
Actively Secure Setup for SPDZ

Dragos Rotaru1,2[0000−0002−1767−3725], Nigel P. Smart1,2[0000−0003−3567−3304], Titouan
Tanguy1[0000−0002−7965−620X], Frederik Vercauteren1[0000−0002−7208−9599], and Tim

Wood1,2[0000−0003−1082−4321]

1 imec-COSIC, KU Leuven, Leuven, Belgium.
2 University of Bristol, Bristol, UK.

dragos.rotaru@esat.kuleuven.be, nigel.smart@kuleuven.be,

titouan.tanguy@kuleuven.be, frederik.vercauteren@esat.kuleuven.be, t.wood@kuleuven.be

Abstract. We present an actively secure, practical protocol to generate the distributed secret keys
needed in the SPDZ offline protocol. The resulting distribution of the public and secret keys is such
that the associated SHE ‘noise’ analysis is the same as if the distributed keys were generated by a
trusted setup. We implemented the presented protocol for distributed BGV key generation within the
SCALE-MAMBA framework. Our method makes use of a new method for creating doubly (or even more)
authenticated bits in different MPC engines, which has applications in other areas of MPC-based secure
computation. We were able to generate keys for two parties and a plaintext size of 64 bits in around
five minutes, and a little more than eighteen minutes for a 128 bit prime.

Keywords: MPC · Somewhat Homomorphic Encryption · Key Generation

1 Introduction

The SPDZ protocol for Multi-Party Computation (MPC) was introduced in 2012 [11]. This
protocol is in the pre-processing family of protocols which are actively secure-with-abort
for a dishonest majority of participants. Due to many improvements over the intervening
years it provides a highly efficient mechanism to perform MPC for an arbitrary number
of participants. However, the protocol comes with a major security issue: namely that it
seems to require a trusted setup. This trusted setup is the creation of a public key for the
Brakerski-Gentry-Vaikuntanathan [7] (BGV) homomorphic encryption scheme in which the
private key is securely distributed amongst the n-parties.

In the original SPDZ paper [11] this was assumed to come from some trusted setup. In
the follow up paper [10] a covertly secure protocol for generating a suitably distributed set
of private keys, and the associated public key was introduced. However, this came with a
number of disadvantages, as well as the reduction to just covert security. In particular the
distributions of the underlying public keys were different from those one could attain via a
trusted setup, which led to a more complicated noise analysis, and larger parameters.

In subsequent works the issue of the setup of the public key for the BGV encryption
scheme has been dismissed as a setup assumption, which could either be performed in a live
system using trusted hardware or via another MPC protocol. Given the complexity of the
covertly secure key generation protocol from [10] it has always been assumed that the key
generation for SPDZ would require a complex MPC protocol to perform it. In [4] the authors
present a key generation method for a distributed SHE scheme using various Σ-protocols.

To our knowledge this has never been implemented, and the methodology again produces
a key generation which is different from what would be done via a trusted setup. In [21] a
passively secure distributed key generation method is used for threshold SHE schemes, again
producing a distribution different from that one would have in a purely trusted setup.

In this paper we show that we can obtain actively secure distributed key generation, with
virtually identical secret key distributions as in the trusted setup case. In particular the noise
analysis for the resulting public key is identical to that one would have if using a trusted
setup. Our protocol is also relatively simple, although it does make use of complex generic
MPC technology. In particular, our protocol generates a public/private key with exactly the
same distribution as the ideal trusted setup does in the SCALE-MAMBA system3, bar the fact
we generate secret keys with expected Hamming weight h as opposed to exact Hamming
weight h.

We are also able to generate secret keys from binomial distributions, which can be seen
as approximate Gaussian error distributions. These lead to slightly larger parameters, but do
not suffer from the security concerns that low Hamming weight secret distributions have [9].
In addition, for our purposes, using such keys produces a faster distributed key generation
procedure. The effect of using such keys makes the ring parameters slightly bigger, but it
decreases the runtime of distributed key generation by about a half.

Our protocol makes use of a generic MPC functionality for actively secure MPC-with-
abort for dishonest majorities over a finite field. This might seem to imply that we require
SPDZ to create SPDZ, however this circular dependency is removed by utilizing either the
BDOZ protocol [5] or the SPDZ protocol executed with the MASCOT pre-processing phase
[19]. The first of these, BDOZ, makes use of n public keys for a linear homomorphic encryp-
tion scheme where one private key is held by each player. The second option, MASCOT,
is based on Oblivious Transfer. Both of these base MPC protocols are not as efficient as
the SPDZ protocol based on homomorphic encryption, but we will only be using the base
protocols for the one-time setup phase for SPDZ. In particular the underlying generic MPC
protocol that we will use for key generation is O(n2) in complexity; but we use this to cre-
ate the distributed secret keys for an MPC protocol which has complexity O(n). To avoid
confusion we will refer to SPDZ with a MASCOT based pre-processing as MASCOT-SPDZ,
where as when we talk about SPDZ we mean the pure SPDZ protocol with a pre-processing
based on homomorphic encryption.

The overall construction of our protocol is based on four key observations; all of which are
relatively simple. Firstly, the generation of the public key data given the secret key data and
randomness for a BGV public key is essentially a linear operation and thus comes for free in
LSSS based MPC protocols such as BDOZ and MASCOT-SPDZ. Secondly, the BGV public
key for SPDZ is a two level BGV scheme thus the ciphertext modulus q needed to construct
the BGV public key is a product of two primes q = p0 · p1. In particular the public key is
simply the lift to modulo q of the public key modulo p0 and p1, performed via the Chinese
Remainder Theorem (CRT). If we select p0 and p1 to be prime, as SCALE-MAMBA does, then

3 We use SCALE-MAMBA as a reference work throughout this paper as it gives a fixed target (including key sizes) for
the final distributed keys we are trying to produce.

2

we can use two MPC systems (one over p0 and one over p1) to perform the operations, and
then obtain the final result via application of the CRT. We assume these two MPC systems
come as ideal functionalities Fp0MPC and Fp1MPC. Thirdly, all the random values required in
BGV key generation can be boiled down to the generation of random bits, which are then
processed in various ways. Thus a key issue is how to generate these random bits. Whilst
BDOZ and MASCOT-SPDZ can be adapted to produce authenticated bits as part of their
pre-processing, using much the same trick as proposed in [10], this will produce different
random bits in Fp0MPC and Fp1MPC. Thus our fourth, and final, observation is that we can
produce sharings of the same random bit in both Fp0MPC and Fp1MPC using an adaption of the
daBit method from [3] and [24].

Indeed our new method for daBit is more general and more efficient than the method
presented in [3,24]. We require a daBit method which works for two large primes, whereas
[3,24] require a method for a large prime and a small prime (in particular two). Our new
method deals with any prime size for the two MPC engines, can be extended to more MPC
engines than just two, and is built upon an abstraction which allows it to be used with any
form of LSSS based MPC engine in the SPDZ family (e.g. BDOZ, MASCOT or SPDZ itself).

The most expensive part of the daBit generation procedure for producing daBits with
active security in [3,24] was in verifying consistency of the daBits between the two instances
of FMPC. The idea in these works was to check the same random linear combinations of bits
in both instances simultaneously, which was challenging because one field had characteristic
2 and the other some large prime p which meant the XOR had to be emulated in the prime
field, requiring multiplication in MPC. In addition, to generate a bit, one needed to perform
XOR in both of the fields under consideration. Our observation in this work is that we use
an auxillary MPC engine for a large prime p to generate bits using the standard square-root
trick for generating bits, these are then mapped into the target MPC engines. The auxillary
MPC engine is used to obtain a subset sum over the integers, which is then compared to the
equivalent subset sum in the target MPC engines. Security now reduces to a variant of the
Multiple Subset-Sum Problem4.

We decided to use MASCOT-SPDZ as the underlying MPC protocol for the BGV key
generation, with our implementation building upon the already existing code-base for OT
present in the SCALE-MAMBA framework. In addition we ran experiments with different values
for the standard deviation of the centred binomial distribution, and experiments between
Hamming weight restricted secret keys and secret keys generated from a centred binomial
distribution. In the fastest case, of standard deviation σ =

√
2 = 0.707 for the centred

binomial distribution and FHE keys distributed following this same distribution, for two
parties and a 64 bit plaintext modulus our results show that we can distributively generate
BGV keys in around five minutes. We ran experiments for 64 and 128 bit primes for the
plaintext space for two and three parties for all settings; and for our fastest settings we also
ran experiments for four and five parties.

4 Carsten Baum has pointed out that we can remove this reduction to the subset-sum by increasing the number
of bits we throw away. This however results in a less efficient protocol, thus we rely on the Multiple Subset-Sum
Problem to obtain an efficient protocol.

