
Reduction Modulo 2448 − 2224 − 1

Kaushik Nath and Palash Sarkar

Applied Statistics Unit

Indian Statistical Institute

203, B. T. Road

Kolkata - 700108

India

{kaushikn r,palash}@isical.ac.in

Abstract

An elliptic curve known as Curve448 over the finite field Fp, where p = 2448 − 2224 − 1 has been
proposed as part of the Transport Layer Security (TLS) protocol, version 1.3. Elements of Fp can
be represented using 7 limbs where each limb is a 64-bit quantity. In this paper, we describe efficient
algorithms for reduction modulo p that are required for performing field arithmetic in Fp. A key
feature of our algorithms is that we provide the relevant proofs of correctness. Based on the proofs
of correctness we point out the incompleteness of the reduction methods in the previously known
fastest code for implementing arithmetic in Fp.

Keywords: Curve448, Goldilocks prime, modulo reduction, elliptic curve cryptography.

MSC (2010): 94A60.

1 Introduction

As part of the Transport Layer Security (TLS) protocol, version 1.3 [7], RFC 7748 [2] specifies the
Montgomery form elliptic curve Curve448 and its birationally equivalent Edwards form elliptic curve
Edwards448. The curve Edwards448 was originally proposed in [1] where it was named Ed448-Goldilocks.
The underlying field for Curve448 and Edwards448 is Fp where p is the prime 2448 − 2224 − 1.

Implementation of elliptic curve operations require arithmetic over the underlying field Fp. Specif-
ically, addition, subtraction, multiplication and squaring are required. Additionally, for implementing
Montgomery ladder for Curve448, it is required to implement multiplication by a small constant. All of
these operations require reduction modulo p.

For 64-bit architecture, an element of Fp can be represented using 7 limbs where each limb is a 64-bit
quantity. Such a representation can be considered to be a packed or, saturated limb representation of
the elements of Fp. Alternatively, elements of Fp may be represented using 8 limbs where each limb is a
56-bit quantity stored in a 64-bit word. Such a representation can be considered to be a redundant or,
unsaturated limb representation. For modern Intel processors such as Skylake and later processors, the
implementation of field arithmetic using the saturated limb representation turns out to be faster than
that of the unsaturated limb representation.

In this work, we consider the 7-limb saturated limb representation of elements of Fp. Our focus is on
the reduction algorithms which are required to implement field arithmetic operations in Fp. For all the
field arithmetic operations mentioned above, we present explicit reduction algorithms along with proofs
of correctness. The algorithms proceed over several iterations successively reducing the size of the input.
As part of the proof of correctness, it is required to argue that the algorithms terminate. The termination
argument has a certain amount of subtlety. To the best of our knowledge, no previous work had provided
the explicit reduction algorithms and consequently, also did not provide proofs of correctness.

The fastest publicly available software implementation for implementing Montgomery ladder of
Curve448 using 7-limb representation is the program code corresponding to [4]. We have examined
the code in details. It turns out that the reduction algorithms used in the code are incomplete. On
certain kinds of inputs, the code will lead to overflow conditions and hence to incorrect results. This,
however, is a very low probability event and cannot be captured using some randomly generated known
answer tests (KATs). A brief discussion on this issue has been provided in Appendix A. We believe that

1



it is important to have proofs of correctness of the reduction algorithms to ensure that the algorithms
works correctly for all possible inputs.

Remarks:

1. The present work considers saturated limb representation of the elements of Fp. The unsaturated
limb representation is relevant for Haswell and previous generations of processors. So, reduction
algorithms and associated correctness proofs for the unsaturated limb representations are also of
interest. Explicit descriptions of such algorithms and obtaining their proofs of correctness can be
done in a manner similar to the case of reduction algorithms for the saturated limb representation
that is described in the present work. The algorithms and the associated proofs for the unsaturated
limb representation, however, are quite a bit simpler than that of the saturated limb representation.
In view of this, we do not describe the algorithms and corresponding proofs of correctness for the
unsaturated limb representation.

2. A previous work [3] provides explicit reduction algorithms and proofs of correctness for various
pseudo-Mersenne primes. The prime p = 2448 − 2224 − 1 considered in the present work is not
a pseudo-Mersenne prime. So, the reduction algorithms described in [3] do not apply to p. This
necessitates the separate consideration of reduction algorithms and their proofs of correctness
specifically for the prime p.

2 Arithmetic in Fp

Let p = 2448 − 2224 − 1 and θ = 264. For d ≥ 0, define the polynomial

f(θ) = f0 + f1θ + · · ·+ fdθ
d (1)

where f0, f1, . . . , fd are non-negative integers. Following convention, we will call the fi’s to be limbs of
f(θ).

As mentioned above, we consider the 7-limb representation of the elements of Fp. So, elements of Fp
can be represented as a polynomial f(θ) = f0 + f1θ + · · ·+ f6θ

6 where 0 ≤ f0, f1, . . . , f6 < θ. Note that
the set of all such f(θ) is in one-one correspondence with the set of integers {0, 1, . . . , 2448−1}. Since, p <
2448 − 1, a degree 6 polynomial f(θ) with 0 ≤ f0, f1, . . . , f6 < θ is not necessarily reduced modulo p. So,
some elements of Fp have non-unique representation. This, however, is a not a problem for intermediate
quantities in an elliptic curve computation. It is only the final result that is reduced to have a unique
representation modulo p. Avoiding obtaining unique representations for the intermediate quantities
leads to an overall faster algorithm for performing the elliptic curve computation. Consequently, given
a polynomial h(θ) = h0 + h1θ + · · ·+ hdθ

d, by reduction modulo p, we will denote the task of obtaining
a polynomial f(θ) = f0 + f1θ + · · ·+ f6θ

6 with 0 ≤ f0, f1, . . . , f6 < θ such that f(θ) ≡ h(θ) mod p.
For i ≥ 2, let x and y be two 64i-bit integers. Suppose, it is required to compute the integer

product x · y. If x = y, then this corresponds to the squaring operation, while if x 6= y, then a general
multiplication operation is required. Intel processors from Broadwell (launched in 2014) onwards provide
a special set of 64-bit multiplication and addition instructions which allow very fast computation of the
product x ·y. For i = 4, the multiplication and squaring algorithms have been illustrated using diagrams
in two Intel white papers [6, 5]. Explicit descriptions of the squaring and multiplication algorithms in
the general case have been provided in [3].

