication cost of [CCPS19] per party
is just 4/3 ring elements per multiplication gate. Finally, the actively secure
three-party protocol of [EKO+19] is the closest to our protocol in the sense that
they also focus on efficiency for large rings. The protocol of [EKO+19] has two
variants, with pre-processing and post-processing, which differs in where the
computational bottleneck lies. The overall communication per multiplication gate
of their protocol is 3(k + s) bits sent by each party, which is higher than ours
by (k + s) bits. We provide a detailed empirical comparison with [EKO+19] in
Section 7.

We finally remark that in [GRW18], a protocol for 4-party and one corruption
was presented, which requires each party to send just 1.5 ring elements for each
multiplication gate. However, the protocol applies for this specific setting only
and was not implemented.

2 Preliminaries and Definitions

Notation. Let P1, . . . , Pn denote the n parties participating in the computation,
and let t denote the number of corrupted parties. In this work, we assume an
honest majority, and thus t < n

2 . Throughout the paper, we use H to denote the
subset of honest parties and C to denote the subset of corrupted parties. We use
[n] to denote the set {1, . . . , n}. ZM denotes the ring of integers modulo M , and
the congruence x ≡ y mod 2` is denoted by x ≡` y.
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2.1 Secret Sharing

Let ` be a positive integer. A t-out-of-n secret sharing scheme over Z2` distributes
an input x ∈ Z2` among the n parties P1, . . . , Pn, giving shares to each one of
them in such a way that any subset of at least t+ 1 parties can reconstruct x
from their shares, but any subset of at most t parties cannot learn anything
about x from their shares. We formalize this notion as follows.

Definition 2.1. A t-out-of-n linear secret sharing scheme over Z2` is a pair of
interactive procedures share and open that satisfy the following properties.

Share-Distribution Procedure. share(x) is as randomized efficiently-computable
procedure that generates n shares (x1, . . . , xn) of x ∈ Z2` , where xi ∈ (Z2`)

m

is intended for party Pi.
6

Given a subset J ⊆ [n], we denote JxKJ` = {xi}i∈J , and if J = [n] we simply

write JxK[n]` = JxK`. Furthermore, if ` is clear from the context we may omit
the subscript `.

Share-Distribution From Given Shares. The share algorithm above may
also take as input, in addition to x ∈ Z2` , a set of shares {xi}i∈J for
J ⊆ [n] with |J | ≤ t so that its output JxK = share(x, {xi}i∈J) satisfies
JxK = (x′1, . . . , x

′
n), with x′i = xi for i ∈ J .

We assume that if |J | = t, then JxKJ together with v determine deterministi-
cally all the remaining shares. This also means that any t+ 1 shares fully
determine all shares.

Privacy. For any J ⊆ [n] with |J | ≤ t, the mutual information between {xi}i∈J
and x is zero, where share(x) = {xi}i∈[n].

Reconstruction. open is an efficiently-computable deterministic procedure such
that open(JxKJ) = x or ⊥ for every J ⊆ [n] with |J | > t.

In particular, the procedure open outputs a special symbol ⊥ whenever it is
called on an input JxK which is not correct as defined below in Definition 2.2.

The procedure may take an extra common index i ∈ [n] as in open(JxK, i),
and in such a case, the output is obtained only by Pi.

Shares of a Constant. There exists a deterministic procedure sharecons such
that, on input x ∈ Z2` , produces {xi}i∈[n] such that open({xi}i∈[n]) = x.
Furthermore, we assume that all the entries of {xi}i∈[n] are either equal to 0
or equal to x.

Homomorphism. Given shares JxK, JyK, point-wise addition of these shares
yields shares of x+ y mod 2`. We denote this operation by JxK + JyK.7

We also assume the following, non-standard properties:

6 Notice that the shares xi do not necessarily live in Z2` . For example, for replicated
secret-sharing scheme these shares belong to Z2` × Z2` , and for our instantiation of
Shamir secret sharing over rings these shares belong to Zlogn

2`
.

7 Notice that, given JxK and α ∈ Z2` , one can compute shares of x + α mod 2` by
calling sharecons on input α and then adding the shares point-wise.
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Modular Reduction. We assume that the open procedure is compatible with
modular reduction, meaning that for any 0 ≤ `′ ≤ ` and any x ∈ Z2` , reducing
each share in JxK` modulo 2`

′
yields shares Jx mod 2`

′
K`′ . We denote this by

JxK` → JxK`′ .
Multiplication by 1/2. Given a shared value JxK`, we assume if all the shares

are even then shifting these shares to the right yields shares Jx′K`−1, where
x′ = x/2.8

Throughout the entire paper, we set the threshold for the secret-sharing
scheme to be bn−12 c, and we denote by t the number of corrupted parties. Since
we assume an honest majority, it holds that t < n/2 and so the corrupted parties
can learn nothing about a shared secret. This also means that the shares of the
honest parties always fully determine the shares of the corrupted parties (this
follows from the “share-distribution from given shares” property stated above
since H > n/2 > t). We will use this property frequently in our functionalities.

Now we define what it means for the parties to have correct shares of some
value. Let J be a subset of honest parties of size t+ 1, and denote by val(JvK)J
the value obtained by these parties after running the open protocol, where no
corrupted parties or additional honest parties participate, i.e. open(JvKJ). Note
that val(JvK)J may equal ⊥ and in this case we say that the shares held by the
honest parties are not valid. Informally, a secret sharing is correct if every subset
of t+ 1 honest parties reconstruct the same value (which is not ⊥). Formally:

Definition 2.2. Let H ⊆ {P1, . . . , Pn} denote the set of honest parties. A shar-
ing JvK is correct if there exists a value v′ ∈ F (v′ 6= ⊥) such that for every J ⊆ H
with |J | = t+ 1 it holds that val(JvK)J = v′.

2.2 Security Definition

We use the standard definition of security based on the ideal/real model paradigm
[Can00,Gol04], with security formalized for non-unanimous abort. This means
that the adversary first receives the output, and then determines for each honest
party whether they will receive abort or receive their correct output. It is easy to
modify our protocols so that the honest parties unanimously abort by running
a single (weak) Byzantine agreement at the end of the execution [GL05]. For
simplicity, we omit this step from the description of our protocols. Our protocol
is cast in the synchronous model of communication, in which it is assumed that
the parties share a common clock and protocols can be executed in rounds.

2.3 Secure Multiplication up to Additive Attacks [GIP15,GIP+14]

Our construction works by running a multiplication protocol (for multiplying
two values that are shared among the parties) that is not fully secure in the

8 If all the shares JxK` are even then these shares may be written as JxK` = 2 · JyK`,
which, by the homomorphism property, are shares of 2 · y. Since these are shares of x
as well, this shows that x ≡` 2 · y, so x is even.
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presence of a malicious adversary and then running a verification step that
enables the honest parties to detect cheating. In order to do this, we start with a
multiplication protocols with the property that the adversary’s ability to cheat is
limited to carrying out a so-called “additive attack” on the output. Formally, we
say that a multiplication protocol is secure up to an additive attack if it realizes
Fmult defined in Functionality 2.3. This functionality receives input sharings JxK
and JyK from the honest parties and an additive value d from the adversary, and
outputs a sharing of x · y + d. Since the corrupted parties can determine their
own shares in the protocol, the functionality allows the adversary to provide the
shares of the corrupted parties, but this reveals nothing about the shared value.

As we will discuss in the instantiations sections (Section 5 and 6), the require-
ments defined by this functionality can be met by some semi-honest multiplication
protocols over Z2` , namely replicated secret sharing and the more recent protocol
of Cramer et al. [ACD+19], which is an extension of Shamir Secret Sharing to
the setting of Z2` . This will allow us to implement this functionality in a very
efficient way.

FUNCTIONALITY 2.3 (Fmult(`) - Secure Mult. Up To Additive Attack)

1. Upon receiving JxKH` and JyKH` from the honest parties, the ideal functionality
Fmult computes x, y and the corrupted parties shares JxKC` and JyKC` .

2. Fmult hands JxKC` and JyKC` to the ideal-model adversary/simulator S.
3. Upon receiving d and {αi}i|Pi∈C from S, functionality Fmult defines z ≡`

x ·y+d and JzKC` = {αi}i|Pi∈C . Then, it runs share(z, JzKC` ) to obtain a share
zj for each party Pj .

4. The ideal functionality Fmult hands each honest party Pj its share zj .

Efficient Sum of Products. In addition to the above, we define a functionality
that allows the parties to securely compute the dot product of two vectors of
shares, where the adversary is allowed to inject an additive error to the final
output. This is described in Functionality 2.4. As in [CGH+18], we will show
that the functionality can be realized at almost the same cost as Fmult.

FUNCTIONALITY 2.4 (FDotProduct(`) - Sum of Products Up To Add. Attack)

1. Upon receiving {JxiKH` }mi=1 and {JyiKH` }mi=1 from the honest parties,
FDotProduct recovers x, y and computes the corrupt parties shares {JxiKC` }mi=1

and {JyiKC` }mi=1, and sends these shares to the ideal adversary S.
2. Upon receiving d and JzKC` = {αi}i|Pi∈C from S, define z ≡` d+

∑m
i=1 xiyi.

3. Run share(z, JzKC` ) to obtain a share zj for each Pj .
4. Return zj to Pj .
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3 Building Blocks and Sub-Protocols

Our compiler requires a series of building blocks in order to operate. These
include generation of random shares and public coin-tossing, as well as broadcast.
Furthermore, as mentioned in Section 1.2, a core step of our compiler is checking
that a shared value is zero, leaking nothing more than this binary information.
We define this functionality and instantiate it in Section 3.3. We stress that our
presentation here is very general and it assumes nothing about the underlying
secret sharing scheme beyond the properties stated in Section 2.1.

3.1 Basic Building Blocks

Frand - Generating Random Shares. We define the ideal functionality Frand

to generate a sharing of a random value unknown to the parties. The functionality
lets the adversary choose the corrupted parties’ shares, which together with the
random secret chosen by the functionality, are used to compute the shares of the
honest parties.

The way to compute this functionality depends on the specific secret sharing
scheme that is being used. For example, for the case of replicated secret sharing
we consider the well-known method [AFL+16] that is based on distributing
replicated keys for a PRF, which allows the parties to generate shares of random
values without interaction. For the case of Shamir secret sharing (Section 6.1),
we consider an instantiation which relies on super-invertible matrices [DN07]
to achieve linear communication complexity, together with the “tensoring-trick”
from [CCXY18,ACD+19] in order to instantiate such matrices efficiently.

Fcoin - Generating Random Coins. Fcoin(`) is an ideal functionality that
chooses a random element from Z2` and hands it to all parties. A simple way
to compute Fcoin is to use Frand to generate a random sharing and then open it.
In the plain model, one can generate random coins by having each party (more
precisely, it suffices for t+ 1 parties to do this) shares a random secret, which are
then summed by the parites and opened to reveal the sum of the secrets. The
fact that there is a least one honest party which shares a secret guarantees that
the obtained value is uniformly distributed over the ring. On the other hand,
the properties of the open procedure, guarantee that if the corrupted parties
distributed an incorrect sharing, the honest parties will detect it and abort.

Fbc - Broadcast with Abort Another essential primitive for our compiler is
broadcast, in which a given party sends a message to all other parties, with the
guarantee that all the honest parties agree on the same value. Furthermore, if
the sender is honest, the agreed value is precisely the one that the sender sent.
It is well-known that broadcast cannot be achived when t ≥ n/3 without any
trusted set-up [PSL80]. However, for our protocol, we need only a weaker notion
of broadcast with abort, meaning that the adversary can cause the parites to
abort (but not to output an incorrect message).
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A simple way to compute Fbc is the well-known echo-broadcast protocol,
where the parties echo the message they received and send it the other parties.
Note that this protocol does not achieve unanimous abort and gives the adversary
the ability to determine which of the honest parties will output the sent message
and which will abort (see Section 2.2).

3.2 Finput – Secure Sharing of Inputs

In this section, we present our protocol for secure sharing of the parties’ inputs.
The protocol is the same as in [CGH+18] (and many prior works): for each input
x belonging to a party Pj , the parties call Frand to generate a random sharing JrK;
denote the share held by Pi by ri. Then, r is reconstructed to Pj , who broadcasts
x− r to all parties. Finally, each Pi outputs the share Jr + (x− r)K = JxK. This
is secure since Frand guarantees that the sharing of r is correct, which in turn
guarantees that the sharing of x is correct (since adding x− r is a local operation
only). In order to ensure that Pj sends the same value x− r to all parties, Fbc is
used. As shown in [CGH+18], the above protocol securely computes with abort
the ideal functionality for input sharing described in Functionality 3.1.

FUNCTIONALITY 3.1 (Finput(`)- Sharing of Inputs)

1. Functionality Finput receives inputs v1, . . . , vM ∈ Z2` from the parties. For
every i = 1, . . . ,M , Finput also receives from S the shares JviKC` of the
corrupted parties for the ith input.

2. For every i = 1, . . . ,M , Finput computes all shares (v1i , . . . , v
n
i ) =

share(vi, JviKC` ). For every j = 1, . . . , n, Finput sends Pj its output shares
(vj1, . . . , v

j
M ).