3

For the parameters used in SCALE-MAMBA, which is σ =
√

10 = 3.16 and Hamming
weight limited secret keys, we find a key generation time of 47 minutes for two parties and a
64 bit modulus. We give a detailed report of our implementation in Section 6, in which the
triple generation throughput and the shared bit throughput are given for the standard case
and wall clock time for the whole protocol is given for all our test cases.

We end this introduction by noting that in [6] a method to perform the SPDZ offline
phase using no-communication is presented. However, this method is impractical as currently
presented. The method still requires a distributed decryption capability of the underlying
SHE scheme. Thus to use this work even in theory one needs to be able to generate such
distributed keys in a secure manner, such as this work enables. We also note that using
the silent-OT method of [6] one may be able to achieve better runtimes. The paper reports
that they can achieve 600,000 correlated OT’s per second. However, due to the increased
computational costs of the silent-OT method this might not translate to the LAN setting in
our experiments.

2 Preliminaries

In this section we provide the necessary background on the type of BGV public key we need
to produce, as well as the underlying distributions and the base MPC protocols we will be
using.

2.1 Cyclotomic Rings and Distributions over such Rings

The BGV encryption scheme is defined over a cyclotomic ring R = Z[X]/(XN + 1), where
for our purposes we take N to be a power of two. Thus XN +1 is the m = 2 ·N -th cyclotomic
polynomial, and N = φ(m). We let � denote the multiplication operation in R.

Following [15][Full version in [14], Appendix A.5] the SCALE-MAMBA system utilizes the
following distributions in the key generation procedure.

- HWT(h,N): This generates a vector of length N with elements chosen at random from
{−1, 0, 1} subject to the condition that the number of non-zero elements is equal to h.

- dN(σ2, N): This generates a vector of length N with elements chosen according to an
approximation to the discrete Gaussian distribution with variance σ2, by sampling from a
centered binomial distribution.

- U(q,N): This generates a vector of length N with elements generated uniformly modulo q.

In particular for the distribution dN(σ2, N) SCALE-MAMBA approximates dN(σ2, N) using
the approximation from [1]. In particular dN(σ2, N) is replaced by the centered binomial
distribution where elements are returned using the formula

cj =
k∑
i=0

b2·i − b2·i+1

for uniformly random bits bj ∈ {0, 1} for j = 0, . . . , 2 · k − 1. The default settings of

SCALE-MAMBA use k = 20, giving us σ =
√
k/2 =

√
10 = 3.16.

4

We make a small change to one of the above distributions in our work. The distribution
HWT(h,N) is used to sample the secret key, where in [15] (and in SCALE-MAMBA) the value
h is selected to be a power of two; in particular h = 64. In our work we replace HWT(h,N)
with the distribution which picks each coefficient with respect to the Bernoulli distribution
B(h/N). Thus we use the approximation HWT(h,N) ≈ B(h/N)N . The Hamming weight
of the vectors output by this distribution follows a binomial distribution with mean h. We
still use h = 64 in our recommended construction though. The “noise analysis” behind the
homomorphic operations used in the SPDZ protocol are easily checked not to be affected by
this change, and in addition the security arguments for using low Hamming weight secret
keys (as discussed in [15]) are also not affected. In particular the noise analysis used in [15] or
SCALE-MAMBAis an ‘average case’ analysis in the key generation. Thus the standard deviation
in the canonical norm of the secret key is

√
h if an exact Hamming weight of h is used. It is

this standard deviation which is the contributing term in the noise analysis. If one generates
the secret key using only an expected Hamming weight then you obtain the same standard
deviation; thus nothing changes in the analysis by using our slightly different secret key
distribution.

2.2 The BGV Key Generation Procedure

For a modulus q we let Rq denote the above ring localised at the modulus q, i.e. Rq =
(Z/qZ)[X]/(XN + 1). The SPDZ protocol requires a two-leveled scheme with moduli p0 and
p1 with q1 = p0 · p1 and q0 = p0. We require, for efficiency, that

p1 ≡ 1 (mod p),

p0 − 1 ≡ p1 − 1 ≡ p− 1 ≡ 0 (mod N),

where p is the plaintext modulus. The moduli p0 and p1 are selected to be distinct primes. In
which case, by the CRT, we have Rq

∼= Rp0×Rp1 . In addition, due to the above restrictions on
the primes p0 and p1, there is an efficient FFT algorithm on Rpi , which requires no extension
field arithmetic. Thus one can efficiently multiply in Rpi by executing

a� b = FFT−1(FFT(a) · FFT(b))

where · here is the component wise product. Note that the FFT operation is a linear oper-
ation and thus can be executed in an MPC engine for free. These facts we shall use in our
distributed key generation protocol.

The BGV public key is of the form (a,b) ∈ Rq where

a← U(q,N) and b = a� sk + p · e

where e← dN(σ2, N). The secret key sk for our purposes will be selected from the distribution
B(h/N)N . We also require, for the SPDZ protocol, the switching key data (ask,sk2 ,bsk,sk2)
which is of the form

ask,sk2 ← U(q,N) and bsk,sk2 = ask,sk2 � sk + p · esk,sk2 − p1 · sk2

5

where esk,sk2 ← dN(σ2, N).
The goal in a distributed key generation protocol for the SPDZ system is to output the

public values pk = (a,b, ask,sk2 ,bsk,sk2) to all players, whilst player Pi obtains a value ski ∈ Rq

such that
sk = sk1 + . . .+ skn (mod q).

We also require that no party can influence the choice of secret key, and no proper subset of
the n parties can deduce any information about the secret key, bar what can be deduced from
the public key. Thus we aim to create a protocol which securely realizes the functionality
given in Figure 1, where ParamGen(1κ, log2 p, n) is a function which produces the system
parameters (p, p0, p1).

Functionality FKeyGen

1. When receiving the message start from all honest parties, run P ← ParamGen(1κ, log2 p, n), and then, using
the parameters generated, run (pk, sk)← KeyGen() (recall P , and hence 1κ, is an implicit input to all functions
we specify). Send pk = (a,b,ask,sk2 ,bsk,sk2) to the adversary.

2. Receive from the adversary a set of shares skj ∈ Rq for each corrupted party Pj for j 6= 1.
3. Construct a complete set of shares (sk1, . . . , skn) consistent with the adversary’s choices and sk. This is done

be selecting ski uniformly at random for honest i, subject to the constraint that sk =
∑

ski. Note that this
is always possible since the corrupted players form an unqualified set.

4. The functionality waits for an input from the environment.
5. If this input is Deliver then send pk to all players and ski to each honest player Pi, and send sk1 to player P1

if P1 is dishonest.
6. If the adversarial input is not equal to Deliver then abort.

Figure 1. The Ideal Functionality for Key Generation (Adapted from [11])

However, due to the concerns raised in [9] in relation to low Hamming weight keys, we
also examine the case of secret keys generated by a centred binomial distribution; namely
when we select sk from dN(σ2, N). These lead to slightly larger parameters for the underlying
FHE systems, but the method to produce the keys is simpler.

2.3 Base MPC Protocols

In Figure 2 we present the MPC functionality for our base MPC protocols, either BDOZ
or MASCOT-SPDZ in the case where we are generating keys or SPDZ when we are doing
traditional daBit generation.

To simplify presentation of protocols using this functionality we shall represent a value
held in the memory of such an MPC functionality by 〈x〉p, and then addition and multipli-
cation of such elements will be represented by

〈x〉p + 〈y〉p, 〈x〉p · 〈y〉p.

For inputing and outputting values to/from a player/all players we will write

〈x〉p ← Input(Pi), Pi ← Output(〈x〉p), x← Open(〈x〉p).

6

Functionality FpMPC

The functionality runs with parties P1, . . . , Pn and an ideal adversary A. Let A be the set of corrupt parties.
Given a set I of valid identifiers, all values are stored in the form (varid , x), where varid ∈ I.

Initialize: On input (Init , p) from all parties, with p a prime, the functionality stores p. The adversary is
assumed to have statically corrupted a subset A of the parties.
Input: This takes input (Input , Pi, varid , x) from Pi, with x ∈ Fp, and (input , Pi, varid , ?) from all other parties,
with varid a fresh identifier. If the varid ’s are the same the functionality stores (varid , x), otherwise it aborts.
Add: On command (Add , varid1, varid2, varid3) from all parties:
1. If varid1, varid2 are not present in memory or varid3 is then the functionality aborts.
2. The functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x+ y).
Multiply: On input (Multiply , varid1, varid2, varid3) from all parties:
1. If varid1, varid2 are not present in memory or varid3 is then the functionality aborts.
2. The functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x · y).
Output: On input (Output , varid , i) from all parties (if varid is present in memory),
1. The functionality retrieves (varid , y).
2. If i = 0 then the functionality outputs y to the environment, otherwise it outputs ⊥ to the environment.
3. The functionality waits for an input from the environment.
4. If this input is Deliver then y is output to all players if i = 0, or y is output to player i if i 6= 0.
5. If the adversarial input is not equal to Deliver then abort.