A field multiplication/squaring in Fp consists of the following two broad steps. Suppose that f(θ)
and g(θ) are two 7-limb integers from the set {0, 1, . . . , 2448 − 1} representing elements of Fp. In the
first step, the integer product h(θ) of f(θ) and g(θ) is obtained. The quantity h(θ) can be written as
a 14-limb quantity h(θ) = h0 + h1θ + · · · + h13θ

13, where 0 ≤ h0, h1, . . . , h13 < 264. The second step
consists of reducing h(θ) to a 7-limb integer which is congruent to h(θ) modulo p.

The Montgomery ladder algorithm for Curve448 requires multiplying a 7-limb quantity f(θ) by the
constant c = 39082, which fits within a single 64-bit quantity. The integer product c · f(θ) can be
computed much faster than a general integer multiplication of two 7-limb quantities. The result c · f(θ)
can be written as an 8-limb quantity where all the limbs are 64-bit quantities. A reduction algorithm is
to be applied to this 8-limb quantity to reduce it to a 7-limb quantity which represents an element of Fp.

The integer addition of two 7-limb integers f(θ) and g(θ) results in an 8-limb integer. In this case, the
last limb is a single bit. Nevertheless, the result of the addition has to be reduced to a 7-limb quantity.

Subtraction of two elements f(θ) and g(θ) in Fp is more problematic. The integer operation f(θ)−g(θ)
can turn out to be negative. To avoid handling negative numbers a suitable multiple of p is added to
the result. This creates subtleties in the reduction algorithm.

2



3 Reduction in Fp

It has been mentioned in Section 2, that the integer product of two 7-limb quantities results in a 14-limb
quantity which has to be reduced to a 7-limb quantity. Further, multiplication of a 7-limb quantity by a
64-bit constant and the addition of two 7-limb quantities both lead an 8-limb quantity which has to be
reduced to a 7-limb quantity.

In Section 3.1 below, we describe the method for reducing a 14-limb quantity to a 7-limb quantity. As
part of this algorithm, it is required to reduce an 8-limb quantity to a 7-limb quantity. Correspondingly,
this part can be used to reduce the result obtained either after multiplication by a 64-bit constant or
after addition of two 7-limb quantities. This is pointed out in Section 3.2. The case of subtraction in Fp
is described in Section 3.3.

3.1 Reduction from 14-Limb to 7-Limb

Let h(θ) be the 14-limb polynomial which is to be reduced. The polynomial h(θ) represents an integer
z of 2 · 448 = 896 bits. A top-level view of the reduction algorithm is the following.

for i← 0 to 3 do
z ← (z mod 2448) + (2224 + 1)bz/2448c

end for.
(2)

A formal description of the idea in (2) is given in Function reduce448 of Algorithm 1. All the operations in
Function reduce448 can be performed using 64-bit arithmetic instructions available in modern processors.
For showing correctness of the algorithm it is required to argue that the output is indeed congruent to
the input modulo p. Further, it is also required to argue that the procedure terminates without any
overflow.

Let h(0)(θ) = h(θ). Function reduce448 takes the 14-limb polynomial h(0)(θ) as input and reduces
it through the intermediate polynomials h(1)(θ), h(2)(θ), h(3)(θ) finally producing the 7-limb output
polynomial h(4)(θ). A summary of the properties of the polynomials h(1)(θ), h(2)(θ), h(3)(θ) and h(4)(θ)
and the different steps of reduce448 that produces these polynomials are as follows:

� h(1)(θ) has 11 limbs. The first 10 limbs of h(1)(θ) are 64-bit quantities while the last limb is a
33-bit quantity. The computation of h(1)(θ) is achieved by Steps 4-14.

� h(2)(θ) has 8 limbs. The last limb is 2 bits long. The computation of h(2)(θ) from h(1)(θ) is achieved
by Steps 15-25.

� h(3)(θ) has 8 limbs. The last limb is 1-bit long and further, if h
(3)
7 = 0, then h

(3)
4 = h

(3)
5 = h

(3)
6 = 0.

The computation of h(3)(θ) from h(2)(θ) is achieved by Steps 26-32.

� h(4)(θ) has 7 limbs where each limb is a 64-bit quantity. The computation of h(4)(θ) from h(3)(θ)
is achieved by Steps 33-37.

We have stated some properties of h(1)(θ), h(2)(θ), h(3)(θ) and h(4)(θ). These are formally proved in
Theorem 1. We note some points.

1. The last limb of h(2)(θ) is a 2-bit quantity which is stored in a 64-bit word. The fact that the other
62 bits of the last limb do not store useful information does not help the rest of reduction.

2. The property of h(3)(θ) that if h
(3)
7 = 0, then h

(3)
4 = h

(3)
5 = h

(3)
6 = 0 is required to argue that the

procedure terminates without any overflow in the next iteration.

Theorem 1. Suppose the input h(0)(θ) = h
(0)
0 +h

(0)
1 θ+ · · ·+h

(0)
13 θ

13 to reduce448 is such that 0 ≤ h(0)i <

264 for i = 0, 1, . . . , 13. Then the output h(4)(θ) of reduce448 is such that h(4)(θ) = h
(4)
0 + h

(4)
1 θ + · · · +

h
(4)
6 (θ) with 0 ≤ h(4)j < 264 for j = 0, 1, . . . , 6. Further, h(4)(θ) ≡ h(0)(θ) mod p.

Proof. We have the prime p = 2448 − 2224 − 1, and since θ = 264, we have

2448 = θ7 ≡ 2224 + 1 = 2η/2θ3 + 1 mod p, (3)

where η = 64.

3



Algorithm 1 Reduction from 14-limb to 7-limb. In the algorithm, η = 64.

