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Abstract. Traceable and linkable ring signature scheme (TLRS) plays a
major role in the construction of auditable privacy-preserving blockchain-
s, as it empowers the auditor with traceability of signers’ identities.
A recent work by Li gives a modular construction of TLRS by usage
of classic ring signature, one-time signature and zero-knowledge proofs,
and has security against malicious auditors. In this paper, we introduce
sTLRS, a simpler modification of TLRS which is constructed directly
from classic ring signature, without any additional one-time signatures
or zero-knowledge proofs. sTLRS has public key size reduced by 80% and
verification time reduced by over 50%, compared to TLRS. Moreover, we
can further modify the sTLRS to achieve anonymity, unforgeability, link-
ability, nonslanderability and traceability against malicious auditors.

Keywords: Auditable blockchains · Privacy preserving · Traceable and
linkable ring signature · Malicious auditors.

1 Introduction

Privacy-preserving techniques in blockchain theory has been developed in this
decade to provide a potential replacement of traditional blockchain-based cryp-
tocurrencies such as Bitcoin[20] and Ethereum[6]. Privacy-preserving cryptocur-
rencies, represented by Monero[27] and Zerocash[24], have realized fully anony-
mous and confidential transactions, which can protect identities for both initia-
tors and recipients in transactions, as well as the transaction amount, to support
various privacy-preserving scenarios such as salary, donation, bidding, taxation,
etc. A series of works have been proposed during these years such as Confidential
Transaction[18], Mimblewimble[13], Dash[9], Monero[27] and Zerocash[24], etc.
Among them, Monero uses techniques from Cryptonote[27], Ring-CT[21] and
Bulletproofs[5] successively, it uses linkable ring signature scheme to hide the
identity of initiator, uses Diffie-Hellman key exchange schemes[27, 21] to hide
the identity of recipient and uses range proofs (Borromean[21], Bulletproofs[5])
to hide the the amount of transaction.

However, privacy-preserving cryptocurrencies are not auditable, which may
cause abuse of privacy and facilitate illegal transactions by malicious users, such
as money laundering, illegal asset transfer, etc. It is crucial to develop new
regulatory mechanism to realize traceability of users’ identities and transaction
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amount in privacy-preserving cryptocurrencies. To solve this issue, a recent work
by Li et al.[14] proposes the first fully auditable privacy-preserving blockchain
against malicious auditors, their construction contains a traceable and linkable
ring signature scheme (TLRS), traceable range proofs (TBoRP, TBuRP) and a
traceable scheme for long-term addresses. Their work is a significant approach to
overcome the regulatory barriers on privacy-preserving cryptocurrencies. As for
construction of TLRS, an additional one-time signature and the validity proof
of user’s public key are needed to prevent slandering attack (slandering honest
signers) and tracing attack (escaping from audit), both of which require extra
storage and more time for generation and verification, making TLRS less effi-
cient than the linkable ring signature (MLSAG) in Monero. So it is necessary
to construct a new TLRS with simpler key generation algorithm and less com-
putation time, to support future application of cryptocurrencies with high TPS
(transactions per second).

1.1 Our Contributions

In this paper, we give a simpler construction of TLRS (named by sTLRS) by
removing the one-time signature and validity proof of public key from the key
generation algorithm for each user, with user’s public key simplified from PK =
(gx1h

a, ga2 , π(g
x
1h

a, ga2 )) to PK = gx. This improvement significantly reduces the
total size of PK from (4, 1) to (1, 0), where (·, ·) refers to number of elements in
(G,Zq). Moreover, in sTLRS, the computation time for verification is reduced
from (7n + 1, 6n + 1) to (3n + 3, 2n + 1), where (·, ·) refers to number of times
for exponentiation and multiplication respectively (we take AOS ring signature
as component for example), compared to TLRS.

In addition, we can further modify sTLRS to achieve security (anonymity,
unforgeability, linkability, nonslanderability and traceability) against malicious
auditors (named by sTLRS’), by adding another independent generator to the
system, with the same public key as sTLRS. In sTLRS’, the verification time is
increased from (3n+3, 2n+1) to (3n+5, 2n+3), compared to sTLRS. sTLRS’
is a more compact construction than the original TLRS, while maintaining the
same security level (against malicious auditors).

The construction of sTLRS (sTLRS’) is also modular, we can choose any
suited elliptic-curve-based ring signature scheme as the component, which means
that we can choose the most suited elliptic-curve-based ring signature to get the
fastest (or shortest) traceable and linkable ring signature directly.

Simpler Traceable and Linkable Ring Signatures According to the design
direction of [14], under similar regulatory model, we give a simpler and modular
construction of traceable and linkable ring signature scheme (sTLRS) by usage of
classic ring signature as component, without any additional one-time signatures
or zero-knowledge proofs for public keys. Actually, in the construction of sTLRS,
classic ring signature can be directly switched to traceable and linkable ring
signature by randomized combination between LPK and tracing keys, which
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will be another independent interest. We give a brief introduction of sTLRS in
the following:

1. The public parameter is (G, q, g, h = gy), where g (uniformly generated by
system) is a generator of elliptic curve with prime order q, y is the audit
trapdoor, generated by the auditor.

2. User generates his (PK,SK) by usage of public parameter, the key genera-
tion remains the same as Monero.

3. When signing, the signer publishes a tracing key TK, computes a public
keys set LRK for ring signature, then gets the classic ring signature τ by
usage of his private key SK, the basis element (generator) for classic ring
signature is different from TLRS.

4. The verifier checks whether TK is already in previous signatures to deter-
mine whether illegal signature (double spending) occurs. Then computes
the classic ring signature public keys set LRK and checks the validity of the
classic ring signature τ , then outputs the verification results.

5. The auditor can trace the identity of signer by usage of the trapdoor y and
TK.

The security of sTLRS is based on the hardness of discrete logarithm and
the security of ring signature component in the random oracle model. In the
following we give a brief comparison between TLRS and sTLRS:

1. sTLRS is more efficient than TLRS, no additional one-time signatures or
zero-knowledge proofs are needed, the public key size is reduced by about
80%, the generation time is reduced by over 50%, and the verification time
is reduced by over 50%.

2. sTLRS can also be modified to be secure against malicious auditors, which
means any malicious auditor cannot double spend, slander honest users or
escape from audit, same as TLRS.

3. sTLRS is adapted to Monero system, as they share the same public key
generation algorithm for each UTXO. Meanwhile, the public keys do not
need to regenerate when auditors change.

A concurrent work[15] gives another construction method of traceable and
linkable ring signature, to achieve a traceable Monero system by making use
of paring-based accumulators and signature of knowledge. Compared to [15],
sTLRS has three main advantages:

1. The construction of sTLRS is modular, we can use any elliptic-based classic
ring signature as component (such as AOS, Ring-CT 3.0, etc.) to achieve
the most efficient (or most compact) traceable and linkable ring signature,
according to different applications and parameters.

2. Security of sTLRS relies on standard assumptions (paring-free), without any
trusted public parameters.

3. The tracing algorithm (as well as the generation and verification algorithms)
of sTLRS is more efficient than [15].
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Traceable and Linkable Multi-ring Ring Signature For Cryptocurren-
cy Note that the key-image with fixed base h cannot be directly used in the
Monero-type cryptocurrency due to the generation algorithm of UTXO’s one-
time public key PKU = gH(PKr

v)PKs [27], where (PKv, PKs) is the public key of
user, and PKU is the one-time public key of the new UTXO. So it is necessary to
construct a traceable and linkable multi-ring signature which is adaptable in the
Monero-type cryptocurrency. In this paper we give a construction of traceable
and linkable multi-ring signature (TRMS), following similar method of sTRLS.
We will give the description of TRMS in section 6.

