
A Valid Blockchain-based Data Trading
Ecosystem

Taotao Li, Dequan Li

No Institute Given

Abstract. Data, an important asset in digital economy, has fueled the
emergence of a new data trading market. Big data market can efficiently
promote data trading and further increases the utility of data. However,
to realize effective data trading, several challenges needs to be resolved.
First, it needs to resolve disputes over data availability in the data trad-
ing. Second, atomic exchange and payment fairness between the seller
and the buyer are hard to guarantee. Third, data trading platform is
the single-point-failure. In this paper, we resolve these challenges by pre-
senting a valid blockchain-based data trading ecosystem. The ecosystem
constructs a decentralized arbitration mechanism to address the dispute
over data availability in data trading. The ecosystem also designs a sale
contract and a deterministic public-key encryption algorithm to guaran-
tee fairness of data trading between the seller and buyer. The features
of blockchain is preventing single-point-failure of data trading platform.
We prove the desirable security properties that a secure data trading
ecosystem should have. Discussion of the presented ecosystem is given.
To demonstrate availability, we implement our proposed data trading
ecosystem using smart contract in Solidity and program in Java, and
evaluate its performance.

Keywords: data trading, smart contract, decentralized arbitration, blockchain

1 Introduction

With a number of new technologies and applications are integrated into our
daily life, such as mobile and social networking applications, and smart-world
systems based on the Internet of Things (smart city, smart home, smart grid,
smart transportation, and others), vast amount of data will be collected [22, 32,
31, 36, 39, 40, 24]. Some companies and public sectors [10, 28, 25] use such data
to make market decisions and improve their services [26]. In the era of big data,
the generated data have become important asset and fueled the emergence of
a new data trading in data market. In fact, several data trading markets have
already emerged recently, such as the DataExchange and Datacoup [18, 20].

A simple traditional data trading ecosystem is shown in Fig. 1. There are
three entities, namely: seller, buyer, data exchange platform (a trusted middle-
party). The seller sends data to be sold to data exchange platform and sets an
appropriate selling price. The buyer browses datas of interest and pays the money



2

to the data exchange platform. On receiving the money, the data exchange plat-
form transfers data purchased to the buyer and pays partial money to the seller
(deducting transaction fees and management fees). When the buyer believes that
data he/she purchased is invalid, the data exchange platform resolves the dispute
relying on a centralized mechanism or a trusted third entity.

To realize effective data exchange in such a centralized exchange model [43,
14, 9, 21], several challenges needs to solved, as explained below:

1) How the platform uses a decentralized mechanism to resolve the dispute over
data availability in the data trading. And the dispute means that the buyer
believes that data he/she purchased is invalid.

2) Atomic exchange and payment fairness between the seller and the buyer are
hard to guarantee, due to the opaque nature of data exchange platform.

3) The centralized data exchange platform is the single-point-failure. When the
data exchange platform crash and/or is attacked, it will halt.

Data Seller Data Buyer

Money

Data

Data

Money

Traditional data exchange platform

Fig. 1. Simplified conventional data trading and centralized data process

Related work. Zhao et al. [41] proposed a fair data trading protocol based
on blockchain, which integrates similarity learning, ring signatures and double-
authentication-preventing signatures to guarantee the availability of data trading
and fairness between the seller and the buyer. Although the protocol introduces
a market manager to resolve the dispute over the data availability in the data
trading, the market manager in the protocol is centralized. Xiong et al. [37]
presented a smart contract based data trading mode by combining the machine
learning. The mode uses smart contract to guarantee the fairness of data ex-
change, and utilizes arbitration institution to deal with the dispute over the
data availability in the data trading. However, the arbitration institution in the
mode is a trusted entity of trading parties. Dai et al [12] presented a secure data
trading ecosystem based on blockchain by combining the Intels Software Guard
Extensions (SGX). Although the ecosystem can protect the data processing, the
source of data and the analysis results, it depends on trusted SGX-based exe-
cution environment. Delgado-Segura et al [13] presented fair protocol for data
trading based on Bitcoin transactions. The protocol constructs a new type of
Bitcoin transaction by using script language, but the operation code OP AND
they used is invalid in practical Bitcoin network.



3

Chen et al. [9] presented a blockchain-based ecosystem for big data market.
The ecosystem uses blockchain technology to record transaction logs and other
important documents. Zhou et al [42] proposed a distributed blockchain-based
data vending framework, which integrates the data embedding and similarity
learning to tackle the dilemma between the effective of data retrieval and leak-
age risk from indexing the data. However, they mechanisms are insufficient for
solving the dispute and availability for fair data exchange based on blockchain.

Yang et al [38] presented a design of data trading platform based on blockchain
by combining cryptography technology, which ensures that the platform does not
have the opportunity to peek, copy and store trading data. Wang et al. [34] pro-
posed a distributed data management based on blockchain. The data manage-
ment mode guarantees that datas in the process of data trading is not retained
and copied by the third-party. However, these schemes are not implemented in
a real blockchain environment.

Our contributions. In this paper, we present a valid blockchain-based
data trading ecosystem to complement the existing data trading ecosystem.
A decentralized arbitration mechanism consisting of an arbitration contract,
a producing contract and a deterministic digital signature algorithm resolves
the dispute over data availability in data trading. The system designs the sale
contract, advanced encryption standard algorithm and deterministic public-key
encryption algorithm to guarantee fairness of data trading between the seller
and buyer. The features of blockchain is preventing single-point-failure of data
trading platform. We formally prove the security of our system and discuss the
arbitration process. We implement our system using smart contract in Solid-
ity and program in Java, and demonstrates the validity of our system. The full
code of smart contract and API interface have been released to the GitHub
(https://github.com/01007467319/TTL-ECO-SC.git).