1: function reduce448(h(0)(θ))

2: input: h(0)(θ) = h
(0)
0 + h

(0)
1 θ + · · ·+ h

(0)
13 θ

13 such that 0 ≤ h(0)i < 264 for i = 0, 1, . . . , 13.

3: output: h(4)(θ) = h
(4)
0 + h

(4)
1 θ + · · · + h

(4)
1 θ6 such that 0 ≤ h

(4)
i < 264 for i = 0, 1, . . . , 6 and

h(4)(θ) ≡ h(0)(θ) mod p.

4: t← h
(0)
0 + h

(0)
7 ; r

(0)
0 ← t mod 2η; carry← bt/2ηc

5: for i← 1 to 6 do t← h
(0)
i + h

(0)
7+i + carry; r

(0)
i ← t mod 2η; carry← bt/2ηc end for

6: r
(0)
7 ← carry

7: s
(0)
10 ← bh

(0)
13 /2

η/2c
8: for i← 9 down to 4 do s

(0)
i ← (2η/2h

(0)
i+4) mod 2η + bh(0)i+3/2

η/2c end for

9: s
(0)
3 ← (2η/2h

(0)
7 ) mod 2η

10: h
(1)
0 ← r

(0)
0 ; h

(1)
1 ← r

(0)
1 ; h

(1)
2 ← r

(0)
2

11: t← s
(0)
3 + r

(0)
3 ; h

(1)
3 ← t mod 2η; carry← bt/2ηc

12: for i← 4 to 7 do t← s
(0)
i + r

(0)
i + carry; h

(1)
i ← t mod 2η; carry← bt/2ηc end for

13: for i← 8 to 9 do t← s
(0)
i + carry; h

(1)
i ← t mod 2η; carry← bt/2ηc end for

14: h
(1)
10 ← s

(0)
10 + carry

15: t← h
(1)
0 + h

(1)
7 ; r

(1)
0 ← t mod 2η; carry← bt/2ηc

16: for i← 1 to 3 do t← h
(1)
i + h

(1)
7+i + carry; r

(1)
i ← t mod 2η; carry← bt/2ηc end for

17: for i← 4 to 6 do t← h
(1)
i + carry; r

(1)
i ← t mod 2η; carry← bt/2ηc end for

18: r
(1)
7 ← carry

19: s
(1)
7 ← bh(1)10 /2

η/2c
20: for i← 6 down to 4 do s

(1)
i ← (2η/2h

(1)
i+4) mod 2η + bh(1)i+3/2

η/2c end for

21: s
(1)
3 ← (2η/2h

(1)
7 ) mod 2η

22: h
(2)
0 ← r

(1)
0 ; h

(2)
1 ← r

(1)
1 ; h

(2)
2 ← r

(1)
2

23: t← s
(1)
3 + r

(1)
3 ; h

(2)
3 ← t mod 2η; carry← bt/2ηc

24: for i← 4 to 6 do t← s
(1)
i + r

(1)
i + carry; h

(2)
i ← t mod 2η; carry← bt/2ηc end for

25: h
(2)
7 ← s

(1)
7 + r

(1)
7 + carry

26: t← h
(2)
0 + h

(2)
7 ;h

(3)
0 ← t mod 2η; carry← bt/2ηc

27: t← h
(2)
1 + carry;h

(3)
1 ← t mod 2η; carry← bt/2ηc

28: t← h
(2)
2 + carry;h

(3)
2 ← t mod 2η; carry← bt/2ηc

29: t← h
(2)
3 + (2η/2h

(2)
7 ) mod 2η + carry;h

(3)
3 ← t mod 2η; carry← bt/2ηc

30: t← h
(2)
4 + carry;h

(3)
4 ← t mod 2η; carry← bt/2ηc

31: t← h
(2)
5 + carry;h

(3)
5 ← t mod 2η; carry← bt/2ηc

32: t← h
(2)
6 + carry;h

(3)
6 ← t mod 2η; h

(3)
7 ← bt/2ηc

33: t← h
(3)
0 + h

(3)
7 ;h

(4)
0 ← t mod 2η; carry← bt/2ηc

34: t← h
(3)
1 + carry;h

(4)
1 ← t mod 2η; carry← bt/2ηc

35: t← h
(3)
2 + carry;h

(4)
2 ← t mod 2η; carry← bt/2ηc

36: t← h
(3)
3 + (2η/2h

(3)
7 ) mod 2η + carry;h

(4)
3 ← t mod 2η; carry← bt/2ηc

37: h
(4)
4 ← h

(3)
4 + carry; h

(4)
5 ← h

(3)
5 ; h

(4)
6 ← h

(3)
6

38: return h(4)(θ) = h
(4)
0 + h

(4)
1 θ + · · ·+ h

(4)
6 θ6

39: end function.

Reduction from h(0)(θ) to h(1)(θ). The input h(0)(θ) to reduce448 can be written as

h(0)(θ) = (h
(0)
0 + h

(0)
1 θ + · · ·+ h

(0)
6 θ6) + (h

(0)
7 θ7 + h

(0)
8 θ8 + · · ·+ h

(0)
13 θ

13),

= (h
(0)
0 + h

(0)
1 θ + · · ·+ h

(0)
6 θ6) + (h

(0)
7 + h

(0)
8 θ + · · ·+ h

(0)
13 θ

6)θ7,

≡ (h
(0)
0 + h

(0)
1 θ + · · ·+ h

(0)
6 θ6) + (h

(0)
7 + h

(0)
8 θ + · · ·+ h

(0)
13 θ

6)(2η/2θ3 + 1), [using (3)],

= (h
(0)
0 + h

(0)
1 θ + · · ·+ h

(0)
6 θ6) + (h

(0)
7 + h

(0)
8 θ + · · ·+ h

(0)
13 θ

6) +

(h
(0)
7 θ3 + h

(0)
8 θ4 + · · ·+ h

(0)
13 θ

9)2η/2. (4)