1.2 Related Works

Ring Signatures Ring signature is a special type of signature scheme, in which
signer can sign on behalf of a group chosen by himself, while retaining anony-
mous within the group. In ring signature, signer selects a list of public keys
LPK={PK1, · · · , PKn} as the ring elements, and uses his secret key SKκ to
sign, where κ ∈ {1, · · · , n}. Verifier cannot determine the signer’s identity. Ring
signature was first proposed by Rivest, Shamir and Tauman[23] in 2001, they
constructed ring signature schemes based on RSA trapdoor permutation and
Robin trapdoor function, in the random oracle model. In 2002, Abe et al.[1]
proposed AOS ring signature, which simultaneously supported discrete logarith-
m (via Sigma protocol) and RSA trapdoor functions (via hash and sign), also
in the random oracle model. In 2006, Bender et al.[4] introduced the first ring
signature scheme in the standard model, by making use of pairing technique. In
2015, Maxwell et al.[19] gave Borromean signature scheme, which is a multi-ring
signature based on AOS, reduces the signature size from mn + m to mn + 1,
where n denotes the ring size and m denotes the number of rings. It’s worth
emphasizing that the signature sizes in these schemes are linear to the number
of ring elements.

In 2004, building from RSA accumulator, Dodis et al.[8] proposed a ring sig-
nature scheme with constant signature size in the random oracle model. In 2007,
Chandran et al.[7] gave a standard model ring signature scheme with O(

√
n)

signature size, using pairing technique and CRS. In 2015, under the discrete
logarithm assumption, Groth et al.[12] introduced a ring signature scheme with
O(log n) signature size, in the random oracle model.

Linkable Ring Signatures Linkable ring signature is a variant of ring signa-
ture, in which the identity of the signer in a ring signature remains anonymous,
but two ring signatures can be linked if they are signed by the same signer. Link-
able ring signatures are suitable in many different practical applications such as
privacy-preserving cryptocurrency (Monero), e-Voting, cloud data storage securi-
ty, etc. In Monero, linkability is used to check whether double spending happens.
The first linkable ring signature scheme is proposed by Liu et al.[17] in 2004,
under discrete logarithm assumption, in the random oracle model. Later, Tsang
et al.[26] and Au et al.[2] proposed accumulator-based linkable ring signatures
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with constant signature size. In 2013, Yuen et al.[28] gave a standard model link-
able ring signature scheme with O(

√
n) signature size, from pairing technique. In

2014, Liu et al.[16] gave a linkable ring signature with unconditional anonymity,
he also gave the formalized security model of linkable ring signature, which we
will follow in this paper. In 2015, Back et al.[3] proposed an efficient linkable
ring signature scheme LSAG, which shortens the signature size of [17]. In 2016,
based on work of Fujisaki et al.[10], Noether et al.[21] gave a linkable multi-ring
signature scheme MLSAG, which supports transactions with multiple inputs,
and was used by Monero. In 2017, Sun et al.[25] proposed Ring-CT 2.0, which is
an accumulator-based linkable ring signature with asymptotic smaller signature
size than Ring-CT 1.0, but is less competitive when n is small. In 2019, Yuen et
al.[29] proposed Ring-CT 3.0, a modified Bulletproof-based 1-out-of-n proof pro-
tocol with logarithmic size, which has functionality of (linkable) ring signature
and more efficient than Ring-CT 1.0 when n > 16. In 2019, Goodell et al.[11]
proposed CLSAG: a modified multi-ring LRS which improves the efficiency and
compactness of MLSAG.

Traceable and Linkable Ring Signatures Traceable and linkable ring sig-
nature is another variant of linkable ring signature, the identity of the signer
in a ring signature can be traced by the auditor, when a signer signs two ring
signatures with one secret key (illegal ring signatures), the signatures will also be
linked. In 2019, Li et al.[15] gives a construction of traceable Monero to achieve
anonymity and traceability of identities by usage of paring-based accumulators,
signature of knowledge and verifiable encryption from Ring-CT 2.0, their con-
struction provide the functionality of traceable and linkable ring signature, but
relies on extra steps of verifiable encryption and decryption. Besides, in [15],
traceability of long-term address depends on zk-SNARKs with CRS, which is
inefficient for computation and storage, meanwhile, their work does not provide
traceability of transaction amount. In 2019, TLRS[14] is proposed by Li et al.
in the construction of the first fully auditable privacy-preserving blockchains
against malicious auditors.

In this paper, we introduce sTLRS, which is a modification of TLRS to
achieve better efficiency, while under standard assumptions. We also introduce
sTLRS’ to achieve security against malicious auditors.

1.3 Paper Organization

In section 2 we give some preliminaries; in section 3 we give the construction of
the simpler traceable and linkable signature (sTLRS); in section 4 we give the
security proof of sTLRS; in section 5 we introduce the modification of sTLRS
to achieve security against malicious auditors; in section 6 we introduce the
construction of traceable and linkable multi-ring ring signature for the Monero-
type cryptocurrency; in section 7 we give the conclusion.
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2 Preliminaries

2.1 Notations

In this paper, we use multiplicative cyclic groupG to represent elliptic group with
prime order |G| = q, g is the generator of G, group multiplication is g1 ·g2 = g1g2
and exponentiation is ga. We use H(·) to represent hash function and negl(·) to
represent negligible functions. For verifiers, 1 is for accept and 0 is for reject. For
adversaries, PPT means probabilistic polynomial time. The DDH assumption
means any PPT adversary cannot distinguish (ga, ha) from (ga, hr), where r is
uniformly sampled from Zq. The hardness of discrete logarithm problem means
that any PPT adversary cannot compute x from gx. Oracle RO refers to the
random oracle. The security parameter of this paper is λ = ⌈log q⌉, where q =
|G|.

2.2 Classic Ring Signatures

Classic ring signature scheme usually consists of four algorithms: Setup, KeyGen,
Rsign, and Verify.

− Par ← Setup(λ) is a probabilistic polynomial time (PPT) algorithm which,
on input a security parameter λ, outputs the set of security parameters Par
which includes λ.

− (PKi, SKi)← KeyGen(Par) is a PPT algorithm which, on input the security
parameters Par, outputs a public/private key pair (PKi, SKi).

− σ ← Rsign(SKκ, µ, LPK) is a ring signature algorithm which, on input user’s
secret key SKκ, a list of users’ public keys LPK = {PK1, · · · , PKn}, where
PKκ ∈ LPK , and a message µ, outputs a ring signature σ.

− 1/0← Verify(µ, σ, LPK) is a verification algorithm which, on input a message
µ, a list of users’ public keys LPK and a ring signature σ, outputs 1 or 0.

The security definition of ring signature contains unforgeability and anonymi-
ty. Before giving their definitions, we consider the following oracles which togeth-
er model the ability of the adversaries in breaking the security of the schemes,
in fact, the adversaries are allowed to query the four oracles below:

− c ← RO(a). Random oracle, on input a, random oracle returns a random
value.