3.3 FCheckZero - Checking Equality to 0

A key component of our compiler is a protocol for checking whether a given
sharing is a sharing of the value 0, without revealing any extra information on
the shared value.

More precisely, let v ∈ Z2` , and suppose that the parties hold a sharing JvK`.
The parties want to check whether v ≡` 0, while guaranteeing that nothing is
learned about v mod 2` if this is not the case. This is required due to the way
we will use this check in our protocol: an adversary can make v depend on the
inputs of honest parties, so if the parties simply open v and check that it is zero
then the adversary gets to learn a function of the inputs.

A simple way to approach this problem when working over a field is sampling
a random multiplicative mask JrK, multiply Jr · vK = JrK · JvK, open r · v and check
that it is equal to zero. Clearly, since r is random then r · v looks also random if
v 6= 0. However, this technique does not work over the ring Z2` : for example, if
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v is a non-zero even number then r · v is always even, which reveals too much
about v.

In this section we present a generic protocol to solve the problem of checking
equality of zero over the ring, which is more expensive and complicated than the
protocol over fields described above. Fortunately, this check is only called once
in a full execution of the main protocol and so the complexity of this technique
is amortized away. Furthermore, the check we present here is generic and does
not assume anything about the underlying secret sharing scheme, but for some
specific instantiations one can get a much more efficient solution. For example,
we show in Sections 5 and 6 how to instantiate this check efficiently for the case
of replicated secret sharing and shamir secret sharing, respectively.

The functionality we want to realize ,FCheckZero, is described formally in
Functionality 3.2. FCheckZero determines the value of the secret v based on the
honest parties’ shares and then it sends accept or reject to the parties. In addition,
it computes the corrupted parties’ shares of v from the honest parties’ shares
and hand them to the ideal world adversary S.

FUNCTIONALITY 3.2 (FCheckZero(`) – Checking Equality to 0)
The ideal functionality FCheckZero receives JvKH` from the honest parties and
uses them to compute v and JvKC` , the shares of v of the corrupt parties.
Then, FCheckZero hands JvKC` to the simulator S.
The output is determined by FCheckZero as follows:

– If v ≡` 0, then FCheckZero sends accept to the honest parties and S.
– If v 6≡` 0, then it sends reject to the honest parties and S.

The simple observation behind our protocol to compute FCheckZero (which
follows the idea of [Cd10,DEF+19]) is that v is zero if and only if v + r ≡` r
for every r ∈ Z2` . Moreover, if r is secret, the parties can open c = v + r
without leaking v. Then, to check that v + r ≡` r, the parties can check that
the bit- representation of the two values is identical. Since c = v + r is made
public, each party can locally decompose it to bits for this check. In addition, the
parties choose the sharing of the secret r by first computing random shared bits
Jr0K`, . . . , Jr`−1K` (note that here each rk is a bit which is shared over the ring
Z2`) which are then locally composed to obtain JrK`. Thus, the bit representation
of r is shared between the parties and can be used for the check. To complete
the construction of the protocol, we need to solve two issues. First, we need a
protocol to produce random shared bits. We thus define the ideal functionality
FrandBit which is identical to Frand except that the random value is chosen by
the functionality as a bit. The protocol to compute FrandBit, which we present
below, builds upon Frand and an ideal functionality FCorrectMult which performs
correct multiplication over shared values (as oppose to Fmult which allows the
adversary to change the output). We explain how to compute FCorrectMult below.
The second issue is how to check that all bits of v + r and the shared r are
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identical. This is done by computing a circuit which XOR each bit of v + r with
its corresponding bit of r and then outputs the OR of the xored bits. If all bits
are indentical then the result should be 0. To compute the circuit, the parties
once again use the FCorrectMult functionality.

The general protocol to compute FCheckZero is described in Protocol 3.8. We
begin, however, by presenting our protocols to compute FCorrectMult and FrandBit.
We stress again that FCorrectMult is more difficult to achieve than Fmult and hence
the cost is much higher. However, we call FCorrectMult only a constant number of
times during the execution, and thus the overall overhead is very reasonable.

Computing FCorrectMult via Sacrificing. As explained above, FCorrectMult

is an ideal functionality which receives shares of two inputs from the honest
parties and a set of shares from the corrupted parties, to hand the honest parties
random shares of the input’s multiplication, which are chosen given the shares
that were received from the corrupted parties. Our protocol to compute this
is based on a technique known as “sacrificing”. The idea is to generate correct
random multiplication triples, which are then consumed to multiply the inputs.
This is done by calling Frand three times to obtain random shares JaK, JbK, Ja′K,
calling Fmult twice to obtain Ja · bK and Ja′ · bK, and using one triple to check the
correctness of the other. Some modifications are needed in order to make this
work over the ring Z2` for which we use the “SPDZ2k trick” from [CDE+18].
This requires us to perform the check over the ring Z2`+s , thereby achieving a
statistical error of 2−s. The construction is presented in detail in Protocol 3.3.

Note that the protocol can be divided into two stages: an offline phase where
the multiplication triple is generated, and an online phase where the triple is used
to compute the product of the given shares. Thus, an efficient implementation
would batch all the preprocessing together, and then proceed to consume these
triples when the actual multiplication is required.

We remark that other approaches to produce random triples, such as “cut–
and–choose”, would work here as well. However, the “cut–and–choose” method
becomes efficient only when many triples are being generated together—much
more than what is needed by our protocol (for example, in [FLNW17], to achieve
good parameters for the “cut–and–choose” process which yield low bandwidth,
220 triples are generated together). Thus, the sacrificing approach is favorable in
our setting.
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PROTOCOL 3.3 (Correct Multiplication)

– Inputs: Two shares JxK` and JyK` to be multiplied.
– The protocol:

1. Generate a multiplication triple via sacrificing.
(a) The parties call Frand(` + s) three times to obtain sharings

JaK`+s, Ja′K`+s, JbK`+s.
(b) The parties call Fmult(`+ s) on input JaK`+s and JbK`+s to obtain shares

JcK`+s, and on input Ja′K`+s and JbK`+s to obtain shares Jc′K`+s.
(c) The parties call Fcoin(s) to obtain a random element r ∈ Z2s .
(d) The parties execute open(r · JaK`+s − Ja′K`+s) = a′′.
(e) The parties execute open(a′′ · JbK`+s − r · JcK`+s + Jc′K`+s) = w and check

that w ≡`+s 0.
(f) If the check in the previous step has failed, the parties abort. Otherwise

they compute JπK`+s → JπK` for π ∈ {a, b, c}, take (JaK`, JbK`, JcK`) as a
valid triple and continue to the next step.

2. Use the generated triple to multiply the input shares.
(a) The parties execute open(JxK` − JaK`) = u and open(JyK` − JbK`) = v.
(b) The parties locally compute JzK` = JcK` + u · JbK` + v · JaK` + u · v.

– Outputs: The parties output the shares JzK`.

To argue the security of Protocol 3.3, we use the following lemma which shows
that sacrificing leads to a correct triple with high probability. This is the same
argument as the one presented in [CDE+18].

Lemma 3.4. If the check at the end of the first step in Protocol 3.3 passes, then
the additive error d ∈ Z2`+s that A sent to Fmult is zero modulo 2` with probability
at least 1− 2−s.

Proof: Since Fmult is used in the first step, we have that c = a · b + d
and c′ = a′ · b + d′, where d, d′ ∈ Z2`+s are the additive attacks chosen by
the adversary in the first and second call to Fmult respectively. It follows that
a′′ · b− r · c+ c′ ≡`+s d′− r · d. Hence, if 2v is the largest power of 2 dividing d, it

holds that if w ≡`+s 0 then r
2v ≡`+s−v

(
d
2v

)−1 d′

2v , which holds with probability

at most 2−(`+s−v). If d 6≡` 0, then v > ` and therefore this probability is upper
bounded by 2−s, which concludes the proof.

With this lemma at hand we proceed to prove the security of Protocol 3.3.
The key intuition is that the preprocessed triple is correct with high probability,
and since the open procedure is guaranteed to yield the correct value, it is ensured
that final linear combination gives the right product.

Proposition 3.5. Protocol 3.3 securely computes functionality FCorrectMult with
abort and with statistical error 2−s in the (Frand,Fmult,Fcoin)-hybrid model in the
presence of malicious adversaries controlling t < n/2 parties.

The proof appears in Section A.1.
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FrandBit - Generating Random Shared Bits. We now present our protocol
to generate random shared bits. As discussed above, the protocol realizes the
functionality FrandBit, which is defined similarly to Frand: it receives a set of
shares from the adversary controlling the corrupted parties, to then choose a
random bit and compute the honest parties’s shares, given that the corrupted
parties’ shares are fixed. We stress that the resulted sharing is a sharing of a bit
over the ring Z2` .

We instantiate this functionality essentially by showing that the bit-generation
procedure from [DEF+19], which is presented in the setting of SPDZ-type of
shares, also extends to more general secret-sharing schemes. The main tool needed
here is the “Multiplication by 1/2” property presented in Section 2.1, which
states that parties can locally divide their shares of a secret x mod 2` by 2 to
obtain shares of x/2 mod 2`−1, as long as the shares and the secret are even.

Proposition 3.6. Protocol 3.7 securely computes functionality FrandBit with
abort in the (Frand,FCorrectMult)-hybrid model in the presence of malicious adver-
saries controlling t < n/2 parties.

The proof appears in Section A.2.

PROTOCOL 3.7 (Random Shared Bits Generation)

– The protocol:
1. The parties call Frand(`+2) to obtain a shared value JrK`+2. Then, the parties

set JaK`+2 = 2 · JrK`+2 + 1.
2. The parties call FCorrectMult(` + 2) on input JaK`+2 and JaK`+2 to obtain

shares JcK`+2 = Ja2K`+2. Then, they run open(JcK`+2) to obtain c.
3. The parties compute JdK`+2 =

√
c
−1 · JaK`+2, where

√
c is a fixed square root

of c modulo 2`+2, and the inverse is taken modulo 2`+2.
4. The parties locally convert JdK`+2 → JdK`+1, and compute Jb′K`+1 =

JdK`+1 + 1.
5. The parties locally shift their shares of b′ one position to the right to obtain

shares JbK`, where b ≡` b′

2
.

– Outputs: The parties output JbK`.

Check Equality to Zero. We are now ready to formally present our check-to-
zero protocol which is described in Protocol 3.8. As explained at the beginning of
the section, the idea behind the protocol is to check that the bit representation
of v + r is identical to the bit representation of r, where r is sampled randomly
from Z2` .
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PROTOCOL 3.8 (Checking Equality to 0)

– Inputs: The parties hold a sharing JvK`.
– The protocol:

1. The parties call FrandBit to get ` random shared bits Jr0K`, . . . , Jr`−1K`.
2. The parties bit-decompose v:

(a) The parties compute JrK` =
∑`−1
i=0 2i · JriK`.

(b) The parties call c = open(JvK` + JrK`) and bit-decompose this value as
(c0, . . . , c`−1).

(c) The parties locally convert JriK` → JriK1 for i = 1, . . . , `− 1.
3. The parties check that all the bits of v mod 2` are zero:

(a) The parties use FCorrectMult(1) to compute
∨`−1
i=0 (JriK1 ⊕ ci) and open

this result.
(b) If the opened value above is equal to 0 then the parties output accept.

Otherwise they output reject.

Proposition 3.9. Protocol 3.8 securely computes FCheckZero with abort in the
(FrandBit,FCorrectMult)-hybrid model in the presence of malicious adversaries who
control t < n/2 parties.

The proof appears in Section A.3.

Efficiency analysis. The main bottleneck of the above protocol is the costly
FCorrectMult functionality. Note that it is called ` times in Protocol 3.8 (for

computing
∨`−1
i=0(ri ⊕ ci)) and once each time FrandBit is called. Thus, overall,

it is called 2` times. For example, for the ring Z264 , this translates to 128 calls
to FCorrectMult. Since FCheckZero is called exactly once in our main protocol for
computing a circuit, the overhead is not significant.

4 The Main Protocol for Rings

In this section, we present our construction to compute arithmetic circuits over
the ring Z2k . A formal description appears in Protocol 4.1. Our protocol follows
the paradigm of [CGH+18] which works as follows. Each input to the circuit is
randomized using a random sharing JrK. This is done by taking each input JvK
and multiply it with JrK. Once the parties hold a pair of sharings on each input
wire (JvK, Jr · vK), the parties go over the circuit while maintaining this invariant.
For linear gates this can be done locally by each party due to the homomorphism
property of the secret sharing scheme. For multiplication gates, with two inputs
with sharings (JxK, Jr · xK) and (JyK, Jr · yK), the parties run a multiplication
protocol twice, to multiply JxK and JyK and to multiply Jr · xK and JyK. To carry
out all the above multiplications, the parties use the functionality Fmult, which
only guarantees security up to additive attack (and thus can be instantiated by
highly-efficient protocols as we will see in Section 5 and Section 6).
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PROTOCOL 4.1 (Computing Arithmetic Circuits Over the Ring Z2k)

Inputs: Each party Pj (j ∈ {1, . . . , n}) holds an input xj ∈ ZL2k .