Figure 2. The ideal functionality for MPC with Abort over Fp

That the BDOZ, MASCOT-SPDZ and SPDZ protocols implement such a functionality se-
curely can be found proved in the respective papers [5], [19] and [11].

In such MPC protocols addition, and in fact any linear operation, is a ‘free’ operation,
whereas multiplication will be assumed to take a single ‘time’ unit of operation. Another met-
ric one often examines is the round complexity, in this case a multiplication takes one round,
but multiplications which can be performed in parallel also only take one round of operation.
Inputing, outputting or opening a data item also requires one round of communication, and
such operations can be performed in parallel.

2.4 The FB
Rand(M) Functionality

We also require a functionality FBRand(M) which allows the parties to agree on M random
values in the range [0, . . . , B). In practice this can be implemented by all parties committing
to a seed, then the parties open the seeds. The seeds are then XOR’d together to produce
a single shared seed, which is passed as the key to a PRF to produce the shared random
values. We present this as an ideal functionality in Figure 3.

Functionality FBRand(M)

1. On input (Rand, cnt) from all parties, if the counter value is the same for all parties and has not been used
before, the functionality samples ri ← [0, . . . , B) for i = 1, . . . ,M .

2. The values ri are sent to the adversary, and the functionality waits for an input.
3. If the input is Deliver then the values ri are sent to all parties, otherwise the functionality aborts.

Figure 3. The ideal FBRand(M) functionality

7

3 maBits: Generating Multiply Authenticated Bits

The main problem in performing actively secure key generation for SPDZ is to produce
secure randomly shared bits within the MPC functionalities; in which the bit is zero with
probability 1/2, and one with probability 1/2. The ‘standard’ trick to do this, borrowed
from [10], for a single MPC functionality is given in Figure 45. However, if we execute this
procedure with respect to both Fp0MPC and Fp1MPC then we will obtain two shared random bits
〈b0〉p0 and 〈b1〉p1 but we will not necessarily have b0 = b1.

Entering a Random Bit Πp
MPC.GenBit()

1. For i = 1, . . . , n execute 〈xi〉p ← Input(Pi), where xi is a random element in Fp.
2. 〈x〉p ←

∑n
i=1〈xi〉p.

3. 〈y〉p ← 〈x〉p · 〈x〉p.
4. y ← Open(〈y〉p).
5. If y = 0 then restart the process.
6. z ← √y, picking the value z ∈ [0, . . . , p/2).
7. 〈a〉p ← 〈x〉p/z.
8. 〈b〉p ← (〈a〉p + 1)/2.
9. Return 〈b〉p.

Figure 4. ‘Standard’ method to produce a shared random bit in Πp
MPC

To obtain shared random bits in the two MPC systems which are identical we need to
adapt the daBit idea from [24]. In this paper it is shown how to obtain identical shared
random bits in two MPC systems; one being a SPDZ-like system modulo p, and one being
a BDOZ-like system over F2 based on OT for garbled circuit style computations. In our
key generation protocol we require shared random bits in two SDPZ-like systems for large
moduli p0 and p1. This makes the protocol to generate the shared random bits a little easier
to understand than the one considered in [24]. Indeed we present a more general protocol
than that which is needed for our key generation method. Our new method includes the case
considered in [24], and is more efficient than the improved method considered in [3].

For our generalisation we consider a set of t SPDZ-like MPC systems with moduli
p0, . . . , pt−1. Our goal is to generate shares 〈b〉pi in all of these systems where b ∈ {0, 1}.
Our method makes no restriction on the size of the primes pi, nor the underlying SPDZ-like
MPC engine, thus our method can be used as a replacement for the daBit methods in [3,24]
as well.

We define pmin to be min(p1, . . . , pt) and we let γ be the smallest integer such that pγmin >
2sec, where sec is our security parameter. For efficiency we will generate these shared bits in
batches of m at a time. We define an auxiliary prime number p which satisfies

p > (m+ γ · sec) · 2sec.

5 If the underlying MPC system is SPDZ based then a more efficient way to perform the method is using the FHE
pre-processing instead of directly within the Offline phase as implied by the given protocol.

8

The prime p can be the same as one of the primes pi above. All we require is that the
MPC functionality FpMPC is extended by a command which we model via the ideal func-
tionality FpMPC.GenBit() given in Figure 5. A protocol for BDOZ and MASCOT-SPDZ for
FpMPC.GenBit() is given in Figure 4, with the equivalent SPDZ protocol satisfying the same
ideal functionality, see for example [10].

Functionality FpMPC.GenBit()

1. For each corrupt party Pi, the functionality waits for inputs bi ∈ Fp.
2. The functionality waits for a message abort or ok from the adversary. If the message is ok then it continues.
3. The functionality then samples a bit b ∈ {0, 1} and the completes the sharing to b =

∑
bi by selecting shares

for the honest parties.
4. The (authenticated) shares are passed to the honest players.
5. The bit b is stored in the functionality FpMPC.

Figure 5. The ideal functionality for single random bits

Our protocol will make use of the following result

Lemma 3.1. Let xi ∈ [0, . . . , p) be such that

x1 + . . .+ xn =

{
k · p, or
k · p+ 1.

set ∆ = dp/ne and write xi = li +∆ · hi with 0 ≤ li < ∆, then

k =
⌈∆ ·∑hi

p

⌉
.

with probability at least 1− 1/p.

Proof. We have, for ε ∈ {0, 1},

k =
∆ ·
∑
hi

p
+

∑
li
p
− ε

p
.

We have 0 ≤
∑
li < p by construction, and so the equality on k will follow as long as

∑
li ≥ ε.

But this always happens unless ε = 1 and
∑
li = 0, which happens with probability 1/p. ut

In Figure 6 we explain our protocol ΠRandomBit for producing shared random bits in the two
MPC systems. Intuitively the protocol works as follows. The parties generateM+γ·sec shared
random bits in the MPC engine FpMPC using the command GenBit. They then determine the
associated k value for each shared bit using Lemma 3.1, this does not reveal any information
about the hidden bit, but clearly reveals some (unimportant) information about the sharing6.
Thinking of the sharing now as over the integers, and then reducing modulo pi, Player P1 can
adjust his sharing so that the bit is correctly shared modulo pi. These shares are then input
into the MPC engines FpiMPC. Assuming all parties are honest we now have a valid sharing.

6 In our security proof this information can be perfectly simulated by the simulator, and leaks no information about
the actual shared value.

9

Protocol ΠRandomBit

1. Set ∆ = dp/ne.
2. For i = 1, . . . ,m+ γ · sec do

(a) 〈bi〉p ← FpMPC.GenBit().
(b) Let bi,j denote Player j’s value such that

∑
bi,j = bi (mod p).

(c) Player Pj writes bi,j = li,j +∆ · hi,j with 0 ≤ li,j < ∆.
(d) Player Pj sends hi,j to Player P1.
(e) Player P1 sets

ki =
⌈∆ ·∑j hi,j

p

⌉
.

(f) For j = 0, . . . , t− 1 do

- Party P1 calls 〈b(1)i 〉pj ← F
pj
MPC.Input(bi,1 − ki · p1 (mod pj)).

- Party P`, for ` 6= 1, calls 〈b(`)i 〉pj ← F
pj
MPC.Input(bi,` (mod pj)).

- The parties compute 〈bi〉pj =
∑n
`=1〈b

(`)
i 〉pj .

3. The parties initialize an instance of the functionality F2sec

Rand. [Implementation note this needs to be done after
the previous step so the parties have no prior knowledge of the output].

4. For j = 1, . . . , γ do
(a) For i = 1, . . . ,m+ γ · sec generate ri,j ← F2sec

Rand(m+ γ · sec).
(b) Compute for v = 0, . . . , t− 1 the sharings 〈Sj,v〉pv =

∑
i ri,j · 〈bi〉pv .

(c) Compute 〈Sj〉p =
∑
i ri,j · 〈bi〉p.

(d) Sj,v ← Open(〈Sj,v〉pv) for j = 0, . . . , t− 1
(e) Sj ← Open(〈Sj〉p).
(f) Abort if Sj (mod pv) 6= Sj,v for any v = 0, . . . , t− 1.

5. Output 〈bi〉pj for i = 1, . . . ,m and j = 0, . . . , t− 1.

Figure 6. Method to produce m shared random bits in Fp0MPC, . . . ,F
pt−1

MPC

To cope with dishonest parties we check the parties are honest by verifying random linear
combinations. Here we note that the initial sharing in FpMPC is guaranteed to be a sharing of
a bit due to the active security of the operation GenBit in FpMPC. Opening a random linear
combination S of the shared bits in FpMPC is then a subset-sum over the integers, due to the
lower bound on p. We then compare this to the associated sum modulo pi obtained from
FpiMPC. This has to be repeated γ times to cope with the smallest value of pi. We thus obtain
an instance of the Multiple-Subset-Sum-Problem (MSSP) considered in [22].