− PKi ← JO(⊥). Joining oracle, on request, adds a new user to the system.
It returns the public key PKi of the new user.

− SKi ← CO(PKi). Corruption oracle, on input a public key PKi that is a
query output of JO, returns the corresponding private key SKi.

− σ ← SO(PKκ, µ, LPK). Signing oracle, on input a list of users’ public keys
LPK , the public key of the signer PKκ, and a message µ, returns a valid
ring signature σ.
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Definition 1 (Unforgeability) Unforgeability for ring signature schemes is
defined in the following game between the simulator S and the adversary A,
simulator S runs Setup to provide public parameters for A, A is given access to
oracles RO, JO, CO and SO. A wins the game if he successfully forges a ring
signature (σ∗, L∗

PK , µ∗) satisfying the following:

1. Verify(σ∗, L∗
PK , µ∗) = 1.

2. Every PKi ∈ L∗
PK is returned by A to JO.

3. No PKi ∈ L∗
PK is queried by A to CO.

4. (µ∗, L∗
PK) is not queried by A to SO.

We give the advantage of A in forging attack as follows:

AdvforgeA = Pr[A wins].

A ring signature scheme is unforgeable if for any PPT adversary A, AdvforgeA =
negl(λ).

Definition 2 (Anonymity) Anonymity for ring signature schemes is defined
in the following game between the simulator S and the adversary A, simulator
S runs Setup to provide public parameters for A, A is given access to oracles
RO, JO and CO. A gives a set of public keys LPK = {PK1, · · · , PKn}, S
randomly picks κ ∈ {1, · · · , n}, computes σ = Rsign(SKκ, µ, LPK) and sends σ
to A, where SKκ is the corresponding private key of PKκ, then A outputs a
guess κ∗ ∈ {1, · · · , n}. A wins the game if he successfully guesses κ∗ = κ.

We give the advantage of A in anonymity attack as follows:

AdvanonA = |Pr[κ∗ = κ]− 1/n|.

A ring signature scheme is anonymous if for any PPT adversary A, AdvanonA =
negl(λ).

In the construction of sTLRS, we use classic ring signature (unforgeable
and anonymous in the random oracle model, simulatable by programming the
random oracle) as component, we may select AOS scheme[1] (linear size) or
Ring-CT 3.0[29] (logarithmic size) in our construction. The choice of classic ring
signature component is not restricted, we can choose the most suited ones (most
efficient or most compact ones) for different ring sizes in different applications,
we omit the detailed description of these ring signatures for brevity.

2.3 Linkable Ring Signatures

Compared to classic ring signature, linkable ring signature has the function of
linkability, that is, when two ring signatures are signed by the same signer, they
are linked by the algorithm Link. We give the definition of Link below:

− linked/unlinked ← Link((σ, µ, LPK), (σ′, µ′, L′
PK)): verifier checks the two

ring signatures are linked or not, output the result.



8 W. Li et al.

The security definition of linkable ring signature contains unforgeability, anonymi-
ty, linkability and nonslanderability. The unforgeability is the same as Definition
1, and the anonymity is slightly different from Definition 2 with additional re-
quirements that all public keys in LPK are returned by A to JO and all public
keys in LPK are not queried by A to CO (if the adversary corrupts some of
the public keys, then he can break the anonymity of the scheme by compute
the corresponding key-images in advance). In the rest of this paper, we use this
modified definition of anonymity in sTLRS and its security proof.

We give the definition of linkability and nonslanderability as follows:

Definition 3 (Linkability) Linkability for linkable ring signature schemes is
defined in the following game between the simulator S and the adversary A,
simulator S runs Setup to provide public parameters for A, A is given access to
oracles RO, JO, CO and SO. A wins the game if he successfully forges k ring
signatures (σi, L

i
PK , µi), i = 1, · · · , k, satisfying the following:

1. All σis are not returned by A to SO.
2. All Li

PK are returned by A to JO.
3. Verify(σi, L

i
PK , µi) = 1, i = 1, · · · , k.

4. A queried CO less than k times.
5. Link((σi, L

i
PK , µi), (σj , L

j
PK , µj)) = unlinked for i, j ∈ {1, · · · , k} and i ̸= j.

We give the advantage of A in link attack as follows:

AdvlinkA = Pr[A wins].

A linkable ring signature scheme is linkable if for any PPT adversary A, AdvlinkA =
negl(λ).

The nonslanderability of a linkable ring signature scheme is that A cannot
slander other honest users by generating a signature linked with signatures from
honest users. In the following we give the definition:

Definition 4 (Nonslanderability) Nonslanderability for linkable ring signa-
ture schemes is defined in the following game between the simulator S and the
adversary A, simulator S runs Setup to provide public parameters for A, A is
given access to oracles RO, JO, CO and SO. A gives a list of public keys LPK ,
a message µ and a public key PKκ ∈ LPK to S, S returns the corresponding
signature σ ← Rsign(SKκ, LPK , µ) to A. A wins the game if he successfully
outputs a ring signature (σ∗, L∗

PK , µ∗), satisfying the following:

1. Verify(σ∗, L∗
PK , µ∗) = 1.

2. PKκ is not queried by A to CO.
3. PKκ is not queried by A as input to SO.
4. Link((σ, LPK , µ), (σ∗, L∗

PK , µ∗)) = linked.

We give the advantage of A in slandering attack as follows:

AdvslanderA = Pr[A wins].

A linkable ring signature scheme is nonslanderable if for any PPT adversary A,
AdvslanderA = negl(λ).
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According to [16], linkability and nonslanderability imply unforgeability:

Lemma 5 ([16]) If a linkable ring signature scheme is linkable and nonslan-
derable, then it is unforgeable.

2.4 Traceable and Linkable Ring Signatures

Similar to the security definitions of linkable ring signature, a PPT adversary
A is given access to oracles RO, JO, CO and SO, the security of TLRS con-
tains unforgeability, anonymity, linkability, nonslanderability and traceability.
Considering the existence of auditor, who can trace the identities of signers, so
the anonymity only holds for someone not possesses the trapdoor. Moreover, the
unforgeability, linkability, nonslanderability remain the same as in linkable ring
signature, even for malicious auditor (or adversary who corrupts the auditor),
he cannot forge signatures of other users or break the linkability and nonslan-
derability of TLRS, which means that malicious auditor cannot spend money of
other users, double spend or slander other honest users.

Traceability enables auditor with ability to trace signers’ identities, for any
PPT adversary A with possession of trapdoor, he cannot escape from audit. We
give the formal definition of traceability as follows:

Definition 6 (Traceability) Traceability for traceable and linkable ring signa-
ture schemes (TLRS) is defined in the following game between the simulator S
and the adversary A, simulator S runs Setup to provide the public parameters
for A, A is given access to oracles RO, JO, CO. A generates a list of public
keys LPK = {PK1, · · · , PKn}, A wins the game if he successfully generates a
valid TLRS signature (σ, LPK , µ) using PKκ ∈ LPK , satisfying the following:

1. Verify(σ, LPK , µ) = 1.
2. PKi ̸= PKj for 1 ≤ i < j ≤ n.
3. Trace(σ, y) ̸= κ or Trace(σ, y) =⊥.

We give the advantage of A in tracing attack as follows:

AdvtraceA = Pr[A wins].

TLRS scheme is traceable if for any PPT adversary A, AdvtraceA = negl(λ).

