
Actively Secure Setup for SPDZ

Dragos Rotaru1,2 , Nigel P. Smart1,2 , Titouan Tanguy1 , Frederik Vercauteren1 , and

Tim Wood1,2

1 imec-COSIC, KU Leuven, Leuven, Belgium.
2 University of Bristol, Bristol, UK.

dragos.rotaru@esat.kuleuven.be, nigel.smart@kuleuven.be,

titouan.tanguy@kuleuven.be, frederik.vercauteren@esat.kuleuven.be, t.wood@kuleuven.be

Abstract. We present the first actively secure, practical protocol to generate the distributed secret
keys needed in the SPDZ offline protocol. As an added bonus our protocol results in the resulting
distribution of the public and secret keys is such that the associated SHE ‘noise’ analysis is the same
as if the distributed keys were generated by a trusted setup. We implemented the presented protocol
for distributed BGV key generation within the SCALE-MAMBA framework. Our method makes use of a
new method for creating doubly (or even more) authenticated bits in different MPC engines, which has
applications in other areas of MPC-based secure computation. We were able to generate keys for two
parties and a plaintext size of 64 bits in around five minutes, and a little more than eighteen minutes
for a 128 bit prime.

Keywords: MPC · Somewhat Homomorphic Encryption · Key Generation

1 Introduction

The SPDZ protocol for Multi-Party Computation (MPC) was introduced in 2012 [20]. This
protocol is in the pre-processing family of protocols which are actively secure-with-abort
for a dishonest majority of participants. Due to many improvements over the intervening
years it provides a highly efficient mechanism to perform MPC for an arbitrary number of
participants. However, the protocol comes with a major security issue: namely that it seems
to require a trusted setup. This trusted setup is the creation of a public key for the Brakerski-
Gentry-Vaikuntanathan [10] (BGV) homomorphic encryption scheme in which the private
key is securely distributed amongst the n-parties.

In the original SPDZ paper [20] this was assumed to come from some trusted setup. In
the follow up paper [18] a covertly secure protocol for generating a suitably distributed set
of private keys, and the associated public key was introduced. However, this came with a
number of disadvantages, as well as the reduction to just covert security. In particular the
distributions of the underlying public keys were different from those one could attain via a
trusted setup, which led to a more complicated noise analysis, and (more importantly) larger
parameters which results in a less efficient protocol overall.

In subsequent works the issue of the setup of the public key for the BGV encryption
scheme has been dismissed as a setup assumption, which could either be performed in a live
system using trusted hardware or via another MPC protocol. Given the complexity of the
covertly secure key generation protocol from [18] it has always been assumed that actively
secure key generation for SPDZ would require a complex MPC protocol to perform it.

https://orcid.org/0000-0002-1767-3725
https://orcid.org/0000-0003-3567-3304
https://orcid.org/0000-0002-7965-620X
https://orcid.org/0000-0002-7208-9599
https://orcid.org/0000-0003-1082-4321

The problem of producing distributed key generation for an SHE/FHE scheme arises in
other contexts, and not just for the SPDZ setup operation. For example, inspired by Gentry’s
FHE based passively secure low round complexity MPC protocol from [25], various authors
have looked at distributed decryption for FHE/SHE schemes. Each of these proposals needs
a method to perform a distributed key generation phase. In [4] the authors present a key
generation method for a distributed SHE scheme using variousΣ-protocols. To our knowledge
this has never been implemented, and the methodology produces a key generation which is
different from what would be done via a trusted setup. In [36] a passively secure distributed
key generation method is used for threshold SHE schemes, again producing a distribution
different from that one would have in a purely trusted setup. Paper [14] introduces a variant
of SPDZ, called SPDZ2k, for the case of MPC over the ring Z2k . The offline phase in this
latter work is based on MASCOT, [33]. However, in [38] the authors present an offline
protocol based on distributed FHE for SPDZ2k. In all of these cases the contribution of this
paper can aid in the creation of the necessary secret keys.

Our Contrubution: In this paper we present the first practical actively secure distributed key
generation method for SPDZ. As an added bonus our method results in virtually identical
secret key distributions as in the trusted setup case. In particular the noise analysis for the
resulting public key is identical to that one would have if using a trusted setup. Our protocol
is also relatively simple, although it does make use of complex generic MPC technology. In
particular, our protocol generates a public/private key with exactly the same underlying
distribution as the ideal trusted setup does in the SCALE-MAMBA system3, bar the fact we
generate secret keys with expected Hamming weight h as opposed to exact Hamming weight
h.

We are also able to generate secret keys from binomial distributions, which can be seen
as approximate Gaussian error distributions. These do not suffer from the security concerns
that low Hamming weight secret distributions have [16]. In addition, for our purposes, using
such keys produces a faster distributed key generation procedure. The effect of using keys
selected from a binomial distribution makes the ring parameters slightly bigger (compared to
those from an (exact or expected) Hamming weight distribution), this decreases marginally
the triple production throughput of the resulting offline phase. On the other hand such a
choice has the beneficial effect (see later) of decreasing the runtime of our distributed key
generation protocol by about a half. Thus one not only gets a faster key generation method,
but the resulting keys do not suffer from the problems outlined in [16].

Our protocol makes use of a generic MPC functionality for actively secure MPC-with-
abort for dishonest majorities over a finite field. This might seem to imply that we require
SPDZ to create SPDZ, however this circular dependency is removed by utilizing either the
BDOZ protocol [8] or the SPDZ protocol executed with the MASCOT pre-processing phase
[33]. The first of these, BDOZ, makes use of n public keys for a linear homomorphic encryp-
tion scheme where one private key is held by each player. The second option, MASCOT,
is based on Oblivious Transfer. Both of these base MPC protocols are not as efficient as

3 We use SCALE-MAMBA as a reference work throughout this paper as it gives a fixed target (including key sizes) for
the final distributed keys we are trying to produce.

2

the SPDZ protocol based on homomorphic encryption, but we will only be using the base
protocols for the one-time setup phase for SPDZ. In particular the underlying generic MPC
protocol that we will use for key generation is O(n2) in complexity; but we use this to cre-
ate the distributed secret keys for an MPC protocol which has complexity O(n). To avoid
confusion we will refer to SPDZ with a MASCOT based pre-processing as MASCOT-SPDZ,
where as when we talk about SPDZ we mean the pure SPDZ protocol with a pre-processing
based on homomorphic encryption.

The overall construction of our protocol is based on four key observations; all of which are
relatively simple. Firstly, the generation of the public key data given the secret key data and
randomness for a BGV public key is essentially a linear operation and thus comes for free in
LSSS based MPC protocols such as BDOZ and MASCOT-SPDZ. Secondly, the BGV public
key for SPDZ is a two level BGV scheme thus the ciphertext modulus q needed to construct
the BGV public key is a product of two va;ies q = p0 · p1. In particular the public key is
simply the lift to modulo q of the public key modulo p0 and p1, performed via the Chinese
Remainder Theorem (CRT). If we select p0 and p1 to be prime, as SCALE-MAMBA does, then we
can use two MPC systems (one over p0 and one over p1) to perform the operations, and then
obtain the final result via application of the CRT. We assume these two MPC systems come
as ideal functionalities Fp0MPC and Fp1MPC. Thirdly, all the random values required in BGV key
generation can be boiled down to the generation of random bits, which are then processed
in various ways. Thus a key issue is how to generate these random bits with the required
distributions. Whilst BDOZ and MASCOT-SPDZ can be adapted to produce authenticated
(uniformly distributed) random bits as part of their pre-processing, using much the same
trick as proposed in [18], this will produce different random bits in Fp0MPC and Fp1MPC. Thus
our fourth, and final, observation is that we can produce sharings of the same random bit in
both Fp0MPC and Fp1MPC using an adaption of the daBit method from [3] and [42].

Indeed our new method for daBit is more general and more efficient than the method
presented in [3,42]. We require a daBit method which works for two large primes, whereas
[3,42] require a method for a large prime and a small prime (in particular two). Our new
method deals with any prime size for the two MPC engines, can be extended to more MPC
engines than just two, and is built upon an abstraction which allows it to be used with any
form of LSSS based MPC engine in the SPDZ family (e.g. BDOZ, MASCOT or SPDZ itself).

The most expensive part of the daBit generation procedure for producing daBits with
active security in [3,42] was in verifying consistency of the daBits between the two instances
of FMPC. The idea in these works was to check the same random linear combinations of bits
in both instances simultaneously, which was challenging because one field had characteristic
2 and the other some large prime p which meant the XOR had to be emulated in the prime
field, requiring multiplication in MPC. In addition, to generate a bit, one needed to perform
XOR in both of the fields under consideration. Our observation in this work is that we use
an auxillary MPC engine for a large prime p to generate bits using the standard square-root
trick for generating bits, these are then mapped into the target MPC engines. The auxillary
MPC engine is used to obtain a subset sum over the integers, which is then compared to the

3

equivalent subset sum in the target MPC engines. Security now reduces to a variant of the
Multiple Subset-Sum Problem4.

We decided to use MASCOT-SPDZ as the underlying MPC protocol for the BGV key
generation, with our implementation building upon the already existing code-base for OT
present in the SCALE-MAMBA framework. In addition we ran experiments with different values
for the standard deviation of the centred binomial distribution, and experiments between
Hamming weight restricted secret keys and secret keys generated from a centred binomial
distribution. In the fastest case, of standard deviation σ =

√
1/2 = 0.707 for the centred

binomial distribution and FHE keys distributed following this same distribution, for two
parties and a 64 bit plaintext modulus our results show that we can distributively generate
BGV keys in around five minutes. We ran experiments for 64 and 128 bit primes for the
plaintext space for two and three parties for all settings; and for our fastest settings we also
ran experiments for four and five parties.

For the parameters used in versions of SCALE-MAMBA prior to our work, which used σ =√
10 = 3.16 and Hamming weight limited secret keys, we find a key generation time of 47

minutes for two parties and a 64 bit modulus. We give a detailed report of our implementation
in Section 7, in which the triple generation throughput and the shared bit throughput are
given for the standard case and wall clock time for the whole protocol is given for all our
test cases.

We end this introduction by noting that in [9] a method to perform the SPDZ offline
phase using no-communication is presented. However, this method is impractical as currently
presented. The method still requires a distributed decryption capability of the underlying
SHE scheme. Thus to use this work even in theory one needs to be able to generate such
distributed keys in a secure manner, such as this work enables. We also note that using
the silent-OT method of [9] one may be able to achieve better runtimes. The paper reports
that they can achieve 600,000 correlated OT’s per second. However, due to the increased
computational costs of the silent-OT method this might not translate to the LAN setting in
our experiments.

2 Historical Context of SPDZ

For those readers wishing to understand the historical context of SPDZ we now provide some
background. For readers interested simply in the results of this paper, they can safely skip
this section.

The first application of threshold-like cryptographic schemes to build MPC protocols
appears to be the work of Franklin and Haber [22,23]. This utilized an ElGamal style en-
cryption scheme over an RSA-style group to evaluate an MPC protocol over binary circuit.
The scheme has, to our knowledge, never been implemented (it would be very inefficient by
modern standards) and provides only passive security.

4 Carsten Baum has pointed out that we can remove this reduction to the subset-sum by increasing, in some
(important) cases, the number of bits we throw away. This however results in a less efficient protocol, thus we rely
on the Multiple Subset-Sum Problem to obtain an efficient protocol. As our focus is primarily on trying to obtain
as efficient a protocol as possible we prefer to keep the reliance on the MSSP problem.