The protocol FpMPC.GenBit() in Figure 4 requires one secure multiplication and two rounds
of communication (as a multiplication also requires a round of communication). To execute
the rest of ΠRandomBit requires four rounds of communication (one for the initial opening
to P1, one for input into the MPC engines, one for executing F2sec

Rand and one for the final
opening). If the m+ γ · sec bits required in ΠRandomBit are produced in parallel, as well as the
various input/open operations etc, this means that protocol ΠRandomBit requires

m+ γ · sec

secure multiplications in FpMPC and 2 + 4 = 6 rounds of communication.

3.1 Multiple Subset Sum Problem

Definition 3.1 (Multiple Subset Sum Problem [22]). The MSSP is the problem of
given weights ai,j ∈ Z>0 for i = 1, . . . , k and j = 1, . . . , n and target values s1, . . . , sk ∈ Z to

10

find values xi ∈ {0, 1} such that

n∑
j=1

ai,j · xj = si for i = 1, . . . , k.

Just as the single subset-sum problem has a notion of density, for which one can trivially
find solutions, the MSSP also has a notion of density. We define the density of an MSSP to
be

d =
n

k ·max log ai,j
.

We then have

Lemma 3.2 ([22]). If d < 0.9408 then the MSSP problem can ‘almost always’ be solved
with a single call to a lattice oracle.

In this work we restrict to MSSP problems with high density, i.e. d > 1. In our protocol even
if we set m = 1 the density of the subset sums S over the integers, which are revealed, is
given by

d =
1 + γ · sec

γ · sec
> 1.

Informally, we note that the security of the protocol follows from the security of the underly-
ing MPC engines, except for the leaked information. Thus we need to argue that the leaked
information reveals no information about the underlying honest players’ data values, and
that even in the presence of malicious players the output is correct (i.e. m shared bits are
the same in all FpjMPC). The main potential leakage of information comes from the opened
subset sum values over the integers, i.e. S. To deal with this leaked information we consider
the following variant of the subset sum problem.

Definition 3.2 (Multiple Subset-Sum Guessing Problem (MSSG Problem)). Given
a set of random weights wi,j ∈ [0, . . . , 2γ·sec) for i = 1, . . . , v with v = γ · sec + 1 and
j = 1, . . . , γ, define mj = miniwi,j and sj =

∑
iwi,j. The problem is to distinguish between

the two different distributions:

1. In the first distribution the challenger picks random bits bi ∈ {0, 1} and sets Sj =
∑

i bi ·
wi,j. The values (S1, . . . , Sγ) are returned to the adversary. We write this as {Sj} ← D1.

2. In the second distribution the challenger samples values Sj ∈ [mj, . . . , sj] uniformly at
random and returns it to the adversary. We write this as {Sj} ← D2.

If A is an adversary then we define the advantage of A in solving this problem by

AdvA = 2 ·
∣∣∣Pr

[
A({wi,j}, {Sj}) = b | b← {1, 2},

wi,j ← wi,j ∈ [0, . . . , 2γ·sec),

Sj ← Db

]
− 1/2

∣∣∣.
We say the problem is hard if AdvA is a negligible function of sec for all polynomial time
adversaries A.

11

We first discuss this problem. The condition v = γ · sec + 1 implies that the MSSP in the
first distribution is not a low density multiple subset sum, and thus (if sec is chosen large
enough) the underlying subset sum problem is hard.

There are approximately (v − 1) · 2γ·sec elements in the range [mj, . . . , sj], but only at
most 2v = 2γ·sec+1 of these correspond to valid subset sums. Thus the probability, in the
second distribution, that a random value Sj ∈ [mj, . . . , sj] corresponds to a valid subset sum
is bounded above by

2γ·sec+1

(v − 1) · 2γ·sec
≈ 2

v − 1
=

2

γ · sec
.

If we set sec = 128 then there is a 1/(γ · 64)γ chance that an instance selected by the
second distribution is one which can be selected by the first distribution. This means that
the advantage is not necessarily bounded by one for a perfect adversary.

To see this consider an adversary against the above problem, which outputs 1 if they
believe the first distribution is what was sampled from and 2 if they believe it is the second.
If they always output the first distribution then they are correct with probability 1/2, if they
always output the second distribution then they are also correct with probability 1/2. Thus
zero advantage still corresponds to an adversary which makes no intelligent choices at all.

However, now consider an adversary which outputs one with probability one if the input
is from D1, and they output two with probability one if the input is from D2. Then they
have a problem when they deduce distribution D1 since this distribution could have arisen
by chance from a challenger selection of b = 2 probability 1/64γ. Thus for this adversary
(supposedly perfect adversary) we have

AdvA = 2 ·
(

1

2
· (Pr[A(. . .) = 1 | b = 1] + Pr[A(. . .) = 2 | b = 2])− 1

2

)
= (1 + (1− 1/64γ)− 1) = 1− 1

64γ
.

We finally note that the best algorithms for the subset-sum problem, on elements of size
V = 2sec, have time either O(2sec/2) [16] or O(sec · 2sec) [23], or O(V ·

√
sec) [20]. With our

parameters, these all have exponential time as V = 2sec.

3.2 Security of ΠRandomBit

We now discuss the security of this protocol. Formally we want the protocol to extend
the pair of functionalities (Fp0MPC, . . . ,F

pt
MPC), with the procedure defined in Figure 7. The

functionality FRandomBits internally generates a set of m secure bits, and we require that even
if some information about these bits is leaked to the adversary that the remaining bits are
still secure. We need this additional leaking of a subset of bits, as we do not know how the
secure bits will be used in any following MPC protocol, thus we must assume the worst that
a subset leaks. Even if m − 1 bits are revealed or some information about them is leaked
then we want the final remaining bit to still be secret.

12

Functionality FRandomBits

1. For i = 1, . . . ,m+ γ · sec the functionality calls FpMPC.GenBit() so as to store a bit bi.
2. The bits bi are retrieved from FpMPC and are enterred into the functionalities FpjMPC for j = 0, . . . , t− 1.
3. The functionality waits for a message abort or ok from the adversary. If the message is ok then it continues.
4. The functionality waits for a proper subset S of {1, . . . ,m} from the adversary and returns the bits bj for

j ∈ S to the adversary. [We note this subset can be adaptively chosen, but to simplify the exposition we
assume it is presented to the functionality in one go.]

Figure 7. The ideal functionality for random bits

Theorem 3.1. Assume the problem Multiple Subset Sum Guessing (MSSG Problem) is
hard then protocol ΠRandomBit securely implements FRandomBits in the F2sec

Rand,F .MPCGenBit-hybrid
model.

Proof. The values Sj are produced with no wrap-around modulo p, due to the bound on M .
Thus the γ values Sj define subset sums over the integers

Sj =

M+γ·sec∑
i=1

bi · ri,j

where we are guaranteed that bi ∈ {0, 1}.
We then check these sums against the equivalent sums modulo pv for v = 0, . . . , t − 1.

Since the random coefficients ri,j are revealed only after the parties input their shares b
(p)
i

of the bits modulo pv, the fact that the values Sj,v are equal to Sj (mod pv) implies with
overwhelming probability (since pγmin > 2sec) that the shared values entered modulo pj are
equal to the shared values in FpMPC.

Since FpMPC.GenBit generates values which are gauranteed to be bits, this implies the
values modulo pj are also bits, and equal to each other.

To complete the proof we must show that the protocol can be simulated. There are two
sets of values which need simulating. The hi,j values which are sent to party P1 by Player Pj
and the subset sum values Sj and Sj,v which are opened. We first deal with the hi,j values.

The simulator already knows the shares hi,j which the adversary should be sending to
them (from FpMPC.GenBit), and so knows whether to abort the functionality at this point. To
generate the hi,j values for the honest parties the simulator simply picks random values for
the honest parties shares bi,j so that they sum to zero modulo p. The honest hi,j are then
derived from these values. These top bits of the honest shares will be a valid simulation even
if the shared bit is actually one.

To simulate the value Sj, and hence Sj,v, we simply define the trivial simulator. The
values ri,j are sampled using the ideal functionality F2sec

Rand, and then the values mj = min ri,j
and sj =

∑
ri,j are computed. It then picks a random value Sj ∈ [mj, . . . , sj] and returns Sj

and Sj,v = Sj (mod pv), for every v, to the adversary. When the adversary selects a proper
subset S of {1, . . . ,m} to be opened, it queries the ideal functionality and returns these
values.