We introduce the construction of TLRS[14] for single ring in the following:

− Par← Setup(λ):
1. System chooses an elliptic curve G and generators g1, g2 ∈ G indepen-

dently, the auditor generates y ∈ Zq as the trapdoor, computes h = gy2 ,
system outputs (G, q, g1, g2, h) as the public parameters, in which the
auditor dose not know the relation between g1 and h.

− (PK,SK)← KeyGen(Par):
1. According to the public parameters (G, q, g1, g2, h), user Alice samples

x, a ∈ Zq, computes rpk = gx1h
a, TK = ga2 , opk = ha;
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2. Alice gives the validity proof π(rpk, TK) = πSwit(g
x
1h

a, gx1 (g2h)
a), that

is, she gives the switch proof between rpk = gx1h
a and rpk·TK = gx1 (g2h)

a

that they share the same exponents (x = x, a = a) with basis (g1, h) and
(g1, g2h);

3. Alice outputs PK = (rpk, TK, π(rpk, TK)), and retains SK = (rsk =
x, osk = a).

− σ ← Sign(SKκ, µ, LPK):
1. For a message µ, Alice chooses another n−1 users, together with her own

public key, to generate a list of public keys LPK = {PK1, · · · , PKn},
where Alice’s PK = PKκ ∈ LPK , κ ∈ {1, · · · , n};

2. Alice outputs opk = haκ , then computes

Lrpk = {rpk1 · opk
−1, · · · , rpkn · opk

−1}

= {gx1
1 ha1−aκ , · · · , gxn

1 han−aκ};

3. Alice runs ring signature τ1 ← Rsign(rsk, µ, Lrpk, opk) using Lrpk and
rsk = xκ, outputs τ1;

4. Alice runs one-time signature τ2 ← Osign(osk, τ1, opk) using opk = haκ

and osk = aκ (h is the generator);
5. Alice outputs σ = (τ1, τ2, µ, LPK , opk).

− 1/0← Verify(τ1, τ2, µ, LPK , opk):
1. Verifier checks the validity of π(rpki, TKi) for every 1, · · · , n;
2. Verifier computes Lrpk = {rpk1 · opk

−1, · · · , rpkn · opk
−1};

3. Verifier checks the validity of the ring signature τ1 and the one-time
signature τ2;

4. If all passed then outputs 1, otherwise outputs 0.
− linked/unlinked← Link(σ, σ′):

1. For two TLRS signatures
σ = (τ1, τ2, µ, LPK , opk) and σ′ = (τ ′1, τ

′
2, µ

′, L′
PK , opk′), if opk = opk′

then verifier outputs linked, otherwise outputs unlinked.
− κ∗/ ⊥← Trace(σ, y):

1. For σ = (τ1, τ2, µ, LPK , opk), the auditor extracts TK1, · · · , TKn from
LPK , computes TKy

i for i = 1, · · · , n, outputs the smallest κ∗ such that
opk = TKy

κ∗ as the trace result, otherwise outputs ⊥.

TLRS achieves anonymity, unforgeability, linkability, nonslanderability and
traceability against malicious auditors.

3 Simpler Traceable and Linkable Ring Signature

In this section, we give the construction of simpler traceable and linkable ring
signature scheme (sTLRS) by modifying the key generation algorithm KeyGen,
signature algorithm Sign and removing the additional one-time signature and
zero-knowledge proofs to achieve better efficiency compared to TLRS. sTLRS
achieves unforgeability, anonymity, linkability, nonslanderability and traceabili-
ty. In the scenario of privacy-preserving cryptocurrencies, unforgeability works
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for security of users’ accounts, anonymity works for anonymity of signers’ iden-
tities, linkability and nonslanderability works for prevention of double-spending
(actively or passively), traceability works for unconditional audit of signers’ i-
dentities.

3.1 Construction

In our construction of sTLRS, we use classic ring signature (AOS, AOS’ or Ring-
CT 3.0) as the ring signature component. Actually, we assume these schemes are
anonymous and unforgeable in the random oracle model, which makes sTLRS
secure under standard assumptions. We give the introduction of sTLRS in the
following (single ring as example):

− Par← Setup(λ):
1. System chooses an elliptic curve G with prime order q and a generator

g ∈ G, the auditor generates y ∈ Zq as the trapdoor, computes h = gy,
system outputs (G, q, g, h) as the public parameters.

− (PK,SK)← KeyGen(Par):
1. According to the public parameters (G, q, g, h), user Alice samples x ∈ Z∗

q

as her secret key, then computes PK = gx;
2. Alice outputs PK = gx, and retains SK = x.

− σ ← Sign(SKκ, µ, LPK):
1. For a message µ, Alice chooses another n−1 users, together with her own

public key, to generate a list of public keys LPK = {PK1, · · · , PKn},
where Alice’s PK = PKκ ∈ LPK , κ ∈ {1, · · · , n};

2. Alice outputs TK = hxκ , then computes e1 = H(LPK , TK, 1) and e2 =
H(LPK , TK, 2);

3. Alice computes and outputs

LRK = {PKe1
1 · TKe2 , · · · , PKe1

n · TKe2}

= {ge1x1he2xκ , · · · , ge1xnhe2xκ};
4. Alice runs classic ring signature τ ← Rsign(SK,µ, LRK , TK) using LRK

and SK = xκ, outputs τ (ge1he2 as the generator);
5. Alice outputs σ = (τ, µ, LPK , TK).

− 1/0← Verify(τ, µ, LPK , TK):
1. Verifier computes e∗1 = H(LPK , TK, 1) and e∗2 = H(LPK , TK, 2);

2. Verifier computes L∗
RK = {PK

e∗1
1 · TKe∗2 , · · · , PK

e∗1
n · TKe∗2};

3. Verifier checks the validity of ring signature τ (ge
∗
1he∗2 as the generator);

4. If all passed then outputs 1, otherwise outputs 0.
− linked/unlinked← Link(σ, σ′):

1. For two valid sTLRS signatures σ = (τ, µ, LPK , TK) and σ′ = (τ ′, µ′, L′
PK , TK ′),

if TK = TK ′ then verifier outputs linked, otherwise outputs unlinked.
− κ∗/ ⊥← Trace(σ, y):

1. For σ = (τ, µ, LPK , TK), the auditor extracts PK1, · · · , PKn from LPK ,
computes PKy

i for i = 1, · · · , n, outputs the smallest κ∗ ∈ {1, · · · , n}
such that TK = PKy

κ∗ as the trace result, otherwise outputs ⊥.
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3.2 Correctness

Theorem 7 (Correctness of sTLRS) For an honest user Alice in sTLRS,
she can complete the traceable and linkable ring signature successfully, and the
behavior of double signing (double spending) will be detected while the identi-
ty of Alice remaining anonymous. Moreover, the auditor can trace her identity
correctly.

Proof. In sTLRS, for Alice’s public key PK = PKκ = gxκ , she can compute
TK = hxκ and e1, e2, then she can compute LRK = {ge1x1he2xκ , · · · , ge1xnhe2xκ}.
Since ge1xκhe2xκ = (ge1he2)xκ , then Alice can use her secret key SK = xκ to
generate the classic ring signature τ using ge1he2 as the generator.