4

The Franklin-Haber protocol used a so-called ‘joint encryption’ scheme, in [15], true
threshold encryption was introdcued into MPC protocols by Cramer, Damg̊ard and Nielsen.
This protocol was based on threshold homomorphic encryption and provided a (robust)
actively secure protocol in the honest majority setting. The underlying protocol made use
of Pailliers encryption scheme, or a variant of the scheme of Franklin and Haber. As such
it required a set up phase of generating a secret shared RSA style private key; at the time
this was relatively complex but can now be done using the techniques in [13]. The protocol
is interesting as it utilizes a trick of keeping an encryption of the data a, as well as α · a, for
some user chosen key α. Thus this is reminiscent of the usage of the pair-wise MACs in the
BDOZ protocol (see below). The overall multiplication protocol required use of public key
machinary, and can thus also be considered inefficient by todays standards.

Also in this period the VIFF system [17] developed the pre-processing model for MPC
protocols, in VIFF’s case for honest-majority protocols. This enabled all the difficult public
key machinary to be placed in the offline phase, making the online phase more efficient. The
work of [30] formalised the pre-processing model and investigated communication complexity
upper and lower bounds in this model.

The modern era of MPC protocols in the case of dishonest majority can be said to start
with the work of [19] which showed how to achieve active security for dishonest majority
protocols for a small constant additional amount of work. This then led to the information
theoretic online phase in the BDOZ [8] and TinyOT [37] protocols. The BDOZ protocol is
an n-party dishonest majority protocol for MPC over arithmetic circuits, whilst TinyOT is
a two party protocol for binary circuits. Both achieve an essentially information theoretic
online phase (the phase where the function is actually evaluated) using information theoretic
MACs; the underlying MACs and commiments having been previously introduced ten years
earlier in an unpublished manuscript of Rivest [41].

The BDOZ paper followed along the blue-print outlined by Cramer et al. in the case
of honest majority, but made a number of crucial changes. Firstly, (as we just said) active
security was cheaply obtained by using (pair-wise) information theoretic MACs (so called
BDOZ-style MACs). Secondly, an efficient online phase was obtained by using the Beaver
circuit randomization technique [6] Thirdly, the Beaver-triples where produced using an
linearly homomorphic encryption scheme. The overall protocol gave a complexity of O(n2),
but could be made highly efficient using a linear homomorphic encryption scheme based on
Ring-LWE, which allowed Smart-Vercauteren style SIMD packing to enable a high triple
production throughput.

Following closely on the heels of the BDOZ protocol was the SPDZ protocol [20]. This
followed much the same methodology, but it replaced the pair-wise information theoretic
MACs with global information theoretic MACs (so called SPDZ-style MACs), By using
a star-like topology, for MAC-checking and data transfer during the online phase, a total
complexity of O(n) could be achieved. The other main advance of SPDZ was the use of a
threshold Somewhat Homomorphic Encryption scheme of depth two to produce the Beaver
triples, as opposed to the linear homomorphic scheme of BDOZ. The use of SHE enabled
some of the zero-knowledge proofs required in BDOZ to be removed. Again, by using SIMD

5

packing in a Ring-LWE system, high triple production throughput could be achieved. The
Ring-LWE threshold SHE was performed utilizing the techniques developed in [7] for generic
lattice-based threshold schemes. However, the use of threshold SHE required a trusted setup
assumption (to set up the threshold SHE keys). This issue was side-stepped in the paper
[20], and all subsequent papers on SPDZ, until the current one.

Over the years various improvements have been suggested for SPDZ. The most relevant
for our discussion are the following ones. The paper [18] introduced various simplifications to
the basic SPDZ protocol; the two most important (from a practical perspective) was making
it able to compute reactive computations, and replace the depth two SHE scheme with a
depth one variant. From the point of view of the current paper, the main contribution of [18]
was to try to solve the problem of the trusted setup. It did this by providing only a covertly
secure key generation protocol for the threshold SHE keys, and in addition the resulting
distribution of the underlying noise (inherent in any SHE style key) was less than ideal. This
lead to larger parameters for the SHE scheme, and thus a slower protocol.

The next variant of SPDZ developed was to replace the SHE based offline phase with
one based on Oblivious Transfer [33]. This offline phase has complexity O(n2), due to the
need for pairwise Oblivious Transfers. But for small n it was seen, for a short while as being
more efficient than the SHE based offline phase. However, in [34] showed, by providing more
efficient zero-knowledge proofs in the case of the SHE-based variants, that the OT-based
variants were no longer competitive. The paper [34] provided two forms of pre-processing
for SPDZ. One based on linearly homomorphic encryption (essentially adapting BDOZ style
pre-processing for the SPDZ situation) which was efficient for small n. This variant was called
LowGear. A second variant, for large n, utilized a joint zero-knowledge proof, as opposed to
pair-wise proofs in [18], to obtain a performance boost for SHE based pre-processing. This
latter variant was denoted HighGear.

In [5] an improvement to HighGear was made, denoated TopGear, which improved the
zero-knowledge proofs in the SHE based pre-processing. TopGear is more efficient than High-
Gear, but there is no experimental evidence as to whether the TopGear improvements mean
LowGear is no longer competitive for small n. This is perhaps a direction for future investi-
gation.

Thus the only outstanding issue re SPDZ is the fact that there is no methodology to
generate the required threshold SHE keys. The problem is to ensure the underlying distribu-
tions of the secret keys are correct and do not create performance problems later on. This is
the main technical contribution of this paper; to obtain active security we utilize the SPDZ
system as the MACs to obtain active security introduce very little additional cost over a
passively secure variant. Given an efficiently passively secure protocol for this task, one can
easily generate (theoretically) an actively secure one by utilizing zero-knowledge proofs. How-
ever, by utilizing a sub-protocol such as MASCOT-SPDZ we achieve the additional active
security virtually ‘for free’ via the use of the SPDZ MACs.

6

3 Preliminaries

In this section we provide the necessary background on the type of BGV public key we need
to produce, as well as the underlying distributions and the base MPC protocols we will be
using.

3.1 Cyclotomic Rings and Distributions over such Rings

The BGV encryption scheme is defined over a cyclotomic ring R = Z[X]/(XN + 1), where
for our purposes we take N to be a power of two. Thus XN +1 is the m = 2 ·N -th cyclotomic
polynomial, and N = φ(m). We let � denote the multiplication operation in R.

Following [27][Full version in [26], Appendix A.5] the SCALE-MAMBA system utilizes the
following distributions in the key generation procedure.

- HWT(h,N): This generates a vector of length N with elements chosen at random from
{−1, 0, 1} subject to the condition that the number of non-zero elements is equal to h.

- dN(σ2, N): This generates a vector of length N with elements chosen according to an
approximation to the discrete Gaussian distribution with variance σ2, by sampling from a
centered binomial distribution.

- U(q,N): This generates a vector of length N with elements generated uniformly modulo q.

In particular for the distribution dN(σ2, N) SCALE-MAMBA approximates dN(σ2, N) using
the approximation from [1]. In particular dN(σ2, N) is replaced by the centered binomial
distribution where elements are returned using the formula

cj =
k−1∑
i=0

b2·i − b2·i+1

for uniformly random bits bj ∈ {0, 1} for j = 0, . . . , 2 · k − 1. The default settings of

SCALE-MAMBA use k = 20, giving us σ =
√
k/2 =

√
10 = 3.16.

We make a small change to one of the above distributions in our work. The distribution
HWT(h,N) is used to sample the secret key, where in [27] (and in SCALE-MAMBA) the value
h is selected to be a power of two; in particular h = 64. In our work we replace HWT(h,N)
with the distribution which picks each coefficient with respect to the Bernoulli distribution
B(h/N). Thus we use the approximation HWT(h,N) ≈ B(h/N)N . The Hamming weight
of the vectors output by this distribution follows a binomial distribution with mean h. We
still use h = 64 in our recommended construction though. The “noise analysis” behind the
homomorphic operations used in the SPDZ protocol are easily checked not to be affected by
this change, and in addition the security arguments for using low Hamming weight secret
keys (as discussed in [27]) are also not affected. In particular the noise analysis used in
[27] or SCALE-MAMBA is an ‘average case’ analysis in the key generation. Thus the standard
deviation in the canonical norm of the secret key is

√
h if an exact Hamming weight of h

is used. It is this standard deviation which is the contributing term in the noise analysis. If
one generates the secret key using only an expected Hamming weight then you obtain the
same standard deviation; thus nothing changes in the analysis by using our slightly different
secret key distribution.

7

3.2 The BGV Key Generation Procedure

For a modulus q we let Rq denote the above ring localised at the modulus q, i.e. Rq =
(Z/qZ)[X]/(XN + 1). The SPDZ protocol requires a two-leveled scheme with ciphertext
moduli q0 = p0 and q1 = p0 · p1. The plaintext modulus for the BGV scheme is defined by p.
We require, for efficiency, that

p1 ≡ 1 (mod p),

p0 − 1 ≡ p1 − 1 ≡ p− 1 ≡ 0 (mod N),

where p is the plaintext modulus. The moduli p0 and p1 are selected to be distinct primes
for efficiency. In which case, by the CRT, we have Rq

∼= Rp0 × Rp1 . In addition, due to the
above restrictions on the primes p0 and p1, there is an efficient FFT algorithm on Rpi , which
requires no extension field arithmetic. Thus one can efficiently multiply in Rpi by executing

a� b = FFT−1(FFT(a) · FFT(b))

where · here is the component wise product. Note that the FFT operation is a linear oper-
ation and thus can be executed in an MPC engine for free. These facts we shall use in our
distributed key generation protocol.

The two ciphertext moduli q0 and q1 are used to define ciphertexts at level zero and level
one, see [27] for further details as to how this aids efficiency. Since SPDZ only requires a
depth one SHE scheme we only need to define two such ciphertext moduli.

The BGV public key is of the form (a,b) ∈ Rq where

a← U(q,N) and b = a� sk + p · e

where e← dN(σ2, N). The secret key sk for our purposes will be selected from the distribution
B(h/N)N . We also require, for the SPDZ protocol, the switching key data (ask,sk2 ,bsk,sk2)
which is of the form

ask,sk2 ← U(q,N) and bsk,sk2 = ask,sk2 � sk + p · esk,sk2 − p1 · sk2

where esk,sk2 ← dN(σ2, N).
The goal in a distributed key generation protocol for the SPDZ system is to output the

public values pk = (a,b, ask,sk2 ,bsk,sk2) to all players, whilst player Pi obtains a value ski ∈ Rq

such that
sk = sk1 + . . .+ skn (mod q).

We also require that no party can influence the choice of secret key, and no proper subset of
the n parties can deduce any information about the secret key, bar what can be deduced from
the public key. Thus we aim to create a protocol which securely realizes the functionality
given in Figure 1, where ParamGen(1κ, log2 p, n) is a function which produces the system
parameters (p, p0, p1). We allow all parties bar P1 to input their precise share of the secret
key. We then compute P1’s share according to the shares of other parties and the internally

8

Functionality FKeyGen

1. When receiving the message start from all honest parties, run P ← ParamGen(1κ, log2 p, n), and then, using
the parameters generated, run (pk, sk)← KeyGen() (P , and hence 1κ, is an implicit input to all functions we
specify in this paper). Send pk = (a,b,ask,sk2 ,bsk,sk2) to the adversary.

2. Receive from the adversary a set of shares skj ∈ Rq for each corrupted party Pj for j 6= 1.
3. Construct a complete set of shares (sk1, . . . , skn) consistent with the adversary’s choices and sk. This is done

be selecting ski uniformly at random for honest i, subject to the constraint that sk =
∑

ski. Note that this
is always possible since the corrupted players form an unqualified set.

4. The functionality waits for an input from the environment.
5. If this input is Deliver then send pk to all players and ski to each honest player Pi, and send sk1 to player P1

if P1 is dishonest.
6. If the adversarial input is not equal to Deliver then abort.