We now show that an environment that can distinguish between a real-world execution
and the ideal-world execution with this simulator can be used to solve an arbitrary instance

13

of the MSSG problem. We let A denote our adversary against the MSSG problem. This
takes as input t = sec + 1 values w1,j, . . . , wt,j, for j = 1, . . . , γ, and a target sum Tj for
j = 1, . . . , γ. The adversary A runs the environment twice as follows, where we let the run
be denoted by the variable r ∈ {1, 2}.
1. The adversary A selects an index i∗r ∈ {1, . . . ,m}.
2. The adversary sets r

(r)
i∗r ,j

to be wt,j.

3. The adversary sets r
(r)
i+m,j = wi,j for i = 1, . . . , sec.

4. The adversary selects all other values r
(r)
i,j , for run r, at random from [0, . . . , 2sec).

5. For i ∈ {1, . . . ,m} \ {i∗r} the adversary selects a bit b
(r)
i ∈ {0, 1}.

6. The adversary sets Sj(r) = Tj +
∑
b
(r)
i · r

(r)
i,j , where the sum is over i ∈ {1, . . . ,m} \ {i∗r}.

7. The adversary then runs the environment, revealing the values S
(r)
j , and S

(r)
j (mod pv) as

required.
8. At some point the environment in run r will request a subset of queries Sr ⊂ {1, . . . ,M}.

At this point for every i ∈ Sr the adversary returns b
(r)
i if i 6= i∗r. If i = i∗r then the

adversary returns r − 1, i.e. 0 in the first run and 1 in the second run.
9. Finally the environmental distinguisher will return its result of real or ideal.

10. In the case of a value returned of real in either run, the adversary A decides its input
problem was from the first MSSG distribution.

11. Otherwise the adversary decides that its input was from the second MSSG distribution.

We now discuss why this adversary solves the MSSG problem. Notice that if i∗r 6∈ Sr for one
of the two executions, then this execution is indistinguishable by definition to the real world
execution when the input problem is from the first MSSG distribution and is equal to the
ideal world execution when the input problem is from the second MSSG distribution.

When i∗r ∈ Sr, and the input problem is from the first MSSG distribution, and the bit
corresponding to this solution is correct (i.e. is actually equal to r − 1) then the adversary
is presenting an execution indistinguishable from the real world. If the bit is wrong, i.e. not
equal to r− 1, then the execution is unlikely to be identical to a real execution (unless there

is a solution to the subset sum with b
(r)
i∗r

equal to 2− r). Since we run the adversary twice in
such a case we are guaranteed that if the input is from the first MSSG distribution one of
our executions will be correctly equal to the real distribution.

In the case when i∗r ∈ Sr for both values of r and the input distribution to A is from the
second MSSG distribution, then the view given to the distinguisher is that of the simulated
distribution.

Thus in all cases any distinguisher which can distinguish between the real and ideal world
will be able to be used by A to solve the MSSG problem. ut

As pointed out to us by Carsten Baum we can remove the need to assume our variant of
the subset-sum protocol in the above theorem if we increase the number size of our subset
sum from m+ γ · sec to m+ 2 · γ · sec. This obviously reduces the efficieny of the protocol. If
one is willing to pay this price then security becomes a purely statistical argument. Such an
argument is similar to arguments used in prior works in various situations, see for example
[18,25].

14

4 Sampling Distributions In MPC

In this section we explain how we perform the various sampling operations we need in the key
generation algorithm. We assume that two actively-secure (with-abort) MPC functionalities,
as in Figure 2, have already been initiated, one for the prime p0 and one for the prime p1. We
call these two functionalities Fp0MPC and Fp1MPC. As explained earlier these can be instantiated
with either BDOZ or MASCOT-SPDZ. Using these functionalities we instantiate the protocol
ΠRandomBit, from Section 3, to produce doubly-authenticated bits in both Fp0MPC and Fp1MPC.

4.1 Protocol ΠHamming

To sample our secret key we will need to sample a shared vector of length N , with elements
in {−1, 0, 1}, with approximate Hamming weight h, i.e. we sample from B(h/N)N . The
values of N and h are selected such they are both powers of two, so we set N = 2ν and
h = 2`. The reader should think of values of N = 32768 and h = 64, which are used in
SCALE-MAMBA’s default configuration. To sample such vectors we use protocol ΠHamming(h,N)
given in Figure 8.

Protocol ΠHamming(h,N)

1. Set N = 2ν and h = 2`.
2. Using ΠRandomBit generate H = N · (ν − `) shared random bits 〈bji 〉p0 and 〈bji 〉p1 , for i ∈ {1, . . . , N} and

j ∈ {1, . . . , ν − `}.
3. For i ∈ {1, . . . , N}

(a) 〈bi〉p0 ← 〈b1i 〉p0 · . . . · 〈bν−`i 〉p0 .
(b) 〈bi〉p1 ← 〈b1i 〉p1 · . . . · 〈bν−`i 〉p1 .

4. Using ΠRandomBit generate N shared random bits 〈si〉p0 and 〈si〉p1 , for i ∈ {1, . . . , N}.
5. For i ∈ {1, . . . , N}

(a) 〈bi〉p0 ← 〈bi〉p0 · (2 · 〈si〉p0 − 1).
(b) 〈bi〉p1 ← 〈bi〉p1 · (2 · 〈si〉p1 − 1).

6. Return, for i ∈ {1, . . . , N}, the shares 〈bi〉p0 and 〈bi〉p1 .

Figure 8. Method to produce vectors of (expected) Hamming weight h with elements in {−1, 0, 1}

We again estimate the cost of this operation. If we assume that the two calls to ΠRandomBit

require only one batch operation then these operation requires 6 rounds of communication,
(H + N + sec) multiplications in FpMPC

7. The products to produce the initial bits bi require
dlog2(ν − `)e rounds of communication and (ν − ` − 1) · N multiplications in both Fp0MPC

and Fp1MPC. Whereas the products to produce the final signed bits require one round of
communication and N multiplications in both Fp0MPC and Fp1MPC. Hence in total we require

6 + dlog2(ν − `)e+ 1 = 7 + dlog2(ν − `)e

rounds of communication and

NHamming,0 = N +H + sec + (ν − `+ 1) ·N,
7 Note that γ = 1 since p0, p1 are both big.

15

NHamming,1 = (ν − `+ 1) ·N

multiplications in total Πp0
MPC and Πp1

MPC respectively.

4.2 Protocol ΠBinomial

The protocol for sampling shared values from the distribution dN(σ2, N) is relatively straight-
forward, and is given in Figure 9. Apart from the generation of the random bits this pro-
tocol consists entirely of linear operations. Thus the round complexity is six and it requies
NBinomial = 2 · k ·N + sec multiplications in FpMPC.

Protocol ΠBinomial(σ
2, N)

1. Define k by σ =
√
k/2.

2. Using ΠRandomBit generate 2 · k ·N shared random bits 〈bji 〉p0 and 〈bji 〉p1 , for i ∈ {1, . . . , N} and j ∈ {0, . . . , 2 ·
k − 1}.

3. For i ∈ {1, . . . , N}
(a) 〈bi〉p0 ←

∑k−1
j=0 〈b

2·j
i 〉p0 − 〈b

2·j+1
i 〉p0 .

(b) 〈bi〉p1 ←
∑k−1
j=0 〈b

2·j
i 〉p1 − 〈b

2·j+1
i 〉p1 .

4. Return, for i ∈ {1, . . . , N}, the shares 〈bi〉p0 and 〈bi〉p1 .

Figure 9. Method to produce elements from dN(σ2, N)

4.3 Protocol ΠUniform

Our final protocol is a rather trivial one, it allows the parties to sample a uniform element
from Zq in a secret shared form, we give it in Figure 10.

Protocol ΠUniform(N)

1. For i ∈ {1, . . . ,M}
(a) For j ∈ {1, . . . , n}

i. Player Pi selects uji ∈ Fp0 , and vji ∈ Fp1 ,
ii. Execute 〈uji 〉p0 ← Input(Pi).
iii. Execute 〈vji 〉p1 ← Input(Pi).

(b) 〈ui〉p0 ← 〈u1
i 〉p0 + . . .+ 〈uni 〉p0 .

(c) 〈vi〉p0 ← 〈v1i 〉p0 + . . .+ 〈vni 〉p0 .
2. Return, for i ∈ {1, . . . , N}, the shares 〈ui〉p0 and 〈vi〉p1 .