1.1 Organization

The rest of this paper is organized as follows. In Section 2, we introduce the
preliminaries of our system. We present mode and security requirements of data
trading in Section 3. We describe overview and module design of data trading
protocol in Section 4, and the security analysis and discussion are given in Section
5 and 6. In Section 7, we implement a valid data trading system, and evaluate
its execution efficiency and cost. We conclude this paper in the last section.

2 Preliminaries

2.1 Smart contract

In the 1990s, cryptographer Nick Szabo [33] proposed the term and defined it as
“a set of promises, specified in digital form, including protocols within which the
parties perform on the other promises.” Since then, The concept of smart con-
tracts has changed, especially after the introduction of a decentralized blockchain



4

platform, which is a “autonomous agent” stored in the blockchain, encoded as
part of the “create” transaction, which introduces a contract blockchain. Once
successfully created, smart contracts are identified by contract addresses; each
contract has a certain number of virtual coins (such as ether) and private stor-
age associated with its predefined executable code. The contract state consists
of two main parts: the private store and the number of virtual coins it holds.
Contract code can manipulate variables like traditional imperative programs.
For example, the Ethereum contract code is a stack-based, low-level bytecode
language called the Ethereum Virtual Machine (EVM) code. The player defines
the contract using a high-level programming language, such as Solidity [15] (a
JavaScript-like language), and then compiles it into EVM code. In order to invoke
the contract, players send the transaction to the contract address. Transactions
typically include: payment for the execution of the contract or input data for
the invocation.

2.2 Advanced encryption standard

In January 1997, the US National Institute of Standards and Technology (NIST)
issued a call for an Advanced Encryption Standard (AES) to replace the current
Data Encryption Standard (DES). In October 2000, NIST [1] announced that
the winning algorithm was Rijndael [11] (a block cipher designed by the Belgian
cryptographers Vincent Rijmen and Joan Daemen based on SPN structure).
Today, AES is widely used and no significant security weaknesses have been
discovered. We apply the practical AES [11] to implement data trading. There
are three algorithms in AES: Key generate (AES.Gen), Encrypt (AES.Enc), and
Decrypt (AES.Dec). The details are given below:

• AES.Gen. The key-generation algorithm AES.Gen takes as input the se-
curity parameter 1n and outputs a key k; we write this as k←AES.Gen(1n)
(emphasizing that AES.Gen is a randomized algorithm). We assume that
any key k ← AES.Gen(1n) satisfies |k| ≥ n.

• AES.Enc. The encryption algorithm AES.Enc takes as input a key k and
a plaintext message m ∈ {0, 1}? and outputs a ciphertext c; we write this as
c ← AES.Enck(m).

• AES.Dec. The decryption algorithm AES.Dec takes as input a key k
and a ciphertext c, and outputs a message m or ⊥. We write this as m
:= AES.Deck(c) (assuming here that Dec does not return an ⊥).

It is required that for every n, every key k ← AES.Gen(1n), and every m
∈ {0, 1}?, it holds that AES.Deck(AES.Enck(m)) = m.

2.3 Deterministic Public-Key encryption scheme

The notion of deterministic public-key encryption (DPKE) was introduced by
Bellare et al. [2]. These are public-key encryption schemes where the encryption



5

algorithm is deterministic. When using a deterministic encryption algorithm,
however, the full-fledged notion of semantic security [17] is out of reach. Subse-
quent research results [4, 7, 3, 8, 16, 27, 35] has successfully shown that a natural
variant of the notion of semantic security can be guaranteed even when using a
deterministic encryption algorithm, as long as plaintexts are independent of the
public key used by the scheme. Raghunathan et al [30] extends the previously
proposed notions of security, allowing adversaries to adaptively choose plaintext
distributions after seeing the public key, in an interactive manner.

In this section, we briefly introduce the algorithms of deterministic public-
key encryption that are used in the protocol we proposed below. A determin-
istic public-key encryption scheme is a tuple of polynomial-time algorithms
(DPKE.Gen, DPKE.Enc, DPKE.Dec) such that:

• DPKE.Gen. The key-generation algorithm DPKE.Gen is a randomized
algorithm that takes as input the security parameter 1λ and outputs a pair
of keys (sk, pk); we write this as (sk, pk) ← DPKE.Gen(1λ) with the pk is
the public key and sk is the private key.

• DPKE.Enc. The encryption algorithm DPKE.Enc is a deterministic algo-
rithm that takes as input a public key pk and a message m ∈ {0, 1}n(λ) with n
= ploy(λ), and outputs a ciphertext c. We write this as c←DPKE.Encpk(m).

• DPKE.Dec. The decryption algorithm DPKE.Dec is a possibly random-
ized algorithm that takes as input a private key sk and a ciphertext c, and
outputs a message m ∈ {0, 1}n(λ) or a special symbol ⊥ denoting failure. We
write this as m := DPKE.Decsk(c).

It is required that, except possibly with negligible probability over (sk, pk) ←
DPKE.Gen(1λ), we have DPKE.Decsk(DPKE.Encpk(m)) = m for any (le-
gal) message m.

2.4 Deterministic digital signature algorithm scheme

Deterministic digital signature algorithm (DDSA) was first described by Bern-
stein et al. [5]. The characteristic of DDSA is that there is no need for generating
fresh random numbers per signature. Edwards curve Digital Signature Algorithm
(EdDSA) [5] follows a similar approach and uses the hash of the private key and
the message M as a nonce. Thus, any change of M results in a new nonce. Some
deterministic variant [29, 6, 23] of DSA was provided. We apply the DDSA to
support the algorithm Producing (see section 4.2.4 for details) in the data
trading protocol and adopt the practical instantiation of DDSA scheme [29]. A
deterministic digital signature algorithm scheme is a tuple of polynomial-time
algorithms (DDSA.Gen, DDSA.Sign, DDSA.Ver) such that:

• DDSA.Gen. The key-generation algorithm DDSA.Gen takes as input the
security parameter 1n and outputs a pair of keys (sk, pk); we write this as
(sk, pk) ← DDSA.Gen(1n) with the pk is the public key and sk is the
private key. We assume for convenience that pk and sk each has length at
least n, and that n can be determined from pk, sk.