Figure 1. The Ideal Functionality for Key Generation (Adapted from [20])

sampled secret key sk. Therefore P1 has no input, and is treated differently from other
parties. This is mirrored in our protocol, the parties generate a secret key but the shares of
the parties P2, . . . , Pn are selected by those parties; with party P1 receiving their share from
the protocol.

We aim to realize this functionality while doing only black box calls to the underlying
MPC modulo p0 and p1 functionalities. However, due to the concerns raised in [16] in relation
to low Hamming weight keys, we also examine the case of secret keys generated by a centred
binomial distribution; namely when we select sk from dN(σ2, N). These lead to slightly larger
parameters for the underlying FHE systems, but the method to produce the keys is simpler.

3.3 Base MPC Protocols

In Figure 2 we present the MPC functionality for our base MPC protocols, either BDOZ
or MASCOT-SPDZ in the case where we are generating keys or SPDZ when we are doing
traditional daBit generation.

To simplify presentation of protocols using this functionality we shall represent a value
held in the memory of such an MPC functionality by 〈x〉p, and then addition and multipli-
cation of such elements will be represented by

〈x〉p + 〈y〉p, 〈x〉p · 〈y〉p.

For inputing and outputting values to/from a player/all players we will write

〈x〉p ← Input(Pi), Pi ← Output(〈x〉p), x← Open(〈x〉p).

That the BDOZ, MASCOT-SPDZ and SPDZ protocols implement such a functionality se-
curely can be found proved in the respective papers [8], [33] and [20].

The underlying authentication mechanism, in practice, can be assumed to be one of
SPDZ style MACs, i.e. there is a globally held shared secret value αp ∈ Fp, shared with
respect to an additive sharing amongst the n-players αp = α1,p + · · · + αn,p. For each value
x the 〈x〉p will be an additive sharing of x = x1 + · · ·+ xn, as well as an additive sharing of

9

Functionality FpMPC

The functionality runs with parties P1, . . . , Pn and an ideal adversary A. Let A be the set of corrupt parties.
Given a set I of valid identifiers, all values are stored in the form (varid , x), where varid ∈ I.

Initialize: On input (Init , p) from all parties, with p a prime, the functionality stores p. The adversary is
assumed to have statically corrupted a subset A of the parties.
Input: This takes input (Input , Pi, varid , x) from Pi, with x ∈ Fp, and (input , Pi, varid , ?) from all other parties,
with varid a fresh identifier. If the varid ’s are the same the functionality stores (varid , x), otherwise it aborts.
Add: On command (Add , varid1, varid2, varid3) from all parties:
1. If varid1, varid2 are not present in memory or varid3 is then the functionality aborts.
2. The functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x+ y).
Multiply: On input (Multiply , varid1, varid2, varid3) from all parties:
1. If varid1, varid2 are not present in memory or varid3 is then the functionality aborts.
2. The functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x · y).
Output: On input (Output , varid , i) from all parties (if varid is present in memory),
1. The functionality retrieves (varid , y).
2. If i = 0 and A 6= ∅ then the functionality outputs y to the environment, otherwise it outputs ⊥ to the

environment.
3. The functionality waits for an input from the environment.
4. If this input is Deliver then y is output to all players if i = 0, or y is output to player i if i 6= 0.
5. If the adversarial input is not equal to Deliver then abort.

Figure 2. The ideal functionality for MPC with Abort over Fp

αp · x = γ1 + · · ·+ γn. In other words in the real world when a party Pi holds the value 〈x〉p,
it actually holds the value (xi, γi).

In such MPC protocols addition, and in fact any linear operation, is a ‘free’ operation,
whereas multiplication will be assumed to take a single ‘time’ unit of operation. Another met-
ric one often examines is the round complexity, in this case a multiplication takes one round,
but multiplications which can be performed in parallel also only take one round of operation.
Inputing, outputting or opening a data item also requires one round of communication, and
such operations can be performed in parallel.

3.4 The FB
Rand(M) Functionality

We also require a functionality FBRand(M) which allows the parties to agree on M random
values in the range [0, . . . , B). In practice this can be implemented by all parties committing
to a seed, then the parties open the seeds. The seeds are then XOR’d together to produce
a single shared seed, which is passed as the key to a PRF to produce the shared random
values. We present this as an ideal functionality in Figure 3.

4 maBits: Generating Multiply Authenticated Bits

The main problem in performing actively secure key generation for SPDZ is to produce secure
randomly shared bits within the MPC functionalities; in which the bit is zero with probability
1/2, and one with probability 1/2. We will require that the MPC functionality FpMPC, for

10

Functionality FBRand(M)

1. On input (Rand, cnt) from all parties, if the counter value is the same for all parties and has not been used
before, the functionality samples ri ← [0, . . . , B) for i = 1, . . . ,M .

2. The values ri are sent to the adversary, and the functionality waits for an input.
3. If the input is Deliver then the values ri are sent to all parties, otherwise the functionality aborts.

Figure 3. The ideal FBRand(M) functionality

Functionality FpMPC.GenBit()

1. The functionality waits for a message abort or ok from the adversary. If the message is ok then it continues.
2. The functionality then samples a bit b ∈ {0, 1} and stores it in the functionality FpMPC.

Figure 4. The ideal functionality for single random bits

a specific prime p, is extended by a command which we model via the ideal functionality
FpMPC.GenBit() given in Figure 4.

A protocol for BDOZ and MASCOT-SPDZ for FpMPC.GenBit() is given in Figure 5, bor-
rowed from [18]. The basic idea is to generate a secret random value x modulo p, square it,
open the value, take the square root (if it is not zero) so as to obtain z = ±x. Then a value
in {−1, 1} is obtained by computing x/z, which can then be mapped onto the any desired
two element set5.

Entering a Random Bit Πp
MPC.GenBit()

1. For i = 1, . . . , n execute 〈xi〉p ← Input(Pi), where xi is a random element in Fp.
2. 〈x〉p ←

∑n
i=1〈xi〉p.

3. 〈y〉p ← 〈x〉p · 〈x〉p.
4. y ← Open(〈y〉p).
5. If y = 0 then restart the process.
6. z ← √y (mod p), picking the value z ∈ [0, . . . , p/2).
7. 〈a〉p ← 〈x〉p/z.
8. 〈b〉p ← (〈a〉p + 1)/2.
9. Return 〈b〉p.

Figure 5. ‘Standard’ method to produce a shared random bit in Πp
MPCssuming p is odd.

However, we have a problem; if we execute this procedure with respect to both Fp0MPC and
Fp1MPC then we will obtain two shared random bits 〈b0〉p0 and 〈b1〉p1 but we will not necessarily
have b0 = b1. To obtain shared random bits in the two MPC systems which are identical we
need to adapt the daBit idea from [42]. In that paper it is shown how to obtain identical
shared random bits in two MPC systems; one being a SPDZ-like system modulo p, and one
being a BDOZ-like system over F2 based on OT for garbled circuit style computations. In
our key generation protocol we require shared random bits in two SDPZ-like systems for

5 If the underlying MPC system is SPDZ based then a more efficient way to perform the method is using the FHE
pre-processing instead of directly within the Offline phase as implied by the given protocol. But this assumes the
pre-processing is FHE based, which it will not be in our application.

11

Fpt−1

MPC
. . .Fp0MPCFpMPC.GenBit()

The Functionality Fp,p0,...,pt−1

MPC

FpMPC

Fp,p0,...,pt−1

MPC .RandomBits()

Fig. 6. Our functionalities

large moduli p0 and p1 (in practice MASCOT-SPDZ systems). This makes the protocol to
generate the shared random bits a little easier to understand than the one considered in [42].
Indeed we present a more general protocol than that which is needed for our key generation
method. Our new method includes the case considered in [42], and is more efficient than the
improved method considered in [3] when at least one prime is ‘large’.

For our generalisation we consider a set of t SPDZ-like MPC systems with moduli
p0, . . . , pt−1. Our goal is to generate shares 〈b〉pi in all of these systems where b ∈ {0, 1}.
Our method makes no restriction on the size of the primes pi, nor the underlying SPDZ-like
MPC engine, thus our method can be used as a replacement for the daBit methods in [3,42]
as well.

We define pmin to be min(p0, . . . , pt−1) and we let γ be the smallest integer such that
pγmin > 2sec, where sec is our security parameter. For efficiency we will generate these shared
bits in batches of m at a time. We define an auxiliary prime number p which satisfies

p > (m+ γ · sec) · 2sec.

The prime p can be the same as one of the primes pi above, but in this treatment for ease of
exposition we treat it as a seperate prime. It is with this prime p that we will generate our
initial bits, using the protocol in Figure 5.

Thus we have t+1 independent MPC functionalities which we group into a single function-
ality Fp,p0,...,pt−1

MPC , as depicted in Figure 6. On their own, at first sight, these t+1 functionalities
would not allow us to generate a shared random bit modulo p0, . . . , pt−1. To obtain this extra
ability we further extend the functionality Fp,p0,...,pt−1

MPC to Fp,p0,...,pt−1

MPC .RandomBits(); where the
additional command is presented in Figure 7.

The functionality Fp,p0,...,pt−1

MPC .RandomBits() internally generates a set of m secure bits,
and we require that even if some information about these bits is leaked to the adversary that
the remaining bits are still secure. We need this additional leaking of a subset of bits, as we
do not know how the secure bits will be used in any following MPC protocol, thus we must

12

assume the worst that a subset leaks. Even if m − 1 bits are revealed or some information
about them is leaked then we want the final remaining bit to still be secret. Note, in our
application of this functionality there are no leaked bits, however this may not be true of all
applications. Thus we present a security proof for the most general application scenario.

Functionality Fp,p0,...,pt−1

MPC .RandomBits()

1. The functionality waits for input of a positive integer m from all players. If the inputted values are not equal
then the functionality aborts.

2. For i = 1, . . . ,m the functionality calls FpMPC.GenBit() so as to generate a bit bi.
3. The bits bi are retrieved from FpMPC and are enterred into the functionalities FpjMPC for j = 0, . . . , t− 1.
4. The functionality waits for a message abort or ok from the adversary. If the message is ok then it continues.
5. The functionality waits for a proper subset S of {1, . . . ,m} from the adversary and returns the bits bj for

j ∈ S to the adversary. [We note this subset can be adaptively chosen, but to simplify the exposition we
assume it is presented to the functionality in one go.]

Figure 7. The ideal functionality for random bits

Our protocol will make use of the following result

Lemma 4.1. Let p be a prime, n ∈ Z≥2 and xi ∈ [0, . . . , p) be uniformly chosen subject to
the condition that

x1 + . . .+ xn =

{
k · p, or
k · p+ 1.

Set ∆ = dp/ne and write xi = li +∆ · hi with 0 ≤ li < ∆, then

k =
⌈∆ ·∑hi

p

⌉
.

with probability at least 1− 3/p.

Proof. We have, for ε ∈ {0, 1},

k =
∆ ·
∑
hi

p
+

∑
li
p
− ε

p
.

We have 0 ≤
∑
li < p by construction, and so the equality on k will follow as long as∑

li ≥ ε. But this always happens unless ε = 1 and
∑
li = 0. If li = 0 then this means

that ∆ divides xi. Since xi is uniformly chosen in [0, . . . , p) for i = 1, . . . , n (subject to the
condition that

∑
xi (mod p) ∈ {0, 1}), and ∆ = dp/ne we have li = 0 with probability

(n + 1)/p for each i ∈ [0, . . . , n). Thus the probability that all the li are zero is less than
((n+ 1)/p)n−1, this is at most 3/p. ut

In Figure 8 we explain our protocol ΠRandomBits for producing shared random bits in the
two MPC systems. Intuitively the protocol works as follows. The parties first generate, in
step 2a, m+γ · sec shared random bits in the MPC engine FpMPC using the command GenBit.
They then allow, in steps 2c to 2e, player P1 to determine the associated k value for each

13

shared bit using Lemma 4.1, this does not reveal any information about the hidden bit
(and will be correct with probability 3/p), but clearly reveals some information about the
sharing6. Thinking of the sharing now as over the integers, and then reducing modulo pi,
player P1 can adjust his sharing so that the bit is correctly shared modulo pi. These shares
are then input into the MPC engines FpiMPC. Assuming all parties are honest we now have a
valid sharing, however due to Lemma 4.1 even honest parties have a probability of aborting
of 3 · (m+ γ · sec)/p, due to one, or more, of the ki values being computed incorrectly.