Figure 10. Protocol to sample a uniform element from Zq

5 SPDZ KeyGeneration

Given the previous algorithms to generate various distributions the computation of the actual
key generation algorithm becomes relatively straight forward. We first sample the various

16

distributions modulo p0 and p1, then we produce the square of the secret key (needed for
the key switching matrices), and then we output the public key and recombine it using the
CRT, then we do the same to each players component of the secret key. The overall protocol
is given in Figure 11; note that in line 3 one can select as to whether to choose the secret
key from a restricted Hamming weight or from the centred binomial distribution. To make
the protocol easier to follow we use the notation 〈a〉p0 etc to denote a vector of N shares
modulo p0, i.e. 〈a〉p0 = (〈a0〉p0 , . . . , 〈aN−1〉p0).

We let 〈a〉p0 � 〈b〉p0 denote the multiplication of two such vectors when considered as
elements in the ring Rp0 . This requires one round of communication and N2 secure multi-
plications (or N · (N − 1)/2 secure multiplications if a = b). If one vector is in the clear
then we write a � 〈b〉p0 , which is a linear operation and hence for “free”. A more efficient
method to multiply is to use the FFT algorithm, which recall is a linear operation and thus
‘free’ when executed in the MPC engine. To multiply using FFT we utilize

〈a〉p0 � 〈b〉p0 = FFT−1(FFT(〈a〉p0) · FFT(〈b〉p0)

which requires only N secure multiplications and one round of communication.
We now examine each of the operations in this algorithm in turn. The lines 1-6 can all

be executed in parallel and so require

max
(

6 + dlog2(ν − `)e+ 1, 6, 1
)

= 6 + dlog2(ν − `)e

rounds of communication 8 in the case where we select restricted Hamming weight secret key
and

max
(

6, 6, 1
)

= 6

for the case of the secret key generated from a centred binomial distribution. The number
of secure multiplications is given by, in the two cases,

NHamming,0 +NHamming,1 + 2 ·NBinomial = N +H + sec + 2 · (ν − `+ 2 · k − 1) ·N,
3 ·NBinomial = 6 · k ·N.

Lines 7 and 9 are linear operations and thus can be executed as purely local operations. Line
8 requires one round of communication and N multiplications in Fp0MPC. Note, in lines 7-9 we
only have to compute sk2 modulo p0 as it is multiplied by p1 when added into bsk,sk2 . Lines
10-13 can also be performed in parallel and hence require only one round of communication.
The lines 16-21 are all local operations, and hence are for “free”. Lines 25-24 are, again, able
to be done in parallel and so require only one round of communication. The remaining lines
are purely local organization of data into the correct format for outputing. Thus the total
number of rounds of communication (assuming all shared random bits are produced in a
single batch) is

12 + dlog2(ν − `)e or 12

8 Of course in practice we generate the secure bits in batches and hence this is just the minimal number of rounds
required.

17

Protocol ΠKeyGen

- [Generate the various values required]
1. (〈a〉p0 , 〈a〉p1)← ΠUniform(N).
2. (〈a′〉p0 , 〈a′〉p1)← ΠUniform(N).
3. (〈s〉p0 , 〈s〉p1)← ΠHamming(h,N) or (〈s〉p0 , 〈s〉p1)← ΠBinomial(N).
4. (〈e〉p0 , 〈e〉p1)← ΠBinomial(N).
5. (〈e′〉p0 , 〈e′〉p1)← ΠBinomial(N).
6. For i ∈ {2, . . . , n}

(a) 〈sk0,i〉p0 ← Input(Pi) for a random vector sk0,i ∈ Rp0 selected by player Pi.
(b) 〈sk1,i〉p1 ← Input(Pi) for a random vector sk1,i ∈ Rp1 selected by player Pi.

- [Compute the square of the secret key]
7. 〈f〉p0 ← FFT(〈s〉p0).
8. 〈f ′〉p0 ← 〈f〉p0 · 〈f〉p0 [This is the component wise product].
9. 〈s′〉p0 ← FFT−1(〈f ′〉p0).
- [Open the values a and a′]

10. a0 ← Open(〈a〉p0).
11. a1 ← Open(〈a〉p1).
12. a′0 ← Open(〈a′〉p0).
13. a′1 ← Open(〈a′〉p1).
14. a← CRT([a0,a1], [p0, p1]).
15. ask,sk2 ← CRT([a′0,a

′
1], [p0, p1]).

- [Compute b and b′]
16. 〈b〉p0 ← a0 � 〈s〉p0 + p · 〈e〉p0 .
17. 〈b〉p1 ← a1 � 〈s〉p1 + p · 〈e〉p1 .
18. 〈b′〉p0 ← a′0 � 〈s〉p0 + p · 〈e′〉p0 − p1 · 〈s′〉p0 .
19. 〈b′〉p1 ← a′1 � 〈s〉p1 + p · 〈e′〉p1 .

- [Fix the final key for the sharing of the secret key]
20. 〈sk0,1〉p0 ← 〈s〉p0 −

∑n
i=2〈sk0,i〉p0 .

21. 〈sk1,1〉p1 ← 〈s〉p1 −
∑n
i=2〈sk1,i〉p1 .

22. For all i ∈ {1, . . . , n} assign ski ← CRT([sk0,i, sk1,i], [p0, p1]).
23. P1 ← Output(〈sk0,1〉p0).
24. P1 ← Output(〈sk1,1〉p1).

- [Open the values b and b′]
25. b0 ← Open(〈b〉p0).
26. b1 ← Open(〈b〉p1).
27. b′0 ← Open(〈b′〉p0).
28. b′1 ← Open(〈b′〉p1).
29. b← CRT([b0,b1], [p0, p1]).
30. bsk,sk2 ← CRT([b′0,b

′
1], [p0, p1]).

31. Output a,b,ask,sk2 and bsk,sk2 to all players, and ski to player Pi.

Figure 11. The Distributed BGV Key Generation Protocol

18

depending on which variant one is using for the secret key.
If we take typical values of n = 2, N = 32768, h = 64, and sec = 128 then these work

out to be 3277056 mults in Πp0
MPC and 3244288 in Πp1

MPC and 16 rounds of communication.

Theorem 5.1. The protocol ΠKeyGen UC-securely realises the functionality FKeyGen against a
static, active adversary corrupting at most n−1 parties in the FpMPC-hybrid model, assuming
the decision subset-sum problem is hard.

Proof. We define the simulator S as follows. The simulator emulates the behaviour of honest
parties exactly, but additionally does the following:

- At the start of the execution, the simulator initialises a local copy of Fp0MPC and Fp1MPC and
sends the message start to FKeyGen and awaits the public key pk = (ā, b̄, ¯ask,sk2 , ¯bsk,sk2) in
response.

- When the adversary and simulator execute ΠUniform, the simulator replaces the values a
mod p0, a mod p1, a′ mod p0 and a′ mod p1 stored in the instances of Fp0MPC and Fp1MPC,
respectively, with ā mod p0, ā mod p1, ¯ask,sk2 mod p0 and ¯ask,sk2 mod p1.

- In Step 6, for each j ∈ [n], if j is corrupt and j > 2 then the simulator awaits the input
skj,0 and skj,1 for each corrupt party Pj and constructs skj ← CRT(skj,0, skj,1), and sends
these to FKeyGen.

- Just before opening b0, b1, b′0 and b′1 the simulator replaces these values stored in the
instances of Fp0MPC and Fp1MPC with b̄ mod p0, b̄ mod p1, ¯bsk,sk2 mod p0 and ¯bsk,sk2 mod p1.

Since the only inputs to the protocol are randomly sampled by parties, the simulator
can perfectly emulate the behaviour of honest parties throughout, as the environment does
not observe the random tape of honest parties or the simulator. Indeed, since Fp0MPC and
Fp1MPC are used as black boxes and the only communication between parties occurs via these
functionalities, which are emulated locally honestly by the simulator, the replacements made
in the simulation outlined are executed without being observed by the environment (at this
point). Moreover, the inputs of corrupt parties can be extracted trivially and passed on to
FKeyGen so that the final outputs have the correct distribution.

It only remains to show that the environment cannot observe a difference between the
transcripts in a real execution and an execution in which the replacements described above
are made. While the final outputs of the real and ideal worlds is the same, the distribution
of the transcript differs since communication generated in the execution of the sampling
subprotocols depends on the secret s̄ which is (implicitly) generated by the functionality
FKeyGen when executing KeyGen() and cannot be computed by the simulator from the public
key without breaking the LWE assumption for the security of the key. We must show that
the amount by which the distributions differ is negligible.

