
An Efficient Passive-to-Active Compiler for
Honest-Majority MPC over Rings

Abstract. Multiparty computation (MPC) over rings such as Z232 or
Z264 has received a lot of attention recently due to the potential benefits
in implementation and performance. Several actively secure protocols
over these rings have been implemented, for both the dishonest majority
setting and the setting of three parties with one corruption. However, in
the honest majority setting, no concretely-efficient protocol for arithmetic
computation over rings has yet been proposed that allows for an arbitrary
number of parties.

We present a new compiler for MPC over the ring Z2k in the honest
majority setting, that takes several building blocks, which can be essen-
tially instantiated using semi-honest protocols, and compiles them into a
maliciously secure protocol. At a high level, we follow the framework of
Chida et al. (CRYPTO 2018) for finite fields, and use techniques from
Cramer et al. (CRYPTO 2018) to achieve compatibility for rings with
only a small overhead. Per multiplication gate, our compiler requires only
two invocations of a semi-honest multiplication protocol over the larger
ring Z2k+s , where s is the statistical security parameter. As with previous
works in this area aiming to achieve high efficiency, our protocol is secure
with abort and does not achieve fairness, meaning that the adversary
may receive output while the honest parties do not.

Using our compiler, we obtain two maliciously secure protocols that are
both highly efficient. The first works for three parties and is based on
replicated secret sharing, and requires each party to send just 2(k + s)
bits per multiplication gate. Our second protocol works for any number
of parties, and uses a variant of Shamir secret sharing that was recently
proposed by Abspoel et al. (TCC 2019). The protocol requires each party
to send just 3(k+ s) bits in the online computation and 3(k+ s) logn bits
in the input-independent offline step, per multiplication gate. To the best
of our knowledge, this is the first concretely-efficient protocol for MPC
over rings with an honest majority that works for an arbitrary number of
parties. We implemented our two protocols, run extensive experiments
to measure their performance and report their efficiency. Our results are
the first to show experimentally that computation over rings for any n is
practically viable.

1 Introduction

Multiparty computation (MPC) is a cryptographic tool that allows multiple
parties to compute a given function on private inputs whilst revealing only
its output; in particular, parties’ inputs and the intermediate values of the
computation remain hidden. MPC has by now been studied for several decades,
and different protocols have been developed throughout the years.



Most MPC protocols are “general purpose”, meaning that they can in principle
compute any computable function. This generality is typically obtained by
representing the function as an arithmetic circuit modulo some integer p. Note
that implied in this representation, is a set of integers on which computation can
be performed. Traditionally, MPC protocols are classified as being either boolean
or arithmetic, where the former have p = 2 and the latter has p > 2. However,
most of the existing arithmetic MPC protocols, independently of their security,
require the modulus to be a prime (and for some protocols this prime must be
large) [5,6,20,32,26,16,33].

It was only recently that practical protocols in the arithmetic setting for a
non-prime modulus were developed. The SPDZ2k protocol securely evaluates
functions in the dishonest majority case [17], while several other works focus on
honest majority case for small number of parties [26,16,2,25]. Computation over
Z2k is appealing due benefits in performance over computation over fields, as
verified in [24]. These benefits are partly due to the fact that arithmetic over
rings like Z232 or Z264 can be implemented more efficiently in modern hardware
than arithmetic over Fp, which requires a software implementation for reduction
modulo p. Also, non-arithmetic operations like comparison and truncation become
simpler and more efficient in this setting [24,34]. Though results are recent, MPC
over rings has already been used in applications like privacy-preserving machine
learning and secure evaluation of neural networks [34,36,18,40]. However, to this
date, no concretely-efficient protocol that works for any number of parties has
been proposed in the honest majority setting.

1.1 Our Contributions

In this work, we develop highly efficient protocols over Z2k by presenting a
generic compiler that transforms a passively secure protocol for computation
over Z2k+s , to a protocol over the ring Z2k which is actively secure with abort
and provides roughly s bits of statistical security.1 We require our input protocol
to be secure up to additive attack: an active adversary attacking the protocol
may only introduce an additive error at each multiplication gate, rather than
arbitrary (e.g. multiplicative) errors. While this may seem like a strict condition,
in fact most existing passively secure protocols satisfy this condition [28]. Both
the input and output protocols of our compiler are secure in the honest majority
setting.

The amortized cost of our compiler per multiplication gate is just two invo-
cations of the passively secure protocol over the ring Z2k+s . Furthermore, our
compiler preserves the important property shared by some honest-majority mul-
tiplication protocols, which is that dot-products on shared vectors have the same
communication cost as one single multiplication. This property is crucial for many
applications like secure array indexing [7], or even more importantly applications

1 Although our protocols are statistically secure in principle, some efficient instantiations
might make use of computational assumptions.



relying on matrix arithmetic like SVMs or neural networks, as shown for example
in [34], and has not been achieved over rings in the literature before.

We apply our compiler to two passively secure protocols over Z2k , and thus
obtain two actively secure protocols. The first protocol works for an arbitrary
number of parties, and to the best of our knowledge we obtain the first actively
secure protocol over Z2k that provides concrete efficiency in this setting. It is
based on a version of Shamir secret sharing over rings [2], which embeds the shares
in an extension ring. Because the size of the shares of our secret-sharing scheme is
increased by a factor of log n bits, each party needs to communicate 3(k+ s) log n
bits in the input-independent offline step. Through a novel optimization that
also applies to the passively secure protocol, we are able to eliminate the log n
factor in the online computation, resulting with bandwidth of just 3(k + s) bits
in the online computation.

The second protocol works in the three-party setting and is extremely efficient.
It is based on a protocol that uses replicated secret sharing and which is known
to be very efficient [4]. Our compiled protocol for the three-party case requires
each party to send just two elements in the ring Z2k+s per multiplication gate,
i.e., communicating 2(k+ s) bits per party. Furthermore, this protocol is the first
actively secure three-party protocol over rings with the property that arbitrarily
long secure dot products can be computed at the communication cost of one single
multiplication. Previous protocols like [25,26] use Beaver-based preprocessing
and do not achieve this property.

Implementation. We compare both protocols to other works, both theoretically
and empirically. Our implementation for the 3-party protocol shows that 1 million
multiplications in a circuit with depth-20 over the ring Z264 , can be processed
in 400 ms in a LAN network. For the Shamir-based protocol, we are able to
process a circuit of 1 million multiplications in depth-20 over the ring Z264 in 2
seconds overall with 3 parties in a LAN network, from which only 200 ms are
spent on the online computation. For 9 parties, this increases to just 3 seconds,
from which 500 ms are spent on the online computation To obtain these results,
we implemented the secret-sharing scheme over Z2k via Galois rings of [2]. Our
work demonstrates the practical viability of these techniques, which may have
applications beyond MPC.

Our protocols perform well with respect to their field analogues [16], which
illustrates the benefits of working over the ring Z2k in terms of concrete efficiency.

1.2 Overview of our Techniques

Compiler. The starting point of our work is the general compiler by Chida et
al. [16], which achieves a similar result to ours, but over fields. In that work, the
authors show that passively secure honest majority protocols over fields, that
satisfy the property of being secure up to additive attacks, can be compiled to
achieve active security without a noticeable loss in efficiency. The main idea
behind their compiler is that each input and intermediate value is encoded as
x 7→ (x, r · x) with a random secret r. The computation is carried out over this



AMD encoding, with the property that adversary which adds an offset to the
codeword that is independent of x and r, is detected with high probability. Over
fields the statistical security grows with the field size, but this does not hold
for non-field rings Z2k . In particular, the probability of detecting errors for the
ring Z2k remains 1/2, regardless of the size of k.

Our main observation is that a similar issue appears in the dishonest majority
scenario, where a MAC scheme is required in order to enforce correct behavior
from the parties when reconstructing a value. More precisely, the MAC scheme
used in the SPDZ protocol [23] relies on the same property as above. This MAC
scheme was adapted to work over Z2k in [17] by, instead of working over Z2k ,
moving to Z2k+s to provide some “extra room” for authentication.

At a very high level, our compiler is obtained by following the template from
[16], and using the “SPDZ2k trick” from [17] for the underlying AMD code, and
it is described and analyzed in Section 4. However, various subtle issues arise
when trying to combine these two techniques directly.

For example, one of the critical steps in the compiler is to check whether a
given secret-shared value x equals 0, without revealing anything else. Over fields,
this can be done by opening r · x for uniformly random r; with high probability
rx = 0 if and only if x = 0, and for x 6= 0 we have that rx is uniformly random.
However, this does not work over Z2k , e.g. since for x = 2k−1 we have rx = 0
with probability 1/2. In Section 3.1 we present a novel check for equality with
zero that works over rings, which may be of independent interest.

Efficient input protocols. Similarly to [16], we apply our compiler to two
passively secure protocols: one based on replicated secret sharing and one based
on Shamir secret sharing. For the first protocol, we simply observe in Section 5.1
that the proof presented in [33], which shows that replicated secret sharing over
fields is secure up to additive attacks, also holds over Z2k .

Now, for the second protocol, we rely on the recent work of [2] that extends
Shamir secret sharing to the ring setting via Galois rings. Their protocol for
the honest majority setting is based on [5], but since they aim for guaranteed
output delivery, their techniques are quite complex and the concrete efficiency
is not so clear. We show how to use their techniques in an efficient way. This
includes protocols for efficiently generating random sharings and multiplication
of shared values. In particular, we combine their core ideas with the semi-honest
protocol from [21], to obtain a simple multiplication protocol that is secure
against additive errors. Moreover, note that the secret-sharing scheme from [2]
does not have shares in the secret space ring Z2k but in a Galois ring extension
R ∼= (Z2k)dlog(n)e. Through a simple but novel optimization detailed in Section 5.2,
we are able to avoid communicating full elements in R in the online phase, but
instead communicate just one element of Z2k , ensuring the online phase has
linear complexity in the number of players.

1.3 Related Work

The only previous general compiler with concrete efficiency over rings, to the
best of our knowledge, is the compiler of [22], which was improved by [25].



However, their compiler does not preserve the adversary threshold when moving
from passive to active security. In addition, in [22] and [25] the compiler was
instantiated for the 3-party case only.

The only concretely efficient protocol for arithmetic computation over rings
that works for any number of parties is the SPDZ2k protocol [17] which was
proven to be practical in [24]. This protocol is for the dishonest majority and thus
requires the use of much heavier machinery, which makes it orders of magnitudes
slower than ours. However, they deal with a more complicated setting and provide
stronger security.

In the three-party setting with one corruption, there are several works which
provide high efficiency for arithmetic computations over rings. The Sharemind
protocol [8] is being used to solve real-world problems but provides only pas-
sive security. The actively secure protocol of [26], which was optimized and
implemented in [3], is based on the “cut–and–choose” approach. This protocol
requires each party to send 7 ring elements per multiplication gate. The advantage
of their approach is that this amount stays the same also when working over
small rings (e.g., boolean circuits). Thus, while we achieve lower bandwidth for
large rings such as Z232 and Z264 , their protocol will be favorable when working
over small rings. The protocol of [15] has a slightly overall higher bandwidth
than [3], but focuses on minimizing online (input-dependent) cost. The actively
secure three-party protocol of [25] is the closest to our protocol in the sense
that they also focus on efficiency for large rings. The overall communication per
multiplication gate of their protocol is 3(k + s) bits sent by each party, which
is higher than ours by (k + s) bits. We provide a detailed empirical comparison
with [25] in Section 6.4. Finally, parallel to this work, a new promising direction
was presented by [11]. They used the sub-linear distributed zero-knowledge proof
from [9] to achieve malicious security at almost the same cost as semi-honest
for large circuits. However, their protocol was not implemented and experiments
that were carried-out for 31-bit Merssene field, show that only their verification
step takes several seconds for a 1-million gate circuit due to heavy computational
work. This is expected to be even worse for rings. Also, it is not clear at the
moment how to extend their techniques to more than 3 parties.

2 Preliminaries and Definitions

Notation. Let P1, . . . , Pn denote the n parties participating in the computation,
and let t denote the number of corrupted parties. In this work, we assume an
honest majority, and thus t < n

2 . Throughout the paper, we use H to denote the
subset of honest parties and C to denote the subset of corrupted parties. We use
[n] to denote the set {1, . . . , n}. ZM denotes the ring of integers modulo M , and
the congruence x ≡ y mod 2` is denoted by x ≡` y.

2.1 Linear Secret Sharing and its Properties

Let ` be a positive integer. A perfect (t, n)-secret-sharing scheme (SSS) over Z2`

distributes an input x ∈ Z2` among the n parties P1, . . . , Pn, giving shares to



each one of them in such a way that any subset of at least t + 1 parties can
reconstruct x from their shares, but any subset of at most t parties cannot learn
anything about x from their shares. We denote by share(x) the sharing interactive
procedure and by open(JxK) the procedure to open a sharing and reveal the secret.
The share procedure may take also in addition to x, a set of shares {xi}i∈J for
J ⊂ [n] and |J | ≤ t, such that share(x, {xi}i∈J ) satisfies JxK = (x′1, . . . , x

′
n), with

x′i = xi for i ∈ J . The open procedure may take an index i as an additional
input. In this case, the secret is revealed to Pi only. In case the sharing JxK is not
correct as defined below, open(JxK) will output ⊥. An SSS is linear if it allows the
parties to obtain shares of linear combinations of secret-shared values without
interaction.

Our compiler applies to any linear SSS over Z2k that has a multiplication
protocol that is secure against additive attacks, as defined in Section 2.3. The
only extra, non-standard properties required by our compiler are the following
(for a formalization of the requirements of the SSS, see Appendix A):

Modular Reduction. We assume that the open procedure is compatible with
modular reduction, meaning that for any 0 ≤ `′ ≤ ` and any x ∈ Z2` , reducing
each share in JxK` modulo 2`

′
yields shares Jx mod 2`

′
K`′ . We denote this by

JxK` → JxK`′ .
Multiplication by 1/2. Given a shared value JxK`, we assume if all the shares

are even then shifting these shares to the right yields shares Jx′K`−1, where
x′ = x/2.2

Throughout the entire paper, we set the threshold for the secret-sharing
scheme to be bn−1

2 c, and we denote by t the number of corrupted parties. Since
we assume an honest majority, it holds that t < n/2 and so the corrupted parties
can learn nothing about a shared secret. This also means that the shares of the
honest parties always fully determine the shares of the corrupted parties. We will
use this property frequently in our functionalities.