Auxiliary Input: The parties hold the description of an arithmetic circuit C over
Z2k that computes f on inputs of length M = L · n. Let N be the number of
multiplication gates in C. In addition, the parties hold a parameter s ∈ N.

The protocol:

1. Secret sharing the inputs:
(a) For each input xj held by party Pj , party Pj represent it as an element of

ZL2k+s and sends xj to Finput(k + s).

(b) Each party Pj records its vector of shares (xj1, . . . , x
j
M ) of all inputs, as

received from Finput(k+ s). If a party received ⊥ from Finput, then it sends
abort to the other parties and halts.

2. Generate randomizing shares: The parties call Frand(k + s) to receive JrKk+s,
where r ∈R Z2k+s .

3. Randomization of inputs: For each input wire sharing JvmKk+s (where m ∈
{1, . . . ,M}) the parties call Fmult on JrKk+s to receive Jr · vmKk+s.

4. Circuit emulation: The parties traverse over the circuit in topological order.
For each gate G` the parties work as follows:
– G` is an addition gate: Given tuples (JxKk+s, Jr · xKk+s) and

(JyKk+s, Jr · yKk+s) on the left and right input wires respectively, the
parties locally compute (Jx+ yKk+s, Jr · (x+ y)Kk+s).

– G` is a multiplication-by-a-constant gate: Given a constant a ∈ Z2k and
tuple (JxKk+s, Jr · xKk+s) on the input wire, the parties locally compute
(Ja · xKk+s, Jr · (a · x)Kk+s).

– G` is a multiplication gate: Given tuples (JxKk+s, Jr · xKk+s) and
(JyKk+s, Jr · yKk+s) on the left and right input wires respectively:
(a) The parties call Fmult on JxKk+s and JyKk+s to receive Jx · yKk+s.
(b) The parties call Fmult on Jr · xKk+s and JyKk+s to receive Jr · x · yKk+s.

5. Verification stage: Let {(JziKk+s, Jr · ziKk+s)}Ni=1 be the tuples on the output

wires of all multiplication gates and let {JvmKk+s, Jr · vmKk+s}Mm=1 be the tuples
on the input wires of the circuit.
(a) For m = 1, . . . ,M , the parties call Frand(k + s) to receive JβmKk+s.
(b) For i = 1, . . . , N , the parties call Frand(k + s) to receive JαiKk+s.
(c) Compute linear combinations:

i. The parties call FDotProduct on (Jα1Kk+s, . . . , JαN Kk+s, Jβ1Kk+s, . . . , JβM Kk+s)
and (Jr · z1Kk+s, . . . , Jr, ·zN Kk+s, Jr · v1Kk+s, . . . , Jr · vM Kk+s) to obtain
JuKk+s = J

∑N
i=1 αi · (r · zi) +

∑M
m=1 βm · (r · vm)Kk+s.

ii. The parties call FDotProduct on (α1, . . . , αN , β1, . . . , βM ) and
(Jz1Kk+s, . . . , JzN Kk+s, Jv1Kk+s, . . . , JvM Kk+s) to obtain
JwKk+s = J

∑N
i=1 αi · zi +

∑M
m=1 βm · vmKk+s.

(d) The parties run open(JrKk+s) to receive r.
(e) Each party locally computes JT Kk+s = JuKk+s − r · JwKk+s.
(f) The parties call FCheckZero(k + s) on JT Kk+s. If FCheckZero(k + s) outputs

reject, the parties output ⊥ and abort. If it outputs accept, they proceed.
6. Output reconstruction: For each output wire of the circuit with JvKk+s, the

parties locally convert to JvKk. Then, they run v mod 2k = open(JvKk, j), where
Pj is the party whose output is on the wire. If Pj received ⊥ from the open
procedure, then it sends ⊥ to the other parties, outputs ⊥ and halts.

Output: If a party has not aborted, then it outputs the values received on its output
wires.
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Unfortunately, the fact that the underlying multiplication protocol is secure
only up to additive attacks means that the output of the multiplications might
be incorrect. Thus, before reconstructing the outputs, the parties run a short
verification step which guarantees that if cheating took place, the honest parties
will detect it and abort. This is achieved by having the parties first taking a
random linear combination of the shares on output wires of all multiplication gates
and the shares on input wires, i.e. computing JuK = J

∑N
i=1 αi ·zi+

∑M
m=1 βm ·vmK,

and taking a random linear combination of the randomized sharing on these
wires, i.e., computing JwK = J

∑N
i=1 αi · (r · zi) +

∑M
m=1 βm · (r · vm)K, where N is

the number of multiplication gates, M is the number of input wires and all αi
and βm are random secrets. Then, the parties check that JT K = JwK− r · JuK is a
sharing of 0 using the ideal functionality FCheckZero.

The protocol as described so far works directly for circuits which are defined
over a finite field F. As shown in [CGH+18], if the adversary carries out an additive
attack in any of the multiplication, the check will pass for exactly one choice of r
or a random coefficient, resulting with a cheating probability of 3/|F|. However,
this does not work when moving to rings. To see this, assume that the adversary
has attacked exactly one gate, indexed by i0, such that zi0 = xi0 · yi0 + di0 and
r · zi0 = (r · xi0) · yi0 (i.e., the adversary added di to the result of multiplying
xi0 ·yi0 and acted honestly when multiplying rẋi0 with yi0). For simplicity assume
that the output of this gate is an output wire of the circuit. Thus, we have that
T = (r ·xi0) ·yi0−r ·(xi0 ·yi0 +di0) = r ·di0 . Now, when working over fields, T = 0
only if r = 0 (since di0 6= 0), which happens with probability 1/|F|. However,
when working over the ring Z2k , the adversary can choose di0 = 2k−1, which
means that T ≡k 0 if r is even, which happens with probability 1/2.

In order to reduce the cheating success probability, we borrow the idea
of [CDE+18] to work on the larger ring Z2k+s . This solves the above attack
which now can succeed with probability 1/2s+1 only (since now r · di0 ≡k+s 0
for di0 = 2k−1 is equivalent to r ≡k+s−(k−1) 0, i.e., for this to hold the adversary
needs to guess the upper s+ 1 bits of r). More generally, we show in Lemma 4.2
that for any attack in any of the calls to Fmult with an additive value d 6≡k 0,
the honest parties will output accept at the end of the verification step with
probability of at most 2−s+log(s+1). On the other hand, the adversary may now
also carry out attacks with additive values that are congruent to 0 modulo 2k

but not modulo 2k+s. While this has no effect on the correctness of the output
(since it does not change the lower k bits of the values on the wires), a challenge
here is to show that it is possible to simulate correctly when FCheckZero returns
accept or reject. In Theorem 4.3, where we prove the security of our compiler,
we show that there are several cases here and that the simulation has the same
distribution as in the real execution.

Finally, we want to highlight another subtle issue regarding the security
of the protocol. As can be seen in the description of the protocol, for the
random linear combination taken in the verification step, we require the random
coefficients to remain secret during the computation (thus producing them
using the functionality Frand). We stress that this is essential for keeping the
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protocol secure. In particular, if the coefficients were revealed to the parties,
then the adversary will be able to carry out a selective failure attack where
one bit of information is revealed by FCheckZero. To see this, assume again that
the adversary has attacked exactly one gate, indexed by i0, in the following
way. When multiplying xi0 with yi0 , the adversary acted honestly, but when
multiplying r · xi0 with yi0 , it added the value di0 . Thus, on the output wire,
the parties hold a sharing of the pair (xi0 · yi0 , r · xi0 · yi0 + di0). Now, assume
that this wire enters another multiplication gate, indexed by j0 with input
shares on the second wire being (wj0 , r · wj0) and that the output of this second
gate is an output wire of the circuit. Thus, on the output of this gate, the
parties will hold the sharing (xi0 · yi0 · wj0 , (r · xi0 · yi0 + di0)wj0) (assuming
the adversary does not attack this gate as well). In this case, we have that
T = αi0 · di0 +αj0 · (di0 ·wj0) = di0(αi0 +αj0 ·wj0). Now, if di0 = 2k+s−1 then it
follows that T ≡k+s 0 if and only if αi0 + αj0 · wj0 is even.

The attack presented above does not change the k lower bits of the values on
the wires, and thus has no effect on the correctness of the output. However, if αi0
and αj0 are public and known to the adversary, then by FCheckZero’s ouptut the
adversary may be able to learn whether wj0 is even or not. In contrast, when αi0
and αj0 are kept secret, learning whether αi0 + αj0 · wj0 is even or odd does not
reveal any information about wj0 since it is now perfectly masked by αi0 and αj0 .
Therefore, to prevent this type of attack, we are forced to use random secrets
for our random linear combination. Here is where the functionality FDotProduct

becomes handy, as it allows to compute the sum of products of sharings in an
efficient way which is exactly what we need to compute

∑N
i=1JαiK · JziK.

Lemma 4.2. If A sends an additive value d 6≡k 0 in any of the calls to Fmult in
the execution of Protocol 4.1, then the value T computed in the verification stage
of Step 5 equals 0 with probability 2−s+log(s+1).

Proof: Suppose that (JxiKk+s, JyiKk+s, JziKk+s) is the multiplication triple
corresponding to the i-th multiplication gate, where JxiKk+s, JyiKk+s are the
sharings on the input wires and JziKk+s is the sharing on the output wire. We
note that the values on the input wires may not actually be the appropriate values
as when the circuit is computed by honest parties. However, in the verification
step, each gate is examined separately, and all that is important is whether the
randomized result is Jr · ziKk+s for whatever zi is here (i.e., even if an error was
added by the adversary in previous gates). By the definition of Fmult, a malicious
adversary is able to carry out an additive attack, meaning that it can add a value
to the output of each multiplication gate. We denote by δi ∈ Z2k+s the value that
is added by the adversary when Fmult is called with JxiKk+s and JyiKk+s, and by
γi ∈ Z2k+s the value added by the adversary when Fmult is called with the shares
JyiKk+s and Jr · xiKk+s. However, it is possible that the adversary has attacked
previous gates and so JyiKk+s is actually multiplied with Jr · xi + εiK, where the
value εi ∈ Z2k+s is an accumulated error from previous gates 9. Thus, it holds

9 Although attacks in previous gates may be carried out on both multiplications, the
idea is here is to fix xi which is shared by JxiKk+s at the current value on the wire, and
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that val(JziK)H = xi · yi + δi and val(Jr · ziK)H = (r · xi + εi) · yi + γi. Similarly,
for each input wire with sharing JvmK, it holds that val(Jr · vmK)H = r · vm + ξm,
where ξm ∈ Z2k+s is the value added by the adversary when Fmult is called with
JrKk+s and the shared input JvmKk+s. Thus, we have that

val(JuK)H =

N∑
i=1

αi · ((r · xi + εi) · yi + γi) +

M∑
m=1

βm · (r · vm + ξm) +Θ1

val(JwK)H =

N∑
i=1

αi · (xi · yi + δi) +

M∑
m=1

βm · vm +Θ2

where Θ1 ∈ Z2k+s and Θ2 ∈ Z2k+s are the values being added by the adversary
when FDotProduct is called in the verification step, and so

val(JT K)H = val(JuK)H − r · val(JwK)H =

=

N∑
i=1

αi · ((r · xi + εi) · yi + γi) +

M∑
m=1

βm · (r · vm + ξm) + θ1

− r ·

(
N∑
i=1

αi · (xi · yi + δi) +

M∑
m=1

βm · vm +Θ2

)

=

N∑
i=1

αi · (εi · yi + γi − r · δi) +

M∑
m=1

βm · ξm + (Θ1 − r ·Θ2), (1)

where the second equality holds because r is opened and so the multiplication
r · JwKk+s always yields Jr · wKk+s. Let ∆i = εi · yi + γi − r · δi.

Our goal is to show that val(JT K)H , as shown in Eq. (1), equals 0 with
probability at most 2−s+log(s+1). We have the following cases.

– Case 1: There exists m ∈ [M ] such that ξm 6≡k 0. Let m0 be the smallest such
m for which this holds. Then val(JT K)H ≡k+s 0 if and only if

βm0 · ξm0 ≡k+s

− N∑
i=1

αi ·∆i −
M∑
m=1
m6=m0

βm · ξm − (Θ1 − r ·Θ2)

 .

Let 2u be the largest power of 2 dividing ξm0
. Then we have that

βm0
≡k+s−u

−∑N
i=1 αi ·∆i −

∑M
m=1
m 6=m0

βm · ξm − (Θ1 − r ·Θ2)

2u

·(ξm0

2u

)−1
.

By the assumption that ξm 6≡k 0 it follows that u < k and so k + s − u > s
which means that the above holds with probability at most 2−s, since βm0 is
uniformly distributed over Z2k+s .

then given the randomized sharing Jx′iKk+s, define εi = x′i − r · xi as the accumulated
error on the input wire.
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– Case 2: All ξm ≡k 0. By the assumption in the lemma, some additive value
d 6≡k 0 was sent to Fmult. Since none was sent for the input randomization,
there exists some i ∈ {1, . . . , N} such that δi 6≡k 0 or γi 6≡k 0. Let i0 be the
smallest such i for which this holds. Note that since this is the first error added
which is 6≡k 0, it holds that εi0 ≡k 0. Thus, in this case, val(JT K)H ≡k+s 0 if
and only if αi0 ·∆i0 ≡k+s Y , where

Y =

− N∑
i=1
i 6=i0

αi ·∆i −
M∑
m=1

βm · ξm − (Θ1 − r ·Θ2)

 .