6

• DDSA.Sign. The signature algorithm DDSA.Sign takes as input a private
key sk and a message m from some message space (that may depend on pk),
and outputs a signature σ. We write this as σ ← DDSA.Signsk(m).

• DDSA.Ver. The deterministic verification algorithm DDSA.Ver takes as
input a public key pk, a message m and a signature σ, and outputs a bit b,
with b = 1 denoting valid and b = 0 denoting invalid. We write this as b
:= DDSA.V erpk(m,σ).

It is required that, except with negligible probability over (pk, sk)←DDSA.Gen(1n),
it holds that DDSA.V erpk(m,DDSA.Signsk(m)) = 1 for every (legal) message
m.

3 Blockchain-based data trading model and security
requirements

In the section, we introduce the blockchain-based data trading model and rele-
vant security requirements.

3.1 Blockchain-based data trading model

There are three entities, namely: seller, buyer and blockchain data exchange
platform - see also Fig 2. The seller is the data provider, and profits from selling
the data. The buyer is the consumer of the data and generates payment transac-
tion in the platform to purchase the data. The platform is secure blockchain for
contract deployment, contract invoking and contract execution; and consists of
nodes and arbitrators (a.k.a, miners). The data exchange platform provides two
services for the buyer and the seller. The former is a fair data trading service
that supports the buyer sales data and the buyer purchases data. The latter is a
decentralized arbitration service that provides arbitration for the buyer and the
seller. Especially, when the buyer believes that the purchased data does not con-
sistent with the description of the raw data, the buyer can apply for arbitration
and gains a fair result.

Data Seller Data Buyer

Money

Data

Apply for arbitration

Arbitration result

Data

Money

Arbitration result

Blockchain data exchange platform

Fig. 2. Simplified fair data trading and decentralized arbitration process



7

Definition 1 (Blockchain-based data trading protocol). The data trading
protocol is a tuple of polynomial time algorithms (Segmenting, Sale, Arbitra-
tion, Producing) such that:

• Segmenting. The algorithm Segmenting takes as input the data and the
key, and outputs ciphertext c; we write this as c ← Segmenting(data, key).
Parse c into (c1, c2, ..., cn).

• Sale. The algorithm Sale takes as input the seller’s deposit depositseller, the
buyer’s deposit depositbuyer, the public key pk of the buyer, the index i of
the data segment and the money moneyi of the data segment, and outputs a
result. We write this as result← Sale(depositseller, depositbuyer, pk, i,moneyi).

• Arbitration. The algorithm Arbitration takes as input a data ciphertext
ci, data key ki, public key pk, a ciphertext wi and the description ddesi of
the i-th data segment, and outputs a bit b ∈ {0, 1}. We write this as b ←
Arbitration(ci, ki, pk, wi, ddesi).

• Producing. The algorithm Producing takes as input a block header blockheader,
an integer k, and outputs a committee A consisting of k arbitrator. We write
this as A← Producing(blockheader, k). Parse A into (A1, A2, ..., Ak).

3.2 Security requirements

Following security requirements of Zhao et al. [41] a secure blockchain-based
data trading protocol should satisfy the following requirements:

• Completeness. The completeness means that, if both the sellers and the
buyers are honest at all epochs, then an honest seller can receive the money
and an honest buyer can gain the valid data.

• Confidentiality. The confidentiality says that a malicious buyer without
the money is unable to gain the data.

• Availability. If a seller’s behavior is honest, then the buyer can gain valid
data. If a malicious seller sells fake data, he will be punished in the sense
that he loses his deposit.

• Fairness. The fairness means that, at the end of the protocol, either the
seller obtains the money and the buyer gets valid data or neither the seller
and the buyer obtain nothing.

In addition, we define a decentralization requirement for the data trading
protocol.

• Decentralization. The decentralization says that, when the buyer believes
that data he/she purchased is invalid, the protocol can solve the dispute by
decentralizing arbitration contract.

4 Data trading protocol

In this section, we first give an overview of our protocol and then describe the
module design of our protocol in detail.



8

4.1 Overview

A typical workflow in our protocol is shown in Fig. 2. For the convenience of
description, we especially extract the Sale contract (SC), Arbitration contract
(AC) and Producing contract (PC) from the blockchain.

• Step(1)-(4). The seller posts the information of data to be sold to the blockchain
and deploys the SC. The buyer browses the data information and submits
purchasing data information to the SC.

• Step(5)-(7). The seller sends encrypted data key to the buyer. The buyer
then gets the data by decrypting encrypted datas with its private key and
data key obtained by decrypting.

• Step(8)(9). The buyer verifies the validity of the data. If the data is valid, the
buyer submits application of transaction finish. Otherwise the buyer applies
for arbitration.

• Step(10)-(14). The decentralizing AC gets arbitration information from the
blockchain such as the SC, and randomly selects k arbitrator by calling the
PC.

• Step(15)(16). The decentralizing AC produces an arbitration result and
sends it to the SC. The SC then executes arbitration result returned by
the AC.

In the protocol, the buyer has his/her DPKE key pair (sk, pk) and the seller has
his/her AES key k.

4.2 Module design

In this section, we present an elaborate module design of the data trading proto-
col. These interacting modules are Data segmenting, Sale contract, Arbitration
contract and Producing contract. A summary of notations used in our protocol
is shown in Tables 1.