Now we define what it means for the parties to have correct shares of some
value. Let J be a subset of honest parties of size t+ 1, and denote by val(JvK)J
the value obtained by these parties after running the open protocol, where no
corrupted parties or additional honest parties participate, i.e. open(JvKJ). Note
that val(JvK)J may equal ⊥ and in this case we say that the shares held by the
honest parties are not valid. Informally, a secret sharing is correct if every subset
of t+ 1 honest parties reconstruct the same value (which is not ⊥). The formal
definition appears in Appendix A.

2.2 Security Definition

We use the standard definition of security based on the ideal/real model paradigm
[12,29], with security formalized for non-unanimous abort. This means that the

2 If all the shares JxK` are even then these shares may be written as JxK` = 2 · JyK`,
which, by the homomorphism property, are shares of 2 · y. Since these are shares of x
as well, this shows that x ≡` 2 · y, so x is even.



adversary first receives the output, and then determines for each honest party
whether they will receive abort or receive their correct output. It is easy to modify
our protocols so that the honest parties unanimously abort by running a single
(weak) Byzantine agreement at the end of the execution [30]. For simplicity, we
omit this step from the description of our protocols. Our protocol is cast in the
synchronous model of communication, in which it is assumed that the parties
share a common clock and protocols can be executed in rounds.

2.3 Secure Multiplication up to Additive Attacks [27,28]

Our construction works by running a multiplication protocol (for multiplying
two values that are shared among the parties) that is not fully secure in the
presence of a malicious adversary and then running a verification step that enables
the honest parties to detect cheating. In order to achieve this, we start with a
multiplication protocols with the property that the adversary’s ability to cheat is
limited to carrying out a so-called “additive attack” on the output. Formally, we
say that a multiplication protocol is secure up to an additive attack if it realizes
Fmult defined in Functionality 1. This functionality receives input sharings JxK
and JyK from the honest parties and an additive value d from the adversary, and
outputs a sharing of x · y + d. Since the corrupted parties can determine their
own shares in the protocol, the functionality allows the adversary to provide the
shares of the corrupted parties, but this reveals nothing about the shared value.

As we will discuss in the instantiations sections (Section 5.1 and 5.2), the
requirements defined by this functionality can be met by some semi-honest
multiplication protocols over Z2` , namely replicated secret sharing and the more
recent protocol of Cramer et al. [2], which is an extension of Shamir Secret
Sharing to the setting of Z2` . This will allow us to implement this functionality
in a very efficient way.

Functionality 1 Fmult(`)

1. Upon receiving JxKH` and JyKH` from the honest parties, the ideal functionality Fmult com-

putes x, y and the corrupted parties shares JxKC` and JyKC` .

2. Fmult hands JxKC` and JyKC` to the ideal-model adversary/simulator S.
3. Upon receiving d and {αi}i|Pi∈C from S, functionality Fmult defines z ≡` x · y + d and

JzKC` = {αi}i|Pi∈C . Then, it runs share(z, JzKC` ) to obtain a share zj for each party Pj .
4. The ideal functionality Fmult hands each honest party Pj its share zj .

Efficient Sum of Products. In addition to the above, we consider a similar
functionality FDotProduct that, instead of computing one single multiplication,
allows the parties to securely compute the dot product of two vectors of shares,
where the adversary is allowed to inject an additive error to the final output.
This is formalized in Functionality 2, in Appendix B. As in [16], we will show
that the functionality can be realized at almost the same cost as Fmult.



3 Building Blocks and Sub-Protocols

Our compiler requires a series of building blocks in order to operate. These
include generation of random shares and public coin-tossing, as well as broadcast.
Furthermore, as mentioned in Section 1.2, a core step of our compiler is checking
that a shared value is zero, leaking nothing more than this binary information.
We define this functionality and instantiate it in Section 3.1. We stress that our
presentation here is very general and it assumes nothing about the underlying
secret sharing scheme beyond the properties stated in Section 2.1.

3.1 Basic Building Blocks

Frand – Generating Random Shares. We define the ideal functionality Frand

to generate a sharing of a random value unknown to the parties. The functionality
lets the adversary choose the corrupted parties’ shares, which together with the
random secret chosen by the functionality, are used to compute the shares of the
honest parties.

The way to compute this functionality depends on the specific secret sharing
scheme that is being used. For example, for the case of replicated secret sharing
we consider the well-known method [4] that is based on distributing replicated
keys for a PRF, which allows the parties to generate shares of random values
without interaction. For the case of Shamir secret sharing (Section 5.3), we
consider an instantiation which relies on super-invertible matrices [21] to achieve
linear communication complexity, together with the “tensoring-trick” from [13,2]
in order to instantiate such matrices efficiently.

Fcoin – Generating Random Coins. Fcoin(`) is an ideal functionality that
chooses a random element from Z2` and hands it to all parties. A simple way
to compute Fcoin is to use Frand to generate a random sharing and then open it.
In the plain model, one can generate random coins by having each party (more
precisely, it suffices for t+ 1 parties to do this) shares a random secret, which are
then summed by the parites and opened to reveal the sum of the secrets. The
fact that there is a least one honest party which shares a secret guarantees that
the obtained value is uniformly distributed over the ring. On the other hand,
the properties of the open procedure, guarantee that if the corrupted parties
distributed an incorrect sharing, the honest parties will detect it and abort.

Fbc – Broadcast with Abort. Another essential primitive for our compiler is
broadcast, in which a given party sends a message to all other parties, with the
guarantee that all the honest parties agree on the same value. Furthermore, if
the sender is honest, the agreed value is precisely the one that the sender sent.
It is well-known that broadcast cannot be achived when t ≥ n/3 without any
trusted set-up [39]. However, for our protocol, we need only a weaker notion of
broadcast with abort, meaning that the adversary can cause the parites to abort
(but not to output an incorrect message).



A simple way to compute Fbc is the well-known echo-broadcast protocol,
where the parties echo the message they received and send it the other parties.
Note that this protocol does not achieve unanimous abort and gives the adversary
the ability to determine which of the honest parties will output the sent message
and which will abort (as mentioned in Section 2.2).

Finput – Secure Sharing of Inputs. In this section, we present our protocol
for securely sharing the parties’ inputs. The protocol is the same as in [16] (and
many prior works): for each input x belonging to a party Pj , the parties call
Frand to generate a random sharing JrK; denote the share held by Pi by ri. Then,
r is reconstructed to Pj , who broadcasts x − r to all parties. Finally, each Pi
outputs the share Jr+ (x− r)K = JxK. The functionality this protocol instantiates
is denoted by Finput, and it is formalized in Section B in the Appendix.

FCheckZero – Checking Equality to 0. We assume a functionality FCheckZero,
which receives JvKH` from the honest parties, uses them to compute v and sends
accept to all parties if v ≡` 0. Else, if v 6≡` 0, the functionality sends reject.
This functionality is described in detail as Functionality 4 in Section C in the
appendix. In the same section, we show how to instantiate this functionality,
which is non-trivial when compared to the field sertting. For example, a simple
way to approach this problem when working over a field is sampling a random
multiplicative mask JrK, multiply Jr · vK = JrK · JvK, open r · v and check that it is
equal to zero. Clearly, since r is random then r · v looks also random if v 6= 0.
However, this technique does not work over the ring Z2` : for example, if v is a
non-zero even number then r · v is always even, which reveals too much about v.

Instead of following the same idea as over fields, we adapt the ideas introduced
in [24] to perform oblivious equality check. In a nutshell, this technique consists
of generating shares of the bit representation of the shared value JvK`, and then
executing an OR circuit to check that all these bits are 0. This approach requires
several tools, like a correct multiplication protocol and the generation of shared
values JbK` where b is a random bit. Furthermore, the results in [24] are set in
the setting of a concrete secret-sharing scheme, namely additive secret sharing.
In Section C we show how to implement these requirements and how to extend
the techniques of [24] to an arbitrary secret-sharing scheme.

Finally, although this instantiation is generic in the sense that it works for an
arbitrary secret sharing scheme satisfying the conditions stated in Sections 2.1
and A, it is not very efficient. In practice, concrete secret sharing schemes allow
for cheaper check-to-zero protocols, as show later on.

4 The Main Protocol for Rings

In this section, we present our construction to compute arithmetic circuits over
the ring Z2k . A formal description appears in Protocol 1. Our protocol follows the
paradigm of [16] which works as follows. Each input to the circuit is randomized



using a random sharing JrK. This is done by taking each input JvK and multiply it
with JrK. Once the parties hold a pair of sharings on each input wire (JvK, Jr · vK),
the parties go over the circuit while maintaining this invariant. For linear gates
this can be done locally by each party due to the homomorphism property of the
secret sharing scheme. For multiplication gates, with two inputs with sharings
(JxK, Jr · xK) and (JyK, Jr · yK), the parties run a multiplication protocol twice, to
multiply JxK and JyK and to multiply Jr · xK and JyK. To carry out all the above
multiplications, the parties use the functionality Fmult, which only guarantees
security up to additive attack (and thus can be instantiated by highly-efficient
protocols as we will see in Section 5.1 and Section 5.2).

Protocol 1 Computing Arithmetic Circuits Over the Ring Z
2k

Inputs: Each party Pj (j ∈ {1, . . . , n}) holds an input xj ∈ ZL
2k

.

Auxiliary Input: The parties hold the description of an arithmetic circuit C over Z
2k

that
computes f on inputs of length M = L · n. Let N be the number of multiplication gates in C.
In addition, the parties hold a parameter s ∈ N.

The protocol:

1. Secret sharing the inputs:
(a) For each input xj held by party Pj , party Pj represent it as an element of ZL

2k+s
and

sends xj to Finput(k + s).

(b) Each party Pj records its vector of shares (xj1, . . . , x
j
M ) of all inputs, as received from

Finput(k+s). If a party received ⊥ from Finput, then it sends abort to the other parties
and halts.

2. Generate randomizing shares: The parties call Frand(k + s) to receive JrKk+s, where r ∈R
Z
2k+s

.
3. Randomization of inputs: For each input wire sharing JvmKk+s (where m ∈ {1, . . . ,M})

the parties call Fmult on JrKk+s to receive Jr · vmKk+s.
4. Circuit emulation: The parties traverse over the circuit in topological order. For each gate

G` the parties work as follows:
– G` is an addition gate: Given tuples (JxKk+s, Jr · xKk+s) and (JyKk+s, Jr · yKk+s)

on the left and right input wires respectively, the parties locally compute
(Jx+ yKk+s, Jr · (x+ y)Kk+s).

– G` is a multiplication-by-a-constant gate: Given a constant a ∈ Z
2k

and
tuple (JxKk+s, Jr · xKk+s) on the input wire, the parties locally compute
(Ja · xKk+s, Jr · (a · x)Kk+s).

– G` is a multiplication gate: Given tuples (JxKk+s, Jr · xKk+s) and (JyKk+s, Jr · yKk+s)
on the left and right input wires respectively:
(a) The parties call Fmult on JxKk+s and JyKk+s to receive Jx · yKk+s.
(b) The parties call Fmult on Jr · xKk+s and JyKk+s to receive Jr · x · yKk+s.

5. Verification stage: Let {(JziKk+s, Jr · ziKk+s)}Ni=1 be the tuples on the output wires of all

multiplication gates and let {JvmKk+s, Jr · vmKk+s}Mm=1 be the tuples on the input wires of
the circuit.
(a) For m = 1, . . . ,M , the parties call Frand(k + s) to receive JβmKk+s.
(b) For i = 1, . . . , N , the parties call Frand(k + s) to receive JαiKk+s.
(c) Compute linear combinations:

i. The parties call FDotProduct on (Jα1Kk+s, . . . , JαN Kk+s, Jβ1Kk+s, . . . , JβM Kk+s) and
(Jr · z1Kk+s, . . . , Jr, ·zN Kk+s, Jr · v1Kk+s, . . . , Jr · vM Kk+s) to obtain

JuKk+s = J
∑N
i=1 αi · (r · zi) +

∑M
m=1 βm · (r · vm)Kk+s.

ii. The parties call FDotProduct on (α1, . . . , αN , β1, . . . , βM ) and
(Jz1Kk+s, . . . , JzN Kk+s, Jv1Kk+s, . . . , JvM Kk+s) to obtain

JwKk+s = J
∑N
i=1 αi · zi +

∑M
m=1 βm · vmKk+s.

(d) The parties run open(JrKk+s) to receive r.
(e) Each party locally computes JT Kk+s = JuKk+s − r · JwKk+s.
(f) The parties call FCheckZero(k + s) on JT Kk+s. If FCheckZero(k + s) outputs reject, the

parties output ⊥ and abort. If it outputs accept, they proceed.
6. Output reconstruction: For each output wire of the circuit with JvKk+s, the parties locally

convert to JvKk. Then, they run v mod 2k = open(JvKk, j), where Pj is the party whose
output is on the wire. If Pj received ⊥ from the open procedure, then it sends ⊥ to the
other parties, outputs ⊥ and halts.

Output: If a party has not aborted, then it outputs the values received on its output wires.



Unfortunately, the fact that the underlying multiplication protocol is secure
only up to additive attacks means that the output of the multiplications might
be incorrect. Thus, before reconstructing the outputs, the parties run a short
verification step which guarantees that if cheating took place, the honest parties
will detect it and abort. This is achieved by having the parties first taking a
random linear combination of the shares on output wires of all multiplication gates
and the shares on input wires, i.e. computing JuK = J

∑N
i=1 αi ·zi+

∑M
m=1 βm ·vmK,

and taking a random linear combination of the randomized sharing on these
wires, i.e., computing JwK = J

∑N
i=1 αi · (r · zi) +

∑M
m=1 βm · (r · vm)K, where N is

the number of multiplication gates, M is the number of input wires and all αi
and βm are random secrets. Then, the parties check that JT K = JwK− r · JuK is a
sharing of 0 using the ideal functionality FCheckZero.