4



Steps 4-6 add the two polynomials (h
(0)
0 +h

(0)
1 θ+ · · ·+h

(0)
6 θ6) and (h

(0)
7 +h

(0)
8 θ+ · · ·+h

(0)
13 θ

6) limb-wise

by forwarding the 1-bit carry, producing the polynomial (r
(0)
0 + r

(0)
1 θ+ · · ·+ r

(0)
7 θ7). Hence, from (4) we

write

h(0)(θ) ≡ (r
(0)
0 + r

(0)
1 θ + · · ·+ r

(0)
7 θ7)︸ ︷︷ ︸

through Steps 4-8

+ (h
(0)
7 θ3 + h

(0)
8 θ4 + · · ·+ h

(0)
13 θ

9)2η/2. (5)

where 0 ≤ r(0)0 , r
(0)
1 , . . . , r

(0)
6 < 2η, and 0 ≤ r(0)7 ≤ 1. For j = 7, 8, . . . , 13, let us define

h
(0)
j = h

(0)
j,0 + h

(0)
j,12η/2, where h

(0)
j,0 = h

(0)
j mod 2η/2, and h

(0)
j,1 = bh(0)j /2η/2c. (6)

Using the definitions given in (6), (5) can be further written as

h(0)(θ) ≡ (r
(0)
0 + r

(0)
1 θ + · · ·+ r

(0)
7 θ7) +

((h
(0)
7,0 + h

(0)
7,12η/2)θ3 + (h

(0)
8,0 + h

(0)
8,12η/2)θ4 + · · ·+ (h

(0)
13,0 + h

(0)
13,12η/2)θ9)2η/2,

= (r
(0)
0 + r

(0)
1 θ + · · ·+ r

(0)
7 θ7) +

2η/2h
(0)
7,0θ

3 + (h
(0)
7,1 + 2η/2h

(0)
8,0)θ4 + (h

(0)
8,1 + 2η/2h

(0)
9,0)θ5 + · · ·+

(h
(0)
12,1 + 2η/2h

(0)
13,0)θ9 + h

(0)
13,1θ

10, [since θ = 2η]. (7)

Steps 7-9 perform the computations given in the last two lines of (7) to produce the polynomial (s
(0)
3 θ3 +

s
(0)
4 θ4 + · · ·+ s

(0)
10 θ

10), where 0 ≤ s(0)3 , s
(0)
4 , · · · , s(0)9 < 2η, and 0 ≤ s(0)10 < 2η/2. Then, Step 10 copies r

(0)
j

to h
(1)
j , j = 0, 1, 2 followed by Steps 11-14, which add the two polynomials (r

(0)
3 θ3 + r

(0)
4 θ4 + · · ·+ r

(0)
7 θ7)

and (s
(0)
0 θ3 +s

(0)
1 θ4 + · · ·+s

(0)
7 θ10) producing the polynomial h(1)(θ) = h

(1)
0 +h

(1)
1 θ+ · · ·+h

(1)
10 θ

10. Hence,
from (7) we write

h(0)(θ) ≡ (r
(0)
0 + r

(0)
1 θ + · · ·+ r

(0)
7 θ7) + (s

(0)
3 θ3 + s

(0)
4 θ4 + · · ·+ s

(0)
10 θ

10)︸ ︷︷ ︸
through Steps 7-9

,

= (h
(1)
0 + h

(1)
1 θ + · · ·+ h

(1)
10 θ

10)︸ ︷︷ ︸
through Steps 11-14

= h(1)(θ), (8)

where 0 ≤ h(1)0 , h
(1)
1 , · · · , h(1)9 < 2η, and 0 ≤ h(1)10 ≤ 2η/2.

Reduction from h(1)(θ) to h(2)(θ). Polynomial h(1)(θ) can further be written as

h(1)(θ) = (h
(1)
0 + h

(1)
1 θ + · · ·+ h

(1)
6 θ6) + (h

(1)
7 + h

(1)
8 θ + · · ·+ h

(1)
10 θ

3)θ7,

≡ (h
(1)
0 + h

(1)
1 θ + · · ·+ h

(1)
6 θ6) + (h

(1)
7 + h

(1)
8 θ + · · ·+ h

(1)
10 θ

3)(2η/2θ3 + 1), [using (3)],

= (h
(1)
0 + h

(1)
1 θ + · · ·+ h

(1)
6 θ6) + (h

(1)
7 + h

(1)
8 θ + · · ·+ h

(1)
10 θ

3) +

(h
(1)
7 θ3 + h

(1)
8 θ4 + · · ·+ h

(1)
10 θ

6)2η/2. (9)

Steps 15-18 adds the two polynomials (h
(1)
0 +h

(1)
1 θ+ · · ·+h(1)6 θ6) and (h

(1)
7 +h

(1)
8 θ+ · · ·+h(1)10 θ

3) limb-wise

by forwarding the 1-bit carry, producing the polynomial (r
(1)
0 + r

(1)
1 θ+ · · ·+ r

(1)
7 θ7). Hence, from (9) we

write

h(1)(θ) ≡ (h
(1)
0 + h

(1)
1 θ + · · ·+ h

(1)
6 θ6) + (h

(1)
7 + h

(1)
8 θ + · · ·+ h

(1)
10 θ

3) +

(h
(1)
7 θ3 + h

(1)
8 θ4 + h

(1)
9 θ5 + h

(1)
10 θ

6)2η/2,

= (r
(1)
0 + r

(1)
1 θ + · · ·+ r

(1)
7 θ7)︸ ︷︷ ︸

through Steps 15-18

+(h
(1)
7 θ3 + h

(1)
8 θ4 + · · ·+ h

(1)
10 θ

6)2η/2. (10)

where 0 ≤ r(1)0 , r
(1)
1 , . . . , r

(1)
6 < 2η, and 0 ≤ r(1)7 ≤ 1. For j = 7, 8, 9, 10, let us define

h
(1)
j = h

(1)
j,0 + h

(1)
j,12η/2, where h

(1)
j,0 = h

(1)
j mod 2η/2, and h

(1)
j,1 = bh(1)j /2η/2c. (11)