Let q be the random variable corresponding to the largest power of 2 dividing
∆i0 , where we define q = k + s in the case that ∆i0 ≡k+s 0. Let E denote the
event αi0 ·∆i0 ≡k+s Y . We have the following claims.
• Claim 1: For k < j ≤ k + s, it holds that Pr[q = j] ≤ 2−(j−k).

To see this, suppose that q = j and j > k. It holds then that ∆i0 ≡j 0, and
so ∆i0 ≡k 0. We first claim that in this case it must hold that δi0 6≡k 0.
Assume in contradiction that δi0 ≡k 0. In addition, by our assumption we
have that γi0 6≡k 0, εi ≡k 0 and ∆i0 = εi0 · yi0 + γi0 − r · δi0 ≡k 0. However,
εi · yi0 ≡k 0 and r · δi0 ≡k 0 imply that γi0 ≡k 0, which is a contradiction.
We thus assume that δi0 6≡k 0, and in particular there exists u < k, such
that u is the largest power of 2 dividing δi0 . It is easy to see then that q = j

implies that r ≡j−u
(
εi0 ·yi0+γi0

2u

)
·
(
δi0
2u

)−1
. Since r ∈ Z2k+s is uniformly

random and u < k, we have that this equation holds with probability of at
most 2−(j−u) ≤ 2−(j−k).
• Claim 2: For k < j < k + s it holds that Pr[E | q = j] ≤ 2−(k+s−j).

To prove this let us assume that q = j and that E holds. In this case

we can write αi0 ≡k+s−j Y
2j ·

(
∆i0

2j

)−1
. For k < j < k + s it holds that

0 < k + s − j < s and therefore this equation can be only satisfied with
probability at most 2−(k+s−j), given that αi0 ∈ Z2s is uniformly random.

• Claim 3: Pr[E | 0 ≤ q ≤ k] ≤ 2−s.
This is implied by the proof of the previous claim, since in the case that
q = j with 0 ≤ j ≤ k, it holds that k + s − j ≥ s, so the event E implies

that αi0 ≡s Y
2j ·

(
∆i0

2j

)−1
, which holds with probability at most 2−s.

Putting these pieces together, we thus have the following:

Pr [E] = Pr [E | 0 ≤ q ≤ k] · Pr[0 ≤ q ≤ k] +

k+s∑
j=k+1

Pr [E | q = j] · Pr[q = j]

≤ 2−s + s · 2−s = (s+ 1) · 2−s = 2−s+log(s+1). (2)

To sum up the proof, in the first case we obtained that T = 0 with probability
of at most 2−s whereas in the second case, this holds with probability of at
most 2−s+log(s+1). Therefore, we conclude that the probability that T = 0 in
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the verification step is bounded by 2−s+log(s+1) as stated in the lemma. This
concludes the proof.

We are now ready to prove the security of Protocol 4.1. The proof appears in
Section B.

Theorem 4.3. Let f be an n-party functionality over Z2k and let s be a sta-
tistical security parameter. Then, Protocol 4.1 securely computes f with abort
in the (Finput,Fmult,Fcoin,Frand,FCheckZero)-hybrid model with statistical error
2−s+log(s+1), in the presence of a malicious adversary controlling t < n

2 parties.

Concrete efficiency. We now analyze the performance of the protocol. Recall
that M is the number of inputs and N is the number of multiplication gates in
the circuit. We denote by O the number of output wires of the circuit, and for a
given functionality F∗(`), we denote by C∗(`) the communication cost (in bits) of
calling this primitive.

For each input wire, we have one call to Finput(k + s), which is translated
into one call to Frand(k + s), one call to open(JrKk+s, i) and one element in Z2k+s

that is sent by some party Pi to the other parties. In addition, there is one call
to Fmult(k + s) to randomize each input. This adds up to M · (2 · Crand(k + s) +
Copen(i)(k + s) + (k + s)).

For each multiplication gate, we call Fmult(k+s) twice. Then, in the verification
step, Frand(k + s) is called for each input wire and multiplication gate. This adds
N · (Crand + 2 · Cmult(k+ s)). The remaining of the verification step consists of two
calls to FDotProduct(k+s), one call to open(JrKk+s) and one call to FCheckZero(k+s).
Recall that we assume that the protocol realizing FDotProduct(k + s) has the same
communication complexity as Fmult(k + s), so this adds up to 2 · Cmult(k + s) +
Copen(i)(k + s) + CCheckZero(k + s). However, as these are small constants which do
not depend on the size of the circuit, we exclude them from the final count. In the
output reconstruction step, for each output wire, there is one call to open(JvKk, i).

We thus have that the cost of the protocol is

M ·
(
2 · Crand(k + s) + Cmult(k + s) + Copen(i)(k + s) + (k + s)

)
+N · (Crand(k + s) + 2 · Cmult(k + s)) +O · Copen(i)(k).

For circuits where N �M,O (i.e., there are much more multiplication gates
than input and output wires), this is translated to N ·(Crand(k+s)+2 ·Cmult(k+s))
. Notice that for some instantiations, like the replicated secret sharing based one
from Section 5, Frand is “free” in the sense that it can be implemented efficiently
by relying on a computational assumption, e.g., PRGs with correlated keys.

Basic Primitives for Secure Computation. We conclude this section with
a short discussion about primitives for secure computation like comparison and
truncation, among others, which are of importance in many applications of secure
computation like private machine learning or flow-control in MPC programs.
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The study of basic primitives for MPC has a rich history, including some works
as [Cd10,MR18,DEF+19,DFK+06]. However, most of these works are concerned
with the case of MPC over fields and as such they face different challenges and
provide different solutions. For example, a very simple operation that arises in
these primitives over fields is dividing by powers of 2, which is achieved over
fields of odd characteristic by simply multiplying (locally) by the inverse of this
number. However, over Z2k this is not so straightforward, which complicates the
extension of these techniques to the ring case.

Recent work has studied the development of basic primitives over rings
[MR18,DEF+19]. In particular, the work of [DEF+19] has shown that, in spite
of being more general than fields (and hence more complex), rings offer several
benefits for many of the basic primitives considered in the literature. Intuitively,
this stems from the fact that Z2` is inherently more “compatible” with bits,
which is what these primitives are mostly concerned with. Hence, it is natural to
analyze whether or not our compiler supports these basic primitives.

We first observe that our check-to-zero protocol from Section 3.3 is already
an instantiation of a basic primitive. Furthemore, just like we adapted this
check-to-zero from [DEF+19] to our setting, other techniques from that work can
be easily incorporated into ours in order to provide bit-decomposition and bit-
extraction, truncations and signed comparisons. At the heart of these primitives
lies the generation of random shared bits, which as we saw in Section 3.3, extends
smoothly to the setting of an arbitrary secret sharing scheme. The fact that
shares can be converted from mod 2k to mod 2 also plays an important role, and
a converse conversion can be envisioned using the ideas from [DEF+19].

However, we stress that all of this comes at the expense of using the expensive
FCorrectMult for all of the multiplication calls. A natural question to ask is
whether it is possible to use Fmult, which can be realized very efficiently, instead
of FCorrectMult. Answering this question is beyond the scope of this work and is
left as an open problem.

5 Replicated-SS-based Instantiation for Three Parties

We now present briefly an efficient three party instantiation of our compiler from
replicated secret sharing. Sharing a value x ∈ Z2` is done by picking at random
x1, x2, x3 ∈ Z2` such that

∑
i xi ≡` x. Pi’s share of x is the pair (xi, xi+1) and

we use the convention that i + 1 = 1 when i = 3. To reconstruct a secret, Pi
receives the missing share from the two other parties. Note that reconstructing a
secret is robust in the sense that parties either reconstruct the correct value x or
they abort.

Replicated secret sharing satisfies the properties described in Section 2.1, and
one can efficiently realize the required functionalities described in the same section.
Specifically, as shown in [MR18,AFL+16,LN17], Frand can be realized with out
any communication and Fmult can be realized by having each party sending one
ring element. Further more, in [CGH+18], it was shown that FDotProduct can be
computed at the same cost of Fmult. In addition, FCheckZero can be realized very
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efficiently by relying on a Random Oracle H. The observation we rely on is that,
if
∑
i xi ≡` 0, then xi−1 ≡` −(xi+xi+1) and so Pi can send zi = H(−(xi+xi+1))

which will be equal to xi−1 that is held by Pi+1 and Pi−1. Since only one party
is corrupted, it suffices that each Pi will send it only to Pi+1. Upon receiving zi
from Pi, Pi+1 checks that zi = H(xi−1) and aborts if this is not the case. For
completeness, we present all the protocols in Section C.

Efficiency Analysis. Using the analysis from Section 4, we know that the
amortized communication complexity per multiplication gate is Crand(k + s) + 2 ·
Cmult(k + s). In our case Crand(k + s) = 0, and Cmult(k + s) = 3 · (k + s), so the
overall amortized communication per multiplication is of only 6 · (k+ s) bits. For
each party this translates to sending 2(k + s) bits for each multiplication.

6 Shamir-SS-based Instantiation for Any Number of
Parties

In this section, we present our instantiation based on Shamir’s secret sharing over
rings, using the techniques from [ACD+19]. Over finite fields, Shamir’s scheme
requires a distinct evaluation point for each player, and one more for the secret.
This is usually not a problem if the size of the field is not too small. However,
over commutative rings R the condition on the sequence of evaluation points
α0, . . . , αn ∈ R is that the pairwise difference αi − αj is invertible for each pair
of indices i 6= j. For our ring of interest Z2` , the largest such sequence the ring
admits is only of length 2 (e.g. (α0, α1) = (0, 1)).

The solution from [ACD+19] is to embed inputs from Z2` into a large
enough Galois ring R that has Z2` as a subring. This ring is of the form
R = Z2` [X]/(h(X)), where h(X) is a monic polynomial of degree d = dlog2 ne
such that h(X) mod 2 ∈ F2[X] is irreducible. Elements of R thus correspond
uniquely to polynomials with coefficients in Z2` that are of degree at most d− 1.
Note the similarity between the Galois ring and finite field extensions of F2:
elements of the finite field F2d correspond uniquely to polynomials of at most
degree d− 1 with coefficients in F2.

There is a ring homomorphism π : R → Z2` that sends a0 + a1X + · · · +
ad−1X

d−1 ∈ R to the free coefficient a0, which we shall use later on.10 For more
relevant structural properties of Galois rings, see [ACD+19].

We adopt the above-mentioned version of Shamir’s scheme over R, but restrict
the secret space to Z2` . The share space will be equal to R. Let 1 ≤ τ ≤ n be
the privacy parameter of the scheme. Then, the set of correct share vectors is

Cτ = {(f(α1), . . . , f(αn)) ∈ Rn | f ∈ R[X], deg(f) ≤ τ, and f(α0) ∈ Z2` ⊂ R} .
(3)

With the restriction that the secret is in Z2` , we have that Cτ is an Z2` -module,
i.e. the secret-sharing scheme is Z2`-linear. Since it is based on polynomial

10 Technically, an element of R is a residue class modulo the ideal (h(X)), but we omit
this for simplicity of notation.
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interpolation, the properties from 2.1 can be easily seen to hold. This includes
division by 2 if all the shares are even.

In this section, we denote a sharing under Cτ as JxK = (x1, . . . , xn). We call
τ the degree of the sharing. The reason we are explicit about τ is that we will
use sharings of two different degrees. This stems from the critical property of
this secret-sharing scheme that enables us to evaluate arithmetic circuits: this
secret-sharing scheme is multiplicative. This means there is a Z2`-linear map
Rn → Z2` that for sharings JxK, JyK sends (x1y1, . . . , xnyn) 7→ x · y.

Put differently, (x1y1, . . . , xnyn) ∈ C2τ is a degree-2τ sharing with secret x · y.
We denote it Jx ·yK(2τ) = (x1y1, . . . , xnyn) — in particular note the parenthesized
subscript refers to the degree of the sharing, as opposed to the modulus. Note
that Ci ⊆ Cj for 0 < i < j; in particular every degree-2τ sharing is also a sharing
of degree n− 1. A sharing of degree n− 1 is related to additive secret sharing,
where the secret equals the sum of the shares x =

∑
i xi. The difference is that

here there are constants, i.e. we may write x =
∑
i λixi, for λ1, . . . , λn ∈ R. We

shall make use of this in our multiplication protocol, ensuring that parties only
need to communicate an element of Z2` instead of an element of R. However, note
that J·K(2τ) does not meet the definition of a secret-sharing scheme in Section 2.1,
in particular because the corrupted parties shares are not well defined and cannot
be computed from the honest parties’ shares.