4.2.1 Data segmenting
The process of data segmenting is as shown in Algorithm 1. First, the seller

divides the data into multiple segments of data di(i ∈ [1, n]); then, the seller
encrypts each data segment separately with different data keys ki(i ∈ [1, n]),
and obtains the ciphertexts ci = AES.Encki(di)(i ∈ [1, n]). Finally, the seller
stores the ciphertexts ci, the description ddesi and the price for the data segments
in the blockchain.

The segmentation of the above data satisfies the following principles: (i) each
data segment is required to allow the arbitrator to identify the authenticity of the
data segment, and to ensure that the Arbitration contract can make a favorable
result for the seller on the premise that the seller is honest; (ii) in order to reduce
the information leakage of the data segments during the arbitration process, the
information that needs to be exposed to the arbitrator should be as small as
possible.



9

Blockchain Seller SC AC Buyer PC

(2)Deploy SC

(1)Compute 

  send    

(3)Browse the data to be purchased

11( , , ), ( , , )
n

n des des
c c d d× × × × × ×… … 

(4)Send

(5)Listen and get pk from SC

(6)Compute

                    and send

1( , , )
n

c c× × ×… 

(7)Listen and get    from SC

Compute          

(8)Finish data trading                

(9)Apply for arbitration                

(10)Get             from SC              

(11)Send                      

(12)Get            from Blockchain              

(13)Randomly select k arbitrator                

(14)Send k arbitrator                

(15)Execute arbitration,

produce arbitration value and send value

(16)Expose arbitration result

Data trading

Data arbitration

Fig. 3. The overview of the proposed protocol

Table 1. Summary of notations

Notation Explanation

Drole the address of role

depositrole the deposit of role

τ deposit threshold

ddesi the description of the i-th data segment

moneyi money for purchasing the i-th data segment

valueAi the voting result of the i-th arbitrator

blockheader the header of the block

chainheight the height of the blockchain



10

Algorithm 1 Segmenting

1: function segment(data, key)
2: (d1, d2, ..., dn)← data
3: (k1, k2, ..., kn)← key
4: for i ≤ n do
5: ci = AES.Encki(di)
6: end for
7: return (c1, c2, ..., cn)
8: end function

4.2.2 Sale contract
The main task of a sale contract is to execute the data trading. The process

of the sales contract is shown in Algorithm 2. In the practical environment, the
buyer can browse the information of data segments, determine the data to be
purchased, and submit the deposit depositbuyer, the money moneyi, the public
key pk and the index i of the data segment to be purchased to the algorithm 2.

The buyer can determine whether the seller deposit depositseller is sufficient.
If the seller does not submit the deposit, or the amount of the deposit is insuf-
ficient, Algorithm 2 will automatically refund the buyer’s deposit and money,
and the transaction will be terminated. If the seller’s deposit is sufficient, the
seller uses the buyer’s public key pk to encrypt the data key ki correspond-
ing to the data segment purchased by the buyer; the seller obtains ciphertext
wi = DPKE.Encpk(ki) and sends it the Sale contract.

Upon obtaining the ciphertext wi from the Sale contract, the buyer uses the
private key sk to decrypt ciphertext wi and obtains data key ki = DPKE.Decsk(wi).
The buyer then decrypts the ciphertext ci using the data key ki to obtain the
data segment di = AES.Decki(ci). Finally, the buyer determines whether the
data segment di is valid (meaning whether a valid data key ki is received by
the buyer and whether the data segment is consistent with its the description,
etc.). If di is valid, Algorithm 2 transfers the moneyi to the seller; the deposits is
refunded and the transaction ends. Otherwise, the buyer applies for arbitration.

4.2.3 Arbitration contract
The main task of the Arbitration contract is to perform data arbitration. Be-

fore executing arbitration, it is necessary to determine the arbitration committee
(as described in Section 4.2.4). When the buyer believes that the purchased data
di is invalid, the buyer submits the arbitration application to the Arbitration
contract within the specified time. The process of the Arbitration contract is
shown in Algorithm 3.

• Preparing data. The Arbitration contract gets ci, pk, wi, ddesi from the blockchain
such as the Sale contract. The seller provides the data key ki to the Arbitration
contract.

• Arbitrating. Suppose that a miner accepts an arbitration application and be-
comes the first arbitrator A1. The purpose of the A1 is to arbitrate whether



11

Algorithm 2 Sale

1: function sale(depositseller, depositbuyer, pk, i,moneyi)
2: if depositseller ≥ τ then . if the seller’s deposit is enough
3: wi = DPKE.Encpk(ki)
4: else
5: Dbuyer = moneyi
6: Dbuyer = depositbuyer
7: exit()
8: end if
9: ki = DPKE.Decsk(wi)

10: if di = AES.Decki(ci) then . if the ki received by the buyer is true
11: Dseller = moneyi
12: Dseller = depositseller
13: Dbuyer = depositbuyer
14: else
15: if (invoke ARBITRATION()) = 1 then
16: Dseller = moneyi
17: Dseller = depositseller
18: Dcommittee = depositbuyer
19: else
20: Dbuyer = moneyi
21: Dbuyer = depositbuyer
22: Dcommittee = depositseller
23: end if
24: end if
25: end function

both the seller and the buyer are honest in the data trading process. The
arbitration is as follows:

- Is the data segment di sold by the seller consistent with the description ddesi
of the di (a.k.a., ddesi = AES.Decki(ci))? If they are consistent, the result
is “Yes”, otherwise the result is “No”.

- Did the seller submit a valid data key ki to the buyer (a.k.a., wi = DPKE.Encpk(ki))?
If the ki is valid, the result is “Yes”, otherwise the result is “No”.

Only when the results of the above two judgments are “Yes”, does the ar-
bitrator vote to support the seller, that is, the arbitrator adds ”value” to 1.
Otherwise the arbitrator votes to support the buyer and subtracts ”value” by
1. If the seller does not provide the information required for arbitration within
a certain period of time, the arbitrator subtracts ”value” by 1.