The protocol as described so far works directly for circuits which are defined
over a finite field F. As shown in [16], if the adversary carries out an additive
attack in any of the multiplication, the check will pass for exactly one choice of r
or a random coefficient, resulting with a cheating probability of 3/|F|. However,
this does not work when moving to rings. To see this, assume that the adversary
has attacked exactly one gate, indexed by i0, such that zi0 = xi0 · yi0 + di0 and
r · zi0 = (r · xi0) · yi0 (i.e., the adversary added di to the result of multiplying
xi0 · yi0 and acted honestly when multiplying r · xi0 with yi0). For simplicity
assume that the output of this gate is an output wire of the circuit. Thus, we
have that T = (r · xi0) · yi0 − r · (xi0 · yi0 + di0) = r · di0 . Now, when working over
fields, T = 0 only if r = 0 (since di0 6= 0), which happens with probability 1/|F|.
However, when working over the ring Z2k , the adversary can choose di0 = 2k−1,
which means that T ≡k 0 if r is even, which happens with probability 1/2.

In order to reduce the cheating success probability, we borrow the idea of [17]
to work on the larger ring Z2k+s . This solves the above attack which now can
succeed with probability 1/2s+1 only (since now r · di0 ≡k+s 0 for di0 = 2k−1 is
equivalent to r ≡k+s−(k−1) 0, i.e., for this to hold the adversary needs to guess
the upper s + 1 bits of r). More generally, we show in Lemma 1 that for any
attack in any of the calls to Fmult with an additive value d 6≡k 0, the honest
parties will output accept at the end of the verification step with probability of
at most 2−s+log(s+1). On the other hand, the adversary may now also carry out
attacks with additive values that are congruent to 0 modulo 2k but not modulo
2k+s. While this has no effect on the correctness of the output (since it does not
change the lower k bits of the values on the wires), a challenge here is to show
that it is possible to simulate correctly when FCheckZero returns accept or reject.
In Theorem 1, where we prove the security of our compiler, we show that there
are several cases here and that the simulation has the same distribution as in the
real execution.

Finally, we want to highlight another subtle issue regarding the security
of the protocol. As can be seen in the description of the protocol, for the
random linear combination taken in the verification step, we require the random
coefficients to remain secret during the computation (thus producing them
using the functionality Frand). We stress that this is essential for keeping the



protocol secure. In particular, if the coefficients were revealed to the parties,
then the adversary will be able to carry out a selective failure attack where
one bit of information is revealed by FCheckZero. To see this, assume again that
the adversary has attacked exactly one gate, indexed by i0, in the following
way. When multiplying xi0 with yi0 , the adversary acted honestly, but when
multiplying r · xi0 with yi0 , it added the value di0 . Thus, on the output wire,
the parties hold a sharing of the pair (xi0 · yi0 , r · xi0 · yi0 + di0). Now, assume
that this wire enters another multiplication gate, indexed by j0 with input
shares on the second wire being (wj0 , r · wj0) and that the output of this second
gate is an output wire of the circuit. Thus, on the output of this gate, the
parties will hold the sharing (xi0 · yi0 · wj0 , (r · xi0 · yi0 + di0)wj0) (assuming
the adversary does not attack this gate as well). In this case, we have that
T = αi0 · di0 +αj0 · (di0 ·wj0) = di0(αi0 +αj0 ·wj0). Now, if di0 = 2k+s−1 then it
follows that T ≡k+s 0 if and only if αi0 + αj0 · wj0 is even.

The attack presented above does not change the k lower bits of the values on
the wires, and thus has no effect on the correctness of the output. However, if αi0
and αj0 are public and known to the adversary, then by FCheckZero’s ouptut the
adversary may be able to learn whether wj0 is even or not. In contrast, when αi0
and αj0 are kept secret, learning whether αi0 + αj0 · wj0 is even or odd does not
reveal any information about wj0 since it is now perfectly masked by αi0 and αj0 .
Therefore, to prevent this type of attack, we are forced to use random secrets
for our random linear combination. Here is where the functionality FDotProduct

becomes handy, as it allows to compute the sum of products of sharings in an
efficient way which is exactly what we need to compute

∑N
i=1JαiK · JziK.

Lemma 1. If A sends an additive value d 6≡k 0 in any of the calls to Fmult in
the execution of Protocol 1, then the value T computed in the verification stage
of Step 5 equals 0 with probability 2−s+log(s+1).

Proof: Suppose that (JxiKk+s, JyiKk+s, JziKk+s) is the multiplication triple
corresponding to the i-th multiplication gate, where JxiKk+s, JyiKk+s are the
sharings on the input wires and JziKk+s is the sharing on the output wire. We
note that the values on the input wires may not actually be the appropriate values
as when the circuit is computed by honest parties. However, in the verification
step, each gate is examined separately, and all that is important is whether the
randomized result is Jr · ziKk+s for whatever zi is here (i.e., even if an error was
added by the adversary in previous gates). By the definition of Fmult, a malicious
adversary is able to carry out an additive attack, meaning that it can add a value
to the output of each multiplication gate. We denote by δi ∈ Z2k+s the value that
is added by the adversary when Fmult is called with JxiKk+s and JyiKk+s, and by
γi ∈ Z2k+s the value added by the adversary when Fmult is called with the shares
JyiKk+s and Jr · xiKk+s. However, it is possible that the adversary has attacked
previous gates and so JyiKk+s is actually multiplied with Jr · xi + εiK, where the
value εi ∈ Z2k+s is an accumulated error from previous gates.3 Thus, it holds

3 Although attacks in previous gates may be carried out on both multiplications, the
idea is here is to fix xi which is shared by JxiKk+s at the current value on the wire, and



that val(JziK)H = xi · yi + δi and val(Jr · ziK)H = (r · xi + εi) · yi + γi. Similarly,
for each input wire with sharing JvmK, it holds that val(Jr · vmK)H = r · vm + ξm,
where ξm ∈ Z2k+s is the value added by the adversary when Fmult is called with
JrKk+s and the shared input JvmKk+s. Thus, we have that

val(JuK)H =

N∑
i=1

αi · ((r · xi + εi) · yi + γi)

+

M∑
m=1

βm · (r · vm + ξm) +Θ1

val(JwK)H =

N∑
i=1

αi · (xi · yi + δi) +

M∑
m=1

βm · vm +Θ2

where Θ1 ∈ Z2k+s and Θ2 ∈ Z2k+s are the values being added by the adversary
when FDotProduct is called in the verification step, and so

val(JT K)H = val(JuK)H − r · val(JwK)H =

=

N∑
i=1

αi · ((r · xi + εi) · yi + γi) +

M∑
m=1

βm · (r · vm + ξm) + θ1

− r ·

(
N∑
i=1

αi · (xi · yi + δi) +

M∑
m=1

βm · vm +Θ2

)

=

N∑
i=1

αi · (εi · yi + γi − r · δi) (1)

+

M∑
m=1

βm · ξm + (Θ1 − r ·Θ2),

where the second equality holds because r is opened and so the multiplication
r · JwKk+s always yields Jr · wKk+s. Let ∆i = εi · yi + γi − r · δi.

Our goal is to show that val(JT K)H , as shown in Eq. (2), equals 0 with
probability at most 2−s+log(s+1). We have the following cases.

– Case 1: There exists m ∈ [M ] such that ξm 6≡k 0. Let m0 be the smallest such
m for which this holds. Then val(JT K)H ≡k+s 0 if and only if

βm0 · ξm0 ≡k+s

− N∑
i=1

αi ·∆i −
M∑
m=1
m6=m0

βm · ξm − (Θ1 − r ·Θ2)

 .

then given the randomized sharing Jx′iKk+s, define εi = x′i − r · xi as the accumulated
error on the input wire.



Let 2u be the largest power of 2 dividing ξm0
. Then we have that

βm0 ≡k+s−u

−∑N
i=1 αi ·∆i −

∑M
m=1
m 6=m0

βm · ξm − (Θ1 − r ·Θ2)

2u

·(ξm0

2u

)−1

.

By the assumption that ξm 6≡k 0 it follows that u < k and so k + s − u > s
which means that the above holds with probability at most 2−s, since βm0

is
uniformly distributed over Z2k+s .

– Case 2: All ξm ≡k 0. By the assumption in the lemma, some additive value
d 6≡k 0 was sent to Fmult. Since none was sent for the input randomization,
there exists some i ∈ {1, . . . , N} such that δi 6≡k 0 or γi 6≡k 0. Let i0 be the
smallest such i for which this holds. Note that since this is the first error added
which is 6≡k 0, it holds that εi0 ≡k 0. Thus, in this case, val(JT K)H ≡k+s 0 if
and only if αi0 ·∆i0 ≡k+s Y , where

Y =

− N∑
i=1
i 6=i0

αi ·∆i −
M∑
m=1

βm · ξm − (Θ1 − r ·Θ2)

 .

Let q be the random variable corresponding to the largest power of 2 dividing
∆i0 , where we define q = k + s in the case that ∆i0 ≡k+s 0. Let E denote the
event αi0 ·∆i0 ≡k+s Y . We have the following claims.

• Claim 1: For k < j ≤ k + s, it holds that Pr[q = j] ≤ 2−(j−k).

To see this, suppose that q = j and j > k. It holds then that ∆i0 ≡j 0, and
so ∆i0 ≡k 0. We first claim that in this case it must hold that δi0 6≡k 0.
Assume in contradiction that δi0 ≡k 0. In addition, by our assumption we
have that γi0 6≡k 0, εi ≡k 0 and ∆i0 = εi0 · yi0 + γi0 − r · δi0 ≡k 0. However,
εi · yi0 ≡k 0 and r · δi0 ≡k 0 imply that γi0 ≡k 0, which is a contradiction.

We thus assume that δi0 6≡k 0, and in particular there exists u < k, such
that u is the largest power of 2 dividing δi0 . It is easy to see then that q = j

implies that r ≡j−u
(
εi0 ·yi0+γi0

2u

)
·
(
δi0
2u

)−1

. Since r ∈ Z2k+s is uniformly

random and u < k, we have that this equation holds with probability of at
most 2−(j−u) ≤ 2−(j−k).

• Claim 2: For k < j < k + s it holds that Pr[E | q = j] ≤ 2−(k+s−j).

To prove this let us assume that q = j and that E holds. In this case

we can write αi0 ≡k+s−j
Y
2j ·

(
∆i0
2j

)−1

. For k < j < k + s it holds that

0 < k + s − j < s and therefore this equation can be only satisfied with
probability at most 2−(k+s−j), given that αi0 ∈ Z2s is uniformly random.

• Claim 3: Pr[E | 0 ≤ q ≤ k] ≤ 2−s.

This is implied by the proof of the previous claim, since in the case that
q = j with 0 ≤ j ≤ k, it holds that k + s − j ≥ s, so the event E implies

that αi0 ≡s Y
2j ·

(
∆i0
2j

)−1

, which holds with probability at most 2−s.



Putting these pieces together, we thus have the following:

Pr [E] = Pr [E | 0 ≤ q ≤ k] · Pr[0 ≤ q ≤ k] +
k+s∑
j=k+1

Pr [E | q = j] · Pr[q = j]

≤ 2−s + s · 2−s = (s+ 1) · 2−s = 2−s+log(s+1). (2)

To sum up the proof, in the first case we obtained that T = 0 with probability
of at most 2−s whereas in the second case, this holds with probability of at
most 2−s+log(s+1). Therefore, we conclude that the probability that T = 0 in
the verification step is bounded by 2−s+log(s+1) as stated in the lemma. This
concludes the proof.

We are now ready to prove the security of Protocol 1.

Theorem 1. Let f be an n-party functionality over Z2k and let s be a sta-
tistical security parameter. Then, Protocol 1 securely computes f with abort
in the (Finput,Fmult,Fcoin,Frand,FCheckZero)-hybrid model with statistical error
2−s+log(s+1), in the presence of a malicious adversary controlling t < n

2 parties.

Proof: Let A be the real world adversary who controls a set of corrupted parties
C and let S be the ideal world simulator. The simulator S works as follows:

1. Secret sharing the inputs: S receives from A the set of corrupted parties inputs
(values vj associated with parties Pi ∈ C) and the corrupted parties’ shares
{JvmKCk+s}Mm=1 that A sends to Finput in the protocol.

2. Generate the randomizing share: Simulator S receives the share JrKCk+s of the
corrupted parties that A sends to Frand.

3. Randomization of inputs: For every input wire m = 1, . . . ,M , simulator S
plays the role of Fmult in the multiplication of the mth input JvmKk+s with
JrKk+s. Specifically, S hands A the corrupted parties shares in JvmKk+s and
JrKk+s (it has these shares from the previous steps). Next, S receives the
additive value d = ξm ∈ Z2k+s and the corrupted parties’ shares JzKCk+s of the
result that A sends to Fmult. Simulator S stores all of these corrupted parties
shares.

4. Circuit emulation: Throughout the emulation, S will use the fact that it knows
the corrupted parties’ shares on the input wires of the gate being computed.
This holds initially from the steps above, and we will show it computes the
output wires of each gate below. For each gate G` in the circuit,

– If G` is an addition gate: Given the shares of the corrupted parties on the
input wires, S locally adds them as specified by the protocol, and stores
them.

– If G` is a multiplication-by-a-constant gate: Given the shares of the cor-
rupted parties on the input wire, S locally multiplies them by the constant
as specified by the protocol, and stores them.



– If G` is a multiplication gate: S plays the role of Fmult in this step (as
in the randomization of inputs above). Specifically, simulator S hands A
the corrupted parties’ shares on the input wires as it expects to receive
from Fmult (it has these shares by the invariant), and receives from A the
additive value as well as the corrupted parties’ shares for the output. These
additive values are δ` ∈ Z2k+s (for the multiplication of the actual values)
and γ` ∈ Z2k+s (for the multiplication of the randomized value), as defined
in the proof of Lemma 1. S stores the corrupted parties’ shares.