When double signing occurs, we know from the linkability of sTLRS that
Alice must have used TK = hxκ for twice (proved in Theorem 9), then the
verifier can detect that double signing occurs and outputs linked, at the same
time, anyone (except for the auditor) cannot learn any information about the
identity of signer by the anonymity of sTLRS (proved in Theorem 8).

For the auditor, he can compute PKy
κ = gyxκ = hxκ = TK and then outputs

Trace(σ, y) = κ correctly. �

3.3 Applications in Blockchain

In the applications of privacy-preserving blockchains, under UTXO model, the
PK = gx can be regarded as the UTXO public key generated in the last trans-
action, which will be published as the UTXO public key PK = gx during the
last transaction. When making transactions, the UTXO owner runs the sTLRS
scheme to hide the identity of the real UTXO, he also outputs TK = hx, which
is regarded as the Key-image of the UTXO, and Link is used for detection of dou-
ble spending. Trace is used for tracing signers’ identities by the auditor, which
brings the regulatory function to the blockchains.

4 Security proofs

In this section we give the security proofs of sTLRS, including anonymity, un-
forgeability, linkability, nonslanderability and traceability. The security of sTLRS
only holds for adversary who does not possess the trapdoor.

4.1 Proof of Anonymity

Theorem 8 (Anonymity) sTLRS is anonymous for any PPT adversary A
(without possession of trapdoor), assuming the classic ring signature is simulat-
able by programming the random oracle in the random oracle model.

Proof. Assume A is playing the game with S in Definition 2, A he generates a
message µ and a list of public keys LPK = {PK1, · · · , PKn}, where PKi = gxi ,
and all PKis are returned by JO, and S knows all SKi = xi.

We consider the following games between S and A:
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− Game 0. S samples κ ∈ {1, · · · , n} uniformly at random, publishes TK =
hxκ , computes e1 = H(LPK , TK, 1), e2 = H(LPK , TK, 2) and LRK =
{ge1x1he2xκ , · · · , ge1xnhe2xκ}, generates the classic ring signature τ =
Rsign(SK, µ, LRPK , TK), outputs σ = (τ, µ, LPK , TK) to A. When A re-
ceives σ, he gives a guess κ∗ ∈ {1, · · · , n}.

− Game 1. S samples κ ∈ {1, · · · , n}, r ∈ Zq uniformly at random,, pub-
lishes TK = hr, computes e1 = H(LPK , TK, 1), e2 = H(LPK , TK, 2)
and LRK = {ge1x1he2r, · · · , ge1xnhe2r}, generates the classic ring signature
τ = Rsign(µ,LRK , TK) by programming the random oracle, outputs σ =
(τ, µ, LPK , TK) to A. When A receives σ, he gives a guess κ∗ ∈ {1, · · · , n}.

In the two games above, Game 0 is the real game between S and A in sTLRS,
and Game 1 is the simulated game in the random oracle model. In game 1, r is
uniformly sampled by S, which is statistical independent from the LPK , then
PrA[κ

∗ = κ] = 1/n.
Then we only need to prove that game 0 and game 1 are computation-

al indistinguishable. If fact, the differences between the two games are the
generations of TK and LRK . According to DDH assumption, (g, h, gxκ , hxκ)
and (g, h, gxκ , hr) are computational indistinguishable, then A cannot distin-
guish hxκ (in game 0) from hr (in game 1). Then we know A cannot dis-
tinguish {ge1x1he2xκ , · · · , ge1xnhe2xκ} from {ge1x1he2r, · · · , ge1xnhe2r}, then we
know game 0 and game 1 are computational indistinguishable, then we finish
the anonymity proof of sTLRS. �

4.2 Proof of Linkability

Theorem 9 (Linkability) sTLRS is linkable for any PPT adversary A (with-
out possession of trapdoor), assuming the unforgeability of ring signature com-
ponent.

Proof. For a PPT adversary A without possession of the trapdoor y, when A
finished the link game with S in Definition 3, we assume that A wins the link
game with nonnegligible advantage δ, that is, A returned k sTLRS signatures
σi = (τi, µi, L

i
PK , TKi), i = 1, · · · , k (τis are the classic ring signatures), satisfy-

ing the following requirements:

1. All σi, i = 1, · · · , k are not returned by SO.
2. All public keys from Li

PK , i = 1, · · · , k are returned by JO.
3. Verify(σi, L

i
PK , µi) = 1 for i = 1, · · · , k.

4. A queried CO less than k times.
5. Link((σi, L

i
PK , µi), (σj , L

j
PK , µj)) = unlinked for i ̸= j ∈ {1, · · · , k}.

We first prove a statement that, for a list of users’ public keys
LPK = {PK1, · · · , PKn} returned by JO with PKi = gxi , any PPT adversary
A generates a valid sTLRS signature σ 8 SO if and only if he quires the CO at
least once, except for negligible probability ϵ0 = negl(λ).
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− ⇒. If A gets SK = xi from CO, and then A can run the sTLRS signature
scheme to generate a valid signature σ = (τ, µ, LPK , TK).

− ⇐. Assume A did not query the CO and SO for LPK = {PK1, · · · , PKn}
and finished the sTLRS signature over LPK = {PK1, · · · , PKn} with non-
negligible probability δ1. We first prove that A does not know any of the
secret keys in LPK . Actually, under the hardness of discrete logarithm, A
cannot compute xi from PKi = gxi , i = 1, · · · , n, then the probability of A
obtaining any of xi is ϵ1 = negl(λ).

Next, according to the assumption that A generates a valid signature σ =
(τ, µ, LPK , TK), then he must have finished the classic signature τ (with
generator ge1he2), where e1 = H(LPK , TK, 1), e2 = H(LPK , TK, 2). With-
out loss of generality, we assume TK = gsht output by A, then we have
LRK = {ge1x1(gsht)e2 , · · · , ge1xn(gsht)e2}. Since the classic ring signature
scheme achieves unforgeability, and A finished the classic ring signature τ
with LRK under generator ge1he2 , then we get A knows SK = z for at least
one i ∈ {1, · · · , n} s.t. ge1xi(gsht)e2 = (ge1he2)z, except for negligible prob-
ability ϵ2 = negl(λ). We can also assume that e1 = 0 or e2 = 0 happens
with negligible probability ϵ3 = negl(λ), which means A gets a solution for
ge1(xi−z)+e2s = he2(z−t) with nonnegligible probability δ1 − ϵ1 − ϵ2 − ϵ3, if
t ̸= z, then this contradicts with the hardness of discrete logarithm prob-
lems, so we have t = z. Then we have (xi − t)e1 + se2 = 0, if s ̸= 0, then
e2 = e1s

−1(t− xi), which means e2 is pre-computed before A runs the hash
function (random oracle), which happens with negligible probability. Then
we get s = 0, z = t = xi, which contradicts to the assumptions above. Then
we get that A generates a valid sTLRS signature σ 8 SO if and only if he
quires the CO at least once, except for negligible probability.