• Generating the result of the arbitration. Since the k is an odd number greater
than 3, and each arbitrator either adds ”value” to 1 or subtracts ”value” by
1. Therefore, the ”value” must be a positive number (the seller succeeds) or
a negative number (the buyer succeeds), and the final value of the ”value”
serves as the final arbitration result of the arbitration committee. If the seller
succeeds in the arbitration, the seller obtains the money and his deposit re-



12

Algorithm 3 Arbitration

1: function arbitration(ci, pk, wi, ddesi , ki)
2: value ← 0
3: while i ≤ k do . arbitrated by each arbitrator Ai

4: Ai ← invoke(PRODUCING())
5: if wi = DPKE.Encpk(ki) then
6: if ddesi = AES.Decki(ci) then
7: value = value + 1
8: else
9: value = value − 1

10: end if
11: else
12: value = value − 1
13: end if
14: i+ +
15: end while
16: if value > 0 then . indicate arbitration result
17: return 1
18: else
19: return 0
20: end if
21: end function

funded by the Sale contract, the buyer’s deposit serves as arbitration fees, and
vice versa.

4.2.4 Generation of arbitrator

The process of generating an arbitrator is shown in Algorithm 4. The arbi-
tration committee consists of k arbitrators, where k is an odd number greater
than 3 (analysis as described in Section 6). In the practical environment, the
arbitrator can be volunteered by the miners who generates the valid block. In
order to randomly generate each arbitrator, Algorithm 4 takes the newly block
header blockheader (without facing risk of forking) on the current blockchain as
a random source 1. The specific method is as follows: the hash calculation is
performed on the block header blockheader, and the hash value h is obtained;
the h modulo the height number chainheight of the current blockchain (for se-
curity, the height number of the stable blockchain is taken), obtaining a certain
block; the arbitrators are miners who had mined the block. For the fairness of
arbitration, each arbitrator is selected after the previous arbitrator completes
the voting. The implementing process is as follows: after each arbitrator finishes
the voting, the parameter blockheader is signed to obtain a signature value σi;
hashing the σi and the blockheader, and producing the (i+1)-th arbitrator Ai+1.

1 the hash value of the block header is generally randomly generated. For example,
in Ouroboros [19], because the miners are randomly selected, the block headers
generated by the miners are also random.



13

In order to avoid arbitrators cheating, the digital signature algorithm used here
is a deterministic digital signature algorithm [29].

It is very important that, since the members of the arbitration committee
are randomly selected, this is a decentralized arbitration mechanism consisting
of Arbitration contract and deterministic digital signature algorithm. The mech-
anism facilitates the completion of the transactions and reduces the occurrence
of dishonest behavior in the transaction process.

Algorithm 4 Producing

1: function producing(blockheader, k)
2: for i ≤ k do
3: if i = 1 then
4: h = Hash(blockheader)
5: Ai ← h mod(chainheight)
6: σi = DDSA.SignAi

sk (blockheader)
7: else
8: h = Hash(blockheader||σi−1)
9: Ai ← h mod(chainheight)

10: σi = DDSA.SignAi
sk (blockheader)

11: end if
12: end for
13: return (A1, A2, ..., Ak)
14: end function

5 Proofs of security

In this section, we prove the security of the blockchain-based data trading pro-
tocol.

Lemma 1. The presented blockchain-based data trading protocol is complete-
ness.

Proof. If both the buyer and the seller honestly abide by the data trading proto-
col described in Section 4, then from the completeness of the underlying DPKE
and AES scheme, the buyer can always receive the data key ki and uses it to
decrypt the ciphertext ci. Therefore, the buyer obtains the data segment di, and
the seller also gets the money moneyi. ut

Lemma 2. The presented blockchain-based data trading protocol is confidential-
ity.

Proof. In our protocol, data segment di is encrypted by the seller using data
key ki, the seller will use the public key pk provided by the buyer to encrypt
the data key ki and send wi = DPKE.Encpk(ki) to the buyer only after the



14

buyer has paid the money for data di. If the buyer does not provide the money,
the buyer can not obtain the ciphertext wi. Without the wi, the buyer can not
extract the data key ki to decrypt the ciphertext ci. ut

Lemma 3. The presented blockchain-based data trading protocol is availability.

Proof. If the seller’s behavior is honest, the honest buyer can obtain the cipher-
text wi and extract the data key ki from the wi to decrypt the ciphertext ci. The
buyer then obtains valid data di. If a malicious seller who provides the invalid
ciphertext ci or data key ki, he will be punished (analysis as described in Section
4.2.3). For the malicious buyer, he can not gain the data key ki to decrypt the
ciphertext ci. ut

Lemma 4. The presented blockchain-based data trading protocol is fairness.

Proof. First, we suppose that the seller is malicious, the seller can obtain the
money but does not submit the valid data segment (the content of the data
segment does not match its description) and data key. In this case, the buyer
receives the invalid data and will apply for arbitration. The result of the arbi-
tration is that the seller not only loses the buyer’s money, but also loses his/her
deposit, as described in Section 4.2.3. This contradicts the assumption. The seller
can cheat with only negligible probability.

Then, we consider that the buyer is malicious and the seller is honest, in the
sense that the buyer can gain the valid data without providing the money for
data segment, or the buyer attempts to withdraw the money by submitting an
arbitration application after receiving the valid data. For the former, the seller
never sends ciphertext wi for data key ki to the buyer. The buyer is unable to
extract the data key ki from the ciphertext wi to decrypt the ci. For the latter,
the result of the arbitration is that the buyer not only can not get his/her the
money, but he/she also loses his/her deposit. Based on the above situation, a
malicious buyer gains a contradiction. The probability of success for a malicious
buyer is negligible. Therefore, the presented blockchain-based data trading pro-
tocol is fairness. ut

Lemma 5. The presented blockchain-based data trading protocol is decentraliza-
tion.