5. Verification stage: Simulator S works as follows. S plays the role of Frand

receiving the shares Jα1KCk+s, . . . , JαN KCk+s and Jβ1KCk+s, . . . , JβM KCk+s ∈ Z2k+s

sent to Frand by A. Then, it plays the role of FDotProduct receiving the shares
JuKCk+s, the shares JwKCk+s and the additive attacks Θ1 and Θ2 sent by A to
FDotProduct. Next, S chooses a random r ∈ Z2k+s and computes the shares of
r by (r1, . . . , rn) = share(r, JrKCk+s), using the shares JrKCk+s provided by A in
the “generate randomizing share” step above. Next, S simulates the honest
parties sending their shares in open(JrKk+s) to A, and receives the shares that
A sends to the honest parties in this open. If any honest party would abort (it
knows whether this would happen since it has all the honest parties’ shares),
then S simulates it sending ⊥ to all parties, externally sends abortj for every
Pj ∈ H to the trusted party computing f , and halts.
Finally, S simulates FCheckZero, as follows:
(a) If any non-zero ξm, δi, γi was provided to Fmult by A in the simulation

that is not congruent to 0 modulo 2k, then S simulates FCheckZero sending
reject to the parties.

(b) Otherwise, if any ξm, δi, γi was provided to Fmult by A in the simulation
that is not congruent to 0 modulo 2k+s, then S simulates FCheckZero

sending accept to the parties with probability p and reject with probability
1− p, where p = 2−(k+s−u) and u is determined as follows:
If ∃ξm 6≡k+s 0, let m0 be the smallest m for which this holds. Then, u is
the largest for which 2u divides ξm0

.
Otherwise, all ξm ≡k+s 0, but there is i ∈ {1, . . . , N} for which δi 6≡k+s 0
or γi 6≡k+s 0. Let i0 be the smallest index for which this holds. Then, u
is the largest for which 2u divides γi0 − r · δi0 .

(c) Finally, if all ξm, δi, γi ≡k+s 0, then S set T = Θ1 − r ·Θ2 and simulates
FCheckZero sending accept if T ≡k+s 0 and reject otherwise.

In any of the above, if S sent abort to A, then S externally sends abortj for
every Pj ∈ H to the trusted party computing f . Otherwise, S proceeds to the
next step.

6. Output reconstruction: If no abort had occurred, S externally sends the trusted
party computing f the corrupted parties’ inputs that it received in the “secret
sharing the inputs” step above. S receives back the output values for each
output wire associated with a corrupted party. Then, S simulates the honest
parties in the reconstruction of the corrupted parties’ outputs. It does this by
computing the shares of the honest parties on this wire using the corrupted
parties’ shares on the wire (which it has by the invariant) and the actual
output value it received from the trusted party.



In addition, S receives the messages from A for the reconstructions to the
honest parties. If any of the messages in the reconstruction of an output wire
associated with an honest Pj are incorrect (i.e., the shares sent by A are not
the correct shares it holds), then S sends abortj to instruct the trusted party
to not send the output to Pj . Otherwise, S sends continuej to the trusted
party, instructing it to send Pj its output.

We claim that the view of the adversary in the simulation is distributed
identically to its view in the real execution, except with probability 1/2s−log(s+1).
In order to see this, observe first that if all ξm, δi, γi values are congruent to 0
modulo 2k+s, then the simulation is perfect.

Next, consider the case that some ξm, δi, γi value is not congruent to 0 modulo
2k. In this case, the simulator S always simulates FCheckZero outputting reject.
However, in a real execution where some ξm, δi, γi value is not congruent to 0
modulo 2k, functionality FCheckZero may return accept. This event happens when
T ≡k+s 0. By Lemma 1, the probability that T ≡k+s 0 in such a real execution is
less than 2−s+log(s+1). Thus, in this case, the statistical difference between these
distributions is less than 2−s+log(s+1), as stated in the theorem.

Finally, we show that when all ξm, δi, γi are congruent to 0 modulo 2k but
not modulo 2k+s the simulation is identically distributed to the real execution.
Let ∆i = εi · yi + γi− r · δi. If there exists ξm 6≡k+s 0, then let m0 be the smallest
m for which this holds. Then, using Eq. (2), we have that val(JT K)H ≡k+s 0 in
the real execution if and only if

βm0 · ξm0 ≡k+s

− N∑
i=1

αi ·∆i −
M∑
m=1
m6=m0

βm · ξm − (Θ1 − r ·Θ2)

 .

Let 2u be the largest power of 2 dividing ξm0
. Then we have

βm0
≡k+s−u

−∑N
i=1 αi ·∆i −

∑M
m=1
m 6=m0

βm · ξm − (Θ1 − r ·Θ2)

2u

 · (ξm0

2u

)−1

.

Since βm0
is chosen uniformly from Z2k+s and its value is kept secret, we obtain

that FCheckZero will return accept in the real execution with probability 2−k+s−u

which is exactly the probability that S sends accept to A.

Otherwise, all ξm ≡k+s 0, but there exists i such that δi 6≡k+s 0 or γi 6≡k+s 0.
Let i0 be the smallest i for which this holds. Observe that this implies that
εi0 ≡k+s 0, as there were no attacks on previous gates. Thus, we have in the real
execution that val(JT K)H ≡k+s 0 if and only if

αi0 · (γi0 − r · δi0) ≡k+s

− N∑
i=1
i 6=i0

αi ·∆i − (Θ1 − r ·Θ2)

 .



Let u be the largest for which 2u divides γi0 − r · δi0 . Then, we have that the
above holds if and only if

αi0 ≡k+s−u

−∑N
i=1
i 6=i0

αi ·∆i − (Θ1 − r ·Θ2)

2u

 · (γi0 − r · δi0
2u

)−1

.

As before, since αi0 is distributed uniformly over Z2k+s and kept secret during
the execution, the above holds with probability 2−k+s−u. This is exactly the
probability that FCheckZero, simulated by S, outputs accept in the simulation.

Going over all cases, we conclude that the statistical difference between A’s
view in the real and simulated execution is 2−s+log(s+1). This concludes the proof.

Concrete efficiency. We now analyze the performance of the protocol. Recall
that M is the number of inputs and N is the number of multiplication gates in
the circuit. We denote by O the number of output wires of the circuit, and for a
given functionality F∗(`), we denote by C∗(`) the communication cost (in bits) of
calling this primitive.

For each input wire, we have one call to Finput(k + s), which is translated
into one call to Frand(k + s), one call to open(JrKk+s, i) and one element in Z2k+s

that is sent by some party Pi to the other parties. In addition, there is one call
to Fmult(k + s) to randomize each input. This adds up to M · (2 · Crand(k + s) +
Copen(i)(k + s) + (k + s)).

For each multiplication gate, we call Fmult(k+s) twice. Then, in the verification
step, Frand(k + s) is called for each input wire and multiplication gate. This adds
N · (Crand + 2 · Cmult(k+ s)). The remaining of the verification step consists of two
calls to FDotProduct(k+s), one call to open(JrKk+s) and one call to FCheckZero(k+s).
Recall that we assume that the protocol realizing FDotProduct(k + s) has the same
communication complexity as Fmult(k + s), so this adds up to 2 · Cmult(k + s) +
Copen(i)(k + s) + CCheckZero(k + s). However, as these are small constants which do
not depend on the size of the circuit, we exclude them from the final count. In the
output reconstruction step, for each output wire, there is one call to open(JvKk, i).

We thus have that the cost of the protocol is

M ·
(
2 · Crand(k + s) + Cmult(k + s) + Copen(i)(k + s) + (k + s)

)
+N · (Crand(k + s) + 2 · Cmult(k + s)) +O · Copen(i)(k).

For circuits where N �M,O (i.e., there are much more multiplication gates
than input and output wires), this is translated to N ·(Crand(k+s)+2·Cmult(k+s)).
Notice that for some instantiations, like the replicated secret sharing based one
from Section 5.1, Frand is “free” in the sense that it can be implemented efficiently
by relying on a computational assumption, e.g., PRGs with correlated keys.

Basic Primitives for Secure Computation. We conclude this section with
a short discussion about primitives for secure computation like comparison and



truncation, among others, which are of importance in many applications of secure
computation like private machine learning or flow-control in MPC programs.

The study of basic primitives for MPC has a rich history, including some
works as [14,34,24,19]. However, most of these works are concerned with the
case of MPC over fields and as such they face different challenges and provide
different solutions. For example, a very simple operation that arises in these
primitives over fields is dividing by powers of 2, which is achieved over fields of
odd characteristic by simply multiplying (locally) by the inverse of this number.
However, over Z2k this is not so straightforward, which complicates the extension
of these techniques to the ring case.

Recent work has studied the development of basic primitives over rings [34,24].
In particular, the work of [24] has shown that, in spite of being more general
than fields (and hence more complex), rings offer several benefits for many of
the basic primitives considered in the literature. Intuitively, this stems from the
fact that Z2` is inherently more “compatible” with bits, which is what these
primitives are mostly concerned with. Hence, it is natural to analyze whether or
not our compiler supports these basic primitives.

We first observe that our check-to-zero protocol from Section 3.1 is already
an instantiation of a basic primitive. Furthemore, just like we adapted this check-
to-zero from [24] to our setting, other techniques from that work can be easily
incorporated into ours in order to provide bit-decomposition and bit-extraction,
truncations and signed comparisons. At the heart of these primitives lies the
generation of random shared bits, which as we saw in Section C, extends smoothly
to the setting of an arbitrary secret sharing scheme. The fact that shares can be
converted from mod 2k to mod 2 also plays an important role, and a converse
conversion can be envisioned using the ideas from [24].

However, we stress that all of this comes at the expense of using the expensive
FCorrectMult for all of the multiplication calls. A natural question to ask is
whether it is possible to use Fmult, which can be realized very efficiently, instead
of FCorrectMult. Answering this question is beyond the scope of this work and is
left as an open problem.

5 Two Protocols Secure up to Additive Attack

In this section, we present a brief overview of two protocols that are passively
secure up to additive attack, and which we will compile to active security. Details
can be found in the appendices.

5.1 Replicated Secret Sharing for Three Parties

The first protocol is an efficient three party instantiation of our compiler from
replicated secret sharing. To share a value x ∈ Z2` choose uniformly random
x1, x2, x3 ∈ Z2` subject to the condition

∑
i xi ≡` x. Each player Pi has the

pair (xi, xi+1) as their share; we take subscript indices modulo 3, i.e. P3 holds
(x3, x1). To reconstruct a secret, Pi receives the missing share from the two other



parties. Note that reconstructing a secret is robust in the sense that parties either
reconstruct the correct value x or they abort.

Replicated secret sharing satisfies the properties described in Section 2.1,
and one can efficiently realize the required functionalities described in the same
section. Specifically Frand can be realized with out any communication and Fmult

can be realized by having each party sending one ring element [34,4,33]. Also
FDotProduct can be computed at the same cost of Fmult [16].

In addition, FCheckZero can be realized very efficiently by relying on a random
oracle H, as follows. We want to check whether

∑
i xi ≡` 0, or equivalently

xi−1 ≡` −(xi + xi+1). Now, each Pi computes zi = H(−(xi + xi+1)) = H(xi−1).
Since xi−1 is held by Pi−1 and Pi+1, they can also compute this value. Since
only one party is corrupted, it suffices that each Pi will send zi to Pi+1, and each
receiving party verifies whether it matches the value they expect, and aborts if it
does not. For completeness, we present all protocols in Appendix D.

Efficiency analysis. Using the analysis from Section 4, we know that the
amortized communication complexity per multiplication gate is Crand(k + s) + 2 ·
Cmult(k + s). In our case Crand(k + s) = 0, and Cmult(k + s) = 3 · (k + s), so the
overall amortized communication per multiplication is of only 6 · (k+ s) bits. For
each party this translates to sending 2(k + s) bits for each multiplication.

5.2 Shamir Secret Sharing for Any Number of Parties

In this section, we present our instantiation based on Shamir’s secret sharing
over rings, using the techniques from [2]. Over finite fields, Shamir’s scheme
requires a distinct evaluation point for each player, and one more for the secret.
This is usually not a problem if the size of the field is not too small. However,
over commutative rings R the condition on the sequence of evaluation points
α0, . . . , αn ∈ R is that the pairwise difference αi − αj is invertible for each pair
of indices i 6= j. For our ring of interest Z2` , the largest such sequence the ring
admits is only of length 2 (e.g. (α0, α1) = (0, 1)).

The solution from [2] is to embed inputs from Z2` into a large enough Galois
ring R that has Z2` as a subring. This ring is of the form R = Z2` [X]/(h(X)),
where h(X) is a monic polynomial of degree d = dlog2 ne such that h(X) mod 2 ∈
F2[X] is irreducible. Elements of R thus correspond uniquely to polynomials with
coefficients in Z2` that are of degree at most d− 1. Note the similarity between
the Galois ring and finite field extensions of F2: elements of the finite field F2d

correspond uniquely to polynomials of at most degree d − 1 with coefficients
in F2.

There is a ring homomorphism π : R → Z2` that sends a0 + a1X + · · · +
ad−1X

d−1 ∈ R to the free coefficient a0, which we shall use later on.4 For more
relevant structural properties of Galois rings, see [2].

We adopt the above-mentioned version of Shamir’s scheme over R, but restrict
the secret space to Z2` . The share space will be equal to R. Let 1 ≤ τ ≤ n be

4 Technically, an element of R is a residue class modulo the ideal (h(X)), but we omit
this for simplicity of notation.



the privacy parameter of the scheme. Then, the set of correct share vectors is

Cτ =

{
(f(α1), . . . , f(αn)) ∈ Rn

∣∣∣∣ f ∈ R[X], deg(f) ≤ τ,
and f(α0) ∈ Z2` ⊂ R

}
. (3)

With the restriction that the secret is in Z2` , we have that Cτ is an Z2` -module,
i.e. the secret-sharing scheme is Z2`-linear. Since it is based on polynomial
interpolation, the properties from 2.1 can be easily seen to hold. This includes
division by 2 if all the shares are even.

In this section, we denote a sharing under Cτ as JxK = (x1, . . . , xn). We call
τ the degree of the sharing. The reason we are explicit about τ is that we will
use sharings of two different degrees. This stems from the critical property of
this secret-sharing scheme that enables us to evaluate arithmetic circuits: this
secret-sharing scheme is multiplicative. This means there is a Z2`-linear map
Rn → Z2` that for sharings JxK, JyK sends (x1y1, . . . , xnyn) 7→ x · y.