According to the fourth requirement that the number of times of A querying CO
is ≤ k − 1, and A returned k valid sTLRS signatures σi = (τi, µi, L

i
PK , TKi),

i = 1, · · · , k, then we know there are two sTLRS signatures from the same
query of CO, saying SK = z from PK = gz, and A finished two unlinked
valid sTLRS signature, then there is at least one TKi = gsht ̸= hz from
the two sTLRS signatures (otherwise they will be linked). We have LRK =
{ge1x1(gsht)e2 , · · · , ge1xn(gsht)e2}, since ∃j ∈ {1, · · · , n} s.t. xj = z, and A signs
with PKj , then we have ge1xj (gsht)e2 = (ge1he2)tge1(z−t)+e2s with gsht ̸= hz,
if e1(z − t) + e2s = 0, then we have z = t and s = 0, otherwise e1 (or e2)
is pre-computed before A runs the hash function (random oracle), which hap-
pens with negligible probability ϵ1. Then we get e1(z − t) + e2s ̸= 0, and this
means A can compute x s.t. (ge1he2)x = (ge1he2)tge1(z−t)+e2s, otherwise A will
break the unforgeability of classic ring signature, which happens with negligible
probability ϵ2, however, we know that (ge1he2)x = (ge1he2)tge1(z−t)+e2s implies
a non-trivial relationship between g and h, which happens with nonnegligible
probability δ − kϵ0 − ϵ1 − ϵ2, this contradicts to the hardness assumption of
discrete logarithm problem, then we finish the linkability proof of sTLRS. �
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4.3 Proof of Nonslanderability

Theorem 10 (Nonslanderability) sTLRS is nonslanderable for any PPT ad-
versary A (without possession of trapdoor), assuming the unforgeability of classic
ring signature component.

Proof. For a PPT adversary A without possession of the trapdoor y, when A
finished the slandering game with S in Definition 4, A gave a list of public keys
LPK , a message µ and a public key PKκ ∈ LPK to S, S returns the corre-
sponding signature σ ← Sign(SKκ, LPK , µ) to A. We assume that A wins the
slandering game with nonnegligible advantage δ, that is, A successfully outputs
a ring signature σ∗ = (τ∗, µ∗, L∗

PK , TK∗), satisfying the following:

1. Verify(σ∗, L∗
PK , µ∗) = 1.

2. PKκ is not queried by A to CO.
3. PKκ is not queried by A as input to SO.
4. Link((σ, LPK , µ), (σ∗, L∗

PK , µ∗)) = linked.

From the definition of Link, we know that TK∗ = TK = hxκ , since PKκ = gxκ

was not queried by A to CO and SO, then A does not know SK = xκ except
for negligible probability ϵ0 = negl(λ) under the hardness of discrete logarithm
problems. Then we know A successfully produced a classic ring signature τ∗ with
nonnegligible advantage δ−ϵ0, according to the unforgeability of classic ring sig-
nature, we know that A knows at least one signing key except for negligible prob-
ability ϵ1, that is, there exists j ∈ {1, · · · , n}, A knows x s.t. (PK∗

j )
e1TKe2 =

(ge1he2)x with nonnegligible advantage δ − ϵ0 − ϵ1, where e1 = H(L∗
PK , TK, 1),

e2 = H(L∗
PK , TK, 2). Without loss of generality, we assume PK∗

j = gsht out-

put by A, then we have (gsht)e1he2xκ = (ge1he2)x = (ge1he2)she1t+e2(xκ−s),
using similar arguments in Theorem 9, if e1t + e2(xκ − s) = 0, then we have
xκ = s and t = 0, otherwise e1 (or e2) is pre-computed before A runs the hash
function (random oracle), which happens with negligible probability ϵ2. Then
e1t+ e2(xκ − s) ̸= 0 and A gets a non-trivial relationship between g and h with
nonnegligible advantage δ−ϵ0−ϵ1−ϵ2, which contradicts to the hardness of dis-
crete logarithm problems, then we finish the nonslanderability proof of sTLRS.
�

According to lemma 5, we get the unforgeability of sTLRS:

Corollary 11 (Unforgeability) sTLRS is unforgeable for any PPT adversary
A without possession of trapdoor.

4.4 Proof of Traceability

Theorem 12 (Traceability) sTLRS is traceable for any PPT adversary A
(without possession of trapdoor), assuming the unforgeability of classic ring sig-
nature component.
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Proof. For a PPT adversary A without possession of the trapdoor y, when A
finished the tracing game with S in Definition 6, A generates a list of public keys
LPK = {PK1, · · · , PKn}, we assume that A wins the tracing game with nonneg-
ligible advantage δ, that is, A generates a sTLRS signature σ = (τ, µ, LPK , TK)
using PKκ ∈ LPK , satisfying the following:

1. Verify(σ, LPK , µ) = 1.
2. PKi ̸= PKj for 1 ≤ i < j ≤ n.
3. Trace(σ, y) ̸= κ or Trace(σ, y) =⊥.

It should be emphasized that the OPK in TLRS is actually TK in sTLRS.
We assume PKi = gxihyi , i = 1, · · · , n returned by A without loss of generality,
and assume TK = gsht. Then we have:

LRK = {(gx1hy1)e1(gsht)e2 , · · · , (gxnhyn)e1(gsht)e2}

= {ge1x1+e2she1y1+e2t, · · · , ge1xn+e2she1yn+e2t}.

Where e1 = H(LPK , TK, 1), e2 = H(LPK , TK, 2), moreover, we assume ei ̸= 0
for i = 1, 2, except for negligible probability ϵ0. According to the condition that
A signed τ with PKκ, then we get A knows the corresponding SKκ = z, except
for negligible probability ϵ1, under the unforgeability of ring signature, that is:

ge1xκ+e2she1yκ+e2t = (ge1he2)e
−1
1 (e1xκ+e2s)he1yκ+e2t−e−1

1 e2(e1xκ+e2s)

= (ge1he2)z.

In the rest of the proof, we prove that xκ = t and s = yκ = 0. First, if
e1yκ + e2t− e−1

1 e2(e1xκ + e2s) ̸= 0, following the similar arguments in Theorem
9, we know that A gets a non-trivial relationship between g and h, this happens
with negligible probability ϵ2 according to the hardness of discrete logarithm
problems. Then we get e1yκ + e2t − e−1

1 e2(e1xκ + e2s) = 0 with nonnegligible
probability δ − ϵ0 − ϵ1 − ϵ2. Then we have e21yκ + e1e2(t − xκ) + e22s = 0, and
e2 is exactly the solution for equation sx2 + e1(t − xκ)x + e21yκ = 0 in Zq after
e1 = H(LPK , TK, 1) was generated, which has at most two solutions when
s(t − xκ) ̸= 0 and q is a prime. This means e2 is pre-determined (1 out of
2) before A runs the hash function (random oracle), this also happens with
negligible probability ϵ3, then we get xκ = t and s = yκ = 0, which means
the equation degenerated to zero. Then we have PKy

κ = gty = ht = TK, then
Trace(σ, y) = κ, which contradicted with the assumptions before, then we finish
the traceability proof of sTLRS. �

5 Modification

5.1 Construction

In this section, we give a modification of sTLRS to achieve security against
malicious auditors, which means that even for adversary A with possession of
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the trapdoor, he still cannot double spend, slander honest users, forge sTLRS
signatures or escape from audit. Together with the traceable range proofs and
traceable scheme for long-term addresses[14], we can finally finish a new con-
struction of fully auditable privacy-preserving blockchains, with better efficiency
and smaller size. In the following we give the detailed description of the modified
sTLRS, which is named by sTLRS’:

− Par← Setup’(λ):
1. System chooses an elliptic curve G with prime order q and a generator

g1 ∈ G, the auditor generates y ∈ Zq as the trapdoor, computes h = gy1 ,
system computes g2 = Hp(g1, h) (use hash to point), system outputs
(G, q, g1, g2, h) as the public parameters.