The only time information stored in Fp0MPC or Fp1MPC is either revealed to the parties or
is generated by parties is in the bits shared in ΠRandomBits and in ΠUniform. In the protocols
ΠBinomial and ΠHamming the parties obtain bits from ΠRandomBits, and in the remainder of the
protocol ΠKeyGen, the correctness of the computations is guaranteed by the security of the
black boxes Fp0MPC and Fp1MPC. In ΠUniform, every party contributes to every secret, and since

19

there is at least one honest party (that samples uniformly), the output is always uniform.
Thus it suffices to argue that nothing can be learnt in ΠRandomBits about the bits that are
generated (which are later used to generate the public key) without solving the subset sum
problem. But this follows from Theorem 3.1. Thus no distinguishing environment can exist,
by the choice of parameters for the subset sum, and therefore ΠKeyGen UC-securely realises
FKeyGen. ut

6 Implementation

In our implementation we use MASCOT [19] as the base protocol used for our one-time
setup phase for SPDZ. Our solution is built on top of the SCALE-MAMBA [2] framework, and
we therefore re-used a lot of their already existing codebase. As explained in the introduction
our key generation protocol, as it uses MASCOT, is inherently O(n2) in nature. This seems
to be unavoidable as the only practical O(n) MPC protocol known is SPDZ, which is exactly
the MPC protocol we are trying to instantiate with our key generation protocol.

Selection of FHE parameters We recall that the two-leveled BGV key generation proce-
dure requires us to choose two prime moduli p0 and p1 and a polynomial degree N to define
the ciphertext space Rq

∼= Rp0 × Rp1 and a prime p which defines the size of our plaintext
space. In addition we require that the relations presented in 2.2 hold.

The precise sizes of these parameters are derived from a noise analysis of how the resulting
encryption scheme is used, which takes into account the circuit being computed, the zero-
knowledge proofs required, and the distributed decryption procedure, and the computational
difficulty of the Ring-LWE problem. This analysis is quite involved and we referred to the
SCALE-MAMBA documentation [2] to obtain the required parameters.

This gives us (for example) that to guarantee a computational security of 128 bits with
a polynomial degree N = 32768, our ciphertext modulus q has to verify q < 2883. For such
parameters, the trusted setup of SCALE-MAMBA, as we have discussed earlier, produces a
secret key with Hamming Weight exactly 64, and uses noise vectors distributed according
to a centred binomial distribution with standard deviation of 3.16 =

√
10. As a first set

of experiments we use exactly the same methodology to select the secret key, but we pick
a secret key with expected Hamming Weight 64. This does not change the noise analysis
(which is done using an expected noise methodology for the secret key in any case), and thus
we end up with the same system parameters as used in SCALE-MAMBA. In particular for a
plaintext modulus of 128 bits this leads us to use a p0 modulus of 345 bits and a p1 modulus
of 225 bits. So in order to run the key generation protocol presented above, we will need to
run two instances of the MASCOT protocol; one for the 345 bits prime p0 and another for
the 225 bits prime p1.

We tried different sets of parameters in our experiments, which provide BGV keys for a
SPDZ modulus of 64 and 128 bits, always taking the same parameters as the Setup phase
for SCALE-MAMBA. In Table 1 we report the prime sizes, in bits, required for each set of
parameters for two and three parties.

20

Number of Parties, n 2 3

FHE Plaintext Size, log2 p 64 128 64 128

Polynomial Degree 16384 32768 16384 32768

p0|p1 bit length 216 164 345 225 217 163 346 224

Table 1. Parameter Sizes.

With these size of primes, we can now set the value m for our batch size of shared bits
which has to respect the bound stated in 3. In practice we want to have m a divisor of
the total number of shared bits that we will need, and also small enough to avoid RAM or
network overflow. Empirically we found that taking 50000 ≤ m ≤ 100000 (depending on the
setting) gives us good results.

Extended Random Oblivious Transfer: The SCALE-MAMBA framework does not have an
implementation of the offline phase of MASCOT, and an implementation of the extended
Random Oblivious Transfer for a prime field Fp, thus we needed to implement these. The
triple generation method of MASCOT [19][Protocol 4] makes use of an extended Correlated
Oblivious Transfer (COT) protocol. For this we used the passively secure protocol of Fred-
eriksen et al. [13][Full Version, Figure 19] (which is essentially the protocol of Ishai et al [17]).
Such a passively secure COT protocol is sufficient due to how it is used in the MASCOT
offline phase. This COT protocol was already implemented in SCALE-MAMBA. For two parties
Pi and Pj with the former acting as the sender and the later as the receiver, calls to the
Correlated Oblivious Transfer output values {Mk

0 ,M
k
1 = Mk

0 +∆i}k∈[n] to Pi and {Mk
bk
}k∈[n]

to Pj, where ∆i ∈ F2128 is the input from Pi and b ∈ {0, 1}n is the choice vector from Pj,
and ∀k ∈ [n]Mk

0 ←$ F2128

To obtain extended Random Oblivious Transfer (ROT), from these extended COTs, we
used the decorrelation technique presented in [8][Figure 15] which consists in both parties
hashing the output of the extended COT. This gives us an extended ROT in F2128 . However,
we want to run the MASCOT protocol on prime fields Fp0 and Fp1 , so to translate our

extended ROT from F2128 to Fp, we take d log2(p)+128
128

e outputs in F2128 , concatenate them
together and take the result mod p.

Results of our experiments Our implementation of the key generation protocol was tested
in a LAN setting, with each party running on an Intel i7-7700K CPU with 32GB of RAM
over a 10Gb/s network switch. In our experiments we found that executing more threads
than the available number of cores (in our case eight) gave a performance improvement. This
is because the computation between receiver and sender in the OT protocols is asymmetric,
resulting in each party sometimes waiting for the other to perform some computation.

For each prime size, we report the throughput of our MASCOT implementation regarding
triple generation in Table 2. We experimented with different number of threads, and for
each case we give our results for 1, 5 and 10 threads. By comparison to [19][Figure 9],
our implementation of the MASCOT protocol for triple generation seems to have room

21

for improvement. In particular for a 128 bit field, we are about 7 times slower than MP-
SPDZ [12]. Therefore, we believe that a better implementation of MASCOT using less CPU
resources would give us a significant amelioration of our BGV key generation benchmark.

n 2 3

log2 p 64 128 64 128

1 Thread 126.77 177.1 70.01 133.29 58.78 79.01 28.7 57.22

5 Thread 587.77 784.69 292.18 567.62 276.38 376.65 134.62 279.27

10 Thread 759.1 1032.57 365.93 740.05 389.19 547.27 185.32 379.34

Table 2. Triple Throughput for Fp0 and Fp1 in Triples per Second

Finally in Table 3 we give figures related to the throughput of the secure randomly shared
bits, namely the throughput of the algorithm in Figure 6, in the four different scenarios we
experimented with. For each case, we give our result while also running the MASCOT triple
generation, and also assuming that this offline phase has already been done beforehand. In
the same table we eventually give the total runtime for the distributed BGV key generation
procedure, which includes the time to perform the MASCOT offline phase.

Number of Parties 2 3

FHE Plaintext size 64 128 64 128

Shared bit throughput
including offline time (b/s) 416.67 263.16 194.55 124.69

Shared bit throughput
excluding offline time (b/s) 1515.15 1449.28 1149.43 1041.67

BGV Key Generation Wall Clock 47m17s 2h35m34s 1h30m24s 4h55m44s

Table 3. Shared bit throughput and total time for the KeyGen protocol.

We can observe that for two parties it takes between 47 minutes and five hours to complete
the distributed key generation. Although it may seem inefficient, we argue that this protocol
needs only to be done once in order to enable future computation of the offline phase of
SPDZ. Moreover, we have shown that our protocol is highly parallelizable. So in practice,
if such a protocol was to be run on high end servers owned by cloud service providers, the
total runtime could be drastically reduced.

We pause to compare these run-times to the covertly secure distributed key generation
protocol presented in [10]. This protocol did not produce public and secret keys with the
same distribution as the non-distributed version. For plaintexts of 64-bits the authors of this
paper report 12 and 16 seconds key generation time for n = 2 and n = 3, for a covert security
of 1/10, i.e. an adversary can cheat with probability 1/10. For plaintexts of 128-bits the times
are 33 and 44 seconds. The execution time of this covertly secure protocol appears linear in
c, where the covert security is 1/c. Thus to obtain comparable security to our protocol, the
protocol in [10] would be utterly inpractical.

22

6.1 Changing the Standard Deviation

Our protocol can also be run when we select the standard deviation for the centred binomial
distributions to be equal to σ =

√
1/2 = 0.707. The analysis of the parameters, given in

Table 1 is roughly the same. However, the associated run times for key generation become
faster as we no longer need to generate as many doubly authenticated bits. This is reflected
in Table 4. We see that by choosing σ = 0.707, we need only two bits instead of 40 for
the sampling from the centred binomial distribution. We thus get a factor of at least 2.5
improvement over the previous setting.

Number of Parties 2 3

FHE Plaintext size 64 128 64 128

BGV Key Generation Wall Clock 16m10s 1h03m19s 28m46s 1h52m54s

Table 4. Shared bit throughput and total time for the KeyGen protocol for σ = 0.707.