5



Using the definitions given in (11), (10) can be further written as

h(1)(θ) ≡ (r
(1)
0 + r

(1)
1 θ + · · ·+ r

(1)
7 θ7) +

((h
(1)
7,0 + h

(1)
7,12η/2)θ3 + (h

(1)
8,0 + h

(1)
8,12η/2)θ4 + · · ·+ (h

(1)
10,0 + h

(1)
10,12η/2)θ6)2η/2,

= (r
(1)
0 + r

(1)
1 θ + · · ·+ r

(1)
7 θ7) +

2η/2h
(1)
7,0θ

3 + (h
(1)
7,1 + 2η/2h

(1)
8,0)θ4 + (h

(1)
8,1 + 2η/2h

(1)
9,0)θ5 + (h

(1)
9,1 + 2η/2h

(1)
10,0)θ6 +

h
(1)
10,1θ

7 [since θ = 2η]. (12)

Steps 19-21 perform the computations in the second and third line of (12) to produce the polynomial

(s
(1)
3 θ3 + s

(1)
4 θ4 + · · ·+ s

(1)
7 θ7), where 0 ≤ s(1)3 , s

(1)
4 , s

(1)
5 , s

(1)
6 < 2η, and 0 ≤ s(1)7 ≤ 1. Then, Step 22 copies

r
(1)
j to h

(2)
j , j = 0, 1, 2 followed by Steps 23-25, which add the two polynomials (r

(1)
3 θ3+r

(1)
4 θ4+· · ·+r(1)7 θ7)

and (s
(1)
3 θ3 + s

(1)
4 θ4 + · · ·+ s

(1)
7 θ7) producing the polynomial h(2)(θ) = h

(2)
0 +h

(2)
1 θ+ · · ·+h

(2)
7 θ7. Hence,

from (12) we write

h(1)(θ) ≡ (r
(1)
0 + r

(1)
1 θ + · · ·+ r

(1)
7 θ7) + (s

(1)
3 θ3 + s

(1)
4 θ4 + · · ·+ s

(1)
7 θ7︸ ︷︷ ︸

through Steps 19-21

,

= (h
(2)
0 + h

(2)
1 θ + · · ·+ h

(2)
7 θ7)︸ ︷︷ ︸

through Steps 22-25

= h(2)(θ), (13)

where 0 ≤ h(2)0 , h
(2)
1 , · · · , h(2)6 < 2η, and 0 ≤ h(2)7 < 22.

Reduction from h(2)(θ) to h(3)(θ). Polynomial h(2)(θ) can further be written as

h(2)(θ) ≡ h
(2)
0 + h

(2)
1 θ + · · ·+ h

(2)
6 θ6 + h

(2)
7 (2η/2θ3 + 1), [using (3)],

= (h
(2)
0 + h

(2)
1 θ + · · ·+ h

(2)
6 θ6) + (h

(2)
7 + 2η/2h

(2)
7 θ3). (14)

Steps 26-32 adds the polynomial (2η/2θ3 + 1)h
(2)
7 = (h

(2)
7 + 2η/2h

(2)
7 θ3) to the polynomial (h

(2)
0 + h

(2)
1 θ+

· · · + h
(2)
6 θ6), which produces (h

(3)
0 + h

(3)
1 θ + · · · + h

(3)
7 θ7), where 0 ≤ h

(3)
0 , h

(3)
1 , · · · , h(3)6 < 2η, and

0 ≤ h(3)7 ≤ 1. Hence, from (14) we write

h(2)(θ) ≡ (h
(2)
0 + h

(2)
1 θ + · · ·+ h

(2)
6 θ6) + (h

(2)
7 + 2η/2h

(2)
7 θ3),

= (h
(3)
0 + h

(3)
1 θ + · · ·+ h

(3)
7 θ7)︸ ︷︷ ︸

through Steps 26-32

= h(3)(θ), (15)

where 0 ≤ h
(3)
0 , h

(3)
1 , · · · , h(3)6 < 2η, and 0 ≤ h

(3)
7 ≤ 1. In Step 32, h

(3)
7 = 1 if and only if h

(2)
6 = 2η − 1

and carry = 1, which implies t = 2η, which further implies h
(3)
6 = t mod 2η = 0. In a similar manner, it

can be argued that the condition carry = 1 arises in Step 32 if and only if Step 31 results in setting h
(3)
5

to 0 and continuing one more step backwards, Step 30 results in setting h
(3)
4 to 0. Hence, if h

(3)
7 = 1 we

have the conditions

h
(3)
4 = h

(3)
5 = h

(3)
6 = 0. (16)

Reduction from h(3)(θ) to h(4)(θ). Polynomial h(3)(θ) can further be written as

h(3)(θ) ≡ h
(3)
0 + h

(3)
1 θ + · · ·+ h

(3)
6 θ6 + h

(3)
7 (2η/2θ3 + 1), [using (3)],

= (h
(3)
0 + h

(3)
1 θ + · · ·+ h

(3)
6 θ6) + (h

(3)
7 + 2η/2h

(3)
7 θ3). (17)

If h
(3)
7 = 0, then after Steps 33-37 we get h

(4)
j = h

(3)
j , j = 0, 1, . . . , 6; else, if h

(3)
7 = 1, then using (16) we

can say that the reduction surely terminates by the addition in Step 37. This implies after Steps 33-37

0 ≤ h(4)j < 2η, j = 0, 1, 2, 3, and h
(4)
4 = 1, h

(4)
5 = 0, h

(4)
6 = 0. Hence, in any case from (17) it follows that

h(3)(θ) ≡ (h
(3)
0 + h

(3)
1 θ + · · ·+ h

(3)
6 θ6) + (h

(3)
7 + 2η/2h

(3)
7 θ3),

= (h
(4)
0 + h

(4)
1 θ + · · ·+ h

(4)
6 θ6)︸ ︷︷ ︸

through Steps 33-37

= h(4)(θ), (18)

where 0 ≤ h
(4)
0 , h

(4)
1 , · · · , h(4)6 < 2η. Also, by combining (8), (13), (15), and (18) we have h(4)(θ) ≡

h(0)(θ) mod p, which proves the theorem.

6



3.2 Reduction from 8-Limb to 7-Limb

The proof of Theorem 1 establishes the bound 0 ≤ h
(2)
7 < 4. The reduction from h(2)(θ) to h(3)(θ)

performed by reduce448, however, only assumes that h
(2)
7 is a 64-bit quantity. In particular, the proof of

this part of the reduction does not use the fact that h
(2)
7 is a 2-bit quantity. Also, we know of no way to

speed up the reduction by using the bound h
(2)
7 < 4.