6.1 Generating Randomness

We efficiently realize Frand by letting each player Pi sample and secret-share
a random element si, and then multiplying the resulting vector of n random
elements with a particular11 Vandermonde matrix [DN07].12 Of the resulting
vector, τ entries are discarded to ensure the adversary has zero information about
the remaining ones. Thus, n− τ random elements are outputted, resulting in an
amortized communication cost of O(n) ring elements per element. A priori the
adversary can cause the sharings to be incorrect; this is remedied with Protocol 6.3
by opening a random linear combination of the sharings and verifying the result.

Since our secret-sharing scheme J·K is Z2`-linear, we would like to choose
our matrix with entries in Z2` . Unfortunately, the Vandermonde matrix we
need does not exist over Z2` , for the same reason secret sharing does not work.
However, the secret-sharing scheme which consists of d parallel sharings of J·K be
interpreted as an R-linear secret-sharing scheme [CCXY18,ACD+19]. This secret-
sharing scheme, which we denote as 〈·〉, has share space Sd (since the scheme is
identical to sharing d independent secrets in S in parallel using J·K), and secret
space Rd. The scheme is R-linear because the module of share vectors, which is
(Cτ )d, is an R-module via the tensor product (Cτ )d ∼= Cτ ⊗S Sd ∼= Cτ ⊗S R. In
practice, a single secret-shared element 〈x〉 may be interpreted as a secret-shared

11 Over fields this can be a general Vandermonde matrix, but this is not sufficient over
R.

12 In general, any R-linear code with good distance and dimension suffices to get O(n)
complexity in the protocol, but the Vandermonde construction is optimal.
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column vector (Jx1K, . . . , JxdK)T . To compute the action of an element r ∈ R
on 〈x〉 in this representation, we first need to fix a basis of R over S. Recall
R = Z2` [X]/(h(X)), so we may pick the canonical basis 1, X, . . . ,Xd−1 ∈ R. This
allows us to represent an element a ∈ R as a column vector (a0, . . . , ad−1)T ∈ Sd,
i.e. explicitly: a = a0 + a1X + · · ·+ ad−1X

d−1. Multiplication by r ∈ R is an S-
linear map of vectors Sd → Sd, i.e. it can be represented as a d×d matrix Mr with
entries in S. The product r 〈x〉 = 〈rx〉 is then equal to Mr(Jx1K, . . . , JxdK)T . If a
single party P has a vector of shares (s1, . . . , sd) ∈ R for 〈x〉 = (Jx1K, . . . , JxdK)T ,
then Mr(s1, . . . , sd)

T is their vector of shares corresponding to 〈rx〉.
In our protocol, the parties will calculate a matrix-vector product (〈r1〉 , . . . , 〈rn−τ 〉)T =

A(〈s1〉 , . . . , 〈sn〉)T , where A has entries in R. This can be computed by writing
out the R-linear combinations 〈ri〉 =

∑n
k=1 aik 〈sk〉 =

∑n
k=1Maik 〈sk〉, with

〈sk〉 = (Jsk1K, JskdK)ᵀ. Fix a sequence β1, . . . , βn ∈ R such that for each pair of
indices i 6= j we have that βi − βj is invertible.13 We let A be the (n− τ)× n
matrix such that the j-th column is (1, βj , β

2
j , . . . , β

n−τ−1
j )T . This matrix is

hyperinvertible, i.e. any square submatrix is invertible [ACD+19].

PROTOCOL 6.1 (Generating random sharings of J·K)

1. Each party Pi samples an element si ← (Z2`)d and secret-shares it as 〈si〉
among all parties.

2. The parties locally compute the linear matrix-vector product to obtain
(〈r1〉 , . . . , 〈rn−τ 〉)T := A(〈s1〉 , . . . , 〈sn〉)T .

3. The parties execute Protocol 6.3 dκ/de times in parallel on 〈r1〉 , . . . , 〈rn−τ 〉If
any execution fails, they abort. Otherwise, for each j = 1, . . . , n− τ they inter-
pret 〈rj〉 = (Jrj1K, . . . , JrjdK) and output Jr11K, . . . , Jr1dK, Jr21K, . . . , Jr(n−τ)dK.

Lemma 6.2. Protocol 6.1 securely computes (n − τ)d parallel invocations of
Frand for J·K with statistical error of at most 2−κ in the presence of a malicious
adversary controlling t < n/2 parties.

The proof is in Section D.1

6.2 Checking Correctness of Sharings

We check whether sharings are correct by taking a random linear combination of
the sharings, masking it with a random sharing, and opening the result to all
parties.

This protocol does not securely compute an ideal functionality, because privacy
is not preserved if the sharings are incorrect. The way we use it this does not
matter, since we only verify correctness of sharings of random elements.

13 We may just use (β1, . . . , βn) = (α1, . . . , αn).
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PROTOCOL 6.3 (Checking correctness of sharings of 〈·〉)

– Input: possibly incorrect sharings 〈x1〉 , . . . , 〈xN 〉, and a possibly incorrect shar-
ing 〈r〉 ← (Z2`)d of a random element

– Protocol:
1. The parties call Fcoin N times to get a1, . . . , aN ← (Z2`)d.
2. The parties compute 〈u〉 := a1 〈x1〉+ · · ·+ aN 〈xN 〉+ 〈r〉.
3. The parties run open(〈u〉). If it returns ⊥, output ⊥. Else, output correct.

Lemma 6.4. If at least one of the input sharings 〈x1〉 , . . . , 〈xN 〉 is incorrect,
Protocol 6.3 outputs correct with probability at most 1

2d
.

To show correctness, we use the following consequence from [ACD+19, Lemma 3].

Lemma 6.5. Let C ⊆ Rn be a free R-module. Then for all x /∈ C and u ∈ Rn,
we have that

Pr
r←R

[rx+ u ∈ C] ≤ 1

2d

where r is chosen uniformly at random from R.

Proof: [Proof of Lemma 6.4] Let C denote the R-module of correct share vectors
(such as in Equation (3)). One of the input sharings is incorrect; without loss of
generality assume it is 〈x1〉. The protocol open(〈u〉) returns a value not equal
to ⊥ if and only if 〈u〉 = a1 〈x1〉 + (a2 〈x2〉 + · · · + an 〈xn〉 + 〈r〉) is in C. By
Lemma 6.5 this probability is bounded by 1/2, since a1 was chosen uniformly at
random. Since 〈u〉 is masked with 〈r〉, the protocol is private.

6.3 Secure Multiplication up to Additive Attacks

Multiplication follows the outline of the passively secure protocol of [DN07].
The protocol begins with an offline phase, where random double sharings are
produced, i.e. a pair of sharings (JrK, JrK(2τ)) of the same uniformly random
element r shared using polynomials of degree τ and degree 2τ , respectively.

We denote a double sharing as JrK(τ,2τ) := ((r1, r
′
1), . . . , (rn, r

′
n)). It is a Z2`-

linear secret-sharing scheme with secret space Z2` and share space R⊕R. The
set of correct share vectors is the Z2` -module

{((f(α1), g(α1)), . . . , (f(αn), g(αn))) | f, g ∈ R[X], f(α0) = g(α0) ∈ Z2` ,

deg(f) ≤ τ, deg(g) ≤ 2τ}.

Secret-sharing an element r under J·K(τ,2τ) involves selecting two uniformly
random polynomials of degrees at most τ and 2τ respectively.

To generate sharings in J·K(τ,2τ), we essentially use Protocol 6.1. However,
this protocol does not securely realize Frand, since in Lemma 6.2 we use the fact
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that the simulator can compute the corrupted parties’ shares from the honest
parties’ shares, which is not the case for the degree-2τ part (hence why J·K(2τ),
therefore also J·K(τ,2τ), does not meet the definition of a secret-sharing scheme in
Section 2.1). This will only lead to an additive attack in the online phase, which
is why we can still use the protocol.

PROTOCOL 6.6 (Secure multiplication up to an additive attack)

– Inputs: Parties hold correct sharings JxK, JyK
– Offline phase: The parties execute Protocol 6.1 for J·K(τ,2τ) instead of J·K. They

only check correctness for the J·K part, and not for the J·K(2τ) part. They obtain
a random double sharing (JrK, JrK(2τ)).

– Online phase:
1. The parties locally calculate JδK(2τ) := JxK · JyK− JrK(2τ).
2. Each Pi for i = 1, . . . 2τ+1 sends ui := π(λiδi) to P1 (recall π(a0+a1X+· · ·+

ad−1X
d−1) = a0 ∈ Z2` , and the λi are constants such that

∑n
i=1 λiδi = δ)

3. P1 can now reconstruct δ as δ =
∑n
i=1 ui.

4. P1 broadcasts δ.
5. The parties locally compute Jx · yK = JrK + δ.

The reason each party sends ui instead of δi to P1 is two-fold. It saves
bandwidth, since only an element of Z2` needs to be communicated instead of an
element of R. More importantly though, if the inputs JxK, JyK are not guaranteed
to be correct, then sending full shares δi can compromise privacy.

Note that it is important that the random double sharing JrK(τ,2τ) is guaran-
teed to be correct.

Lemma 6.7. Protocol 6.6 securely computes Fmult with statistical error ≤ 2−κ

in the Frand-hybrid model in the presence of a malicious adversary controlling
t < n/2 parties.

The proof appears in Section D.2.
When evaluating a circuit gate-by-gate using Protocol 6.6, we consider an

optimization in which we don’t need to execute the broadcast (which might be
expensive) for each multiplication, but instead they will perform a broadcast
just before opening the values. In the multiplication protocol, P1 will just send a
value (not guaranteed to be the same) to all other parties. Each party Pi keeps
track of a hash value hi of all received values in step 4 of the protocol far. Before
opening their outputs, each party Pi sends its hash hi to all other parties. If any
party detects a mismatch, they abort. Note that security up to additive attack is
guaranteed only after this procedure succeeds, which is executed before opening
the output.

In doing so, we lose the invariant that all secret-shared values are guaranteed to
be correct. In other scenarios, as for example the t < n/3 setting, this completely
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breaks the security of the protocol as shown in [GLS19]. However, this is not a
problem in our case since the degree-2τ sharings have no redundancy in them.
As shown in [GLS19], this is enough to guarantee the security of the protocol
with the deferred check, and the reason is essentially that the shares that the
potentially corrupt party P1 receives are now uniformly random and independent
of each other.

Efficiency analysis. For generating randomness, the parties communicate n2

elements to produce n− τ ≈ n/2 sharings. Thus, the amortized communication
complexity is 2n elements per random sharing generation and 2 per party.

In Fmult, the parties generate two sharings and then in the online phase, the
parties communicate again 2n elements. Overall, the communication consists of
6n elements, which means that each party sends 6 elements.

Since we are working in a larger ring, which blows up each element by a
factor of log n, we have that Crand(k + s) = 2(k + s) · n log n and Cmult(k + s) =
6(k + s) · n log n. Thus, the overall cost per multiplication gate in the circuit is
14(k + s) · n log n bits, while each party sends 14(k + s) · log n bits.

7 Implementation and Experiments

We implemented two instantiations of our compiler: one based on replicated secret
sharing for the special case of n = 3 and one using the Shamir SS based protocol
presented in [ACD+19]. All our experiments where run with two different values
for k and s, specifically k = s = 32 and k = s = 64, as that allows for some
natural optimizations in terms of how arithmetic in Z2k+s is implemented.

In order to demonstrate the practicality of our protocol, we compare both of
our implementations against previous work that can be considered state of the
art for our setting. In particular, we measure the throughput of the computation
phase of our protocols against the highly efficient 3 party protocols presented
in [EKO+19] using a similar experimental setup as theirs. See Appendix E for
details. Our protocol outperforms the protocols in [EKO+19] in two different
WAN settings (continental, where parties are running on machines located on
the same continent), and global (where parties are distributed globally). In the
LAN setting, we perform as well as [EKO+19], which we attribute to differences
in the implementations. In particular, the Sharemind and MP-SPDZ frameworks
which are used in [EKO+19] are more mature.

We also run the same benchmarks as in [CGH+18] and compare the results
against the field based protocols in that work. This experiment comprises running
circuits with a fixed number of multiplications and of varying depths. We found
that our replicated instantiation outperform its field based cousin in the LAN
setting when the size of modulus (i.e., k + s) matches the size of the prime used
(which is a 61 bit prime). This is in line with the expectation that arithmetic
over Z2k+s for good choices of k + s is more efficient. For experiments in WAN
setting we are performing less well, which we attribute to the fact that elements
in our protocol are larger by around log n bits, and thus, when communication
becomes the bottleneck, it is not unexpected that we are less efficient.
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Finally, the computation phase of our Shamir SS instantiation performs
very well compared to the field version. On the other hand, computing the
random double-shares that are needed turns out to be very slow in our protocol
compared to [CGH+18]. We found that the main issue here was the cost of local
computations and thus expect that it is possible to significantly improve this.
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A Proofs for Section 3.3 - Checking Equality to 0

A.1 Proof of Proposition 3.5

Proposition A.1 (Propsition 3.5 - restated). Protocol 3.3 securely com-
putes functionality FCorrectMult with abort and with statistical error 2−s in the
(Frand,Fmult,Fcoin)-hybrid model in the presence of malicious adversaries control-
ling t < n/2 parties.