Put differently, (x1y1, . . . , xnyn) ∈ C2τ is a degree-2τ sharing with secret x · y.
We denote it Jx ·yK(2t) = (x1y1, . . . , xnyn) — in particular note the parenthesized
subscript refers to the degree of the sharing, as opposed to the modulus. Note
that Ci ⊆ Cj for 0 < i < j; in particular every degree-2τ sharing is also a sharing
of degree n− 1. A sharing of degree n− 1 is related to additive secret sharing,
where the secret equals the sum of the shares x =

∑
i xi. The difference is that

here there are constants, i.e. we may write x =
∑
i λixi, for λ1, . . . , λn ∈ R. We

shall make use of this in our multiplication protocol, ensuring that parties only
need to communicate an element of Z2` instead of an element of R. However, note
that J·K(2t) does not meet the definition of a secret-sharing scheme in Section 2.1,
in particular because the corrupted parties shares are not well defined and cannot
be computed from the honest parties’ shares.

5.3 Generating Randomness

We efficiently realize Frand by letting each player Pi sample and secret-share
a random element si, and then multiplying the resulting vector of n random
elements with a particular5 Vandermonde matrix [21].6 Of the resulting vector,
τ entries are discarded to ensure the adversary has zero information about the
remaining ones. Thus, n − τ random elements are outputted, resulting in an
amortized communication cost of O(n) ring elements per element. A priori the
adversary can cause the sharings to be incorrect; this is remedied with Protocol 3
by opening a random linear combination of the sharings and verifying the result.

Since our secret-sharing scheme J·K is Z2`-linear, we would like to choose
our matrix with entries in Z2` . Unfortunately, the Vandermonde matrix we
need does not exist over Z2` , for the same reason secret sharing does not work.
However, the secret-sharing scheme which consists of d parallel sharings of J·K
5 Over fields this can be a general Vandermonde matrix, but this is not sufficient over
R.

6 In general, any R-linear code with good distance and dimension suffices to get O(n)
complexity in the protocol, but the Vandermonde construction is optimal.



be interpreted as an R-linear secret-sharing scheme [13,2]. This secret-sharing
scheme, which we denote as 〈·〉, has share space Sd (since the scheme is identical
to sharing d independent secrets in S in parallel using J·K), and secret space
Rd. The scheme is R-linear because the module of share vectors, which is (Cτ )d,
is an R-module via the tensor product (Cτ )d ∼= Cτ ⊗S Sd ∼= Cτ ⊗S R. In
practice, a single secret-shared element 〈x〉 may be interpreted as a secret-shared
column vector (Jx1K, . . . , JxdK)T . To compute the action of an element r ∈ R
on 〈x〉 in this representation, we first need to fix a basis of R over S. Recall
R = Z2` [X]/(h(X)), so we may pick the canonical basis 1, X, . . . ,Xd−1 ∈ R. This
allows us to represent an element a ∈ R as a column vector (a0, . . . , ad−1)T ∈ Sd,
i.e. explicitly: a = a0 + a1X + · · ·+ ad−1X

d−1. Multiplication by r ∈ R is an S-
linear map of vectors Sd → Sd, i.e. it can be represented as a d×d matrix Mr with
entries in S. The product r 〈x〉 = 〈rx〉 is then equal to Mr(Jx1K, . . . , JxdK)T . If a
single party P has a vector of shares (s1, . . . , sd) ∈ R for 〈x〉 = (Jx1K, . . . , JxdK)T ,
then Mr(s1, . . . , sd)

T is their vector of shares corresponding to 〈rx〉.
In our protocol, the parties will calculate a matrix-vector product (〈r1〉 , . . . , 〈rn−τ 〉)T =

A(〈s1〉 , . . . , 〈sn〉)T , where A has entries in R. This can be computed by writing
out the R-linear combinations 〈ri〉 =

∑n
k=1 aik 〈sk〉 =

∑n
k=1Maik 〈sk〉, with

〈sk〉 = (Jsk1K, JskdK)ᵀ. Fix a sequence β1, . . . , βn ∈ R such that for each pair of
indices i 6= j we have that βi − βj is invertible.7 We let A be the (n − τ) × n
matrix such that the j-th column is (1, βj , β

2
j , . . . , β

n−τ−1
j )T . This matrix is

hyperinvertible, i.e. any square submatrix is invertible [2].

Protocol 2 Generating random sharings of J·K

1. Each party Pi samples an element si ← (Z
2`

)d and secret-shares it as 〈si〉 among all
parties.

2. The parties locally compute the linear matrix-vector product to obtain
(〈r1〉 , . . . , 〈rn−τ 〉)T := A(〈s1〉 , . . . , 〈sn〉)T .

3. The parties execute Protocol 3 dκ/de times in parallel on 〈r1〉 , . . . , 〈rn−τ 〉If any exe-
cution fails, they abort. Otherwise, for each j = 1, . . . , n − τ they interpret 〈rj〉 =
(Jrj1K, . . . , JrjdK) and output Jr11K, . . . , Jr1dK, Jr21K, . . . , Jr(n−τ)dK.

Lemma 2. Protocol 2 securely computes (n−τ)d parallel invocations of Frand for
J·K with statistical error of at most 2−κ in the presence of a malicious adversary
controlling t < n/2 parties.

The proof is in Section E.1

5.4 Checking Correctness of Sharings

We check whether sharings are correct by taking a random linear combination of
the sharings, masking it with a random sharing, and opening the result to all
parties.

7 We may just use (β1, . . . , βn) = (α1, . . . , αn).



This protocol does not securely compute an ideal functionality, because privacy
is not preserved if the sharings are incorrect. The way we use it this does not
matter, since we only verify correctness of sharings of random elements.

Protocol 3 Checking correctness of sharings of 〈·〉

– Input: possibly incorrect sharings 〈x1〉 , . . . , 〈xN 〉, and a possibly incorrect sharing 〈r〉 ←
(Z

2`
)d of a random element

– Protocol:
1. The parties call Fcoin N times to get a1, . . . , aN ← (Z

2`
)d.

2. The parties compute 〈u〉 := a1 〈x1〉+ · · ·+ aN 〈xN 〉+ 〈r〉.
3. The parties run open(〈u〉). If it returns ⊥, output ⊥. Else, output correct.

Lemma 3. If at least one of the input sharings 〈x1〉 , . . . , 〈xN 〉 is incorrect,
Protocol 3 outputs correct with probability at most 1

2d
.

To show correctness, we use the following consequence from [2, Lemma 3].

Lemma 4. Let C ⊆ Rn be a free R-module. Then for all x /∈ C and u ∈ Rn, we
have that

Pr
r←R

[rx+ u ∈ C] ≤ 1

2d

where r is chosen uniformly at random from R.

Proof: [Proof of Lemma 3] Let C denote the R-module of correct share vectors
(such as in (3)). One of the input sharings is incorrect; without loss of generality
assume it is 〈x1〉. The protocol open(〈u〉) returns a value not equal to ⊥ if and
only if 〈u〉 = a1 〈x1〉+ (a2 〈x2〉+ · · ·+ an 〈xn〉+ 〈r〉) is in C. By Lemma 4 this
probability is bounded by 1/2, since a1 was chosen uniformly at random. Since
〈u〉 is masked with 〈r〉, the protocol is private.

5.5 Secure Multiplication up to Additive Attacks

Multiplication follows the outline of the passively secure protocol of [21]. The
protocol begins with an offline phase, where random double sharings are produced,
i.e. a pair of sharings (JrK, JrK(2t)) of the same uniformly random element r shared
using polynomials of degree τ and degree 2τ , respectively.

We denote a double sharing as JrK(τ,2τ) := ((r1, r
′
1), . . . , (rn, r

′
n)). It is a Z2`-

linear secret-sharing scheme with secret space Z2` and share space R⊕R. The
set of correct share vectors is the Z2` -module((f(α1), g(α1)), . . . , (f(αn), g(αn)))

∣∣∣∣∣∣
f, g ∈ R[X],

f(α0) = g(α0) ∈ Z2` ,
deg(f) ≤ τ, deg(g) ≤ 2τ

 .

Secret-sharing an element r under J·K(τ,2τ) involves selecting two uniformly
random polynomials of degrees at most τ and 2τ respectively.



To generate sharings in J·K(τ,2τ), we essentially use Protocol 2. However,
this protocol does not securely realize Frand, since in Lemma 2 we use the fact
that the simulator can compute the corrupted parties’ shares from the honest
parties’ shares, which is not the case for the degree-2τ part (hence why J·K(2t),
therefore also J·K(τ,2τ), does not meet the definition of a secret-sharing scheme in
Section 2.1). This will only lead to an additive attack in the online phase, which
is why we can still use the protocol.

Protocol 4 Secure multiplication up to an additive attack

– Inputs: Parties hold correct sharings JxK, JyK
– Offline phase: The parties execute Protocol 2 for J·K(τ,2τ) instead of J·K. They only check

correctness for the J·K part, and not for the J·K(2t) part. They obtain a random double sharing
(JrK, JrK(2t)).

– Online phase:
1. The parties locally calculate JδK(2t) := JxK · JyK− JrK(2t).
2. Each Pi for i = 1, . . . 2τ + 1 sends ui := π(λiδi) to P1 (recall π(a0 + a1X + · · · +

ad−1X
d−1) = a0 ∈ Z

2`
, and the λi are constants such that

∑n
i=1 λiδi = δ)

3. P1 can now reconstruct δ as δ =
∑n
i=1 ui.

4. P1 broadcasts δ.
5. The parties locally compute Jx · yK = JrK + δ.

The reason each party sends ui instead of δi to P1 is two-fold. It saves
bandwidth, since only an element of Z2` needs to be communicated instead of an
element of R. More importantly though, if the inputs JxK, JyK are not guaranteed
to be correct, then sending full shares δi can compromise privacy.

Note that it is important that the random double sharing JrK(τ,2τ) is guaran-
teed to be correct.

Lemma 5. Protocol 4 securely computes Fmult with statistical error ≤ 2−κ in the
Frand-hybrid model in the presence of a malicious adversary controlling t < n/2
parties.

The proof appears in Section E.2. When evaluating a circuit gate-by-gate
using Protocol 4, we consider an optimization in which we do not need to execute
the broadcast (which might be expensive) for each multiplication, but instead
they will perform a broadcast just before opening the values. In the multiplication
protocol, P1 will just send a value (not guaranteed to be the same) to all other
parties. Each party Pi keeps track of a hash value hi of all received values in
step 4 of the protocol far. Before opening their outputs, each party Pi sends
its hash hi to all other parties. If any party detects a mismatch, they abort.
Note that security up to additive attack is guaranteed only after this procedure
succeeds, which is executed before opening the output.

In doing so, we lose the invariant that all secret-shared values are guaranteed to
be correct. In other scenarios, as for example the t < n/3 setting, this completely
breaks the security of the protocol as shown in [31]. However, this is not a problem
in our case since the degree-2τ sharings have no redundancy in them. As shown
in [31], this is enough to guarantee the security of the protocol with the deferred



check, and the reason is essentially that the shares that the potentially corrupt
party P1 receives are now uniformly random and independent of each other.

Reducing communication using pseudo-randomness [10,37]. Our proto-
col as described so far is information-theoretic. We can reduce communication
by using a pseudo-random generator in the following way. Assume that each
pair of parties hold a joint random seed. Then, when party Pi shares an element
with degree t, it is possible to derive t shares from the seed known to Pi and the
corresponding party, and set the remaining t+ 1 shares (including the dealer’s
own share) given the pseudo-random shares and the value of the secret. Thus,
only t shares need to be transmitted, thereby reducing communication by half.
Using the same reasoning, it is possible to share a secret using 2t-degree without
any interaction. Here n−1 = 2t shares are computed using the seed known to the
dealer and each party, and then the dealer sets its own share such that all shares
will reconstruct to the secret. We can use this idea to also reduce communication
in the multiplication protocol. Instead of broadcasting δ, party Pi can share it
to the parties with degree t, and use the above optimization, such that P1 will
have to send t elements instead of n− 1. We note that here instead of comparing
δ (to ensure correctness of output sharings), the parties can perform a batch
correctness check (Protocol 3) for all sharings dealt by P1 before the verification
step in the main protocol.

Efficiency analysis. Assuming pairwise PRGs, the parties can generate n− t ≈
n/2 random sharings JrK by communicating n(n/2) elements in R, for an amor-
tized communication complexity of n R-elements per random sharing. For Fmult,
parties use one random double sharing (JrK, JrK(2t)) and then communicate
3/2 · n elements in Z2k+s in the online phase. Note that a random 2t-sharing
can be generated without interaction. The total communication cost of the
passively secure instantiation is therefore Crand(k + s) = (k + s) · n log n and
Cmult(k + s) = (k + s) · n log n+ (k + s) · n · 3/2. For the compiled protocol the
overall cost per multiplication gate in the circuit, expressed in bits, is

2 Cmult(k + s) + Crand(k + s) = (k + s)(3n log n+ 3n).

6 Implementation and Evaluation

We report in the following section on an implementation of both the Shamir
based instantiation, as well as the 3-party instantiation based on replicated
secret-sharing.

6.1 Implementation Details

We implement both protocols in C++ and rely on uint64 t and unsigned

int1288 types for arithmetic over Z2` , where the former is used when ` = 64

8 This type is a GCC extension, cf. https://gcc.gnu.org/onlinedocs/gcc/_005f_
005fint128.html

https://gcc.gnu.org/onlinedocs/gcc/_005f_005fint128.html
https://gcc.gnu.org/onlinedocs/gcc/_005f_005fint128.html


and the latter when ` = 128. Notice that this choice allows us to investigate two
sets of parameters: ` = 64 can be viewed as 32 bit computation with 32 bits of
statistical security, while ` = 128 gives us 64 bits of computation with 64 bits
of statistical security. We rely on libsodium for hashing and the PRG we use is
based on AES.