In view of the above, given an 8-limb quantity, the reduction to 7-limb can be performed as follows.
Consider the 8-limb quantity to be h(2)(θ) and apply the part of reduce448 which reduces h(2)(θ) to
h(4)(θ). The correctness of the reduction is guaranteed by the part of the proof of Theorem 1 which
argues the correctness of the reduction from h(2)(θ) to h(3)(θ) and from h(3)(θ) to h(4)(θ).

3.3 Subtraction

Let f(θ) and g(θ) be 7-limb quantities representing elements of Fp. The requirement is to compute
(f(θ)− g(θ)) mod p. Function sub448 of Algorithm 2 performs this computation.

The description of Function sub448 uses the instruction sub which is defined as follows. Let x and
y be 64-bit quantities and b0 be a bit. The instruction sub(x, y, b0) produces as output the pair (z, b1)
where z is a 64-bit quantity and b1 is a bit. The definitions of z and b1 are as follows.

z =

{
x− (y + b0) if x ≥ y + b0,
264 + x− (y + b0) if x < y + b0;

b1 =

{
0 if x ≥ y + b0,
1 if x < y + b0.

The assembly instruction sub can be used to implement sub(x, y, 0) while the assembly instruction sbb

can be used to implement the more general sub(x, y, b0).

Algorithm 2 Subtraction in F2448−2224−1.

1: function sub448((f(θ), g(θ)))
2: input: 7-limb quantities f(θ) and g(θ) such that 0 ≤ fi, gj < 264 for i, j = 0, 1, . . . , 6.

3: output: h(2)(θ) = h
(2)
0 + h

(2)
1 θ + · · · + h

(2)
1 θ6 such that 0 ≤ h

(2)
i < 264 for i = 0, 1, . . . , 6 and

h(2)(θ) ≡ (f(θ)− g(θ)) mod p.
4: b← 0
5: for i← 0 to 6 do (h

(0)
i , b)← sub(fi, gi, b) end for

6: d← b; t← d� 32
7: b← 0
8: (h

(1)
0 , b)← sub(h

(0)
0 , d, b)

9: (h
(1)
1 , b)← sub(h

(0)
1 , 0, b)

10: (h
(1)
2 , b)← sub(h

(0)
2 , 0, b)

11: (h
(1)
3 , b)← sub(h

(0)
3 , t, b)

12: (h
(1)
4 , b)← sub(h

(0)
4 , 0, b)

13: (h
(1)
5 , b)← sub(h

(0)
5 , 0, b)

14: (h
(1)
6 , b)← sub(h

(0)
6 , 0, b)

15: d← b; t← d� 32
16: b← 0
17: (h

(2)
0 , b)← sub(h

(1)
0 , d, b)

18: (h
(2)
1 , b)← sub(h

(1)
1 , 0, b)

19: (h
(2)
2 , b)← sub(h

(1)
2 , 0, b)

20: (h
(2)
3 , b)← sub(h

(1)
3 , t, b)

21: (h
(2)
4 , b)← sub(h

(1)
4 , 0, b)

22: h
(2)
5 ← h

(1)
5 ; h

(2)
6 ← h

(1)
6

23: return h(2)(θ) = h
(2)
0 + h

(2)
1 θ + · · ·+ h

(2)
6 θ6

24: end function.

The correctness of sub448 is stated in the following theorem.

Theorem 2. The output h(2)(θ) = h
(2)
0 + h

(2)
1 θ + · · · + h

(2)
6 θ6 of sub448 satisfies 0 ≤ h

(2)
i < 264 for

i = 0, 1, . . . , 6 and h(2)(θ) ≡ (f(θ)− g(θ)) mod p.

7



Proof. The limbs h
(2)
i , i = 0, 1, . . . , 6 are obtained as the first components of the outputs of some

invocations of the sub instruction. Consequently, it follows that all of these are 64-bit quantities. This
settles the point about the bounds on these limbs. So, we have to argue two things. First, h(2)(θ) =
(f(θ) − g(θ)) mod p and second that the procedure terminates without any overflow. The congruency
argument is obtained from the following observations.

1. Let δ = 2224 + 1. The subtraction of d from h
(0)
0 in Step 8 and of t from h

(0)
3 in Step 11 correspond

to the subtraction of δ from the integer represented by h(0)(θ). Similarly, the subtraction of d from

h
(0)
1 in Step 17 and of t from h

(1)
3 in Step 20 correspond to the subtraction of δ from the integer

represented by h(1)(θ).

2. Suppose f(θ) ≥ g(θ) (as integers). Then after Step 5, we have h(0)(θ) = f(θ)− g(θ) and b = 0. As
a consequence of b = 0 at Step 5, it follows that h(0)(θ) = h(1)(θ) = h(2)(θ) establishing the result
for this particular case.

3. In view of the previous point, assume f(θ) < g(θ). In this case, after Step 5, we have that
h(0) represents the integer 2448 + f(θ) − g(θ) and b = 1. Steps 8-14 subtract δ from h(0)(θ) =
2448 + f(θ)− g(θ).

(a) If h(0)(θ) ≥ δ, then after Step 14, h(1)(θ) represents the integer h(0)(θ) − δ = 2448 + f(θ) −
g(θ) − δ = p + f(θ) − g(θ) ≡ (f(θ) − g(θ)) mod p and b = 0. As a consequence of b = 0 at
Step 14, it follows that h(2)(θ) = h(1)(θ) establishing the result for this case.

(b) If h(0)(θ) < δ, then after Step 14, h(1)(θ) represents the integer 2448 + h(0)(θ) − δ = 2448 +
2448 + f(θ) − g(θ) − δ = 2448 + p + f(θ) − g(θ) and b = 1. Steps 17-21 subtract δ from
h(1)(θ) = 2448 + p+ f(θ)− g(θ) to obtain h(2)(θ) = h(1)(θ)− δ = 2448 + p+ f(θ)− g(θ)− δ =
2p+ f(θ)− g(θ) ≡ (f(θ)− g(θ)) mod p.