Protocol ΠRandomBits

This protocol works in the Fp,p0,...,pt−1

MPC -hybrid model, and on input of m from all players executed the following
steps:

1. Set ∆ = dp/ne.
2. For i = 1, . . . ,m+ γ · sec do

(a) 〈bi〉p ← FpMPC.GenBit().
(b) Let bi,j denote Player j’s value such that

∑
bi,j = bi (mod p).

(c) Player Pj writes bi,j = li,j +∆ · hi,j with 0 ≤ li,j < ∆.
(d) Player Pj sends hi,j to Player P1.
(e) Player P1 sets

ki =
⌈∆ ·∑j hi,j

p

⌉
.

(f) For j = 0, . . . , t− 1 do

- Party P1 calls 〈b(1)i 〉pj ← F
pj
MPC.Input(bi,1 − ki · pj (mod pj)).

- Party P`, for ` 6= 1, calls 〈b(`)i 〉pj ← F
pj
MPC.Input(bi,` (mod pj)).

- The parties compute 〈bi〉pj =
∑n
`=1〈b

(`)
i 〉pj .

3. The parties initialize an instance of the functionality F2sec

Rand. [Note, this needs to be done after all the previous
steps, so the parties have no prior knowledge of the output].

4. For j = 1, . . . , γ do
(a) For i = 1, . . . ,m+ γ · sec generate ri,j ← F2sec

Rand(m+ γ · sec).
(b) Compute for v = 0, . . . , t− 1 the sharings 〈Sj,v〉pv =

∑
i ri,j · 〈bi〉pv .

(c) Compute 〈Sj〉p =
∑
i ri,j · 〈bi〉p.

(d) Sj ← Open(〈Sj〉p).
(e) Sj,v ← Open(〈Sj,v〉pv) for j = 0, . . . , t− 1
(f) Abort if Sj (mod pv) 6= Sj,v for any v = 0, . . . , t− 1.

5. Output 〈bi〉pj for i = 1, . . . ,m and j = 0, . . . , t− 1.

Figure 8. Method to produce m shared random bits in Fp0MPC, . . . ,F
pt−1

MPC

To cope with dishonest parties we check the parties are honest by verifying random linear
combinations. We verify γ random linear combinations in total. This is the purpose of steps
3 and 4. Here we note that the initial sharing in FpMPC is guaranteed to be a sharing of a
bit due to the active security of the operation GenBit in FpMPC. Opening a random linear
combination S (in step 4d) of the shared bits in FpMPC is then a subset-sum over the integers,
due to the lower bound on p. We then compare this to the associated sum modulo pi obtained
from FpiMPC in step 4f. This has to be repeated γ times to cope with the smallest value of pi.

6 In our security proof we show that this specific information can be perfectly simulated by the simulator, and leaks
no information about the actual shared value.

14

We thus obtain an instance of the Multiple-Subset-Sum-Problem (MSSP) considered in [39],
which we shall discuss below.

The protocol FpMPC.GenBit() in Figure 5 requires one secure multiplication (per bit gener-
ated) and two rounds of communication (as a multiplication also requires a round of commu-
nication). To execute the rest of ΠRandomBits requires four rounds of communication (one for
the initial opening to P1, one for input into the MPC engines, one for executing F2sec

Rand and
one for the final opening). If the m+ γ · sec bits required in ΠRandomBits are produced in par-
allel, as well as the various input/open operations etc, this means that protocol ΠRandomBits

requires m+ γ · sec secure multiplications in FpMPC and 2 + 4 = 6 rounds of communication.

4.1 Multiple Subset Sum Problem

Definition 4.1 (Multiple Subset Sum Problem [39]). Given weights wi,j ∈ Z>0 for
i = 1, . . . , γ and j = 1, . . . , n and target values s1, . . . , sγ ∈ Z, the MSSP problem is to find
values bi ∈ {0, 1} such that

n∑
j=1

wi,j · bj = si for i = 1, . . . , γ.

In matrix notation we can write this as given W ∈ Zγ×n>0 and a vector s ∈ Zγ to find
b ∈ {0, 1}n such that W · b = s.

This generalises the standard Subset Sum Problem of

Definition 4.2 (Subset Sum Problem). Given weights wj ∈ Z>0 for j = 1, . . . , n and a
target value s ∈ Z, the SSP is to find to values bi ∈ {0, 1} such that

n∑
j=1

wj · bj = s.

Just as the single subset-sum problem has a notion of density, for which a low value imples
one can easily find solutions, the MSSP also has a notion of density. We define the density
of an MSSP7

d =
n

γ ·maxi,j log ai,j
.

The following result on the MSSP generalizes the classical result for the standard SSP, that
low-density subset sums are ‘easy’,

Lemma 4.2 ([39]). If d < 0.9408 then the MSSP problem can ‘almost always’ be solved
with a single call to a lattice oracle.

7 The density of a standard subset sum problem is given by d = n
maxi log ai

.

15

In this work we restrict to MSSP problems with high density, i.e. d > 1. In our protocol the
density of the subset sums S over the integers, which are revealed, is given by

d =
m+ γ · sec

γ · sec
> 1.

Informally, we note that the security of the protocol follows from the security of the underly-
ing MPC engines, except for the leaked information. Thus we need to argue that the leaked
information reveals no information about the underlying honest players’ data values, and
that even in the presence of malicious players the output is correct (i.e. m shared bits are
the same in all FpjMPC). The main potential leakage of information comes from the opened
subset sum values over the integers, i.e. S. To deal with this leaked information we consider
the following (decision) variant of the subset sum problem.

Definition 4.3 (Multiple Subset-Sum Guessing Problem (MSSG Problem)). The
MSSG problem is parametrized by three positive integers m, γ and sec. The parameters γ
defines the number of subset sums, sec is a security parameter controlling the sizes of the
weights and m allows one to control the number of terms in the subset sums (which must be
greater than a minimum of γ · sec + 1 to ensure security).

Given a set of random weights wi,j ∈ [0, . . . , 2sec) for i = 1, . . . , v with v = γ · sec + m
and j = 1, . . . , γ, define mnj = miniwi,j and mxj =

∑
iwi,j. The problem is to distinguish

between the two different distributions:

1. In the first distribution the challenger picks random bits bi ∈ {0, 1} and sets Sj =
∑

i bi ·
wi,j. The values (S1, . . . , Sγ) are returned to the adversary. We write this as {Sj} ← D1.

2. In the second distribution the challenger samples values Sj ∈ [mnj, . . . ,mxj] uniformly at
random and returns it to the adversary. We write this as {Sj} ← D2.

If A is an adversary then we define the advantage of A in solving this problem by

AdvMSSG
A (m, γ, sec) = 2 ·

∣∣∣Pr
[
A({wi,j}, {Sj}) = b | b← {1, 2},

wi,j ← wi,j ∈ [0, . . . , 2sec),

Sj ← Db

]
− 1/2

∣∣∣.
We say the problem is hard if AdvA is a negligible function of sec for all polynomial time
adversaries A.

We first discuss this problem. The condition v = γ · sec + m implies that the MSSP in the
first distribution is not a low density multiple subset sum, and thus (if sec is chosen large
enough) the underlying subset sum problem is hard. The best algorithms for the subset-sum
problem, on elements of size V = 2sec, have time either O(2sec/2) [28] or O(sec · 2sec) [40], or
O(V ·

√
sec) [35]. With our parameters, these all have exponential time (in sec).

There are approximately (v − 1) · 2sec elements in the range [mnj, . . . ,mxj], but ‘only’ at
most 2v = 2γ·sec+m of these correspond to valid subset sums. Thus we see that, when

2v = 2γ·sec+m < (v − 1) · 2sec

16

there could be choices of Sj ∈ [mnj, . . . ,mxj] which do not correspond to a subset sum. In
the important case of γ = 1 and m = 1 we indeed have

2sec+1 < (sec + 1) · 2sec+1

always. However, when
2(γ−2)·sec+m > γ · sec +m

then the number of subsets mapping to each value in Sj ∈ [mnj, . . . ,mxj] is roughly 2sec.
Thus in this case, i.e. when γ > 2 for all m, we see that the MSSG problem is information
theoretically secure.

Thus the MSSG problem is only an issue in the (relatively important) cases of γ = 1 and
γ = 2. However, in these cases, if we replaced v by 2 · γ · sec + m in the problem statement
for MSSG, then the number of possible subset sums is exponentially larger than the total
number of elements in [mnj, . . . ,mxj]. In fact there are roughly

22·γ·sec+m

(v − 1) · 2sec
≈ 2(2·γ−1)·sec+m > 2sec

such subsets sums mapping to each value Sj ∈ [mnj, . . . ,mxj].
This forms the basis of an observation by Baum, that by increasing v one can remove the

need for the MSSG problem; at the expense of performing more operations. By increasing
the number of terms in our subset sums from m+ γ · sec to m+ 2 · γ · sec one can remove the
dependency on the MSSG problem for all values of γ. This obviously reduces the efficiency
of the protocol. If one is willing to pay this price then security becomes a purely statistical
argument, since the MSSG problem is information theoretically secure, as the two distribu-
tions are indistinguishable, with a statisical distance of 2−sec. Such an argument is similar
to arguments used in prior works in various situations, see for example [32,43]. We prefer to
keep with assuming the MSSG problem as it leads to more efficient protocols, and the only
case where this is a computational problem is when γ = 1 and γ = 2; which are the most
important cases from an application point of view.

4.2 Security of ΠRandomBits

Theorem 4.1. Assume the problem Multiple Subset Sum Guessing (MSSG Problem) is
hard then protocol ΠRandomBits securely implements the functionality Fp,p0,...,pt−1

MPC .RandomBits()
in the F2sec

Rand, F .MPCGenBit-hybrid model. However, in the presence of passive adversaries the
protocol will abort with probability 3 · (m+ γ · sec)/p.

Proof. We divide the proof into two sections, one showing correctness the other giving the
simulation.

Correctness: The values Sj are produced with no wrap-around modulo p, due to the bound
on m. Thus the γ values Sj define subset sums over the integers

Sj =

m+γ·sec∑
i=1

bi · ri,j

17

where we are guaranteed that bi ∈ {0, 1}.
We then check these sums against the equivalent sums modulo pv for v = 0, . . . , t − 1.

Since the random coefficients ri,j are revealed only after the parties input their shares b
(p)
i

of the bits modulo pv, the fact that the values Sj,v are equal to Sj (mod pv) implies with
overwhelming probability (since pγmin > 2sec) that the shared values entered modulo pj are
equal to the shared values in FpMPC.

Since FpMPC.GenBit generates values which are gauranteed to be bits, this implies the
values modulo pj are also bits, and equal to each other. However, the computation of ki may
be incorrect with probability 3/p. So even an honest execution of the protocol will abort
with probability 3 · (m+ γ · sec)/p.

Simulation: To complete the proof we must show that the protocol can be simulated. There
are two sets of values which need simulating. The hi,j values which are sent to party P1 by
Player Pj and the subset sum values Sj and Sj,v which are opened. We first deal with the
hi,j values.