− (PK,SK)← KeyGen’(Par):
1. According to the public parameters (G, q, g1, g2, h), user Alice samples

x ∈ Zq as her secret key, then computes PK = gx1 ;
2. Alice outputs PK = gx1 , and retains SK = x.

− σ ← Sign’(SKκ, µ, LPK):
1. For a message µ, Alice chooses another n−1 users, together with her own

public key, to generate a list of public keys LPK = {PK1, · · · , PKn},
where Alice’s PK = PKκ ∈ LPK , κ ∈ {1, · · · , n};

2. Alice outputs I = gxκ
2 , TK = hxκ , then computes e1 = H(LPK , I, TK, 1),

e2 = H(LPK , I, TK, 2) and e3 = H(LPK , I, TK, 3);
3. Alice computes and outputs

LRK = {PKe1
1 · Ie2 · TKe3 , · · · , PKe1

n · Ie2 · TKe3}

= {ge1x1
1 ge2xκ

2 he3xκ , · · · , ge1xn
1 ge2xκ

2 he3xκ};

4. Alice runs classic ring signature τ ← Rsign(SK,µ, LRK , I, TK) using
LRK and SK = xκ, outputs τ (ge11 ge22 he3 as the generator);

5. Alice outputs σ = (τ, µ, LPK , I, TK).
− 1/0← Verify’(τ, µ, LPK , I, TK):

1. Verifier computes e∗1 = H(LPK , I, TK, 1), e∗2 = H(LPK , I, TK, 2) and
e∗3 = H(LPK , I, TK, 3);

2. Verifier computes L∗
RK = {PK

e∗1
1 · Ie

∗
2 · TKe∗3 , · · · , PK

e∗1
n · Ie

∗
2 · TKe∗3};

3. Verifier checks the validity of ring signature τ (g
e∗1
1 g

e∗2
2 he∗3 as the genera-

tor);
4. If all passed then outputs 1, otherwise outputs 0.

− linked/unlinked← Link’(σ, σ′):
1. For two valid sTLRS’ signatures σ = (τ, µ, LPK , I, TK) and

σ′ = (τ ′, µ′, L′
PK , I ′, TK ′), if I = I ′ then verifier outputs linked, other-

wise outputs unlinked.
− κ∗/ ⊥← Trace’(σ, y):

1. For σ = (τ, µ, LPK , I, TK), the auditor extracts PK1, · · · , PKn from
LPK , computes PKy

i for i = 1, · · · , n, outputs the smallest κ∗ ∈ {1, · · · , n}
such that TK = PKy

κ∗ as the trace result, otherwise outputs ⊥.
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5.2 Correctness

Theorem 13 (Correctness) For an honest user Alice in sTLRS’, she can
complete the traceable and linkable ring signature successfully, and the behavior
of double signing (double spending) will be detected while the identity of Alice
remaining anonymous. Moreover, the auditor can trace her identity correctly.

Proof. In sTLRS’, for Alice’s public key PK = PKκ = gxκ
1 , then Alice will out-

put I = gxκ
2 and TK = hxκ with LRK = {ge1x1

1 ge2xκ
2 he3xκ , · · · , ge1xn

1 ge2xκ
2 he3xκ}.

Since ge1xκ
1 ge2xκ

2 he3xκ = (ge11 ge22 he3)xκ , then Alice can use SK = xκ to generate
the ring signature τ using ge11 ge22 he3 as the generator.

When double signing occurs, we know from the linkability of sTLRS’ that
Alice must have used I = gxκ

2 for twice (similar to sTLRS), then the verifier can
detect that double signing occurs and outputs linked, at the same time, anyone
(except for the auditor) cannot learn any information about the identity of signer
by the anonymity of sTLRS’ (similar to sTLRS).

For the auditor, he can compute PKy
κ = gyxκ

1 = hxκ = TK and then outputs
Trace(σ, y) = κ correctly. �

5.3 Security

Following the same direction of Theorem 8,9,10,12, we can prove the anonymity,
linkability, nonslanderability, unforgeability, traceability of sTLRS’, for any PPT
adversary A with possession of the trapdoor, detailed proofs will be given in the
full version of this paper.

6 Traceable and Linkable Multi-ring Signature

6.1 Construction

In this section, we give the construction of TLMS by usage of key-image genera-
tion with randomized base h = Hp(PK), which is similar in the Monero system.
Moreover, we also need to modify the generation algorithm of tracing keys TKs
to ensure the security of the system. Actually, in the multi-ring version (m-ring
signature), the linkability works for the first m − 1 rings and the traceability
works for the last ring. Here we give an example of 2-ring version, which can be
used in the one-to-many transactions in Monero-type cryptocurrency. We choose
the (extended) AOS ring signature as component.

− Par← TLMS.Setup(λ):
1. System chooses an elliptic curve G with prime order q and a generator

g ∈ G, the auditor generates z ∈ Zq as the trapdoor, computes h = gz,
system outputs (G, q, g, h) as the public parameters.

− (PK,SK)← TLMS.KeyGen(Par):
1. According to the public parameters (G, q, g, h), user Alice samples x, y ∈

Zq as her secret key;
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2. Alice outputs (PK,PK′) = (gx, gy), and retains (SK, SK′) = (x, y).
− σ ← TLMS.Sign(SK,SK′, µ, LPK, L

′
PK):

1. For a message µ, Alice chooses another n−1 users, together with her own
public key, to generate two lists of public keys LPK = {PK1, · · · ,PKn}
and L′

PK = {PK′
1, · · · ,PK

′
n}, where Alice’s PK = PKπ ∈ LPK,PK

′ =
PK′

π ∈ L′
PK, π ∈ {1, · · · , n}, which means the position of Alice’s public

key in each ring is same;
2. Alice computes hi = Hp(PKi) for i = 1, · · · , n, then computes the key-

image I = hxπ
π ,TK = hyπ , then computes ek = H(LPK, L

′
PK, I,TK, µ, k)

for k = 1, 2;
3. Alice computes

L1 = {PK1 · Ie1 , · · · ,PKn · Ie1} = {gx1he1xπ
π , · · · , gxnhe1xπ

π },

L2 = {PK′
1 · TK

e2 , · · · ,PK′
n · TK

e2} = {gy1he2yπ , · · · , gynhe2yπ};

4. Alice runs the position-preserving multi-ring signature τ ← Rsign(SK,SK′, µ, L1, L2, I,TK)
with (SK, SK′) = (x, y), outputs τ (in L1, we use generator ghe1

i in the
i-th position; in L2, we use generator ghe2 in all positions);

5. Alice outputs σ = (τ, µ, LPK, L
′
PK, I,TK).

− 1/0← TLMS.Verify(τ, µ, LPK, L
′
PK, I,TK):

1. Verifier computes hi = Hp(PKi) for i = 1, · · · , n, then computes e∗1 =
H(LPK, L

′
PK, I,TK, µ, 1) and e∗2 = H(LPK, L

′
PK, I,TK, µ, 2);

2. Verifier computes

L1 = {PK1 · Ie
∗
1 , · · · ,PKn · Ie

∗
1}, L2 = {PK′

1 · TK
e∗2 , · · · ,PK′

n · TK
e∗2};

3. Verifier checks the validity of position-preserving multi-ring signature τ

(in L1, verifier uses generator gh
e∗1
i in the i-th position; in L2, he uses

generator ghe∗2 in all positions);
4. If all passed then outputs 1, otherwise outputs 0.