For the Galois-ring variant our implementation uses the ringR = Z2` [X]/(h(x))
with h(X) = X4 +X + 1. This ring supports 24 − 1 = 15 parties and the act of
hard-coding the irreducible polynomial allows us to implement multiplication and
division in the ring using lookup tables. It is worth remarking that operations in
GR(2`, d) are more expensive than certain prime fields (in particular, Mersenne
primes as the ones used in [16]). Concretely, a multiplication in GR(264, 4) re-
quire 20 uint64 t multiplications and 18 additions, while a multiplication in
Z264 require only a couple of uint64 t multiplications as well as a few bitwise
operations. so while some MPC primitives in Z2` may be cheaper (for example,
masking a value in Z2` is cheaper), this gain in efficiency is greatly reduced by
the complexity of operating in the Galois-Ring.

Experimental setup. We run our experiments on AWS c5.9xlarge machines,
which have 36 virtual cores, 72gb of memory and a 10Gpbs network. We utilize 3
separate machines and so for experiments with n > 3, some parties run on the
same machine. However, the load on each machine is distributed evenly (e.g.,
with 5 parties, the first two machines each run 2 parties each while the last run
only 1 party).

6.2 Experiments

Our experiments comprises two points of comparison:
First we compare our Shamir based instantiation against the field protocol of

[16]. For this, we use the implementation at [1]. We perform the same benchmarks
as reported on in [16]; that is, circuits of varying depth with a fixed number
of parties. Each experiment is repeated for n set to 3, 5, 7 and 9. The main
goal here is to understand the overhead of working with GR(2`, d) as opposed to
working over Zp. As [1] supports different choices of the prime p we set p to be a
61-bit Mersenne prime, as this is the most efficient field that also allows for a
reasonable expressive computations.

Our second set of experiments will compare our replicated instantiation against
the protocols for computation over rings presented in [25]. In these experiments
we measure the throughput of multiplications in our protocol; that is, how many
multiplications our protocol can compute per second. Since we do not have access
to the implementations of [25], we opt instead to use the experimental setup as
theirs, in order to obtain a fair comparison. We report here on benchmarks run
in a LAN setting.

While the protocol of [16] is the natural choice for comparing our n-party
instantiation, a number of efficient specialized 3 party protocols exist which we
briefly mention here. We choose the protocols of [25] for comparison as their
experiments and setup is straightforward to replicate with our protocol, thus



allowing us to make a fair comparison. Concurrently with [25], several other
proposals for 3 party protocols have been published, such as [15] or [38]. However,
no public implementation exist for these works, and the nature of the experiments
they perform makes it very hard to perform a fair comparison (as we do later with
the results from [25]). More precisely, both [15] and [38] evaluate their protocols
relative to an implementation of ABY3 [35] that was also implemented by the
authors themselves (as no public implementation of ABY3 was available at that
time).

While [38] have better amortized communication cost, we estimate that their
conrete running time (when considering end-to-end times, as we do in this work)
will be worse. We base this conjecture on the fact that [38] uses the interpolation
based check from [9]. For the case of fields, this check was shown in [11] to take
several seconds in order to check 1 million multiplications (which is the benchmark
we use). Running the same check, but over a ring, requires computation over
a fairly large extension of Z2k , which we have no reason to expect would be
significantly faster than the field based check. Concluding, we would not be
surprised if [38] is faster in the online phase; however, preprocessing the triples
needed to get this would be much slower than our protocol. We stress that our
protocol (for the 3 party case) has no preprocessing, so we expect our protocol to
perform much better when measuring end-to-end times. We elaborate a bit more
on the cost of the kind of check used in [38] later, when we discuss [11].

6.3 Results: Shamir instantiation

The results of our experiments can be seen in Table 1. Across the board, we see
that preprocessing is more expensive in our protocol than in [16]. However, the
overhead is in lines with the observation made above that operating in GR(2`, d)
is about 4 times as expensive than in Zp when ` = 64 and p is a 61-bit Mersenne
prime. This is in particular true when the number of parties is small as here
local computation is the dominant factor. Moving to a larger number of parties,
the overhead decreases, which we attribute to differences in the efficiency of the
communication layer between our protocol and the one in [16].

Interestingly, we see for a lower number of parties but for very deep circuits,
that our protocol performs better in the online phase. E.g., [16] takes 7.3 seconds,
while both of our version is below 4.5 seconds. One reason for this could again be
differences in the communication layer (since both our protocols communicate
roughly the same amount of information due to the fact that we only need to
send a Z2` element during reconstruction). However, our protocol is again less
efficient when the number of parties increase, which would be due to the fact that
the king needs to send more data during reconstruction, as well as the increased
cost of the broadcast when more parties are involved (one could distribute the
role of the king among the parties, so that everyone handles an equal amount of
reconstructions).

Finally, we see an expected overhead of roughly ×2 between ` = 64 and
` = 128 (consider the depth 20 row in Table 1, as this is the setting where
differences in local computation is most prominent.) This more or less confirms



the intuition that an operation in Z2128 is around 2-3 times as expensive compared
to an operation in Z264 .9

Depth Protocol 3 5 7 9

20
Ours ` = 64 1.56 / 0.18 2.12 / 0.28 2.46 / 0.37 2.70 / 0.47
Ours ` = 128 2.79 / 0.52 4.28 / 0.74 4.73 / 0.91 5.10 / 1.11

[16] 0.43 / 0.18 0.63 / 0.22 0.93 / 0.45 1.03 / 0.28

100
Ours ` = 64 1.50 / 0.23 1.97 / 0.30 2.30 / 0.37 2.76 / 0.41
Ours ` = 128 2.80 / 0.51 3.78 / 0.61 4.15 / 0.77 5.02 / 0.95

[16] 0.42 / 0.42 0.64 / 0.22 0.90 / 0.52 1.04 / 1.27

1, 000
Ours ` = 64 1.58 / 0.67 1.95 / 1.08 2.23 / 1.43 2.62 / 1.84
Ours ` = 128 2.80 / 1.23 3.68 / 1.81 4.23 / 2.08 5.03 / 2.47

[16] 0.41 / 0.96 0.63 / 0.68 0.89 / 0.95 1.05 / 1.17

10, 000
Ours ` = 64 1.50 / 3.85 2.01 / 8.55 2.41 / 13.41 2.65 / 16.76
Ours ` = 128 2.81 / 4.43 3.71 / 8.07 4.38 / 13.31 5.03 / 16.43

[16] 0.38 / 7.30 0.61 / 7.32 0.89 / 8.40 1.05 / 12.88

Table 1: LAN running times in seconds for circuits with 106 multiplications,
different depth and for varying number of parties, evaluated using Shamir

SS-based MPC. Each value is a tuple a/b where a is the preprocessing time
(which is dominated by the double-share generation) and b is the time it takes to

evaluate the circuit.

Comparing our instantiation with [16]. It is worth remarking that, for
more elaborate protocols such as bit decompositions or truncations, operating
over a prime field requires additional space for masking. For example, if we
require 40 bits of security for masking, the 61-bit Mersenne prime only leaves
room for ≈ 21 bits of computation. For these applications therefor, it is more
reasonable to compare the numbers for [16] in Table 1 with our protocol with
` = 64 (since Z2k does not require this extra space, ` = 64 gives us 24 bits of
computation at 40 bits of security). Alternatively, one could move to a 89-bit
Mersenne or 127-bit Mersenne prime (allowing 49 and 87 bits of computation
with 40 bits of security); however efficient multiplication in these fields require
multiplication of essentially 128-bit integers without overflow, bringing it closer
to operating in GR(2128, d).

6.4 Results: Replicated instantiation

We also compare our replicated instantiation with the protocols of [25], results of
which can be seen in Figure 1a and Figure 1b.10 As we do not have access to

9 Indeed, while a multiplication in Z264 is one unsigned 64-bit width multiplication,
a multiplication on 128-bit wide types compile to three Z264 multiplications. That
the overhead is less than 3x can be attributed to the compiler being able to easier
vectorize 64-bit multiplications in the Z2128 case.

10 We thank the authors of [25] for giving us the tikz code of their graph.
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Fig. 1: Throughput benchmarks for replicated secret-sharing with 3 parties.

the code of all the protocols considered in [25], we run our protocol in the same
setup. With the exception of the Sharemind postprocessing protocol, we observe
that we outperform all protocols of [25]. We may attribute this to the fact that
both Sharemind and MP-SPDZ are more mature codebases and thus it is likely
that a greater effort has been put into optimizations.

However, when we consider our protocol running in a WAN, we see that we
outperform all protocols in [25]. This concurs with the fact that our protocol
only needs to send 2 ring elements per multiplication, while the postprocessing
protocols of [25] needs to send 3.
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Supplementary Material

A Secret Sharing

Definition 1. A perfect (t, n)-linear secret-sharing scheme over Z2` is a pair of
interactive procedures share and open that satisfy the following properties.

Share-Distribution Procedure. share(x) is as randomized efficiently-computable
procedure that generates n shares (x1, . . . , xn) of x ∈ Z2` , where xi ∈ (Z2`)

m

is intended for party Pi.
11

Given a subset J ⊆ [n], we denote JxKJ` = {xi}i∈J , and if J = [n] we simply

write JxK[n]
` = JxK`. Furthermore, if ` is clear from the context we may omit

the subscript `.
Share-Distribution From Given Shares. The share algorithm above may

also take as input, in addition to x ∈ Z2` , a set of shares {xi}i∈J for
J ⊆ [n] with |J | ≤ t so that its output JxK = share(x, {xi}i∈J) satisfies
JxK = (x′1, . . . , x

′
n), with x′i = xi for i ∈ J .

We assume that if |J | = t, then JxKJ together with v determine deterministi-
cally all the remaining shares. This also means that any t+ 1 shares fully
determine all shares.

Privacy. For any J ⊆ [n] with |J | ≤ t, the mutual information between {xi}i∈J
and x is zero, where share(x) = {xi}i∈[n].

Reconstruction. open is an efficiently-computable deterministic procedure such
that open(JxKJ) = x or ⊥ for every J ⊆ [n] with |J | > t.
In particular, the procedure open outputs a special symbol ⊥ whenever it is
called on an input JxK which is not correct as defined below in Definition 2.
The procedure may take an extra common index i ∈ [n] as in open(JxK, i),
and in such a case, the output is obtained only by Pi.

Shares of a Constant. There exists a deterministic procedure sharecons such
that, on input x ∈ Z2` , produces {xi}i∈[n] such that open({xi}i∈[n]) = x.
Furthermore, we assume that all the entries of {xi}i∈[n] are either equal to 0
or equal to x.

Homomorphism. Given shares JxK, JyK, point-wise addition of these shares
yields shares of x+ y mod 2`. We denote this operation by JxK + JyK.12

We also assume the following, non-standard properties:

Modular Reduction. We assume that the open procedure is compatible with
modular reduction, meaning that for any 0 ≤ `′ ≤ ` and any x ∈ Z2` , reducing
each share in JxK` modulo 2`

′
yields shares Jx mod 2`

′
K`′ . We denote this by

JxK` → JxK`′ .
11 Notice that the shares xi do not necessarily live in Z2` . For example, for replicated

secret-sharing scheme these shares belong to Z2` × Z2` , and for our instantiation of
Shamir secret sharing over rings these shares belong to Zlogn

2`
.

12 Notice that, given JxK and α ∈ Z2` , one can compute shares of x + α mod 2` by
calling sharecons on input α and then adding the shares point-wise.



Multiplication by 1/2. Given a shared value JxK`, we assume if all the shares
are even then shifting these shares to the right yields shares Jx′K`−1, where
x′ = x/2.

Next, we define what it means for the parties to have correct shares of some
value. Let J be a subset of honest parties of size t+ 1, and denote by val(JvK)J
the value obtained by these parties after running the open protocol, where no
corrupted parties or additional honest parties participate, i.e. open(JvKJ). Note
that val(JvK)J may equal ⊥ and in this case we say that the shares held by the
honest parties are not valid. Informally, a secret sharing is correct if every subset
of t+ 1 honest parties reconstruct the same value (which is not ⊥).

Definition 2. Let H ⊆ {P1, . . . , Pn} denote the set of honest parties. A sharing
JvK is correct if there exists a value v′ ∈ F (v′ 6= ⊥) such that for every J ⊆ H
with |J | = t+ 1 it holds that val(JvK)J = v′.

B Some Missing Functionalities

Efficient Sum of Products. This the functionality presented in Section 2.3

Functionality 2 FDotProduct(`)

1. Upon receiving {JxiKH` }
m
i=1 and {JyiKH` }

m
i=1 from the honest parties, FDotProduct recovers x, y

and computes the corrupt parties shares {JxiKC` }
m
i=1 and {JyiKC` }

m
i=1, and sends these shares

to the ideal adversary S.
2. Upon receiving d and JzKC` = {αi}i|Pi∈C from S, define z ≡` d+

∑m
i=1 xiyi.

3. Run share(z, JzKC` ) to obtain a share zj for each Pj .

4. Return zj to Pj .

B.1 Input

This is the functionality used in Section 3.1

Functionality 3 Finput(`)

1. Functionality Finput receives inputs v1, . . . , vM ∈ Z
2`

from the parties. For every i =

1, . . . ,M , Finput also receives from S the shares JviKC` of the corrupted parties for the ith
input.

2. For every i = 1, . . . ,M , Finput computes all shares (v1i , . . . , v
n
i ) = share(vi, JviKC` ). For every

j = 1, . . . , n, Finput sends Pj its output shares (vj1, . . . , v
j
M ).



C FCheckZero – Checking Equality to 0

A key component of our compiler is a protocol for checking whether a given
sharing is a sharing of the value 0, without revealing any extra information on
the shared value.

More precisely, let v ∈ Z2` , and suppose that the parties hold a sharing JvK`.
The parties want to check whether v ≡` 0, while guaranteeing that nothing is
learned about v mod 2` if this is not the case. This is required due to the way
we will use this check in our protocol: an adversary can make v depend on the
inputs of honest parties, so if the parties simply open v and check that it is zero
then the adversary gets to learn a function of the inputs.

A simple way to approach this problem when working over a field is sampling
a random multiplicative mask JrK, multiply Jr · vK = JrK · JvK, open r · v and check
that it is equal to zero. Clearly, since r is random then r · v looks also random if
v 6= 0. However, this technique does not work over the ring Z2` : for example, if
v is a non-zero even number then r · v is always even, which reveals too much
about v.