The simulator already knows the shares hi,j which the adversary should be sending to
them (from FpMPC.GenBit), and so knows whether to abort the functionality at this point. To
generate the hi,j values for the honest parties the simulator simply picks random values for
the honest parties shares bi,j so that they sum to zero modulo p. The honest hi,j are then
derived from these values. These top bits of the honest shares will be a valid simulation even
if the shared bit is actually one.

To simulate the value Sj, and hence Sj,v, we simply define the trivial simulator. The values
ri,j are sampled using the ideal functionality F2sec

Rand, and then the values mnj = min ri,j and
mxj =

∑
ri,j are computed. It then picks a random value Sj ∈ [mnj, . . . ,mxj] and returns Sj

and Sj,v = Sj (mod pv), for every v, to the adversary. When the adversary selects a proper
subset S of {1, . . . ,m} to be opened, it queries the ideal functionality and returns these
values.

We now show that an environment that can distinguish between a real-world execution
and the ideal-world execution with this simulator can be used to solve an arbitrary instance
of the MSSG problem. We let A denote our adversary against the MSSG problem. This takes
as input t = sec+1 values w1,j, . . . , wt,j, for j = 1, . . . , γ, and target sums Tj for j = 1, . . . , γ.
The adversary A runs the environment twice as follows, where we let the run be denoted by
the variable r ∈ {1, 2}.

1. The adversary A selects an index i∗r ∈ {1, . . . ,m}.
2. The adversary sets r

(r)
i∗r ,j

to be wt,j.

3. The adversary sets r
(r)
i+m,j = wi,j for i = 1, . . . , sec.

4. The adversary selects all other values r
(r)
i,j , for run r, at random from [0, . . . , 2sec).

5. For i ∈ {1, . . . ,m} \ {i∗r} the adversary selects a bit b
(r)
i ∈ {0, 1}.

6. The adversary sets Sj(r) = Tj +
∑
b
(r)
i · r

(r)
i,j , where the sum is over i ∈ {1, . . . ,m} \ {i∗r}.

7. The adversary then runs the environment, revealing the values S
(r)
j , and S

(r)
j (mod pv) as

required.

18

8. At some point the environment in run r will request a subset of queries Sr ⊂ {1, . . . ,M}.
At this point for every i ∈ Sr the adversary returns b

(r)
i if i 6= i∗r. If i = i∗r then the

adversary returns r − 1, i.e. 0 in the first run and 1 in the second run.

9. Finally the environmental distinguisher will return its result of real or ideal.

10. In the case of a value returned of real in either run, the adversary A decides its input
problem was from the first MSSG distribution.

11. Otherwise the adversary decides that its input was from the second MSSG distribution.

We now discuss why this adversary solves the MSSG problem. Notice that if i∗r 6∈ Sr for one
of the two executions, then this execution is indistinguishable by definition to the real world
execution when the input problem is from the first MSSG distribution and is equal to the
ideal world execution when the input problem is from the second MSSG distribution.

When i∗r ∈ Sr, and the input problem is from the first MSSG distribution, and the bit
corresponding to this solution is correct (i.e. is actually equal to r − 1) then the adversary
is presented with an execution indistinguishable from the real world. If the bit is wrong, i.e.
not equal to r − 1, then the execution is unlikely to be identical to a real execution (unless

there is a solution to the subset sum with b
(r)
i∗r

equal to 2 − r). Since we run the adversary
twice in such a case we are guaranteed that if the input is from the first MSSG distribution
one of our executions will be correctly equal to the real distribution.

In the case when i∗r ∈ Sr for both values of r and the input distribution to A is from the
second MSSG distribution, then the view given to the distinguisher is that of the simulated
distribution.

Thus in all cases any distinguisher which can distinguish between the real and ideal world
will be able to be used by A to solve the MSSG problem. ut

5 Sampling Distributions In MPC

In this section we explain how we perform the various sampling operations we need in the key
generation algorithm in Section 6. We assume that two actively-secure (with-abort) MPC
functionalities, as in Figure 2, have already been initiated, one for the prime p0 and one for
the prime p1. We call these two functionalities Fp0MPC and Fp1MPC. As explained earlier these
can be instantiated with either BDOZ or MASCOT-SPDZ. Using these functionalities we
can instantiate the protocol ΠRandomBits, from Section 4, to produce doubly-authenticated
bits in both Fp0MPC and Fp1MPC. Thus all the protocols in this section can be seen to work in
the Fp,p0,p1MPC .RandomBits() model, which we have already shown can be instantiated in the
Fp,p0,p1MPC -hybrid model.

The protocol ΠHamming will only be used to generate secret keys which are equivalent
to the traditional BGV style keys used in SCALE-MAMBA or HELib. For more “modern”
implementations one will use ΠBinomial to generate the secret keys as these have less security
concerns related to them. In both cases we need ΠBinomial and ΠUniform to generate the error
vectors needed to compute the public key. Additionally we see our ΠHamming protocols family
could potentially improve the cost of HE-MPC conversions of Zhu et al. [44] if they would

19

relax the assumptions of generating a secret key with fixed hamming weight h to one that
has expected hamming weight h.

5.1 Protocol ΠHamming

To sample our secret key we will need to sample a shared vector of length N , with elements in
{−1, 0, 1}, with approximate Hamming weight h, i.e. we sample from B(h/N)N . The values
of N and h are selected such they are both powers of two, so we set N = 2ν and h = 2`. The
reader should think of values of N = 32768 and h = 64, which were used in SCALE-MAMBA’s
default configuration when we started this work.

To sample such vectors we use protocol ΠHamming(h,N) given in Figure 9. The basic idea
(for one such bit) is to sample v−` random bits b1, . . . , bv−`. Then the product p = b1 · · · bv−`
will be one with probability 1/2v−`, and zero otherwise. Then a sign bit s is used to flip the
one to minus one, with probability 1/2. Performing this operation N times produces the
required distribution.

Protocol ΠHamming(h,N)

1. Set N = 2ν and h = 2`.
2. Using Fp,p0,p1MPC .RandomBits() generate H = N ·(ν−`) shared random bits 〈bji 〉p0 and 〈bji 〉p1 , for i ∈ {1, . . . , N}

and j ∈ {1, . . . , ν − `}.
3. For i ∈ {1, . . . , N}

(a) 〈bi〉p0 ← 〈b1i 〉p0 · . . . · 〈bν−`i 〉p0 .
(b) 〈bi〉p1 ← 〈b1i 〉p1 · . . . · 〈bν−`i 〉p1 .

4. Using Fp,p0,p1MPC .RandomBits() generate N shared random bits 〈si〉p0 and 〈si〉p1 , for i ∈ {1, . . . , N}.
5. For i ∈ {1, . . . , N}

(a) 〈bi〉p0 ← 〈bi〉p0 · (2 · 〈si〉p0 − 1).
(b) 〈bi〉p1 ← 〈bi〉p1 · (2 · 〈si〉p1 − 1).

6. Return, for i ∈ {1, . . . , N}, the shares 〈bi〉p0 and 〈bi〉p1 .

Figure 9. Method to produce vectors of (expected) Hamming weight h with elements in {−1, 0, 1}

If we assume that the two calls to Fp,p0,p1MPC .RandomBits() are implemented using our pre-
vious protocol ΠRandomBits using only one batch operation, then these operation requires 6
rounds of communication, (H +N + sec) multiplications in FpMPC

8. The products to produce
the initial bits bi require dlog2(ν − `)e rounds of communication and (ν − ` − 1) · N multi-
plications in both Fp0MPC and Fp1MPC. Whereas the products to produce the final signed bits
require one round of communication and N multiplications in both Fp0MPC and Fp1MPC. Hence
in total we require

6 + dlog2(ν − `)e+ 1 = 7 + dlog2(ν − `)e

rounds of communication and

NHamming,0 = N +H + sec + (ν − `+ 1) ·N,
8 Note that γ = 1 since p0, p1 are both big.

20

NHamming,1 = (ν − `+ 1) ·N

total multiplications in Πp0
MPC and Πp1

MPC respectively.

5.2 Another Method to Implement ΠHamming

In this section we describe a different protocol to generate a vector of size N with expected
hamming weight h. The main advantage of this protocol is that it avoids the expensive mul-
tiplications modulo large prime numbers (modulo p0 and modulo p1) completely. This comes
at the expense of requiring an extra preprocessing protocol which generates random shared
bits modulo two from [32,43], as well as the need to implement a demultiplexer via a lookup
table [31]. Thus this method requires us to base the SPDZ key generation methodology on
two distinct MPC methodoligies; TinyOT-style F2-based MPC and MASCOT style Fp-base
MPC. So as to keep the minimality in terms of base MPC protocols for our key generation
process we include this section mearly as an additional method for the reader.

Note that to generate random bits shared modulo two is much cheaper than generating
random shared bits modulo a large prime p. These binary sharings are usually done using
a pairwise protocol TinyOT style found in Wang et al. or Keller et al. [32,43]. We call the
functionality that generates binary sharings Fbit[F2]

The key idea of this protocol is to follow the same blueprint as ΠHamming(h,N) defined in
Section 5.1 but start with random binary sharings of bits 〈b〉2 rather then arithmetic sharings
〈b〉p0 and 〈b〉p1 . This will cause the bit multiplications to happen modulo two which is orders
of magnitude faster than their counterpart modulo a large prime p.

However, the main challenge with this method is to be able to output the value in
{0,±1} without the large field multiplications in Step 5 from Figure 5.1. This can be done
by emulating a small demultiplexer on the values bib

∗
i ({00, 01, 10, 11}) and map them to

{0, 0, 1,−1}. We define this public lookup table containing these values in binary form as
T = {00, 00, 10, 11}. One can think of the right hand bit in each entry of T as the sign of the
secret key bit. In the last step we convert the table entries to integers modulo a large prime
using maBits, i.e. we compute 20 · T (i, 0) − 21 · T (i, 1) where T (i, j) represents the j’th bit
of the i’th entry.

5.3 Protocol ΠBinomial

The protocol for sampling shared values from the distribution dN(σ2, N) is relatively straight-
forward, and is given in Figure 11. Apart from the generation of the random bits this pro-
tocol consists entirely of linear operations. Thus the round complexity is six and it requies
NBinomial = 2 · k · N + sec multiplications in FpMPC, assuming Fp,p0,p1MPC .RandomBits() is imple-
mented in the Fp,p0,p1MPC -hybrid model using our previous protocol ΠRandomBits.

5.4 Protocol ΠUniform

Our final protocol is a rather trivial one, it allows the parties to sample a uniform element
from Zq (recall q = p0 ·p1 with gcd(p0, p1) = 1) in a secret shared form, we give it in Figure 12.

21

Protocol Π ′Hamming(h,N)

1. Set N = 2ν and h = 2`.
2. Call Fbit[F2] to generate H = N · (ν − `) shared random bits 〈bji 〉2 for i ∈ {1, . . . , N} and j ∈ {1, . . . , ν − `}.
3. For i ∈ {1, . . . , N}

(a) 〈bi〉2 ← 〈b1i 〉2 · . . . · 〈bν−`i 〉2.
(b) 〈b∗i 〉2 ← Fbit[F2]

4. Using Fp,p0,p1MPC .RandomBits() generate 2 · N shared random bits 〈sji 〉2, 〈sji 〉p0 and 〈sji 〉p1 , for i ∈ {1, . . . , N}
and j ∈ {0, 1}.