− linked/unlinked← TLMS.Link(σ, σ′):

1. For two valid TLMS signatures σ1 = (τ1, µ1, L
(1)
PK, L

′(1)
PK , I1,TK1) and

σ2 = (τ2, µ2, L
(2)
PK, L

′(2)
PK , I2,TK2), if I1 = I2 then verifier outputs linked,

otherwise outputs unlinked.
− κ∗/ ⊥← TLMS.Trace(σ, z):

1. For σ = (τ, µ, LPK, L
′
PK, I,TK), the auditor extracts PK′

1, · · · ,PK
′
n from

L′
PK, computes PK′z

i for i = 1, · · · , n, outputs the smallest κ∗ ∈ {1, · · · , n}
such that TK = PK′z

κ∗ as the trace result, otherwise outputs ⊥.

6.2 Applications in Monero-type Cryptocurrency

In Monero system, every UTXO has its public-private key pair (PK = gs, SK = s)
and the corresponding value commitment c = gxha (or c = hxga in Bulletproofs),
where c is Pedersen commitment[22], a is the hidden value and x is the blind-
ing element. In a transaction, the initiator Alice chooses m− 1 hiding UTXOs:
{(PKi, ci = gxihai)}i=1,··· ,m−1, along with her input UTXO (PKA = gs, cA =
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gxAhaA), to generate a set of public keys LPK = {PKA,PK1, · · · ,PKm−1} (ran-
domized order), Alice also generates the output UTXO (PKB , cB = gxBhaB ) (the
generation algorithm of PKB is in the Appendix), where the input value equals
the output value aA = aB . Then Alice computes another ring of commitments
(same order as in LPK):

L′
PK = {cAc−1

B , c1c
−1
B , · · · , cm−1c

−1
B }

= {gxA−xB , gx1−xBha1−aB , · · · , gxm−1−xBham−1−aB}.

Alice uses linkable 2-ring signature to sign the transaction by LPK and L′
PK, with

the same position of signing key in each ring, we call it the position-preserving
linkable multi-ring signature. In this paper, TLMS is suited in the Monero-type
cryptocurrency.

7 Conclusion

In this paper, we give a simpler and modular construction of traceable and link-
able ring signature scheme (sTLRS) by modifying the key generation algorith-
m and removing the additional one-time signature and zero-knowledge proofs,
which reduces the size of public key, shortens the computation time, realizes
the regulatory function for signers’ identities, and can prevent the adversary
from double spending, escaping from audit, slandering users or forging signa-
tures. Moreover we give a traceable and linkable multi-ring signature (TRMS)
to support Monero-type cryptocurrency. Our work is a new approach to con-
struct auditable privacy-preserving blockchains and cryptocurrencies, and is a
potential replacement for Monero-type blockchains.

Future Works In the future, we need to study and improve in the following
aspects:

1. Study new method to construct traceable range proof with less verification
time and smaller size;

2. Study post-quantum ring signatures and range proofs, such as lattice-based,
code-based, multi-variant-based and isogen-based schemes to prepare for the
future applications and replacement in the era of quantum computing.
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A Remaining Preliminaries

A.1 AOS Ring Signature

We give the introduction of AOS ring signature[1] in the following: here we
introduce the generalized AOS ring signature for the generator in each position
is different (gi is the generator in the i-th position for i = 1, · · · , n).

− Par← Setup(λ): system chooses an elliptic curveG and a generator g1, · · · , gn
as the public parameters.

− (PKπ, SKπ) ← KeyGen(Par): according to the public parameters, user Pπ

samples x ∈ Z∗
q uniformly at random, computes gxπ and sets (PKπ, SKπ) =

(gxπ, x).
− σ ← Rsign(SKπ, µ, LPK): when user Pπ generates a ring signature for message

µ, he chooses another n−1 users’ public keys, together with his own PKπ to
obtain a set of public keys LPK = {PK1, · · · ,PKn} = {gx1

1 , · · · , gxn
n }, where

PKπ ∈ LPK and π ∈ {1, · · · , n}, then he does as follows:

1. Pπ samples rπ ∈ Z∗
q uniformly at random, then computes

cπ+1 = H(grππ , LPK, µ);
2. For i = π + 1, · · · , n, 1, · · · , π − 1, Pπ samples zi ∈ Z∗

q uniformly and
computes ci+1 = H(gzii /(PKi)

ci , LPK, µ);
3. Pπ computes zπ = rπ + xcπ;
4. Output the ring signature σ = (c1; z1, · · · , zn).
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− 1/0← Verify(µ, σ, LPK): for a ring signature (µ,LPK, σ), for i = 1, · · · , n the
verifier computes

c∗i+1 = H(gzii /(PKi)
c∗i , LPK, µ)

where c1 = c∗1, then checks c1
?
= c∗n+1, if all passed then outputs 1, otherwise

outputs 0.

A.2 AOS 2-ring Signature

We give the introduction of AOS 2-ring signature as the key component of TLMS,
we assume the generators in different rings and different positions are different
(gi is the generator in the i-th position for i = 1, · · · , n in L1, and hi is the
generator in the i-th position for i = 1, · · · , n in L2).

− Par← Setup(λ): system chooses an elliptic curveG and a generator g1, · · · , gn, h1, · · · , hn

as the public parameters.
− (PKπ, SKπ) ← KeyGen(Par): according to the public parameters, user Pπ

samples x, y ∈ Z∗
q uniformly at random, computes gxπ, h

y
π and sets (PKπ,PK

′
π, SKπ, SK

′
π) =

(gxπ, h
y
π, x, y).

− σ ← Rsign(SKπ, SK
′
π, µ, LPK, L

′
PK):

1. For a message µ, Alice chooses another n−1 users, together with her own
public keys, to generate two lists of public keys LPK = {PK1, · · · ,PKn}
and L′

PK = {PK′
1, · · · ,PK

′
n}, where Alice’s PK = PKπ ∈ LPK,PK

′ =
PK′

π ∈ L′
PK, π ∈ {1, · · · , n}, which means the position of Alice’s public

key in each ring is same
2. Pπ samples rπ, sπ ∈ Z∗

q uniformly at random, then computes
cπ+1 = H(grππ , hsπ

π+1, LPK, L
′
PK, µ);

3. For i = π + 1, · · · , n, 1, · · · , π − 1, Pπ samples zi, z
′
i ∈ Z∗

q uniformly and

computes ci+1 = H(gzii /(PKi)
ci , h

z′
i

i /(PK′
i)

ci , LPK, L
′
PK, µ);

4. Pπ computes zπ = rπ + xcπ and z′π = sπ + ycπ;
5. Pπ outputs the ring signature σ = (c1; z1, · · · , zn; z′1, · · · , z′n).

− 1/0 ← Verify(µ, σ, LPK, L
′
PK): for a ring signature (µ,LPK, L

′
PK, σ), for i =

1, · · · , n the verifier computes

c∗i+1 = H(gzii /(PKi)
c∗i , h

z′
i

i /(PK′
i)

c∗i , LPK, L
′
PK, µ)

where c1 = c∗1, then checks c1
?
= c∗n+1, if all passed then outputs 1, otherwise

outputs 0.