Proof: Let A be the real world adversary who controls a set of corrupted parties
C and let S be the ideal world simulator. The simulator S works as follows:

1. Generate the multiplication triple:
(a) S plays the role of Frand(`+s), receiving JaKC`+s, Ja

′KC`+s, JbK
C
`+s sent by A.

(b) S play the role Fmult(`+ s), receiving d and d′ and the corrupted parties’
shares JcKC`+s, Jc

′KC`+s from A.
(c) S simulates Fcoin(s) sampling r ∈ Z2s and hands it to A.
(d) S computes Ja′′KC`+s = r · JaKC`+s − Ja′KC`+s, chooses a random a′′ ∈ Z2`+s

and chooses random shares for the honest parties, given a′′ and Ja′′KC`+s.
Then, it simulates the honest parties in the execution of open(Ja′′K`+s).
If the honest parties output ⊥ in the execution, then S sends abort to
FCorrectMult and halts.

(e) S computes JwKC`+s = a′′ · JbKC`+s − r · JcKC`+s + Jc′KC`+s. Then, it sets

w = d′ − r · d and chooses the honest parties’ shares JwKH`+s accordingly.
(f) Finally, S simulates the honest parties in the execution of open(JwK`+s). If

the honest parties output ⊥ in the execution or if w 6≡`+s 0, then S sends
abort to FCorrectMult and halts. If d 6≡` 0 and the honest parties did not
abort, then S output fail and halts. Otherwise, it records JaKC` , JbK

C
` , JcK

C
`

as the output of the corrupted parties from this step.
2. Use the generated triple:

(a) The simulator S receives the adversary’s shares JxKC` and JyKC` from
FCorrectMult. Then, S computes JuKC` = JxKC` − JaKC` and JvKC` = JyKC− JbKC .
Finally, S chooses random u, v ∈ Z2` and defines the honest parties’ shares
JuKH` and JvKH` , by running share(u, JuKC` ) and share(v, JvKC` ) respectively.

(b) S plays the role of the honest parties in the execution of open(JuK`)
and open(JvK`). If the honest parties output ⊥, then it sends abort to
FCorrectMult and halts.

https://eprint.iacr.org/2018/442
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(c) The simulator S defines the adversary’s shares by the equation JzKC` =
JcKC` + u · JbKC` + v · JaKC` + u · v and sends these to FCorrectMult.

Observe that given that the event that S outputs fail does not occur, the only
difference between the simulation and the real execution is the way the values
a′′, u and v are set. In the simulation, these are randomly and independently
sampled by S. In contrast, in the real execution we have that a′′ = r · a − a′,
u = x− a and v = y − b. However, from the way Frand is defined, we have that
a′, a and b are guaranteed to be uniformly and independently distributed over
the corresponding ring and thus so are a′′, u and v. Thus, the adversary’s view
is identically distributed in the two executions (given that the fail output event
does not happen).

Next, we show that given the identical view, the output of the honest parties
is also identical in both executions. In the simulation, the honest parties’ output is
random shares of x · y given the corrupted parties’ shares. In contrast, in the real
execution, these are determined by computing JzKH` = JcKH` +u·JbKH` +v·JaKH` +u·v.
However, since z = x · y this obtained shares are random shares of x · y as in the
simulation.

We conclude that the only difference between the executions is the fail event.
However, by Lemma 3.4, this event happens with probability of at most 2−s,
which is exactly the statsitcal error allowed by the proposition.

A.2 Proof of Proposition 3.6

Proposition A.2 (Proposition 3.6 - restated). Protocol 3.7 securely com-
putes functionality FrandBit with abort in the (Frand,FCorrectMult)-hybrid model
in the presence of malicious adversaries controlling t < n/2 parties.

Proof: First, observe that simulation here is straightforward. Since the protocol
has no inputs, the simulator S can perfectly simulate the honest parties in the
execution (including aborting the protocol if the honest parties output ⊥ when
running the open procedure). In addition, S receives the corrupted parties’ shares
when playing the role of Frand and FCorrectMult and thus it can compute locally
JbKC` and hand it to FrandBit.

Next, we show that the honest parties’ output is identically distributed in
both the real and ideal executions. In the simulation, the honest parties’ ouptut
is random shares of a random bit (computed given the corrupted parties’ shares).
We now show that this is the same for the real world execution.

To see this, first observe that c ≡`+2 a2 (with no additive errors), since
FCorrectMult was used. Furthermore, using Lemma 4.1 in [DEF+19], we obtain

that d =
√
c
−1 · a mod 2`+2 satisfies d ∈ {±1,±1 + 2`+1}, so in particular

d ≡`+1 ±1, with each one of these cases happening with equal probability. This
implies that b = b′/2 mod 2` satisfies b ≡` 0 or b ≡` 1, each case with the same
probability.

The final observation is that all the shares of b′ = d+ 1 mod 2`+1 are even,
which is required to ensure that the parties can execute the right-shift operation
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in step 5. This is implied by the following argument. First of all, notice that
JdK`+2 + 1 = 2 ·

√
c
−1JrK`+2 + (

√
c
−1

+ 1). Now, the shares 2 ·
√
c
−1JrK`+2 are

even since these are obtained by multiplying the constant 2. Furthermore, the
constant (

√
c
−1

+ 1) is even since
√
c
−1

is odd, and by the assumptions of the
secret sharing scheme each canonical share of it is either 0 or the constant itself
(see the “shares of a constant” property in Section 2.1), so in particular all of its
shares are even.

The above implies that at the end of the protocol, the parties hold a sharing
of a random bit, exactly as in the simulation. This concludes the proof.

A.3 Proof of Proposition 3.9

Proposition A.3 (Proposition 3.9 - restated). Protocol 3.8 securely com-
putes FCheckZero with abort in the
(FrandBit,FCorrectMult)-hybrid model in the presence of malicious adversaries who
control t < n/2 parties.

Proof: The simulation begins with the ideal world simulator S receiving the
corrupted parties’ shares JvKC` and the output (accept or reject) from FCheckZero.
Then, S works as follows:

1. Playing the role of FrandBit, S receives Jr0KC` , . . . , Jr`−1K
C
` from A.

2. S locally computes JrKC` =
∑`−1
i=0JriKC` and JcKC` = JvKC` + JrKC` . Then, it chooses

a random c ∈ Z2` and computes JcKH` = share(c, JcKC` ).
3. S simulates the execution of open(JcK`) by playing the role of the honest

parties. If the honest parties output ⊥ at the end of the execution, then S
sends abort to FCheckZero and halts.

4. S locally converts JriKC` → JriKC1 for i = 1 to `.
5. S simulates the computation of the circuit by playing the role of FCorrectMult(1).

Let JT K1 be the sharing of the output of the circuit. Thus, S holds the corrupted
parties’ shares of the ouptut JT KC1 .

6. If S received accept from FCheckZero, then it sets b = 0. Otherwise, in the
case where S received reject from FCheckZero, it sets b = 1. Then, it runs
share(b, JT KC1 ) to obtain the honest parties’ shares JbKH1 .

7. Finally, S simulates the opening of the output by playing the role of the
honest parties. If the honest parties output ⊥, then S sends abort to FCheckZero.
Otherwise, it sends continue to FCheckZero.

8. S outputs whatever A outputs and halts.

The difference between the simulation and the real execution is in the way c
and the output of circuit b are computed. However, since r ∈ Z2` is secret and
uniformly random, the opened value c = v+r mod 2` is also uniformly distributed
over the ring and thus it is identically distributed in both executions. Furthermore,
v ≡` 0 if and only if v + r ≡` r, which is equivalent to the bit decomposition
of c, (c0, . . . , c`−1), being equal to that of r, (r0, . . . , r`−1). Checking this is
equivalent to checking that all the bits of (r0⊕c0, . . . , r`−1⊕c`−1) are zero, which

is equivalent to
∨`−1
i=0(ri ⊕ ci) = 0. Thus, the value of b in the simulation, as

chosen by S, is exactly as in the real execution. This concludes the proof.
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B Proof of Security for the Main Protocol

Theorem B.1 (Theorem 4.3 - restated). Let f be an n-party functionality
over Z2k and let s be a statistical security parameter. Then, Protocol 4.1 se-
curely computes f with abort in the (Finput,Fmult,Fcoin,Frand,FCheckZero)-hybrid
model with statistical error 2−s+log(s+1), in the presence of a malicious adversary
controlling t < n

2 parties.

Proof: Let A be the real world adversary who controls a set of corrupted parties
C and let S be the ideal world simulator. The simulator S works as follows:

1. Secret sharing the inputs: S receives from A the set of corrupted parties inputs
(values vj associated with parties Pi ∈ C) and the corrupted parties’ shares
{JvmKCk+s}Mm=1 that A sends to Finput in the protocol.

2. Generate the randomizing share: Simulator S receives the share JrKCk+s of the
corrupted parties that A sends to Frand.

3. Randomization of inputs: For every input wire m = 1, . . . ,M , simulator S
plays the role of Fmult in the multiplication of the mth input JvmKk+s with
JrKk+s. Specifically, S hands A the corrupted parties shares in JvmKk+s and
JrKk+s (it has these shares from the previous steps). Next, S receives the
additive value d = ξm ∈ Z2k+s and the corrupted parties’ shares JzKCk+s of the
result that A sends to Fmult. Simulator S stores all of these corrupted parties
shares.

4. Circuit emulation: Throughout the emulation, S will use the fact that it knows
the corrupted parties’ shares on the input wires of the gate being computed.
This holds initially from the steps above, and we will show it computes the
output wires of each gate below. For each gate G` in the circuit,

– If G` is an addition gate: Given the shares of the corrupted parties on the
input wires, S locally adds them as specified by the protocol, and stores
them.

– If G` is a multiplication-by-a-constant gate: Given the shares of the cor-
rupted parties on the input wire, S locally multiplies them by the constant
as specified by the protocol, and stores them.

– If G` is a multiplication gate: S plays the role of Fmult in this step (as
in the randomization of inputs above). Specifically, simulator S hands A
the corrupted parties’ shares on the input wires as it expects to receive
from Fmult (it has these shares by the invariant), and receives from A the
additive value as well as the corrupted parties’ shares for the output. These
additive values are δ` ∈ Z2k+s (for the multiplication of the actual values)
and γ` ∈ Z2k+s (for the multiplication of the randomized value), as defined
in the proof of Lemma 4.2. S stores the corrupted parties’ shares.

5. Verification stage: Simulator S works as follows. S plays the role of Frand

receiving the shares Jα1KCk+s, . . . , JαN KCk+s, Jβ1KCk+s, . . . , JβM KCk+s ∈ Z2k+s sent
to Frand by A. Then, it plays the role of FDotProduct receiving the shares
JuKCk+s, the shares JwKCk+s and the additive attacks Θ1 and Θ2 sent by A to
FDotProduct. Next, S chooses a random r ∈ Z2k+s and computes the shares of
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r by (r1, . . . , rn) = share(r, JrKCk+s), using the shares JrKCk+s provided by A in
the “generate randomizing share” step above. Next, S simulates the honest
parties sending their shares in open(JrKk+s) to A, and receives the shares that
A sends to the honest parties in this open. If any honest party would abort (it
knows whether this would happen since it has all the honest parties’ shares),
then S simulates it sending ⊥ to all parties, externally sends abortj for every
Pj ∈ H to the trusted party computing f , and halts.
Finally, S simulates FCheckZero, as follows:

(a) If any non-zero ξm, δi, γi was provided to Fmult by A in the simulation
that is not congruent to 0 modulo 2k, then S simulates FCheckZero sending
reject to the parties.

(b) Otherwise, if any ξm, δi, γi was provided to Fmult by A in the simulation
that is not congruent to 0 modulo 2k+s, then S simulates FCheckZero

sending accept to the parties with probability p and reject with probability
1− p, where p = 2−(k+s−u) and u is determined as follows:
If ∃ξm 6≡k+s 0, let m0 be the smallest m for which this holds. Then, u is
the largest for which 2u divides ξm0

.
Otherwise, all ξm ≡k+s 0, but there is i ∈ {1, . . . , N} for which δi 6≡k+s 0
or γi 6≡k+s 0. Let i0 be the smallest index for which this holds. Then, u
is the largest for which 2u divides γi0 − r · δi0 .

(c) Finally, if all ξm, δi, γi ≡k+s 0, then S set T = Θ1 − r ·Θ2 and simulates
FCheckZero sending accept if T ≡k+s 0 and reject otherwise.

In any of the above, if S sent abort to A, then S externally sends abortj for
every Pj ∈ H to the trusted party computing f . Otherwise, S proceeds to the
next step.

6. Output reconstruction: If no abort had occurred, S externally sends the trusted
party computing f the corrupted parties’ inputs that it received in the “secret
sharing the inputs” step above. S receives back the output values for each
output wire associated with a corrupted party. Then, S simulates the honest
parties in the reconstruction of the corrupted parties’ outputs. It does this by
computing the shares of the honest parties on this wire using the corrupted
parties’ shares on the wire (which it has by the invariant) and the actual
output value it received from the trusted party.
In addition, S receives the messages from A for the reconstructions to the
honest parties. If any of the messages in the reconstruction of an output wire
associated with an honest Pj are incorrect (i.e., the shares sent by A are not
the correct shares it holds), then S sends abortj to instruct the trusted party
to not send the output to Pj . Otherwise, S sends continuej to the trusted
party, instructing it to send Pj its output.