5. For i ∈ {1, . . . , N}
(a) (〈d0〉2, · · · 〈d3〉2)← Demux(〈bi〉2, 〈b∗i 〉2)
(b) (〈v0〉2, 〈v1〉2)← 〈d0〉2 · T(0)⊕ 〈d1〉2 · T(1)⊕ 〈d2〉2 · T(2)⊕ 〈d3〉2 · T(3)
(c) t0i ← Open(〈s0i 〉2 ⊕ 〈v0〉2) and t1i ← Open(〈s1i 〉2 ⊕ 〈v1〉2)

6. For i ∈ {1, . . . , N} [Now convert the lookup table entries to their arithmetic counterpart]
(a) 〈bi〉p0 ← 20 · XOR(t0i , 〈s0i 〉p0)− 21 · XOR(t1i , 〈s1i 〉p0) (bit-compose of public-secret xors in Fp0)
(b) 〈bi〉p1 ← 20 · XOR(t0i , 〈s0i 〉p1)− 21 · XOR(t1i , 〈s1i 〉p1) (bit-compose of public-secret xors in Fp1)

7. Return, for i ∈ {1, . . . , N}, the shares 〈bi〉p0 and 〈bi〉p1 .

Figure 10. Second method to produce vectors of (expected) Hamming weight h with elements in {−1, 0, 1}

Protocol ΠBinomial(σ
2, N)

1. Define k by σ =
√
k/2.

2. Using Fp,p0,p1MPC .RandomBits() generate 2 · k ·N shared random bits 〈bji 〉p0 and 〈bji 〉p1 , for i ∈ {1, . . . , N} and
j ∈ {0, . . . , 2 · k − 1}.

3. For i ∈ {1, . . . , N}
(a) 〈bi〉p0 ←

∑k−1
j=0 〈b

2·j
i 〉p0 − 〈b

2·j+1
i 〉p0 .

(b) 〈bi〉p1 ←
∑k−1
j=0 〈b

2·j
i 〉p1 − 〈b

2·j+1
i 〉p1 .

4. Return, for i ∈ {1, . . . , N}, the shares 〈bi〉p0 and 〈bi〉p1 .

Figure 11. Method to produce elements from dN(σ2, N)

Protocol ΠUniform(N)

1. For i ∈ {1, . . . ,M}
(a) For j ∈ {1, . . . , n}

i. Player Pi selects uji ∈ Fp0 , and vji ∈ Fp1 ,
ii. Execute 〈uji 〉p0 ← Input(Pi).
iii. Execute 〈vji 〉p1 ← Input(Pi).

(b) 〈ui〉p0 ← 〈u1
i 〉p0 + . . .+ 〈uni 〉p0 .

(c) 〈vi〉p1 ← 〈v1i 〉p1 + . . .+ 〈vni 〉p1 .
2. Return, for i ∈ {1, . . . , N}, the shares 〈ui〉p0 and 〈vi〉p1 . We think of these as sharings of (〈ai〉p0 , 〈ai〉p1), of

some value ai ∈ Zq with ai = ui (mod p0) and ai = vi (mod p1).

Figure 12. Protocol to sample N uniformly random elements from Zq

22

6 SPDZ KeyGeneration

Given the previous algorithms to generate various distributions the computation of the actual
key generation algorithm becomes relatively straight forward. We first sample the various
distributions modulo p0 and p1, then we produce the square of the secret key (needed for
the key switching matrices), and then we output the public key (modulo p0 and p1) and
then recombine it using the CRT, finally we do the same to each players component of the
secret key. The overall protocol is given in Figure 13; note that in line 3 one can select as
to whether to choose the secret key from a restricted Hamming weight or from the centred
binomial distribution. To make the protocol easier to follow we use the notation 〈a〉p0 etc to
denote a vector of N shares modulo p0, i.e. 〈a〉p0 = (〈a0〉p0 , . . . , 〈aN−1〉p0).

We let 〈a〉p0 � 〈b〉p0 denote the multiplication of two such vectors when considered as
elements in the ring Rp0 . This requires one round of communication and N2 secure multi-
plications (or N · (N − 1)/2 secure multiplications if a = b). If one vector is in the clear
then we write a � 〈b〉p0 , which is a linear operation and hence for “free”. A more efficient
method to multiply is to use the FFT algorithm, which recall is a linear operation and thus
‘free’ when executed in the MPC engine. To multiply using FFT we utilize

〈a〉p0 � 〈b〉p0 = FFT−1(FFT(〈a〉p0) · FFT(〈b〉p0)

which requires only N secure multiplications and one round of communication.
We now examine each of the operations in this algorithm in turn. The lines 1-6 can all

be executed in parallel and so require

max
(

6 + dlog2(ν − `)e+ 1, 6, 1
)

= 6 + dlog2(ν − `)e

rounds of communication 9 in the case where we select a secrey key with given expected

Hamming weight and max
(

6, 6, 1
)

= 6 rounds of communication in the case of the secret

key generated from a centred binomial distribution. The number of secure multiplications is
given by, in the two cases,

NHamming,0 +NHamming,1 + 2 ·NBinomial = N +H + sec + 2 · (ν − `+ 2 · k − 1) ·N,
3 ·NBinomial = 6 · k ·N.

Lines 7 and 9 are linear operations and thus can be executed as purely local operations. Line
8 requires one round of communication and N multiplications in Fp0MPC. Note, in lines 7-9 we
only have to compute sk2 modulo p0 as it is multiplied by p1 when added into bsk,sk2 . Lines
10-13 can also be performed in parallel and hence require only one round of communication.
The lines 16-21 are all local operations, and hence are for “free”. Lines 25-24 are, again,
able to be done in parallel and so require only one round of communication. The remaining
lines are purely local organization of data into the correct format for outputing. Thus the

9 Of course in practice we generate the secure bits in batches and hence this is just the minimal number of rounds
required.

23

Protocol ΠKeyGen

- [Generate the various values required]
1. (〈a〉p0 , 〈a〉p1)← ΠUniform(N).
2. (〈a′〉p0 , 〈a′〉p1)← ΠUniform(N).
3. (〈s〉p0 , 〈s〉p1)← ΠHamming(h,N) or (〈s〉p0 , 〈s〉p1)← ΠBinomial(N).
4. (〈e〉p0 , 〈e〉p1)← ΠBinomial(N).
5. (〈e′〉p0 , 〈e′〉p1)← ΠBinomial(N).
6. For i ∈ {2, . . . , n}

(a) 〈sk0,i〉p0 ← Input(Pi) for a random vector sk0,i ∈ Rp0 selected by player Pi.
(b) 〈sk1,i〉p1 ← Input(Pi) for a random vector sk1,i ∈ Rp1 selected by player Pi.

- [Compute the square of the secret key]
7. 〈f〉p0 ← FFT(〈s〉p0).
8. 〈f ′〉p0 ← 〈f〉p0 · 〈f〉p0 [This is the component wise product].
9. 〈s′〉p0 ← FFT−1(〈f ′〉p0).
- [Open the values a and a′]

10. a0 ← Open(〈a〉p0).
11. a1 ← Open(〈a〉p1).
12. a′0 ← Open(〈a′〉p0).
13. a′1 ← Open(〈a′〉p1).
14. a← CRT([a0,a1], [p0, p1]).
15. ask,sk2 ← CRT([a′0,a

′
1], [p0, p1]).

- [Compute b and b′]
16. 〈b〉p0 ← a0 � 〈s〉p0 + p · 〈e〉p0 .
17. 〈b〉p1 ← a1 � 〈s〉p1 + p · 〈e〉p1 .
18. 〈b′〉p0 ← a′0 � 〈s〉p0 + p · 〈e′〉p0 − p1 · 〈s′〉p0 .
19. 〈b′〉p1 ← a′1 � 〈s〉p1 + p · 〈e′〉p1 .

- [Fix the final key for the sharing of the secret key]
20. 〈sk0,1〉p0 ← 〈s〉p0 −

∑n
i=2〈sk0,i〉p0 .

21. 〈sk1,1〉p1 ← 〈s〉p1 −
∑n
i=2〈sk1,i〉p1 .

22. For all i ∈ {1, . . . , n} assign ski ← CRT([sk0,i, sk1,i], [p0, p1]).
23. P1 ← Output(〈sk0,1〉p0).
24. P1 ← Output(〈sk1,1〉p1).

- [Open the values b and b′]
25. b0 ← Open(〈b〉p0).
26. b1 ← Open(〈b〉p1).
27. b′0 ← Open(〈b′〉p0).
28. b′1 ← Open(〈b′〉p1).
29. b← CRT([b0,b1], [p0, p1]).
30. bsk,sk2 ← CRT([b′0,b

′
1], [p0, p1]).

31. Output a,b,ask,sk2 and bsk,sk2 to all players, and ski to player Pi.

Figure 13. The Distributed BGV Key Generation Protocol

24

total number of rounds of communication (assuming all shared random bits are produced in
a single batch) is 12 + dlog2(ν − `)e or 12, depending on which variant one is using for the
secret key.

If we take typical values of n = 2, N = 32768, h = 64, and sec = 128 then these work
out to be 3277056 mults in Πp0

MPC and 3244288 in Πp1
MPC and 16 rounds of communication.

Theorem 6.1. The protocol ΠKeyGen UC-securely realises the functionality FKeyGen against a
static, active adversary corrupting at most n− 1 parties in the Fp,p0,p1MPC .RandomBits()-hybrid
model.

Proof. We define the simulator S as follows. The simulator emulates the behaviour of honest
parties exactly, but additionally does the following:

- At the start of the execution, the simulator initialises a local copy of Fp0MPC and Fp1MPC and
sends the message start to FKeyGen and awaits the public key pk = (ā, b̄, āsk,sk2 , b̄sk,sk2) in
response.

- When the adversary and simulator execute ΠUniform, the simulator replaces the values a
mod p0, a mod p1, a′ mod p0 and a′ mod p1 stored in the instances of Fp0MPC and Fp1MPC,
respectively, with ā mod p0, ā mod p1, āsk,sk2 mod p0 and āsk,sk2 mod p1.

- In Step 6, for each j ∈ [n], if j is corrupt and j > 2 then the simulator awaits the input
skj,0 and skj,1 for each corrupt party Pj and constructs skj ← CRT(skj,0, skj,1), and sends
these to FKeyGen.

- Just before opening b0, b1, b′0 and b′1 the simulator replaces these values stored in the
instances of Fp0MPC and Fp1MPC with b̄ mod p0, b̄ mod p1, b̄sk,sk2 mod p0 and b̄sk,sk2 mod p1.

Since the only inputs to the protocol are randomly sampled by parties, the simulator
can perfectly emulate the behaviour of honest parties throughout, as the environment does
not observe the random tape of honest parties or the simulator. Indeed, since Fp0MPC and
Fp1MPC are used as black boxes and the only communication between parties occurs via these
functionalities, which are emulated locally honestly by the simulator, the replacements made
in the simulation outlined are executed without being observed by the environment (at this
point). Moreover, the inputs of corrupt parties can be extracted trivially and passed on to
FKeyGen so that the final outputs have the correct distribution.

It only remains to show that the environment cannot observe a difference between the
transcripts in a real execution and an execution in which the replacements described above
are made. While the final outputs of the real and ideal worlds is the same, the distribution
of the transcript differs since communication generated in the execution of the sampling
subprotocols depends on the secret s̄ which is (implicitly) generated by the functionality
FKeyGen when executing KeyGen() and cannot be computed by the simulator from the public
key without breaking the LWE assumption for the security of the key. We must show that
the amount by which the distributions differ is negligible.