6.2 Secret Keys Generated According to a Centred Binomial Distribution

Finally we examine the case of using the centred binomial distribution for generating the
secret keys, with standard deviation selected to be σ =

√
1/2 = 0.707. This pushes the

parameter sizes for the underlying BGV scheme up a little, as we need to cope with more
potential noise growth due to the ‘heavier’ secret key. Using the same analysis as before
we find the parameter sizes given in Table 5, with the resulting run times for distributed
key generation given in Table 6. This time we performed the experiments also for n = 4
and n = 5 so as to show how the times grow with n; recall the overall method is O(n2) as
mentioned earlier.

Number of Parties, n 2 3 4 5

FHE Plaintext Size, log2 p 64 128 64 128 64 128 64 128

Polynomial Degree 16384 32768 16384 32768 16384 32768 16384 32768

p0|p1 bit length 222 159 352 219 223 158 353 218 223 158 353 228 223 158 353 228

Table 5. Parameter Sizes for secret keys distributed according to a centred binomial distribution, and Gaussian error
distribution of σ = 0.707.

Acknowledgements

The authors would like to thank Carsten Baum and Emmanuela Orsini for suggestions
in relation to the work in this paper. This work has been supported in part by ERC Ad-
vanced Grant ERC-2015-AdG-IMPaCT, by the Defense Advanced Research Projects Agency

23

Number of Parties 2 3 4 5

FHE Plaintext size 64 128 64 128 64 128 64 128

BGV Key Generation 5m08s 18m20s 8m12s 26m35s 11m23s 52m48s 16m14s 2h11m42s

Table 6. Total time for the KeyGen protocol for σ = 0.707 and secret keys generated according to a centred binomial
distribution.

(DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under contract
No. N66001-15-C-4070 and FA8750-19-C-0502, by the Office of the Director of National In-
telligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) via Contract
No. 2019-1902070006, by the FWO under an Odysseus project GOH9718N, and by Cyber-
Security Research Flanders with reference number VR20192203. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the ERC, ODNI, United States Air Force, IARPA,
DARPA, the US Government or FWO. The U.S. Government is authorized to reproduce
and distribute reprints for governmental purposes notwithstanding any copyright annota-
tion therein.

References

1. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange - A new hope. In: Holz, T.,
Savage, S. (eds.) USENIX Security 2016: 25th USENIX Security Symposium. pp. 327–343. USENIX Association,
Austin, TX, USA (Aug 10–12, 2016)

2. Aly, A., Cozzo, D., Keller, M., Orsini, E., Rotaru, D., Scholl, P., Smart, N.P., Wood, T.: SCALE-MAMBA v1.5:
Documentation (2019), https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf

3. Aly, A., Orsini, E., Rotaru, D., Smart, N.P., Wood, T.: Zaphod: Efficiently combining LSSS and garbled circuits
in SCALE. In: Brenner, M., Lepoint, T., Rohloff, K. (eds.) Proceedings of the 7th ACM Workshop on Encrypted
Computing & Applied Homomorphic Cryptography, WAHC@CCS 2019, London, UK, November 11-15, 2019.
pp. 33–44. ACM (2019), https://doi.org/10.1145/3338469.3358943

4. Asharov, G., Jain, A., Wichs, D.: Multiparty computation with low communication, computation and interaction
via threshold FHE. Cryptology ePrint Archive, Report 2011/613 (2011), http://eprint.iacr.org/2011/613

5. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty computation.
In: Paterson, K.G. (ed.) Advances in Cryptology – EUROCRYPT 2011. Lecture Notes in Computer Science, vol.
6632, pp. 169–188. Springer, Heidelberg, Germany, Tallinn, Estonia (May 15–19, 2011)

6. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators:
Silent OT extension and more. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology – CRYPTO 2019,
Part III. Lecture Notes in Computer Science, vol. 11694, pp. 489–518. Springer, Heidelberg, Germany, Santa
Barbara, CA, USA (Aug 18–22, 2019)

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping.
In: Goldwasser, S. (ed.) ITCS 2012: 3rd Innovations in Theoretical Computer Science. pp. 309–325. Association
for Computing Machinery, Cambridge, MA, USA (Jan 8–10, 2012)

8. Burra, S.S., Larraia, E., Nielsen, J.B., Nordholt, P.S., Orlandi, C., Orsini, E., Scholl, P., Smart, N.P.: High
performance multi-party computation for binary circuits based on oblivious transfer. Cryptology ePrint Archive,
Report 2015/472 (2015), http://eprint.iacr.org/2015/472

9. Curtis, B.R., Player, R.: On the feasibility and impact of standardising sparse-secret LWE parameter sets for
homomorphic encryption. Cryptology ePrint Archive, Report 2019/1148 (2019), https://eprint.iacr.org/

2019/1148

10. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for
dishonest majority - or: Breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013:

24

https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
https://doi.org/10.1145/3338469.3358943
http://eprint.iacr.org/2011/613
http://eprint.iacr.org/2015/472
https://eprint.iacr.org/2019/1148
https://eprint.iacr.org/2019/1148

18th European Symposium on Research in Computer Security. Lecture Notes in Computer Science, vol. 8134,
pp. 1–18. Springer, Heidelberg, Germany, Egham, UK (Sep 9–13, 2013)

11. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from somewhat homomorphic encryp-
tion. In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology – CRYPTO 2012. Lecture Notes in Computer
Science, vol. 7417, pp. 643–662. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23, 2012)

12. Data61: MP-SPDZ (2019), https://github.com/data61/MP-SPDZ
13. Frederiksen, T.K., Keller, M., Orsini, E., Scholl, P.: A unified approach to MPC with preprocessing using OT. In:

Iwata, T., Cheon, J.H. (eds.) Advances in Cryptology – ASIACRYPT 2015, Part I. Lecture Notes in Computer
Science, vol. 9452, pp. 711–735. Springer, Heidelberg, Germany, Auckland, New Zealand (Nov 30 – Dec 3, 2015)

14. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Pointcheval, D.,
Johansson, T. (eds.) Advances in Cryptology – EUROCRYPT 2012. Lecture Notes in Computer Science, vol.
7237, pp. 465–482. Springer, Heidelberg, Germany, Cambridge, UK (Apr 15–19, 2012)

15. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti,
R. (eds.) Advances in Cryptology – CRYPTO 2012. Lecture Notes in Computer Science, vol. 7417, pp. 850–867.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23, 2012)

16. Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack problem. Journal of the Asso-
ciation for Computing Machinery 21, 277–292 (1974)

17. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) Advances
in Cryptology – CRYPTO 2003. Lecture Notes in Computer Science, vol. 2729, pp. 145–161. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 17–21, 2003)

18. Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with optimal overhead. In: Gennaro, R., Robshaw,
M.J.B. (eds.) Advances in Cryptology – CRYPTO 2015, Part I. Lecture Notes in Computer Science, vol. 9215,
pp. 724–741. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 16–20, 2015)

19. Keller, M., Orsini, E., Scholl, P.: MASCOT: Faster malicious arithmetic secure computation with oblivious
transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016: 23rd
Conference on Computer and Communications Security. pp. 830–842. ACM Press, Vienna, Austria (Oct 24–28,
2016)

20. Koiliaris, K., Xu, C.: A faster pseudopolynomial time algorithm for subset sum. In: Klein, P.N. (ed.) ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017. pp. 1062–1072 (2017)

21. Mouchet, C., Troncoso-Pastoriza, J., Hubaux, J.P.: Computing across trust boundaries using distributed homo-
morphic cryptography. IACR Cryptology ePrint Archive 2019, 961 (2019), https://eprint.iacr.org/2019/961

22. Pan, Y., Zhang, F.: A note on the density of the multiple subset sum problems. Cryptology ePrint Archive,
Report 2011/525 (2011), http://eprint.iacr.org/2011/525

23. Pisinger, D.: Linear time algorithms for knapsack problems with bounded weights. Journal of Algorithms 33,
1–14 (1999)

24. Rotaru, D., Wood, T.: MArBled circuits: Mixing arithmetic and Boolean circuits with active security. In: Hao,
F., Ruj, S., Sen Gupta, S. (eds.) Progress in Cryptology - INDOCRYPT 2019: 20th International Conference in
Cryptology in India. Lecture Notes in Computer Science, vol. 11898, pp. 227–249. Springer, Heidelberg, Germany,
Hyderabad, India (Dec 15–18, 2019)

25. Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation. In: Thuraisingham, B.M., Evans,
D., Malkin, T., Xu, D. (eds.) ACM CCS 2017: 24th Conference on Computer and Communications Security. pp.
39–56. ACM Press, Dallas, TX, USA (Oct 31 – Nov 2, 2017)

25

https://github.com/data61/MP-SPDZ
https://eprint.iacr.org/2019/961
http://eprint.iacr.org/2011/525

	Actively Secure Setup for SPDZ