It only remains to argue that b produced by the sub instruction in Step 21 is necessarily 0. If the value
of b in the input of sub in Step 21 is 0, then of course, the value of b produced by this sub call is also 0.
So, suppose that the value of b in the input of sub in Step 21 is 1. Then the value of b produced by this

sub call is 0 if and only if h
(1)
4 ≥ 1. The value of b in the input of sub in Step 21 is 1 only if the value of

b produced by the sub call in Step 14 is 1. Arguing backwards, the value of b produced by the sub call

in Step 12 must be 1. The input to the sub call in Step 12 is (h
(0)
4 , 0, b) and so the value of b produced

by this sub call is 1 if and only if h
(0)
4 = 0 and the value of b in the input to this sub call is 1. Then, it

follows that h
(1)
4 = 264 − 1 ≥ 1 as required.

4 Conclusion

In this work we have provided explicit description of reduction algorithms required for computation in
the field Fp with p = 2448− 2224− 1. The correctness of the algorithms have been rigorously proven. We
highlight the importance of having correctness proofs by pointing out in Appendix A that the reduction
algorithms used in the previous fastest known code are incomplete.

References

[1] Mike Hamburg. Ed448-goldilocks, a new elliptic curve. IACR Cryptology ePrint Archive, 2015:625, 2015.

[2] Adam Langley and Mike Hamburg. Elliptic curves for security. Internet Research Task Force (IRTF), Request
for Comments: 7748, https://tools.ietf.org/html/rfc7748, 2016. Accessed on 16 September, 2019.

[3] Kaushik Nath and Palash Sarkar. Efficient Arithmetic in (Pseudo-)Mersenne Prime Order Fields. IACR
Cryptology ePrint Archive, 2018:985, 2018.

[4] Thomaz Oliveira, Julio López Hernandez, Hüseyin Hisil, Armando Faz-Hernández, and Francisco Rodŕıguez-
Henŕıquez. How to (pre-)compute a ladder - improving the performance of X25519 and X448. In Carlisle
Adams and Jan Camenisch, editors, Selected Areas in Cryptography - SAC 2017 - 24th International Confer-
ence, Ottawa, ON, Canada, August 16-18, 2017, Revised Selected Papers, volume 10719 of Lecture Notes in
Computer Science, pages 172–191. Springer, 2017.

[5] E. Ozturk, J. Guilford, and V. Gopal. Large integer squaring on Intel architecture processors, in-
tel white paper. https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/large-
integer-squaring-ia-paper.pdf, 2013.

8

https://tools.ietf.org/html/rfc7748


[6] E. Ozturk, J. Guilford, V. Gopal, and W. Feghali. New instructions supporting large integer arithmetic on
Intel architecture processors, intel white paper. https://www.intel.com/content/dam/www/public/us/en/

documents/white-papers/ia-large-integer-arithmetic-paper.pdf, 2012.

[7] Version 1.3 TLS Protocol. RFC 8446. https://datatracker.ietf.org/doc/rfc8446/?include_text=1,
2018. Accessed on 16 September, 2019.

9

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-large-integer-arithmetic-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-large-integer-arithmetic-paper.pdf
https://datatracker.ietf.org/doc/rfc8446/?include_text=1


A Incompleteness of the Reduction Algorithms Used in the Software Imple-
mentation Accompanying [4]

The work [4] provides performance results of Montgomery ladder computation of Curve448. Explicit
reduction algorithms required for implementing arithmetic in Fp are not described in the paper. We
have examined the accompanying code1 and have been able to obtain the reduction algorithms that have
been actually used in the code. For the convenience of description, in the following, we will refer to [4]
for the reduction algorithms.

Below we mention the reduction algorithms used in [4] and explain why they are incomplete.

Case of 14-limb to 7-limb reduction: As shown in reduce448 and proved in Theorem 1, the correct
output is h(4)(θ). The work [4], however, provides h(3)(θ) as the output. From the proof of
Theorem 1 one may observe that it is not possible to argue that h(3)(θ) will have no overflows.

Case of 8-limb to 7-limb reduction: As mentioned in Section 3.2, the 8-limb quantity is to be
considered h(2)(θ) and the relevant portion of reduce448 applied to h(2)(θ) to obtain the correct
result as h(4)(θ). The work [4], however, performs the reduction of h(2)(θ) to h(3)(θ) only up to

Step 30 of reduce448 (i.e., up to the computation of h
(3)
4 ) and provides this intermediate quantity

as the output. Moreover, the code for addition does not compute h
(3)
2 of Step 28 considering the

carry-out of the previous step. Since the computation of h
(3)
2 has not been done using an adc, the

carry-out of this add-with-carry step is also not taken care of while computing h
(3)
3 in Step 29.

Similar discrepancies are also there in the implementation of reduction after multiplying with a
small constant.

Case of subtraction: The work [4] performs the steps of sub448 up to Step 12 (i.e., up to the

computation of h
(1)
4 ) and provides this intermediate quantity as the output. Similar to addition,

the reduction code for subtraction does not compute h
(1)
2 of Step 10 considering the bit b of the

previous step. Since the computation of h
(1)
2 has not been done using an sbb, the bit b of this step

is also not taken care of while computing h
(1)
3 in Step 11.

While the proofs of correctness of the reduction algorithms that we describe show the incompleteness
of the reduction computations done in [4], the steps that have been ignored in [4] affect the final result
with very low probability. We highlight two examples.

1. The 8-limb to 7-limb reduction in [4] stops the computation at Step 30 of reduce448. The possibility

that in the first instruction of Step 30, h
(2)
4 = 264−1 and carry = 1 is ignored. Heuristically assuming

h
(2)
4 to be a uniformly distributed 64-bit quantity, the probability that it equals 264 − 1 is 2−64

which is a low probability event.

2. Similarly, for subtraction, the procedure in [4] stops at Step 12 of sub448. In effect, this ignores

the possibility that h
(0)
4 = 0 and the value of b provided as input to sub in Step 12 is 1. Again,

heuristically assuming h
(0)
4 to be uniformly distributed, the probability that h

(0)
4 = 0 is 2−64.