The only time information stored in Fp0MPC or Fp1MPC is either revealed to the parties or
is generated by parties is in the bits shared in ΠRandomBits and in ΠUniform. In the protocols
ΠBinomial and ΠHamming the parties obtain bits from Fp,p0,p1MPC .RandomBits(), and in the remain-
der of the protocol ΠKeyGen, the correctness of the computations is guaranteed by the security

25

of the black boxes Fp0MPC and Fp1MPC. In ΠUniform, every party contributes to every secret, and
since there is at least one honest party (that samples uniformly), the output is always uni-
form. Thus no distinguishing environment can exist, by the choice of parameters for the
subset sum, and therefore ΠKeyGen UC-securely realises FKeyGen in the Fp,p0,p1MPC .RandomBits()-
hybrid model. ut

7 Implementation

In our implementation we use MASCOT-SPDZ [33] as the base protocol used for our one-
time setup phase for SPDZ. We could have selected here BDOZ [8] using LowGear [34] for the
pre-processing. Both give O(n2) protocols with LowGear about a factor of four times faster
for small values of n. Since our solution is built on top of the SCALE-MAMBA [2] framework, we
re-used a lot of their already existing codebase and hence selected MASCOT-SPDZ as the
underlying protocol. Our implementation of this key generation protocol is now included in
the SCALE-MAMBA code base. As explained in the introduction our key generation protocol,
is inherently O(n2) in nature. This seems to be unavoidable as the only practical O(n) MPC
protocol known is SPDZ, which is exactly the MPC protocol we are trying to instantiate
with our key generation protocol.

Selection of FHE parameters We recall that the two-leveled BGV key generation proce-
dure requires us to choose two prime moduli p0 and p1 and a polynomial degree N to define
the ciphertext space Rq

∼= Rp0 × Rp1 and a prime p which defines the size of our plaintext
space. In addition we require that the relations presented in 3.2 hold.

The size of the plaintext space p defines the modulus of the underlying secret sharing
scheme in the SPDZ protocol. Different values of p will be needed for different application
scenarios. In this paper we focus on p ≈ 264 and p ≈ 2128. The precise sizes of the other
parameters are derived from a noise analysis of how the resulting encryption scheme is used,
which takes into account the circuit being computed, the zero-knowledge proofs required,
and the distributed decryption procedure, and the computational difficulty of the Ring-LWE
problem. This analysis is quite involved and we referred to the SCALE-MAMBA documentation
[2] to obtain the required parameters.

This gives us (for example) that to guarantee a computational security of 128 bits with
a polynomial degree N = 32768, our ciphertext modulus q has to satisfy q < 2883. For
such parameters, the trusted setup of SCALE-MAMBA, as we have discussed earlier, produces
a secret key with Hamming Weight exactly 64, and uses noise vectors distributed according
to a centred binomial distribution with standard deviation of 3.16 =

√
10. As a first set of

experiments we use exactly the same methodology to select the secret key, but we pick a
secret key with expected Hamming Weight 64. This does not change the noise analysis (which
is done using an expected noise methodology for the secret key in any case), and thus we end
up with the same system parameters as used in SCALE-MAMBA. In particular for a plaintext
modulus of 128 bits this leads us to use a p0 modulus of 345 bits and a p1 modulus of 225
bits. So in order to run the key generation protocol presented above, we will need to run two

26

instances of the MASCOT protocol; one for the 345 bits prime p0 and another for the 225
bits prime p1.

We tried different sets of parameters in our experiments, which provide BGV keys for a
SPDZ modulus of 64 and 128 bits, always taking the same parameters as the Setup phase
for SCALE-MAMBA. In Table 1 we report the prime sizes, in bits, required for each set of
parameters for two and three parties.

Number of Parties, n 2 3

FHE Plaintext Size, log2 p 64 128 64 128

Polynomial Degree 16384 32768 16384 32768

p0|p1 bit length 216 164 345 225 217 163 346 224

Table 1. Parameter Sizes.

With these size of primes, we can now set the value m for our batch size of shared bits
which has to respect the bound stated in Section 4. In practice we want to have m a divisor
of the total number of shared bits that we will need, and also small enough to avoid RAM
or network overflow. Empirically we found that taking 50000 ≤ m ≤ 100000 (depending on
the setting) gives us good results.

Extended Random Oblivious Transfer: When starting this work, the SCALE-MAMBA frame-
work did not have an implementation of the offline phase of MASCOT, and an implemen-
tation of the extended Random Oblivious Transfer for a prime field Fp, thus we needed to
implement these10. The triple generation method of MASCOT [33][Protocol 4] makes use of
an extended Correlated Oblivious Transfer (COT) protocol. For this we used the passively
secure protocol of Frederiksen et al. [24][Full Version, Figure 19] (which is essentially the
protocol of Ishai et al [29]). Such a passively secure COT protocol is sufficient due to how
it is used in the MASCOT offline phase. This COT protocol was already implemented in
SCALE-MAMBA. For two parties Pi and Pj with the former acting as the sender and the later
as the receiver, calls to the COT protocol ouputs values {Mk

0 ,M
k
1 = Mk

0 +∆i}k∈[n] to Pi and
{Mk

bk
}k∈[n] to Pj, where ∆i ∈ F2128 is the input from Pi and b ∈ {0, 1}n is the choice vector

from Pj, and ∀k ∈ [n]Mk
0 ←$ F2128

To obtain extended Random Oblivious Transfer (ROT), from these extended COTs, we
used the decorrelation technique presented in [12][Figure 15] which consists in both parties
hashing the output of the extended COT. This gives us an extended ROT in F2128 . However,
we want to run the MASCOT protocol on prime fields Fp0 and Fp1 , so to translate our

extended ROT from F2128 to Fp, we take d log2(p)+128
128

e outputs in F2128 , concatenate them
together and take the result mod p.

Results of our experiments Our implementation of the key generation protocol was tested
in a LAN setting, with each party running on an Intel i7-7700K CPU with 32GB of RAM

10 Our implementations are now included in the SCALE-MAMBA code-base.

27

over a 10Gb/s network switch. In our experiments we found that executing more threads
than the available number of cores (in our case eight) gave a performance improvement. This
is because the computation between receiver and sender in the OT protocols is asymmetric,
resulting in each party sometimes waiting for the other to perform some computation.

For each prime size, we report the throughput of our MASCOT implementation regarding
triple generation in Table 2. We experimented with different number of threads, and for
each case we give our results for 1, 5 and 10 threads. By comparison to [33][Figure 9],
our implementation of the MASCOT protocol for triple generation seems to have room
for improvement. In particular for a 128 bit field, we are about 7 times slower than MP-
SPDZ [21]. Therefore, we believe that a better implementation of MASCOT using less CPU
resources would give us a significant amelioration of our BGV key generation benchmark.

n 2 3

log2 p 64 128 64 128

1 Thread 126.77 177.1 70.01 133.29 58.78 79.01 28.7 57.22

5 Thread 587.77 784.69 292.18 567.62 276.38 376.65 134.62 279.27

10 Thread 759.1 1032.57 365.93 740.05 389.19 547.27 185.32 379.34

Table 2. Triple Throughput for Fp0 and Fp1 in Triples per Second

Finally in Table 3 we give figures related to the throughput of the secure randomly shared
bits, namely the throughput of the algorithm in Figure 8, in the four different scenarios we
experimented with. For each case, we give our result while also running the MASCOT triple
generation, and also assuming that this offline phase has already been done beforehand. In
the same table we eventually give the total runtime for the distributed BGV key generation
procedure, which includes the time to perform the MASCOT offline phase.

Number of Parties 2 3

FHE Plaintext size 64 128 64 128

Shared bit throughput
including offline time (b/s) 416.67 263.16 194.55 124.69

Shared bit throughput
excluding offline time (b/s) 1515.15 1449.28 1149.43 1041.67

BGV Key Generation Wall Clock 47m17s 2h35m34s 1h30m24s 4h55m44s

Table 3. Shared bit throughput and total time for the KeyGen protocol.

We can observe that for two parties it takes between 47 minutes and five hours to complete
the distributed key generation. Although it may seem inefficient, we argue that this protocol
needs only to be done once in order to enable future computation of the offline phase of
SPDZ. Moreover, we have shown that our protocol is highly parallelizable. So in practice,
if such a protocol was to be run on high end servers owned by cloud service providers, the
total runtime could be drastically reduced.

28

We pause to compare these run-times to the covertly secure distributed key generation
protocol presented in [18]. This protocol did not produce public and secret keys with the
same distribution as the non-distributed version. For a plaintext size of 64-bits the authors
of [18] report 12 and 16 seconds key generation time for n = 2 and n = 3, for a covert
security of 1/10, i.e. an adversary can cheat with probability 1/10. For a plaintext size of
128-bits the times are 33 and 44 seconds. The execution time of this covertly secure protocol
is linear in c, where the covert security measure is 1/c. Thus to obtain comparable security
to our protocol, the protocol in [18] would be utterly inpractical.

Changing the Standard Deviation Our protocol can also be run when we select the
standard deviation for the centred binomial distributions to be equal to σ =

√
1/2 = 0.707.

The analysis of the parameters, given in Table 1 is roughly the same. However, the associated
run times for key generation become faster as we no longer need to generate as many doubly
authenticated bits. This is reflected in Table 4. We see that by choosing σ = 0.707, we need
only two bits instead of 40 for the sampling from the centred binomial distribution. We thus
get a factor of at least 2.5 improvement overall, compared to the previous setting.

Number of Parties 2 3

FHE Plaintext size 64 128 64 128

BGV Key Generation Wall Clock 16m10s 1h03m19s 28m46s 1h52m54s

Table 4. Shared bit throughput and total time for the KeyGen protocol for σ = 0.707.

7.1 Secret Keys Generated According to a Centred Binomial Distribution

Finally we examine the case of using the centred binomial distribution for generating the
secret keys, with standard deviation selected to be σ =

√
1/2 = 0.707, as opposed to using a

low Hamming weight based distribution. This pushes the parameter sizes for the underlying
BGV scheme up a little, as we need to cope with more potential noise growth due to the
‘heavier’ secret key. Using the same analysis as before we find the parameter sizes given in
Table 5, with the resulting run times for distributed key generation given in Table 6. This
time we performed the experiments also for n = 4 and n = 5 so as to show how the times
grow with n; recall the overall method is O(n2) as mentioned earlier.

Acknowledgements

The authors would like to thank Carsten Baum and Emmanuela Orsini for suggestions in re-
lation to the work in this paper, and Claudio Orlandi in elaborating on the early history of the
BDOZ and Tiny-OT work. This work has been supported in part by ERC Advanced Grant
ERC-2015-AdG-IMPaCT, by the Defense Advanced Research Projects Agency (DARPA)
and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under contract No.

29

Number of Parties, n 2 3 4 5

FHE Plaintext Size, log2 p 64 128 64 128 64 128 64 128

Polynomial Degree 16384 32768 16384 32768 16384 32768 16384 32768

p0|p1 bit length 222 159 352 219 223 158 353 218 223 158 353 228 223 158 353 228

Table 5. Parameter Sizes for secret keys distributed according to a centred binomial distribution, and Gaussian error
distribution of σ = 0.707.

Number of Parties 2 3 4 5

FHE Plaintext size 64 128 64 128 64 128 64 128

BGV Key Generation 5m08s 18m20s 8m12s 26m35s 11m23s 52m48s 16m14s 2h11m42s

Table 6. Total time for the KeyGen protocol for σ = 0.707 and secret keys generated according to a centred binomial
distribution.

N66001-15-C-4070 and FA8750-19-C-0502, by the Office of the Director of National Intel-
ligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) via Contract
No. 2019-1902070006, by the FWO under an Odysseus project GOH9718N, and by Cyber-
Security Research Flanders with reference number VR20192203. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the ERC, ODNI, United States Air Force, IARPA,
DARPA, the US Government or FWO. The U.S. Government is authorized to reproduce
and distribute reprints for governmental purposes notwithstanding any copyright annota-
tion therein.