Proof. We consider that the protocol can solve the dispute over data availability
in data trading through a decentralized Arbitration contract. In our protocol,
when receiving the arbitration application submitted by the buyer, the Arbi-
tration contract will generate an arbitration committee formed by randomly
selecting a group of arbitrators, as described in Section 4.2.4. Each arbitrator in
the committee has only one voting right, and needs to arbitrating and voting for
the arbitration application. In this case, the result of the arbitration relies on a
group of arbitrators rather than a single arbitrator. It is negligible that a single
arbitrator can solve the dispute. Therefore, the presented blockchain-based data
trading protocol is decentralization. ut



15

6 Discussion of the arbitration

Let us first note that the number of arbitrators should be an odd number greater
than 3. One reason is that if the number of arbitrators is too small, arbitrators are
prone to corruption. For example, when the arbitration committee has only three
arbitrators, the second arbitrator may directly choose a vote that is consistent
with the vote of the first arbitrator in order to easily obtain the arbitration fees.
In this case, the process of the arbitration is not very different from the case
where there is only one arbitrator to arbitrate. Another reason is that an odd
number of arbitrators can always produce an arbitration result. It is worth noting
that if an arbitrator does not vote or has a problem in the process of voting, the
final value of “value” may be equal to 0. In order to avoid this environment, the
Arbitration contract additionally randomly selects an arbitrator to vote.

Arbitration candidates may decide whether to participate in arbitration ac-
cording to the amount of arbitration fees. The number of arbitrators can be
determined by both the buyer and the seller through an Arbitration contract, or
by a Sale contract pre-designed by the seller. After k arbitrators execute voting,
the vote is terminated and no new arbitrators are created. Note that when the
number of votes supporting a party reaches k+1

2 , even if some arbitrators have
not yet arbitrated, the voting result is determined, and the voting can be termi-
nated early. More than half of the voting results will be used as final arbitration
results.

In the case of a dispute, the amount of the deposit should be sufficient to
pay the arbitration fee. In order to facilitate the seller to submit the transac-
tion deposit each time, the seller can prepay a certain amount of deposit to its
”deposit pool2”. In each transaction, the same amount as the buyer’s deposit is
taken from the seller’s deposit pool and used as a deposit for the transaction.
When the deposit is refunded, it will be returned directly to the deposit pool.
The advantage is that both the buyer and seller deposits are the same, which
reflects fairness; on the other hand, it reduces the seller’s operations for each
transaction, and also reduces the load of data storage on the blockchain. When
the seller decides not to sell the data, the deposit in the deposit pool is returned
to the seller after a period of lock-up. The purpose of setting a period of lock-up
is to avoid having unfinished transactions in progress.

In the process of arbitration, if the deposit used as the arbitration fee is
insufficient, it may result in fewer participants in the arbitration and the inability
to complete the arbitration within a long period of time. At this time, both
parties need to add a deposit. If the party fails to append the deposit, the
Arbitration contract will automatically determine that he/she has failed.

The fail party arbitrated by the arbitration committee served his/her deposit
as an arbitration fees to the arbitration committee and distributed it among the
arbitrators. The method of distribution may be that all arbitrators divide the
arbitration fees equally, or those arbitrators that votes are consistent with the

2 “deposit pool” is a special account in the blockchain, the function of the account
can be completed through a smart contract.



16

final result of the arbitration divide the arbitration fees equally. The latter can
enable arbitrators to conduct fair arbitration, because only honest arbitrators
can get more arbitration fees. However, in the case of a small arbitration com-
mittee, this method of distribution may result in the arbitrator not making a
fair decision. For example, in order to get the arbitration fee early, the arbitrator
only supports the party with the most votes currently. Therefore, the number of
arbitrators is preferably greater than 3.

7 Performance evaluation

In this section, we execute a prototype of our protocol using smart contract
in Solidity and programs in Java, and show its performance evaluation. Since
Solidity does not provide the application programme interface (API) of Seg-
menting, DPKE and DDSA for the time of research, we will separately quan-
tify the gas cost of smart contract and the time cost of cryptographic algo-
rithms. We implement DPKE and DDSA algorithms with the Java cryptogra-
phy API3 (java.security and java.crypto) for our simulation. which the DPKE
is variant of the RSA without padding and the DDSA is variant of the Elga-
mal. Our open source code related to this prototype has been posted online at
https : //github.com/01007467319/TTL-ECO-SC.git.

The simulation platform is Intel(R) Core(TM) i5-4570 CPU 3.20 GHz 4.00GB
RAM and Windows 10 operate system. The time cost of Segmenting algorithms
is shown in Table 2. The Segmenting algorithms has different time cost with dif-
ferent security level and different size of data encrypted. The AES.Enc algorithm
and the AES.Dec algorithm are extremely fast, and their time cost are not very
different on different security level. The time cost of cryptographic algorithms
is shown in Table 3 (the modulus n is 1024 bits) and Table 4 with the average
of 200 runs. The DPKE algorithm and the DDSA algorithm are cheap. If the
DPKE.Gen algorithm only generates one key pair (sk, pk), it average costs 0.004
ms. We analyze the time cost of DDSA on different size of the prime number p
in Fig. 4. See Table 4 and Fig. 4 for more details. We can find that the execution
time of the DDSA.Ver algorithm is considerably fast, thus it is very easy for
verifying an arbitrator.