In this section we present a generic protocol to solve the problem of checking
equality of zero over the ring, which is more expensive and complicated than the
protocol over fields described above. Fortunately, this check is only called once
in a full execution of the main protocol and so the complexity of this technique
is amortized away. Furthermore, the check we present here is generic and does
not assume anything about the underlying secret sharing scheme, but for some
specific instantiations one can get a much more efficient solution. For example,
we show in Sections 5.1 and 5.2 how to instantiate this check efficiently for the
case of replicated secret sharing and shamir secret sharing, respectively.

The functionality we want to realize, FCheckZero, is described formally in
Functionality 4. FCheckZero determines the value of the secret v based on the
honest parties’ shares and then it sends accept or reject to the parties. In addition,
it computes the corrupted parties’ shares of v from the honest parties’ shares
and hand them to the ideal world adversary S.

Functionality 4 FCheckZero(`)

The ideal functionality FCheckZero receives JvKH` from the honest parties and uses them to

compute v and JvKC` , the shares of v of the corrupt parties.

Then, FCheckZero hands JvKC` to the simulator S.
The output is determined by FCheckZero as follows:

– If v ≡` 0, then FCheckZero sends accept to the honest parties and S.
– If v 6≡` 0, then it sends reject to the honest parties and S.

The simple observation behind our protocol to compute FCheckZero (which
follows the idea of [14,24]) is that v is zero if and only if v + r ≡` r for every
r ∈ Z2` . Moreover, if r is secret, the parties can open c = v+ r without leaking v.
Then, to check that v + r ≡` r, the parties can check that the bit- representation
of the two values is identical. Since c = v + r is made public, each party can



locally decompose it to bits for this check. In addition, the parties choose the
sharing of the secret r by first computing random shared bits Jr0K`, . . . , Jr`−1K`
(note that here each rk is a bit which is shared over the ring Z2`) which are
then locally composed to obtain JrK`. Thus, the bit representation of r is shared
between the parties and can be used for the check. To complete the construction
of the protocol, we need to solve two issues. First, we need a protocol to produce
random shared bits. We thus define the ideal functionality FrandBit which is
identical to Frand except that the random value is chosen by the functionality as a
bit. The protocol to compute FrandBit, which we present below, builds upon Frand

and an ideal functionality FCorrectMult which performs correct multiplication
over shared values (as oppose to Fmult which allows the adversary to change the
output). We explain how to compute FCorrectMult below. The second issue is
how to check that all bits of v + r and the shared r are identical. This is done
by computing a circuit which XOR each bit of v + r with its corresponding bit
of r and then outputs the OR of the xored bits. If all bits are indentical then
the result should be 0. To compute the circuit, the parties once again use the
FCorrectMult functionality.

The general protocol to compute FCheckZero is described in Protocol 7. We
begin, however, by presenting our protocols to compute FCorrectMult and FrandBit.
We stress again that FCorrectMult is more difficult to achieve than Fmult and hence
the cost is much higher. However, we call FCorrectMult only a constant number of
times during the execution, and thus the overall overhead is very reasonable.

Computing FCorrectMult via Sacrificing. As explained above, FCorrectMult

is an ideal functionality which receives shares of two inputs from the honest
parties and a set of shares from the corrupted parties, to hand the honest parties
random shares of the input’s multiplication, which are chosen given the shares
that were received from the corrupted parties. Our protocol to compute this
is based on a technique known as “sacrificing”. The idea is to generate correct
random multiplication triples, which are then consumed to multiply the inputs.
This is done by calling Frand three times to obtain random shares JaK, JbK, Ja′K,
calling Fmult twice to obtain Ja · bK and Ja′ · bK, and using one triple to check
the correctness of the other. Some modifications are needed in order to make
this work over the ring Z2` for which we use the “SPDZ2k trick” from [17].
This requires us to perform the check over the ring Z2`+s , thereby achieving a
statistical error of 2−s. The construction is presented in detail in Protocol 5.

Note that the protocol can be divided into two stages: an offline phase where
the multiplication triple is generated, and an online phase where the triple is used
to compute the product of the given shares. Thus, an efficient implementation
would batch all the preprocessing together, and then proceed to consume these
triples when the actual multiplication is required.

We remark that other approaches to produce random triples, such as “cut–
and–choose”, would work here as well. However, the “cut–and–choose” method
becomes efficient only when many triples are being generated together—much
more than what is needed by our protocol (for example, in [26], to achieve good



parameters for the “cut–and–choose” process which yield low bandwidth, 220

triples are generated together). Thus, the sacrificing approach is favorable in our
setting.

Protocol 5 Correct Multiplication

– Inputs: Two shares JxK` and JyK` to be multiplied.
– The protocol:

1. Generate a multiplication triple via sacrificing.
(a) The parties call Frand(`+ s) three times to obtain sharings JaK`+s, Ja′K`+s, JbK`+s.
(b) The parties call Fmult(`+s) on input JaK`+s and JbK`+s to obtain shares JcK`+s, and

on input Ja′K`+s and JbK`+s to obtain shares Jc′K`+s.
(c) The parties call Fcoin(s) to obtain a random element r ∈ Z2s .
(d) The parties execute open(r · JaK`+s − Ja′K`+s) = a′′.
(e) The parties execute open(a′′ · JbK`+s − r · JcK`+s + Jc′K`+s) = w and check that

w ≡`+s 0.
(f) If the check in the previous step has failed, the parties abort. Otherwise they com-

pute JπK`+s → JπK` for π ∈ {a, b, c}, take (JaK`, JbK`, JcK`) as a valid triple and
continue to the next step.

2. Use the generated triple to multiply the input shares.
(a) The parties execute open(JxK` − JaK`) = u and open(JyK` − JbK`) = v.
(b) The parties locally compute JzK` = JcK` + u · JbK` + v · JaK` + u · v.

– Outputs: The parties output the shares JzK`.

To argue the security of Protocol 5, we use the following lemma which shows
that sacrificing leads to a correct triple with high probability. This is the same
argument as the one presented for the sacrifice step in [17].

Lemma 6. If the check at the end of the first step in Protocol 5 passes, then the
additive error d ∈ Z2`+s that A sent to Fmult is zero modulo 2` with probability at
least 1− 2−s.

Proof: Since Fmult is used in the first step, we have that c = a · b + d
and c′ = a′ · b + d′, where d, d′ ∈ Z2`+s are the additive attacks chosen by
the adversary in the first and second call to Fmult respectively. It follows that
a′′ · b− r · c+ c′ ≡`+s d′− r · d. Hence, if 2v is the largest power of 2 dividing d, it

holds that if w ≡`+s 0 then r
2v ≡`+s−v

(
d
2v

)−1 d′

2v , which holds with probability

at most 2−(`+s−v). If d 6≡` 0, then v > ` and therefore this probability is upper
bounded by 2−s, which concludes the proof.

With this lemma at hand we proceed to prove the security of Protocol 5. The
key intuition is that the preprocessed triple is correct with high probability, and
since the open procedure is guaranteed to yield the correct value, it is ensured
that final linear combination gives the right product.

Proposition 1. Protocol 5 securely computes functionality FCorrectMult with
abort and with statistical error 2−s in the (Frand,Fmult,Fcoin)-hybrid model in the
presence of malicious adversaries controlling t < n/2 parties.

Proof: Let A be the real world adversary who controls a set of corrupted parties
C and let S be the ideal world simulator. The simulator S works as follows:



1. Generate the multiplication triple:
(a) S plays the role of Frand(`+s), receiving JaKC`+s, Ja

′KC`+s, JbK
C
`+s sent by A.

(b) S play the role Fmult(`+ s), receiving d and d′ and the corrupted parties’
shares JcKC`+s, Jc

′KC`+s from A.
(c) S simulates Fcoin(s) sampling r ∈ Z2s and hands it to A.
(d) S computes Ja′′KC`+s = r · JaKC`+s − Ja′KC`+s, chooses a random a′′ ∈ Z2`+s

and chooses random shares for the honest parties, given a′′ and Ja′′KC`+s.
Then, it simulates the honest parties in the execution of open(Ja′′K`+s).
If the honest parties output ⊥ in the execution, then S sends abort to
FCorrectMult and halts.

(e) S computes JwKC`+s = a′′ · JbKC`+s − r · JcKC`+s + Jc′KC`+s. Then, it sets

w = d′ − r · d and chooses the honest parties’ shares JwKH`+s accordingly.
(f) Finally, S simulates the honest parties in the execution of open(JwK`+s). If

the honest parties output ⊥ in the execution or if w 6≡`+s 0, then S sends
abort to FCorrectMult and halts. If d 6≡` 0 and the honest parties did not
abort, then S output fail and halts. Otherwise, it records JaKC` , JbK

C
` , JcK

C
`

as the output of the corrupted parties from this step.
2. Use the generated triple:

(a) The simulator S receives the adversary’s shares JxKC` and JyKC` from
FCorrectMult. Then, S computes JuKC` = JxKC` − JaKC` and JvKC` = JyKC− JbKC .
Finally, S chooses random u, v ∈ Z2` and defines the honest parties’ shares
JuKH` and JvKH` , by running share(u, JuKC` ) and share(v, JvKC` ) respectively.

(b) S plays the role of the honest parties in the execution of open(JuK`)
and open(JvK`). If the honest parties output ⊥, then it sends abort to
FCorrectMult and halts.

(c) The simulator S defines the adversary’s shares by the equation JzKC` =
JcKC` + u · JbKC` + v · JaKC` + u · v and sends these to FCorrectMult.

Observe that given that the event that S outputs fail does not occur, the only
difference between the simulation and the real execution is the way the values
a′′, u and v are set. In the simulation, these are randomly and independently
sampled by S. In contrast, in the real execution we have that a′′ = r · a − a′,
u = x− a and v = y − b. However, from the way Frand is defined, we have that
a′, a and b are guaranteed to be uniformly and independently distributed over
the corresponding ring and thus so are a′′, u and v. Thus, the adversary’s view
is identically distributed in the two executions (given that the fail output event
does not happen).

Next, we show that given the identical view, the output of the honest parties
is also identical in both executions. In the simulation, the honest parties’ output is
random shares of x · y given the corrupted parties’ shares. In contrast, in the real
execution, these are determined by computing JzKH` = JcKH` +u·JbKH` +v·JaKH` +u·v.
However, since z = x · y this obtained shares are random shares of x · y as in the
simulation.

We conclude that the only difference between the executions is the fail event.
However, by Lemma 6, this event happens with probability of at most 2−s, which
is exactly the statsitcal error allowed by the proposition.



FrandBit - Generating Random Shared Bits. We now present our protocol
to generate random shared bits. As discussed above, the protocol realizes the
functionality FrandBit, which is defined similarly to Frand: it receives a set of
shares from the adversary controlling the corrupted parties, to then choose a
random bit and compute the honest parties’s shares, given that the corrupted
parties’ shares are fixed. We stress that the resulted sharing is a sharing of a bit
over the ring Z2` .

We instantiate this functionality essentially by showing that the bit-generation
procedure from [24], which is presented in the setting of SPDZ-type of shares,
also extends to more general secret-sharing schemes. The main tool needed here
is the “Multiplication by 1/2” property presented in Section 2.1, which states
that parties can locally divide their shares of a secret x mod 2` by 2 to obtain
shares of x/2 mod 2`−1, as long as the shares and the secret are even.

Proposition 2. Protocol 6 securely computes functionality FrandBit with abort
in the (Frand,FCorrectMult)-hybrid model in the presence of malicious adversaries
controlling t < n/2 parties.

Proof: First, observe that simulation here is straightforward. Since the protocol
has no inputs, the simulator S can perfectly simulate the honest parties in the
execution (including aborting the protocol if the honest parties output ⊥ when
running the open procedure). In addition, S receives the corrupted parties’ shares
when playing the role of Frand and FCorrectMult and thus it can compute locally
JbKC` and hand it to FrandBit.

Next, we show that the honest parties’ output is identically distributed in
both the real and ideal executions. In the simulation, the honest parties’ ouptut
is random shares of a random bit (computed given the corrupted parties’ shares).
We now show that this is the same for the real world execution.

To see this, first observe that c ≡`+2 a2 (with no additive errors), since
FCorrectMult was used. Furthermore, using Lemma 4.1 in [24], we obtain that

d =
√
c
−1 · a mod 2`+2 satisfies d ∈ {±1,±1 + 2`+1}, so in particular d ≡`+1 ±1,

with each one of these cases happening with equal probability. This implies that
b = b′/2 mod 2` satisfies b ≡` 0 or b ≡` 1, each case with the same probability.

The final observation is that all the shares of b′ = d+ 1 mod 2`+1 are even,
which is required to ensure that the parties can execute the right-shift operation
in step 5. This is implied by the following argument. First of all, notice that
JdK`+2 + 1 = 2 ·

√
c
−1JrK`+2 + (

√
c
−1

+ 1). Now, the shares 2 ·
√
c
−1JrK`+2 are

even since these are obtained by multiplying the constant 2. Furthermore, the
constant (

√
c
−1

+ 1) is even since
√
c
−1

is odd, and by the assumptions of the
secret sharing scheme each canonical share of it is either 0 or the constant itself
(see the “shares of a constant” property in Section 2.1), so in particular all of its
shares are even.

The above implies that at the end of the protocol, the parties hold a sharing
of a random bit, exactly as in the simulation. This concludes the proof.



Protocol 6 Random Shared Bits Generation

– The protocol:
1. The parties call Frand(` + 2) to obtain a shared value JrK`+2. Then, the parties set

JaK`+2 = 2 · JrK`+2 + 1.
2. The parties call FCorrectMult(`+2) on input JaK`+2 and JaK`+2 to obtain shares JcK`+2 =

Ja2K`+2. Then, they run open(JcK`+2) to obtain c.

3. The parties compute JdK`+2 =
√
c−1 · JaK`+2, where

√
c is a fixed square root of c

modulo 2`+2, and the inverse is taken modulo 2`+2.
4. The parties locally convert JdK`+2 → JdK`+1, and compute Jb′K`+1 = JdK`+1 + 1.
5. The parties locally shift their shares of b′ one position to the right to obtain shares

JbK`, where b ≡` b
′
2 .