Consequently, the incorrect results arising out of the incomplete reductions in [4] are very hard to capture
using some randomly generated known answer tests (KATs). Nevertheless, in certain cases it is possible
to work out examples on which the reductions in [4] lead to incorrect results. A brief case study of the
software implementation of addition given in [4] is provided below.

Case study of addition. We reproduce below the code of addition modulo 2448 − 2224 − 1 from [4].
In the code, the mov instructions are used for the load/store operations. The add instructions in pink
add the 7 limbs of the two polynomials, the instructions in red captures the carry, and the instructions
in blue perform the reduction.

Let us consider two input polynomials f(θ) = f0 + f1θ + · · ·+ f6θ
6 and g(θ) = g0 + g1θ + · · ·+ g6θ

6

such that
f0 = f1 = f2 = f4 = f5 = 264 − 3, f3 = 264 − 232 − 1, f6 = 264 − 1

and
g0 = g1 = g2 = g4 = g5 = 2, g3 = 232, g6 = 1

1Program code from https://github.com/armfazh/rfc7748_precomputed/blob/master/src/fp448_x64.c was accessed
on November 1, 2019.

10

https://github.com/armfazh/rfc7748_precomputed/blob/master/src/fp448_x64.c


. The polynomial after adding f and g is h(0)(θ) = h
(0)
0 + h

(0)
1 θ + · · ·+ h

(0)
6 θ6 + h

(0)
7 θ7, where

h
(0)
0 = h

(0)
1 = h

(0)
2 = h

(0)
3 = h

(0)
4 = h

(0)
5 = 264 − 1, h

(0)
6 = 0, h

(0)
7 = 1.

Here, h
(0)
7 holds the carry-out which is captured by the register rbx in the code below. Now, after the

performing the reduction steps on h(0)(θ), the final output produced by the code is h(1)(θ) = h
(1)
0 +

h
(1)
1 θ + · · ·+ h

(1)
6 θ6, where

h
(1)
0 = h

(1)
1 = h

(1)
4 = 0, h

(1)
3 = 232 − 1, h

(1)
2 = h

(1)
5 = 264 − 1, h

(1)
6 = 0.

The code is not taking care of the carry-out produced from the additions occurring in the second and
fourth limbs making the reduction incomplete. The correct reduced output should be the polynomial

h(1)(θ) = h
(1)
0 + h

(1)
1 θ + · · ·+ h

(1)
6 θ6, where

h
(1)
0 = h

(1)
1 = h

(1)
2 = h

(1)
4 = h

(1)
5 = 0, h

(1)
3 = 232, h

(1)
6 = 1.

inline void add_EltFp448_1w_x64(uint64_t *c, uint64_t *a, uint64_t *b) {
#if __ADX__

__asm__ __volatile__(

"movq (%2), %%rax ;"

"movq 8(%2), %%rcx ;"

"movq 16(%2), %%rdx ;"

"movq 24(%2), %%r8 ;"

"movq 32(%2), %%r9 ;"

"movq 40(%2), %%r10 ;"

"movq 48(%2), %%r11 ;"

"clc ;"

"adcx (%1), %%rax ;"

"adcx 8(%1), %%rcx ;"

"adcx 16(%1), %%rdx ;"

"adcx 24(%1), %%r8 ;"

"adcx 32(%1), %%r9 ;"

"adcx 40(%1), %%r10 ;"

"adcx 48(%1), %%r11 ;"

"setc %%bl ;"

"movzx %%bl, %%rbx ;"

"addq %%rbx, %%rax ;"

"adcq $0, %%rcx ;"

"shlq $32, %%rbx ;"

"addq %%rbx, %%r8 ;"

"adcq $0, %%r9 ;"

"movq %%rax, (%0) ;"

"movq %%rcx, 8(%0) ;"

"movq %%rdx, 16(%0) ;"

"movq %%r8 , 24(%0) ;"

"movq %%r9 , 32(%0) ;"

"movq %%r10, 40(%0) ;"

"movq %%r11, 48(%0) ;"

:

: "r" (c), "r" (a), "r" (b)

: "memory", "cc", "%rax", "%rbx", "%rcx",

"%rdx", "%r8", "%r9", "%r10", "%r11"

);

#else

__asm__ __volatile__(

"movq (%2), %%rax ;"

"movq 8(%2), %%rcx ;"

"movq 16(%2), %%rdx ;"

"movq 24(%2), %%r8 ;"

"movq 32(%2), %%r9 ;"

"movq 40(%2), %%r10 ;"

"movq 48(%2), %%r11 ;"

"addq (%1), %%rax ;"

"adcq 8(%1), %%rcx ;"

"adcq 16(%1), %%rdx ;"

"adcq 24(%1), %%r8 ;"

"adcq 32(%1), %%r9 ;"

"adcq 40(%1), %%r10 ;"

"adcq 48(%1), %%r11 ;"

"setc %%bl ;"

"movzx %%bl, %%rbx ;"

"addq %%rbx, %%rax ;"

"adcq $0, %%rcx ;"

"shlq $32, %%rbx ;"

"addq %%rbx, %%r8 ;"

"adcq $0, %%r9 ;"

"movq %%rax, (%0) ;"

"movq %%rcx, 8(%0) ;"

"movq %%rdx, 16(%0) ;"

"movq %%r8 , 24(%0) ;"

"movq %%r9 , 32(%0) ;"

"movq %%r10, 40(%0) ;"

"movq %%r11, 48(%0) ;"

:

: "r" (c), "r" (a), "r" (b)

: "memory", "cc", "%rax", "%rbx", "%rcx",

"%rdx", "%r8", "%r9", "%r10", "%r11"

);

#endif

}

11


	Introduction
	Arithmetic in Fp
	Reduction in Fp
	Reduction from 14-Limb to 7-Limb
	Reduction from 8-Limb to 7-Limb
	Subtraction

	Conclusion
	Incompleteness of the Reduction Algorithms Used in the Software Implementation Accompanying DBLP:conf/sacrypt/OliveiraLHFR17