We claim that the view of the adversary in the simulation is distributed
identically to its view in the real execution, except with probability 1/2s−log(s+1).
In order to see this, observe first that if all ξm, δi, γi values are congruent to 0
modulo 2k+s, then the simulation is perfect.

Next, consider the case that some ξm, δi, γi value is not congruent to 0 modulo
2k. In this case, the simulator S always simulates FCheckZero outputting reject.
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However, in a real execution where some ξm, δi, γi value is not congruent to 0
modulo 2k, functionality FCheckZero may return accept. This event happens when
T ≡k+s 0. By Lemma 4.2, the probability that T ≡k+s 0 in such a real execution
is less than 2−s+log(s+1). Thus, in this case, the statistical difference between
these distributions is less than 2−s+log(s+1), as stated in the theorem.

Finally, we show that when all ξm, δi, γi are congruent to 0 modulo 2k but
not modulo 2k+s the simulation is identically distributed to the real execution.
Let ∆i = εi · yi + γi− r · δi. If there exists ξm 6≡k+s 0, then let m0 be the smallest
m for which this holds. Then, using Eq. (1), we have that val(JT K)H ≡k+s 0 in
the real execution if and only if

βm0 · ξm0 ≡k+s

− N∑
i=1

αi ·∆i −
M∑
m=1
m6=m0

βm · ξm − (Θ1 − r ·Θ2)

 .

Let 2u be the largest power of 2 dividing ξm0
. Then we have

βm0 ≡k+s−u

−∑N
i=1 αi ·∆i −

∑M
m=1
m 6=m0

βm · ξm − (Θ1 − r ·Θ2)

2u

 · (ξm0

2u

)−1
.

Since βm0 is chosen uniformly from Z2k+s and its value is kept secret, we obtain
that FCheckZero will return accept in the real execution with probability 2−k+s−u

which is exactly the probability that S sends accept to A.
Otherwise, all ξm ≡k+s 0, but there exists i such that δi 6≡k+s 0 or γi 6≡k+s 0.

Let i0 be the smallest i for which this holds. Observe that this implies that
εi0 ≡k+s 0, as there were no attacks on previous gates. Thus, we have in the real
execution that val(JT K)H ≡k+s 0 if and only if

αi0 · (γi0 − r · δi0) ≡k+s

− N∑
i=1
i 6=i0

αi ·∆i − (Θ1 − r ·Θ2)

 .

Let u be the largest for which 2u divides γi0 − r · δi0 . Then, we have that the
above holds if and only if

αi0 ≡k+s−u

−∑N
i=1
i 6=i0

αi ·∆i − (Θ1 − r ·Θ2)

2u

 · (γi0 − r · δi0
2u

)−1
.

As before, since αi0 is distributed uniformly over Z2k+s and kept secret during
the execution, the above holds with probability 2−k+s−u. This is exactly the
probability that FCheckZero, simulated by S, outputs accept in the simulation.

Going over all cases, we conclude that the statistical difference between A’s
view in the real and simulated execution is 2−s+log(s+1). This concludes the proof.
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C Replicated Secret Sharing for Three Parties

We now present in detail the efficient three party instantiation of our compiler
from replicated secret sharing. Sharing a value x ∈ Z2` is done by picking at
random x1, x2, x3 ∈ Z2` such that

∑
i xi ≡` x. Pi’s share of x is the pair (xi, xi+1)

and we use the convention that i+ 1 = 1 when i = 3. To reconstruct a secret, Pi
receives the missing share from the two other parties. Note that reconstructing a
secret is robust in the sense that parties either reconstruct the correct value x or
they abort.

Replicated secret sharing satisfies the properties described in Section 2.1,
and one can efficiently realize the required functionalities described in the same
section. Below we discuss some of these properties/functionalities.

Generating Random Shares. Shares of a random value can be generated non-
interactively, as noted in [LN17,MR18], by making use of a setup phase in which
each party Pi obtains shares of two random keys ki, ki+1 for a pseudorandom
function (PRF) F . The parties generate shares of a random value for the j-th
time by letting Pi’s share to be (ri, ri+1), where ri = Fki(j). These are replicated
shares of the (pseudo)random value r =

∑
i Fki(j). Proving that this securely

computes Frand is straight forward and we omit the details.

Secure Multiplication up to an Additive Attack. To multiply two shared
values, we use the protocol from [MR18,AFL+16], which is described in C.1. The
shares of 0 that this protocol needs can be obtained by using correlated keys for
a PRF, in similar fashion to the protocol for Frand sketched above.

PROTOCOL C.1 (Secure multiplication up to an additive attack.)

– Inputs: Parties hold sharings JxK, JyK and additive sharings (α1, α2, α3) where∑3
i=1 αi = 0.

– Protocol:
1. Pi computes zi = xiyi + xi+1yi + xiyi+1 + αi and sends zi to Pi−1.
2. Pj , upon receiving zj+1, defines its share of Jx · yK as (zj , zj+1).

The above protocol is secure up to an additive attack as noted in [LN17]. We
note that this can be extended to instantiate FDotProduct at the communication
cost of one single multiplication, as shown in [CGH+18].

Efficient Checking Equality to 0. Checking that a value is a share of 0 can
be performed very efficiently in this setting by relying on a Random Oracle H.
The observation we rely on is that, if

∑
i xi ≡` 0, then xi−1 ≡` −(xi + xi+1) and
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so Pi can send zi = H(−(xi + xi+1)) which will be equal to xi−1 which is held
by Pi+1 and Pi−1. Since only one party is corrupted, it suffices that each Pi will
send it only to Pi+1. Upon receiving zi from Pi, Pi+1 checks that zi = H(xi−1)
and aborts if this is not the case.

This protocol is formalized in Protocol C.3 in the FRO-hybrid model. The
FRO functionality is described in Functionality C.2.

We remark that that this protocol does not instantiate FCheckZero exactly. In
order for the proof of security to work, we need to allow the adversary to cause
the parties to reject also when v = 0. We denote this modified functionality by
FCheckZero

′. This is minor change since the main requirement from FCheckZero in
our compiler is that the parties won’t accept a value as 0 when it is not, which is
still satisfied by the modified functionality.

FUNCTIONALITY C.2 (FRO – Random Oracle functionality)
Let M be an initially empty map.

– On input x from a party P , if (x, y) ∈M for some y, return y. Otherwise
pick y at random and set M = {(x, y)} ∪M and return y.

– On (x, y) from S and if (x, ·) 6∈M set M = {(x, y)} ∪M .

PROTOCOL C.3 (Checking Equality to 0 in the FRO-Hybrid Model)

– Inputs: Parties hold a sharing JvK.
– Protocol:

1. Party Pi queries βi ← FRO(−(vi + vi+1)) and sends βi to Pi+1.
2. Upon receiving βi−1 from Pi−1, each party Pi checks that βi−1 = FRO(vi+1).

If this is not the case, then Pi outputs reject. Otherwise, it outputs accept.

Proposition C.4. Protocol C.3 securely computes FCheckZero in the FRO-hybrid
model in the presence of one malicious corrupted party.

Proof: Let A be the real adversary who corrupts at most one party and S the
ideal world simulator. Let Pi be the corrupted party. The simulation begins with
S receiving the shares of Pi, i.e., (vi, vi+1). Then, S proceed as follows:

– If S receives accept from FCheckZero
′, then it knows that v ≡` 0 and so it can

compute the share vi−1 = −(vi + vi+1) and so it knows the honest parties’
shares and can perfectly simulate the execution, while playing the role of FRO.
If A cause the parites to reject by using different shares, then S sends reject
to FCheckZero

′.
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– If S receives reject, then it chooses a random vi−1 ∈ Z2` \ {−(vi + vi+1)} and
defines the honest patries’ shares accordingly. Then, it plays the role of FRO

simulating the remaining of the protocol. By the definition of FRO, the view
of A is distributed identically in the simulated and the real execution.

D Proofs for Section 6 - Shamir-SS Instantiation

D.1 Proof of Lemma 6.2: Securely Computing Frand

Lemma D.1 (Lemma 6.2 - restated). Protocol 6.1 securely computes (n−τ)d
parallel invocations of Frand for J·K with statistical error of at most 2−κ in the
presence of a malicious adversary controlling t < n/2 parties.

Proof: Let A be the real-world adversary. The simulator S interacts with A
by simulating the honest parties in an execution of the protocol. In doing so, S
obtains honest parties’ shares 〈r1〉H , . . . , 〈rn−τ 〉H .

We distinguish three cases:

1. If at least one of the simulated honest parties aborts in any of the executions
of Protocol 6.3, then S sends abort to Frand.

2. If the checks pass but the honest parties’ shares are inconsistent, S outputs
fail. By Lemma 6.4 this only happens with probability at most 2−κ, allowed
by the claim.

3. In the remaining case, the checks of Protocol 6.3 pass and the honest
parties’ shares are consistent. S calculates the corrupted parties’ shares
〈r1〉C , . . . , 〈rn−τ 〉C from the honest parties’ shares, and sends them to Frand.

Before the invocation of Frand, the honest parties have no private inputs, hence
S simulates them perfectly and A’s view will be identical to the real execution.
Thus, the simulated honest parties will abort in the ideal execution precisely
when they would in the real execution.

The only thing it remains to prove is that if the parties do not abort, the output
shares are identically distributed in the real and ideal executions. In particular,
we need to prove that in the real execution, the sharings are independent and
uniformly sampled from 〈·〉.

Let H ⊆ H be a subset of honest parties of size n − τ , and let C :=
{1, . . . , n} \ H denote its complement. Let AH , AC denote the submatrices of
A corresponding to the columns indexed by H and C respectively. Let 〈sH〉
denote the vector 〈si〉i∈H of length n− τ , and correspondingly 〈sC〉 := 〈si〉i∈C .
Then (〈r1〉 , . . . , 〈rn−τ 〉)T = AH 〈sH〉+AC 〈sC〉. Since 〈sH〉 is wholly generated
by the honest parties, it consists of n − τ independent and uniformly random
sharings of 〈·〉. AH is invertible (since A is hyperinvertible), hence we also have
that 〈sH〉 consists of independent and uniformly random sharings. Adding a fixed
AC 〈sC〉 will not affect the distribution, hence the sharings 〈r1〉 , . . . , 〈rn−τ 〉 are
independent and uniformly random sharings.
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D.2 Proof of Lemma 6.7: Securely Computing Fmult

Lemma D.2 (Lemma 6.7 - restated). Protocol 6.6 securely computes Fmult

with statistical error ≤ 2−κ in the Frand-hybrid model in the presence of a malicious
adversary controlling t < n/2 parties.

Proof: Without loss of generality, assume 2τ + 1 = n (recall that τ is the secret
sharing threshold and not the number of corrupted parties, and so the proof still
holds for any t < n/2).

For the offline phase, the simulator acts as in Lemma 6.2. By the proof, we
have that JrK is a correct sharing. The sharing Jr′K(2τ) is not well-defined, because
the adversary can change its mind about its shares at any time. However, the
adversary always knows the additive error r′ − r that it introduces by changing
its shares.

For the online phase, S simulates the honest parties towards A.
We distinguish two cases:

– Case 1: P1 is not corrupt. The simulated P1 receives {ui}i∈C from A. If it
receives ⊥ for any value ui, it sends abort to Fmult and simulates P1 aborting.
Otherwise, it calls Fmult and receives {xi}i∈C , {yi}i∈C . For any i ∈ C, since
S knows xi, yi, r

′
i, it may calculate δi = xiyi − r′i and thus the value π(λiδi)

the adversary is supposed to send if it behaves honestly. The simulator can
therefore extract d =

∑
i∈C ui − π(λiδi). S does not know the true value of

δ, however it may sample δ ← Z2` , send it to the corrupted parties, and
calculate the corrupted parties’ shares as zi = ri + δ + d.
It then simulates the broadcast of δ. If the broadcast aborts, S simulates the
parties aborting and sends abort to Fmult. Otherwise, it sends d, {zi}i∈C to
Fmult, and outputs whatever A outputs.
In the ideal execution, A receives a random δ. It cannot distinguish this from
the real value x · y − r, since r is uniformly random and by privacy of the
secret-sharing scheme it does not have any information on it.

– Case 2: P1 is corrupt. S samples JδK(2τ) ← J·K(2τ). For i ∈ H it sends
ui = π(λiδi) to the corrupted P1. The simulated honest parties receive an
identical broadcasted value δ′, otherwise the broadcast protocol aborts.
Since S knows δ, it can extract d := δ′ − δ, and calculate the corrupted
parties’ shares as zi = ri+ δ′. It then sends d, {zi}i∈C to Fmult, and it outputs
whatever A outputs.

As mentioned above, the adversary cannot distinguish whether it is talking
to a simulator or the real parties, hence its output will be identical.