– Outputs: The parties output JbK`.

Check Equality to Zero. We are now ready to formally present our check-to-
zero protocol which is described in Protocol 7. As explained at the beginning of
the section, the idea behind the protocol is to check that the bit representation
of v + r is identical to the bit representation of r, where r is sampled randomly
from Z2` .

Protocol 7 Checking Equality to 0

– Inputs: The parties hold a sharing JvK`.
– The protocol:

1. The parties call FrandBit to get ` random shared bits Jr0K`, . . . , Jr`−1K`.
2. The parties bit-decompose v:

(a) The parties compute JrK` =
∑`−1
i=0 2i · JriK`.

(b) The parties call c = open(JvK` + JrK`) and bit-decompose this value as
(c0, . . . , c`−1).

(c) The parties locally convert JriK` → JriK1 for i = 1, . . . , `− 1.

3. The parties check that all the bits of v mod 2` are zero:

(a) The parties use FCorrectMult(1) to compute
∨`−1
i=0 (JriK1 ⊕ ci) and open this result.

(b) If the opened value above is equal to 0 then the parties output accept. Otherwise
they output reject.

Proposition 3. Protocol 7 securely computes FCheckZero with abort in the
(FrandBit,FCorrectMult)-hybrid model in the presence of malicious adversaries who
control t < n/2 parties.

Proof: The simulation begins with the ideal world simulator S receiving the
corrupted parties’ shares JvKC` and the output (accept or reject) from FCheckZero.
Then, S works as follows:

1. Playing the role of FrandBit, S receives Jr0KC` , . . . , Jr`−1KC` from A.

2. S locally computes JrKC` =
∑`−1
i=0JriKC` and JcKC` = JvKC` + JrKC` . Then, it chooses

a random c ∈ Z2` and computes JcKH` = share(c, JcKC` ).
3. S simulates the execution of open(JcK`) by playing the role of the honest

parties. If the honest parties output ⊥ at the end of the execution, then S
sends abort to FCheckZero and halts.



4. S locally converts JriKC` → JriKC1 for i = 1 to `.
5. S simulates the computation of the circuit by playing the role of FCorrectMult(1).

Let JT K1 be the sharing of the output of the circuit. Thus, S holds the corrupted
parties’ shares of the ouptut JT KC1 .

6. If S received accept from FCheckZero, then it sets b = 0. Otherwise, in the
case where S received reject from FCheckZero, it sets b = 1. Then, it runs
share(b, JT KC1 ) to obtain the honest parties’ shares JbKH1 .

7. Finally, S simulates the opening of the output by playing the role of the
honest parties. If the honest parties output ⊥, then S sends abort to FCheckZero.
Otherwise, it sends continue to FCheckZero.

8. S outputs whatever A outputs and halts.

The difference between the simulation and the real execution is in the way c
and the output of circuit b are computed. However, since r ∈ Z2` is secret and
uniformly random, the opened value c = v+r mod 2` is also uniformly distributed
over the ring and thus it is identically distributed in both executions. Furthermore,
v ≡` 0 if and only if v + r ≡` r, which is equivalent to the bit decomposition
of c, (c0, . . . , c`−1), being equal to that of r, (r0, . . . , r`−1). Checking this is
equivalent to checking that all the bits of (r0⊕c0, . . . , r`−1⊕c`−1) are zero, which

is equivalent to
∨`−1
i=0(ri ⊕ ci) = 0. Thus, the value of b in the simulation, as

chosen by S, is exactly as in the real execution. This concludes the proof.

Efficiency analysis. The main bottleneck of the above protocol is the costly
FCorrectMult functionality. Note that it is called ` times in Protocol 7 (for com-

puting
∨`−1
i=0(ri ⊕ ci)) and once each time FrandBit is called. Thus, overall, it

is called 2` times. For example, for the ring Z264 , this translates to 128 calls
to FCorrectMult. Since FCheckZero is called exactly once in our main protocol for
computing a circuit, the overhead is not significant.

D Replicated Secret Sharing for Three Parties

We now present in detail the efficient three party instantiation of our compiler
from replicated secret sharing. Sharing a value x ∈ Z2` is done by picking at
random x1, x2, x3 ∈ Z2` such that

∑
i xi ≡` x. Pi’s share of x is the pair (xi, xi+1)

and we use the convention that i+ 1 = 1 when i = 3. To reconstruct a secret, Pi
receives the missing share from the two other parties. Note that reconstructing a
secret is robust in the sense that parties either reconstruct the correct value x or
they abort.

Replicated secret sharing satisfies the properties described in Section 2.1,
and one can efficiently realize the required functionalities described in the same
section. Below we discuss some of these properties/functionalities.

Generating Random Shares. Shares of a random value can be generated
non-interactively, as noted in [33,34], by making use of a setup phase in which
each party Pi obtains shares of two random keys ki, ki+1 for a pseudorandom



function (PRF) F . The parties generate shares of a random value for the j-th
time by letting Pi’s share to be (ri, ri+1), where ri = Fki(j). These are replicated
shares of the (pseudo)random value r =

∑
i Fki(j). Proving that this securely

computes Frand is straight forward and we omit the details.

Secure Multiplication up to an Additive Attack. To multiply two shared
values, we use the protocol from [34,4], which is described in 8. The shares of 0
that this protocol needs can be obtained by using correlated keys for a PRF, in
similar fashion to the protocol for Frand sketched above.

Protocol 8 Secure multiplication up to an additive attack.

– Inputs: Parties hold sharings JxK, JyK and additive sharings (α1, α2, α3) where
∑3
i=1 αi = 0.

– Protocol:
1. Pi computes zi = xiyi + xi+1yi + xiyi+1 + αi and sends zi to Pi−1.
2. Pj , upon receiving zj+1, defines its share of Jx · yK as (zj , zj+1).

The above protocol is secure up to an additive attack as noted in [33]. We
note that this can be extended to instantiate FDotProduct at the communication
cost of one single multiplication, as shown in [16].

Efficient Checking Equality to 0. Checking that a value is a share of 0 can
be performed very efficiently in this setting by relying on a Random Oracle H.
The observation we rely on is that, if

∑
i xi ≡` 0, then xi−1 ≡` −(xi + xi+1) and

so Pi can send zi = H(−(xi + xi+1)) which will be equal to xi−1 which is held
by Pi+1 and Pi−1. Since only one party is corrupted, it suffices that each Pi will
send it only to Pi+1. Upon receiving zi from Pi, Pi+1 checks that zi = H(xi−1)
and aborts if this is not the case.

This protocol is formalized in Protocol 9 in the FRO-hybrid model. The FRO

functionality is described in Functionality 5.
We remark that that this protocol does not instantiate FCheckZero exactly. In

order for the proof of security to work, we need to allow the adversary to cause
the parties to reject also when v = 0. We denote this modified functionality by
FCheckZero

′. This is minor change since the main requirement from FCheckZero in
our compiler is that the parties won’t accept a value as 0 when it is not, which is
still satisfied by the modified functionality.

Functionality 5 FRO – Random Oracle functionality
Let M be an initially empty map.

– On input x from a party P , if (x, y) ∈M for some y, return y. Otherwise pick y at random
and set M = {(x, y)} ∪M and return y.

– On (x, y) from S and if (x, ·) 6∈M set M = {(x, y)} ∪M .



Protocol 9 Checking Equality to 0 in the FRO-Hybrid Model

– Inputs: Parties hold a sharing JvK.
– Protocol:

1. Party Pi queries βi ← FRO(−(vi + vi+1)) and sends βi to Pi+1.
2. Upon receiving βi−1 from Pi−1, each party Pi checks that βi−1 = FRO(vi+1). If this is

not the case, then Pi outputs reject. Otherwise, it outputs accept.

Proposition 4. Protocol 9 securely computes FCheckZero in the FRO-hybrid
model in the presence of one malicious corrupted party.

Proof: Let A be the real adversary who corrupts at most one party and S the
ideal world simulator. Let Pi be the corrupted party. The simulation begins with
S receiving the shares of Pi, i.e., (vi, vi+1). Then, S proceed as follows:

– If S receives accept from FCheckZero
′, then it knows that v ≡` 0 and so it can

compute the share vi−1 = −(vi + vi+1) and so it knows the honest parties’
shares and can perfectly simulate the execution, while playing the role of FRO.
If A cause the parites to reject by using different shares, then S sends reject
to FCheckZero

′.
– If S receives reject, then it chooses a random vi−1 ∈ Z2` \ {−(vi + vi+1)} and

defines the honest patries’ shares accordingly. Then, it plays the role of FRO

simulating the remaining of the protocol. By the definition of FRO, the view
of A is distributed identically in the simulated and the real execution.

E Proofs for Section 5.2 - Shamir-SS Instantiation

E.1 Proof of Lemma 2: Securely Computing Frand

Lemma 7 (Lemma 2 - restated). Protocol 2 securely computes (n − τ)d
parallel invocations of Frand for J·K with statistical error of at most 2−κ in the
presence of a malicious adversary controlling t < n/2 parties.

Proof: Let A be the real-world adversary. The simulator S interacts with A
by simulating the honest parties in an execution of the protocol. In doing so, S
obtains honest parties’ shares 〈r1〉H , . . . , 〈rn−τ 〉H .

We distinguish three cases:

1. If at least one of the simulated honest parties aborts in any of the executions
of Protocol 3, then S sends abort to Frand.

2. If the checks pass but the honest parties’ shares are inconsistent, S outputs
fail. By Lemma 3 this only happens with probability at most 2−κ, allowed by
the claim.



3. In the remaining case, the checks of Protocol 3 pass and the honest parties’
shares are consistent. S calculates the corrupted parties’ shares 〈r1〉C , . . . , 〈rn−τ 〉C
from the honest parties’ shares, and sends them to Frand.

Before the invocation of Frand, the honest parties have no private inputs, hence
S simulates them perfectly and A’s view will be identical to the real execution.
Thus, the simulated honest parties will abort in the ideal execution precisely
when they would in the real execution.

The only thing it remains to prove is that if the parties do not abort, the output
shares are identically distributed in the real and ideal executions. In particular,
we need to prove that in the real execution, the sharings are independent and
uniformly sampled from 〈·〉.

Let H ⊆ H be a subset of honest parties of size n − τ , and let C :=
{1, . . . , n} \ H denote its complement. Let AH , AC denote the submatrices of
A corresponding to the columns indexed by H and C respectively. Let 〈sH〉
denote the vector 〈si〉i∈H of length n− τ , and correspondingly 〈sC〉 := 〈si〉i∈C .
Then (〈r1〉 , . . . , 〈rn−τ 〉)T = AH 〈sH〉+AC 〈sC〉. Since 〈sH〉 is wholly generated
by the honest parties, it consists of n − τ independent and uniformly random
sharings of 〈·〉. AH is invertible (since A is hyperinvertible), hence we also have
that 〈sH〉 consists of independent and uniformly random sharings. Adding a fixed
AC 〈sC〉 will not affect the distribution, hence the sharings 〈r1〉 , . . . , 〈rn−τ 〉 are
independent and uniformly random sharings.

E.2 Proof of Lemma 5: Securely Computing Fmult

Lemma 8 (Lemma 5 - restated). Protocol 4 securely computes Fmult with
statistical error ≤ 2−κ in the Frand-hybrid model in the presence of a malicious
adversary controlling t < n/2 parties.

Proof: Without loss of generality, assume 2τ + 1 = n (recall that τ is the secret
sharing threshold and not the number of corrupted parties, and so the proof still
holds for any t < n/2).

For the offline phase, the simulator acts as in Lemma 2. By the proof, we
have that JrK is a correct sharing. The sharing Jr′K(2t) is not well-defined, because
the adversary can change its mind about its shares at any time. However, the
adversary always knows the additive error r′ − r that it introduces by changing
its shares.

For the online phase, S simulates the honest parties towards A.
We distinguish two cases:

– Case 1: P1 is not corrupt. The simulated P1 receives {ui}i∈C from A. If it
receives ⊥ for any value ui, it sends abort to Fmult and simulates P1 aborting.
Otherwise, it calls Fmult and receives {xi}i∈C , {yi}i∈C . For any i ∈ C, since
S knows xi, yi, r

′
i, it may calculate δi = xiyi − r′i and thus the value π(λiδi)

the adversary is supposed to send if it behaves honestly. The simulator can
therefore extract d =

∑
i∈C ui − π(λiδi). S does not know the true value of



δ, however it may sample δ ← Z2` , send it to the corrupted parties, and
calculate the corrupted parties’ shares as zi = ri + δ + d.
It then simulates the broadcast of δ. If the broadcast aborts, S simulates the
parties aborting and sends abort to Fmult. Otherwise, it sends d, {zi}i∈C to
Fmult, and outputs whatever A outputs.
In the ideal execution, A receives a random δ. It cannot distinguish this from
the real value x · y − r, since r is uniformly random and by privacy of the
secret-sharing scheme it does not have any information on it.

– Case 2: P1 is corrupt. S samples JδK(2t) ← J·K(2t). For i ∈ H it sends
ui = π(λiδi) to the corrupted P1. The simulated honest parties receive an
identical broadcasted value δ′, otherwise the broadcast protocol aborts.
Since S knows δ, it can extract d := δ′ − δ, and calculate the corrupted
parties’ shares as zi = ri+ δ′. It then sends d, {zi}i∈C to Fmult, and it outputs
whatever A outputs.

As mentioned above, the adversary cannot distinguish whether it is talking
to a simulator or the real parties, hence its output will be identical.

In the ideal execution where no abort took place, the actual (non-simulated)
parties receive their shares {zi}i∈H directly from Fmult. The shares are consistent
and will reconstruct to the secret z = x · y + d. In the ideal execution, the shares
are generated by the probabilistic function share(z, {zi}z∈C), such that the shares
are uniformly random subject to the constraints on the shares.13 In the real
execution, the shares also correspond to z. The sharing in the real execution is
calculated as JrK + δ, where JrK is a uniformly random sharing. Therefore, the
outputs are identical in both executions.

13 Depending on the privacy threshold the constraints may fully determine the shares.
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