We deploy the interacting Sale contract, Arbitration contract and Produc-
ing contract in our protocol by Solidity. They implement on a local computer
based on Remix. The estimated gas cost to deploy, call and execute contract is
provided in Table 5. The Sale contract to deploy is expensive since it includes
to call Arbitration contract and Producing contract. The function of Sale con-
tract consists of depositing deposit, returning deposit, paying money, submitting
data and executing arbitration. Fig. 5 shows the relationship between the size of
committee and execution time. This relationship is that, with the expansion of
the size of the arbitration committee, the time for selecting arbitrators increases
linearly.

3 https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html.



17

Table 2. The time cost of Segmenting algorithms

Security Data size Execute time (s) AES.Enc (µs) AES.Dec (µs)

128 bits 10 kb 0.45 0.94 0.96
128 bits 20 kb 0.64 0.96 0.95
128 bits 30 kb 0.84 0.97 0.96
256 bits 10 kb 0.48 1.29 1.28
256 bits 20 kb 0.71 1.30 1.29
256 bits 30 kb 0.89 1.26 1.28

Table 3. The time cost of DPKE algorithms

DPKE DPKE.Gen (ms) DPKE.Enc (ms) DPKE.Dec (ms)

Max time 0.025 0.004 0.197
Min time 0.001 0.001 0.097

Average time 0.004 0.002 0.134

Table 4. The time cost of DDSA algorithms

DDSA Size of p DDSA.Gen (ms) DDSA.Sign (ms) DDSA.Ver (ms)

Max time 1024 bits 0.63 1.30 0.98
Min time 1024 bits 0.32 0.96 0.76

Average time 1024 bits 0.48 1.13 0.87

Fig. 4. The time cost of DDSA on different size of p



18

Table 5. Gas cost of smart contract

Smart contract Function Transaction gas Execute gas Gas cost (ether)

Sale

deploy contract 2099770 1554189 0.07307918
deposit seller 82312 61040 0.00286704
deposit buyer 104058 82786 0.00373688

deposit buyerdata 64218 40578 0.00209592
payment sellerdata 45049 21729 0.00133556

payment transaction 31430 41395 0.00145650
withdraw 24389 27505 0.00103788

arbitration invoke 262510 272350 0.01069720

Producing
deploy contract 244230 145386 0.00779232

producing 168265 144625 0.00625780

Arbitration
deploy contract 308436 194640 0.01006152

arbitration 119763 101075 0.00441676

3 9 15 21 27 33 39 45

Size of committee

0

2

4

6

8

10

12

T
im

e
/s

Fig. 5. The average time with the increase of committee size



19

8 Conclusion

In this paper, we have proposed a valid data trading ecosystem based on blockchain
to complement deficiencies in existing data trading market. By introducing a de-
centralized arbitration mechanism consisting of an arbitration contract, a pro-
ducing contract and a deterministic digital signature algorithm, we system can
resolve the dispute over data availability in data trading. We also design a sale
contract, advanced encryption standard algorithm and deterministic public-key
encryption algorithm to ensure fairness of data trading between the seller and
buyer. We utilize the advantage of blockchain to prevent single-point-failure of
data trading platform. We formally prove the security of our system and discuss
the arbitration process. The system was implemented based on smart contract
and Java, and its performance evaluated.

Regarding future work, we will further research how to prevent the buyer
from selling purchased (raw) data. Designing audit contract is used to detect
whether the buyer resold the purchased data. However, a malicious buyer may
try to transform the purchased data by implementing arbitrary operation, in
order to evade the audit contract. Therefore, how to prevent the buyer from
selling purchased data is an interesting and challenging research topic in the
future.



Bibliography

[1] Federal Information Processing Standards Publication 197. Advanced en-
cryption standard. In U.S. Department of Commerce, National Institute of
Standards and Technology, 2001.

[2] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic
and efficiently searchable encryption. In Alfred Menezes, editor, Advances
in Cryptology - CRYPTO 2007, pages 535–552, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

[3] Mihir Bellare, Zvika Brakerski, Moni Naor, Thomas Ristenpart, Gil Segev,
Hovav Shacham, and Scott Yilek. Hedged public-key encryption: How to
protect against bad randomness. In Advances in Cryptology - ASIACRYPT
2009, 15th International Conference on the Theory and Application of Cryp-
tology and Information Security, Tokyo, Japan, December 6-10, 2009. Pro-
ceedings, pages 232–249, 2009.

[4] Mihir Bellare, Marc Fischlin, Adam O’Neill, and Thomas Ristenpart. De-
terministic encryption: Definitional equivalences and constructions without
random oracles. In Advances in Cryptology - CRYPTO 2008, 28th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 17-
21, 2008. Proceedings, pages 360–378, 2008.

[5] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. High-speed high-security signatures. J. Cryptographic Engineering,
2(2):77–89, 2012.

[6] Nina Bindel, Sedat Akleylek, Erdem Alkim, Paulo S. L. M. Barreto, Jo-
hannes Buchmann, Edward Eaton, Gus Gutoski, Juliane Krämer, Patrick
Longa, Harun Polat, Jefferson E. Ricardini, and Gustavo Zanon. qtesla. Sub-
mission to the NIST Post-Quantum Cryptography Standardization [NIS],
https://qtesla.org, 2017.

[7] Alexandra Boldyreva, Serge Fehr, and Adam O’Neill. On notions of secu-
rity for deterministic encryption, and efficient constructions without random
oracles. In Advances in Cryptology - CRYPTO 2008, 28th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 17-21,
2008. Proceedings, pages 335–359, 2008.

[8] Zvika Brakerski and Gil Segev. Better security for deterministic public-key
encryption: The auxiliary-input setting. J. Cryptology, 27(2):210–247, 2014.

[9] Jinchuan Chen and Yunzhi Xue. Bootstrapping a blockchain based ecosys-
tem for big data exchange. In 2017 IEEE International Congress on Big
Data, BigData Congress 2017, Honolulu, HI, USA, June 25-30, 2017, pages
460–463, 2017.