In the ideal execution where no abort took place, the actual (non-simulated)
parties receive their shares {zi}i∈H directly from Fmult. The shares are consistent
and will reconstruct to the secret z = x · y + d. In the ideal execution, the shares
are generated by the probabilistic function share(z, {zi}z∈C), such that the shares
are uniformly random subject to the constraints on the shares.14 In the real
execution, the shares also correspond to z. The sharing in the real execution is

14 Depending on the privacy threshold the constraints may fully determine the shares.
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calculated as JrK + δ, where JrK is a uniformly random sharing. Therefore, the
outputs are identical in both executions.

E Experiments

The following appendix expands upon the evaluation and experiments we per-
formed on two instantiations of our compiler. More precisely, and as mentioned
earlier, we instantiate our compiler with a replicated secret sharing protocol
for the case of n = 3 and with the Shamir secret sharing protocol over Z2` as
presented in [ACD+19].

E.1 Implementation Details

Both instantiations are implemented in C++ and we will make the source code
available under a free license. Recall that the majority of computation takes place
over the ring Z2` where ` = k+ s with k being the “computation” parameter and
s the security parameter. Our implementation supports computation over Z2` for
arbitrary ` by relying on gmp, however we provide specializations for the cases
` = 64 and ` = 128 (corresponding to k = s = 32 and k = s = 64, respectively).
The specialization for ` = 64 relies on standard fixed width 64-bit wide types
while the specialization for ` = 128 relies on the unsigned int128 extension for
GCC.15

All symmetric primitives (hashing and PRGs mainly) are handled by lib-
sodium, and we refer to their documentation for details on which concrete schemes
are used.

For the Galois-ring variant our implementation only supports the explicit
ring R = Z2` [X]/(h(x)) with h(X) = X4 +X + 1. This ring supports 24 − 1 =
15 parties and the act of hard-coding the irreducible polynomial allows us to
implement multiplication and division in the ring using lookup tables. It is
worth remarking that operations in GR(2`, d) are more expensive than certain
prime fields (in particular, Mersenne primes as the ones used in [CGH+18]). Our
implementation can perform roughly 17 million multiplications in GR(264, 4) and
9 million multiplications in GR(2128, 4) per second.

E.2 Experimental setup.

As we have access to the implementations from [CGH+18],16 but not all of the
ones in [EKO+19] (in particular, the ShareMind protocols are not open source)
our experimental setup replicates that of [EKO+19] for the sake of getting the
best possible comparison. Since the type of machines do used in [EKO+19] does
not match those used in [CGH+18], we rerun the benchmarks of the latter to
maintain uniformity accross all our benchmarks.

15 https://gcc.gnu.org/onlinedocs/gcc/_005f_005fint128.html
16 Code can be found at [biu17a] and [biu17b]

https://gcc.gnu.org/onlinedocs/gcc/_005f_005fint128.html
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We use the AWS c5.9xlarge instances which have 36 virtual cores, 72gb of
memory and a 10Gpbs network. We benchmark our protocols in three different
settings: Colocated in which all machines are placed in the same data-center
(Frankfurt), Continent in which parties are located in Frankfurt, London and
Paris, respectively (i.e., on the same continent); and World in which parties
are located in Frankfurt, Northern California and Tokyo. To get an idea of the
latency induced in the different settings, Table 1 shows the RTT between the
different locations.

A B C

Colocated Frankfurt Frankfurt Frankfurt
Continent Frankfurt London Paris
World Frankfurt North Cali Tokyo

AB (ms) AC (ms) BC (ms)

Colocated 0.35 ±0.04 0.31 ±0.2 0.3 ±0.4
Continent 16.83 ±0.23 8.09 ±0.8 6.82 ±0.11
World 143.83 ±0.50 242.51 ±0.61 109.43 ±0.38

Table 1: Average RTT ± mdev. Measured using ping over 50 messages.

For benchmarks with n > 3 we distribute the excess parties evenly among
the above locations ordered alphabetically. E.g., for n = 5 we place 2 parties in
Frankfurt, 2 in London and 1 in Paris.

E.3 Results—the 3-party case

We begin by discussing our protocols in the three party setting, which include
our Replicated SS instantiation from Section 5 and our Shamir SS instantiation
from Section 6 using three parties. We remark that our Shamir SS instantiation,
unlike the Replicated SS, is not implemented in its entirety,17 as we will discuss
in detail in Section E.4. However, for the three party case Shamir SS is generally
outperformed by Replicated SS, a pattern that is also present in our setting. The
goal of including this instantiation here is to support this claim.

Comparison with ring-based protocol. We compare our three party proto-
cols with the protocols from [EKO+19], which are the only implemented three-
party actively secure protocols for computation over Z2` , to the best of our
knowledge. As we already argued, since we do not have access to the implementa-
tions of all the variants treated in [EKO+19] we match instead the experimental

17 Our Shamir implementation does not include the generic check described in Section
3.3, however for n = 3 a more efficient check as the one described in Section C can
be used.
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Fig. 1: Throughput in LAN

setup and make a direct comparison with the figures from [EKO+19]. The bench-
marks here consist of measuring the throughput of computing a varying number
of multiplications, and the results are included in Figures 1, 2 and 3. Unlike the
numbers from [EKO+19], we experienced a linear tendency in the throughput all
the way up to 1 million and so we increased the maximum batch size we used to
3 million.

The results from [EKO+19] use k = 64 and s = 40, and while we use
the same k we use s = 64 as it is more efficient in our implementation. This
provides stronger security guarantees but also requires us to send more data per
multiplication (24 bits more, to be exact).

The results show that we outperform all the protocols of [EKO+19] except
“Sharemind Postprocessing” in the LAN setting. We can attribute this to two
things: First, our communication layer is sub-optimal in that a pairwise channel
uses only one socket. In particular, a party cannot send and receive at the same
time. For the communication pattern in RSS this means that one party must
wait to receive a message before it can send its own—even if the two messages are
unrelated. The second things is that both Sharemind and MP-SPDZ are more
mature frameworks and as such probably have more efficient implementations of
the arithmetic in Z2` . It is worth noting that the communication pattern in the
Shamir SS multiplication protocol does not run into this problem. For the two
WAN settings we have a higher throughput which we attribute to the fact that
we only need to send 2 Z2` elements per multiplication, while the Postprocessing
protocols of [EKO+19] need to send 3.

We also observe that the Sharemind framework a commercial-grade imple-
mentation and therefore it is naturally more optimized.



45

100 101 102 103 104 105 106 107

101

102

103

104

105

106

# Multiplications

M
u
lt

ip
li
ca

ti
o
n
s/

s

Ours (RSS)

Ours (Shamir)

CDE+18-style MP-SPDZ

Postprocessing MP-SPDZ

DOS18 (batch) Sharemind

Postprocessing Sharemind

Fig. 2: Throughput in continental WAN

Comparison with ASTRA. Another recent protocol for computation over Z2` is
[CCPS19]. However their implementation is not freely available and the bench-
marks they run in the paper makes it hard to provide a good comparison.
ASTRA only benchmark an AES computation which makes it hard to perform
any meaningful comparison to our work.

Comparison with field-based protocol. Now we compare our three party
instantiations against the 3-party protocols from [CGH+18]. Again, our compiler
follows the template from that work, and as such our instantiations have many
similarities as well with theirs, with the main difference being the algebraic
structure over which they are defined.

We remark that the implementation from [CGH+18] uses a 61-bit Mersenne
prime, which is useful for simplifying the modular reduction operation. This pro-
tocol supports simple integer arithmetic, bounded to 61-bits. Hence, it is natural
to compare it with our implementation using k = 64, which provides roughly
the same arithmetic capabilities. However, for more complex operations over
fields like secure comparisons, the size of the underlying values must be bounded
[CS10], and in this case it is natural to compare the 61-bit implementation from
[CGH+18] with ours, using k = 32 and s = 32.

Our benchmarks bear similarities with the ones from [CGH+18]: We execute
a series of circuits with 1 million multiplication gates with different depths,
and measure the total running time. Results are shown in Table 2 and Table 3.
Notice that for the WAN benchmarks we only run circuits of fairly low depth,
as communication quickly becomes the bottleneck. We expect our protocol to
perform better than the equivalent in [CGH+18] due to the fact that operations
in Z2` can be implemented more efficiently—or at least as efficient—and indeed
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this is what we see. Worth noting is that this does not hold for WAN setting,
which can be explained using similar arguments as above; in particular, and extra
message of communication matters more when the latency is larger. Additionally,
our protocol also requires sending more data (essentially 2s more bits) per
multiplication.

E.4 Results—the n-party case

Now we present our results for our Shamir SS instantiation in the more general
multiparty case. First, we must point out that our implementation is not complete,
as it omits the generic check-to-zero presented in Section 3.3. Since this step is
executed only once during execution it is reasonable to assume that it adds a
constant overhead, which will be negligible for larger circuits.

The only protocol for computation over rings in the honest majority setting is
the one from [ACD+19], which forms the basis of the one considered in this work.
However, their protocol is not implemented (and their focus was not concrete
efficiency), so there is no ring-based protocol to compare against.

Instead, we compare our protocol to the Shamir protocol from [CGH+18],
which is similar in structure to ours. We proceed in a similar fashion as the
comparison to [CGH+18] discussed in the previous section. We make sure to
time only the parts of the protocol from [CGH+18] for which we have an imple-
mentation; that is, the preparation phase (in which a number of double-shares
are generated) and the online phase. Our results are shown in Table 4. We run
the code from [CGH+18] in order to perform extract the relevant timings for the
offline and online phase.
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Protocol 20 100 1,000 10,000

RSS
Ours ` = 64 0.23 0.23 0.49 2.36
Ours ` = 128 0.4 0.41 0.56 2.47
[CGH+18] 0.26 0.33 0.59 2.53

Shamir

Ours ` = 64
3.07 2.99 3.28 4.26

(0.09) (0.09) (0.35) (1.34)

Ours ` = 128
4.46 4.26 4.63 5.91

(0.24) (0.22) (0.54) (1.79)

[CGH+18]
0.61 0.84 1.37 7.69

(0.18) (0.42) (0.96) (7.31)

Table 2: LAN times in seconds for circuits with 106 multiplications and varying
depth with three parties. For the Shamir based protocols, the number in the

parenthesis is the time spent in the online phase.

We can observe from Table 4 that our offline phase is substantially slower than
the one from [CGH+18], but the online phase is actually competitive. Motivated
by this observation, we also evaluate the throughput of the online phase of our
protocol in a manner similar to the 3-party case presented in the previous section.
The fast online phase of our protocol is mainly due to the fact that communication
is very efficient since parties only need to send a single Z2` element to one party,
who performs a broadcast (again with Z2`) elements.

Finally, we include some throughput analysis of our double-share method in
Tables 4 and 5. These are the bottleneck of our Shamir-based protocol, and these
results shows the impact of this preprocessing in the throughput.
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Protocol
Continental Global

20 100 20 100

RSS
Ours ` = 64 0.81 1.32 8.53 15.89
Ours ` = 128 1.19 1.45 13.33 17.72
[CGH+18] 0.54 1.14 5.9 14.32

Shamir

Ours ` = 64
9.4 10.71 44.5 76.68

(0.87) (1.48) (10.52) (43.09)

Ours ` = 128
11.41 12.42 74.94 105.03
(0.91) (1.71) (13.63) (44.34)

[CGH+18]
1.94 4.66 19.99 69.31

(0.92) (3.84) (11.48) (59.12)

Table 3: WAN times in seconds for circuits with 106 multiplications and varying
depth with three parties. For the Shamir based protocols, the number in the

parenthesis is the time spent in the online phase.

Depth Protocol 3 5 7 9

20
Ours ` = 64 2.98 / 0.09 5.78 / 0.13 10.12 / 0.14 14.09 / 0.21
Ours ` = 128 4.23 / 0.24 7.70 / 0.29 12.60 / 0.33 15.50 / 0.38

[CGH+18] 0.43 / 0.18 0.63 / 0.22 0.93 / 0.45 0.10 / 0.28

100
Ours ` = 64 2.90 / 0.09 5.69 / 0.14 9.95 / 0.19 12.70 / 0.19
Ours ` = 128 4.04 / 0.22 7.72 / 0.32 12.55 / 0.41 15.30 / 0.41

[CGH+18] 0.42 / 0.42 6.36 / 4.26 0.9 / 0.52 0.1 / 1.27

1, 000
Ours ` = 64 2.93 / 0.35 5.72 / 0.50 9.92 / 0.68 11.96 / 0.85
Ours ` = 128 4.09 / 0.54 7.66 / 0.81 12.50 / 1.06 15.27 / 1.18

[CGH+18] 0.41 / 0.96 0.63 / 0.11 0.89 / 0.95 1.05 / 1.17

10, 000
Ours ` = 64 2.92 / 1.34 5.72 / 4.04 9.97 / 5.68 12.11 / 7.42
Ours ` = 128 4.12 / 1.79 7.69 / 3.85 12.53 / 5.91 15.39 / 7.34

[CGH+18] 0.38 / 7.30 0.61 / 7.32 0.89 / 0.84 1.05 / 12.88

Table 4: LAN running times in seconds for circuits with 106 multiplications,
different depth and for varying number of parties, evaluated using Shamir

SS-based MPC. Each value is a tuple a/b where a is the preprocessing time
(which is dominated by the double-share generation) and b is the time it takes to

evaluate the circuit.
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