References

1. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange - A new hope. In: Holz, T.,
Savage, S. (eds.) USENIX Security 2016: 25th USENIX Security Symposium. pp. 327–343. USENIX Association,
Austin, TX, USA (Aug 10–12, 2016)

2. Aly, A., Cong, K., Cozzo, D., Keller, M., Orsini, E., Rotaru, D., Scherer, O., Scholl, P., Smart, N.P., Tanguy, T.,
Wood, T.: SCALE-MAMBA v1.12: Documentation (2021), https://homes.esat.kuleuven.be/~nsmart/SCALE/
Documentation.pdf

3. Aly, A., Orsini, E., Rotaru, D., Smart, N.P., Wood, T.: Zaphod: Efficiently combining LSSS and garbled circuits
in SCALE. In: Brenner et al. [11], pp. 33–44, https://doi.org/10.1145/3338469

4. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with
low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.)
Advances in Cryptology – EUROCRYPT 2012. Lecture Notes in Computer Science, vol. 7237, pp. 483–501.
Springer, Heidelberg, Germany, Cambridge, UK (Apr 15–19, 2012)

5. Baum, C., Cozzo, D., Smart, N.P.: Using TopGear in overdrive: A more efficient ZKPoK for SPDZ. In: Paterson,
K.G., Stebila, D. (eds.) SAC 2019: 26th Annual International Workshop on Selected Areas in Cryptography.
Lecture Notes in Computer Science, vol. 11959, pp. 274–302. Springer, Heidelberg, Germany, Waterloo, ON,
Canada (Aug 12–16, 2019)

6. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) Advances in
Cryptology – CRYPTO’91. Lecture Notes in Computer Science, vol. 576, pp. 420–432. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 11–15, 1992)

30

https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
https://doi.org/10.1145/3338469

7. Bendlin, R., Damg̊ard, I.: Threshold decryption and zero-knowledge proofs for lattice-based cryptosystems. In:
Micciancio, D. (ed.) TCC 2010: 7th Theory of Cryptography Conference. Lecture Notes in Computer Science,
vol. 5978, pp. 201–218. Springer, Heidelberg, Germany, Zurich, Switzerland (Feb 9–11, 2010)

8. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty computation.
In: Paterson, K.G. (ed.) Advances in Cryptology – EUROCRYPT 2011. Lecture Notes in Computer Science, vol.
6632, pp. 169–188. Springer, Heidelberg, Germany, Tallinn, Estonia (May 15–19, 2011)

9. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators:
Silent OT extension and more. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology – CRYPTO 2019,
Part III. Lecture Notes in Computer Science, vol. 11694, pp. 489–518. Springer, Heidelberg, Germany, Santa
Barbara, CA, USA (Aug 18–22, 2019)

10. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping.
In: Goldwasser, S. (ed.) ITCS 2012: 3rd Innovations in Theoretical Computer Science. pp. 309–325. Association
for Computing Machinery, Cambridge, MA, USA (Jan 8–10, 2012)

11. Brenner, M., Lepoint, T., Rohloff, K. (eds.): Proceedings of the 7th ACM Workshop on Encrypted Computing
& Applied Homomorphic Cryptography, WAHC@CCS 2019, London, UK, November 11-15, 2019. ACM (2019),
https://doi.org/10.1145/3338469

12. Burra, S.S., Larraia, E., Nielsen, J.B., Nordholt, P.S., Orlandi, C., Orsini, E., Scholl, P., Smart, N.P.: High
performance multi-party computation for binary circuits based on oblivious transfer. Cryptology ePrint Archive,
Report 2015/472 (2015), https://eprint.iacr.org/2015/472

13. Chen, M., Hazay, C., Ishai, Y., Kashnikov, Y., Micciancio, D., Riviere, T., shelat, a., Venkitasubramaniam, M.,
Wang, R.: Diogenes: Lightweight scalable RSA modulus generation with a dishonest majority. Cryptology ePrint
Archive, Report 2020/374 (2020), https://eprint.iacr.org/2020/374

14. Cramer, R., Damg̊ard, I., Escudero, D., Scholl, P., Xing, C.: SPD Z2k : Efficient MPC mod 2k for dishonest
majority. In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO 2018, Part II. Lecture
Notes in Computer Science, vol. 10992, pp. 769–798. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 19–23, 2018)

15. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In:
Pfitzmann, B. (ed.) Advances in Cryptology – EUROCRYPT 2001. Lecture Notes in Computer Science, vol.
2045, pp. 280–299. Springer, Heidelberg, Germany, Innsbruck, Austria (May 6–10, 2001)

16. Curtis, B.R., Player, R.: On the feasibility and impact of standardising sparse-secret LWE parameter sets for
homomorphic encryption. In: Brenner et al. [11], pp. 1–10, https://doi.org/10.1145/3338469

17. Damg̊ard, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous multiparty computation: Theory and
implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009: 12th International Conference on Theory and
Practice of Public Key Cryptography. Lecture Notes in Computer Science, vol. 5443, pp. 160–179. Springer,
Heidelberg, Germany, Irvine, CA, USA (Mar 18–20, 2009)

18. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for
dishonest majority - or: Breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013:
18th European Symposium on Research in Computer Security. Lecture Notes in Computer Science, vol. 8134,
pp. 1–18. Springer, Heidelberg, Germany, Egham, UK (Sep 9–13, 2013)

19. Damg̊ard, I., Orlandi, C.: Multiparty computation for dishonest majority: From passive to active security at low
cost. In: Rabin, T. (ed.) Advances in Cryptology – CRYPTO 2010. Lecture Notes in Computer Science, vol.
6223, pp. 558–576. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 15–19, 2010)

20. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from somewhat homomorphic encryp-
tion. In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology – CRYPTO 2012. Lecture Notes in Computer
Science, vol. 7417, pp. 643–662. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23, 2012)

21. Data61: MP-SPDZ (2019), https://github.com/data61/MP-SPDZ

22. Franklin, M.K., Haber, S.: Joint encryption and message-efficient secure computation. In: Stinson, D.R. (ed.)
Advances in Cryptology – CRYPTO’93. Lecture Notes in Computer Science, vol. 773, pp. 266–277. Springer,
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 22–26, 1994)

23. Franklin, M.K., Haber, S.: Joint encryption and message-efficient secure computation. Journal of Cryptology
9(4), 217–232 (Sep 1996)

24. Frederiksen, T.K., Keller, M., Orsini, E., Scholl, P.: A unified approach to MPC with preprocessing using OT. In:
Iwata, T., Cheon, J.H. (eds.) Advances in Cryptology – ASIACRYPT 2015, Part I. Lecture Notes in Computer
Science, vol. 9452, pp. 711–735. Springer, Heidelberg, Germany, Auckland, New Zealand (Nov 30 – Dec 3, 2015)

25. Gentry, C.: A Fully Homomorphic Encryption Scheme. Ph.D. thesis, Stanford University (2009)

31

https://doi.org/10.1145/3338469
https://eprint.iacr.org/2015/472
https://eprint.iacr.org/2020/374
https://doi.org/10.1145/3338469
https://github.com/data61/MP-SPDZ

26. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Pointcheval, D.,
Johansson, T. (eds.) Advances in Cryptology – EUROCRYPT 2012. Lecture Notes in Computer Science, vol.
7237, pp. 465–482. Springer, Heidelberg, Germany, Cambridge, UK (Apr 15–19, 2012)

27. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti,
R. (eds.) Advances in Cryptology – CRYPTO 2012. Lecture Notes in Computer Science, vol. 7417, pp. 850–867.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23, 2012)

28. Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack problem. Journal of the Asso-
ciation for Computing Machinery 21, 277–292 (1974)

29. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) Advances
in Cryptology – CRYPTO 2003. Lecture Notes in Computer Science, vol. 2729, pp. 145–161. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 17–21, 2003)

30. Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky, A.: On the power of correlated ran-
domness in secure computation. In: Sahai, A. (ed.) TCC 2013: 10th Theory of Cryptography Conference. Lecture
Notes in Computer Science, vol. 7785, pp. 600–620. Springer, Heidelberg, Germany, Tokyo, Japan (Mar 3–6, 2013)

31. Keller, M., Orsini, E., Rotaru, D., Scholl, P., Soria-Vazquez, E., Vivek, S.: Faster secure multi-party computation
of AES and DES using lookup tables. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 17: 15th International
Conference on Applied Cryptography and Network Security. Lecture Notes in Computer Science, vol. 10355, pp.
229–249. Springer, Heidelberg, Germany, Kanazawa, Japan (Jul 10–12, 2017)

32. Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with optimal overhead. In: Gennaro, R., Robshaw,
M.J.B. (eds.) Advances in Cryptology – CRYPTO 2015, Part I. Lecture Notes in Computer Science, vol. 9215,
pp. 724–741. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 16–20, 2015)

33. Keller, M., Orsini, E., Scholl, P.: MASCOT: Faster malicious arithmetic secure computation with oblivious
transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016: 23rd
Conference on Computer and Communications Security. pp. 830–842. ACM Press, Vienna, Austria (Oct 24–28,
2016)

34. Keller, M., Pastro, V., Rotaru, D.: Overdrive: Making SPDZ great again. In: Nielsen, J.B., Rijmen, V. (eds.)
Advances in Cryptology – EUROCRYPT 2018, Part III. Lecture Notes in Computer Science, vol. 10822, pp.
158–189. Springer, Heidelberg, Germany, Tel Aviv, Israel (Apr 29 – May 3, 2018)

35. Koiliaris, K., Xu, C.: A faster pseudopolynomial time algorithm for subset sum. In: Klein, P.N. (ed.) ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017. pp. 1062–1072 (2017)

36. Mouchet, C., Troncoso-Pastoriza, J., Hubaux, J.P.: Computing across trust boundaries using distributed homo-
morphic cryptography. Cryptology ePrint Archive, Report 2019/961 (2019), https://eprint.iacr.org/2019/
961

37. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party
computation. In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology – CRYPTO 2012. Lecture Notes in
Computer Science, vol. 7417, pp. 681–700. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23,
2012)

38. Orsini, E., Smart, N.P., Vercauteren, F.: Overdrive2k: Efficient secure MPC over Z2k from somewhat homomor-
phic encryption. In: Jarecki, S. (ed.) Topics in Cryptology – CT-RSA 2020. Lecture Notes in Computer Science,
vol. 12006, pp. 254–283. Springer, Heidelberg, Germany, San Francisco, CA, USA (Feb 24–28, 2020)

39. Pan, Y., Zhang, F.: A note on the density of the multiple subset sum problems. Cryptology ePrint Archive,
Report 2011/525 (2011), https://eprint.iacr.org/2011/525

40. Pisinger, D.: Linear time algorithms for knapsack problems with bounded weights. Journal of Algorithms 33,
1–14 (1999)

41. Rivest, R.: Unconditionally secure commitment and oblivious transfer schemes using private channels and a
trusted initializer (1999), https://people.csail.mit.edu/rivest/Rivest-commitment.pdf

42. Rotaru, D., Wood, T.: MArBled circuits: Mixing arithmetic and Boolean circuits with active security. In: Hao,
F., Ruj, S., Sen Gupta, S. (eds.) Progress in Cryptology - INDOCRYPT 2019: 20th International Conference in
Cryptology in India. Lecture Notes in Computer Science, vol. 11898, pp. 227–249. Springer, Heidelberg, Germany,
Hyderabad, India (Dec 15–18, 2019)

43. Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation. In: Thuraisingham, B.M., Evans,
D., Malkin, T., Xu, D. (eds.) ACM CCS 2017: 24th Conference on Computer and Communications Security. pp.
39–56. ACM Press, Dallas, TX, USA (Oct 31 – Nov 2, 2017)

44. Zhu, R., Ding, C., Huang, Y.: Practical MPC+FHE with applications in secure multi-PartyNeural network
evaluation. Cryptology ePrint Archive, Report 2020/550 (2020), https://eprint.iacr.org/2020/550

32

https://eprint.iacr.org/2019/961
https://eprint.iacr.org/2019/961
https://eprint.iacr.org/2011/525
https://people.csail.mit.edu/rivest/Rivest-commitment.pdf
https://eprint.iacr.org/2020/550

	Actively Secure Setup for SPDZ