[10] Xue-wen Chen and Xiaotong Lin. Big data deep learning: Challenges and
perspectives. IEEE Access, 2:514–525, 2014.

[11] Joan Daemen and Vincent Rijmen. The block cipher rijndael. In Smart
Card Research and Applications, This International Conference, CARDIS



21

’98, Louvain-la-Neuve, Belgium, September 14-16, 1998, Proceedings, pages
277–284, 1998.

[12] Weiqi Dai, Chunkai Dai, Kim-Kwang Raymond Choo, Changze Cui, Deiqing
Zou, and Hai Jin. SDTE: A secure blockchain-based data trading ecosystem.
IEEE Trans. Information Forensics and Security, 15:725–737, 2020.

[13] Sergi Delgado-Segura, Cristina Pérez-Solà, Guillermo Navarro-Arribas, and
Jordi Herrera-Joancomart́ı. A fair protocol for data trading based on bitcoin
transactions. IACR Cryptology ePrint Archive, 2017:1018, 2017.

[14] Massimo Felici, Theofrastos Koulouris, and Siani Pearson. Accountabil-
ity for data governance in cloud ecosystems. In IEEE 5th International
Conference on Cloud Computing Technology and Science, CloudCom 2013,
Bristol, United Kingdom, December 2-5, 2013, Volume 2, pages 327–332,
2013.

[15] Ethereum Foundation. The serpent contract-oriented programming lan-
guage.

[16] Benjamin Fuller, Adam O’Neill, and Leonid Reyzin. A unified approach to
deterministic encryption: New constructions and a connection to computa-
tional entropy. In Theory of Cryptography - 9th Theory of Cryptography
Conference, TCC 2012, Taormina, Sicily, Italy, March 19-21, 2012. Pro-
ceedings, pages 582–599, 2012.

[17] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput.
Syst. Sci., 28(2):270–299, 1984.

[18] Taeho Jung, Xiang-Yang Li, Wenchao Huang, Jianwei Qian, Linlin Chen,
Junze Han, Jiahui Hou, and Cheng Su. Accounttrade: Accountable pro-
tocols for big data trading against dishonest consumers. In 2017 IEEE
Conference on Computer Communications, INFOCOM 2017, Atlanta, GA,
USA, May 1-4, 2017, pages 1–9, 2017.

[19] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman
Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain pro-
tocol. In Advances in Cryptology - CRYPTO 2017 - 37th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 20-24,
2017, Proceedings, Part I, pages 357–388, 2017.

[20] Fan Liang, Wei Yu, Dou An, Qingyu Yang, Xinwen Fu, and Wei Zhao. A
survey on big data market: Pricing, trading and protection. IEEE Access,
6:15132–15154, 2018.

[21] Kaitai Liang, Willy Susilo, and Joseph K. Liu. Privacy-preserving ciphertext
multi-sharing control for big data storage. IEEE Transactions on Informa-
tion Forensics and Security, 10(8):1578–1589.

[22] Jie Lin, Wei Yu, Nan Zhang, Xinyu Yang, Hanlin Zhang, and Wei Zhao. A
survey on internet of things: Architecture, enabling technologies, security
and privacy, and applications. IEEE Internet of Things Journal, 4(5):1125–
1142, 2017.

[23] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-dilithium. Sub-
mission to the NIST Post-Quantum Cryptography Standardization [NIS],
https://pq-crystals.org/dilithium, 2017.



22

[24] Sriharsha Mallapuram, Nnatubemugo Ngwum, Fang Yuan, Chao Lu, and
Wei Yu. Smart city: The state of the art, datasets, and evaluation platforms.
In 16th IEEE/ACIS International Conference on Computer and Informa-
tion Science, ICIS 2017, Wuhan, China, May 24-26, 2017, pages 447–452,
2017.

[25] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh,
and A. H. Byers. Big data: The next frontier for innovation, com-
petition, and productivity. pages https://www.mckinsey.com/business–
functions/digital–mckin sey/our–insights/big–data–the–next–frontier–for–
innovation, 2011.

[26] Andrew Mcafee and Erik Brynjolfsson. Big data: The management revolu-
tion. Harv Bus Rev, 90(10):60–6, 68, 128, 2012.

[27] Ilya Mironov, Omkant Pandey, Omer Reingold, and Gil Segev. Incremen-
tal deterministic public-key encryption. In Advances in Cryptology - EU-
ROCRYPT 2012 - 31st Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Cambridge, UK, April 15-
19, 2012. Proceedings, pages 628–644, 2012.

[28] Mehdi Mohammadi, Ala I. Al-Fuqaha, Sameh Sorour, and Mohsen Guizani.
Deep learning for iot big data and streaming analytics: A survey. IEEE
Communications Surveys and Tutorials, 20(4):2923–2960, 2018.

[29] Thomas Pornin. Deterministic usage of the digital signature algorithm
(DSA) and elliptic curve digital signature algorithm (ECDSA). RFC,
6979:1–79, 2013.

[30] Ananth Raghunathan, Gil Segev, and Salil P. Vadhan. Deterministic public-
key encryption for adaptively-chosen plaintext distributions. J. Cryptology,
31(4):1012–1063, 2018.

[31] John A. Stankovic. Research directions for the internet of things. IEEE
Internet of Things Journal, 1(1):3–9, 2014.

[32] Yunchuan Sun, Houbing Song, Antonio J. Jara, and Rongfang Bie. Internet
of things and big data analytics for smart and connected communities. IEEE
Access, 4:766–773, 2016.

[33] Nick Szabo. Formalizing and securing relationships on public networks.
First Monday, 2(9), 1997.

[34] Y. Z. Wang, J. Hou, , and Y. Zhang. Data management based on block
chain technology. Electron. Des. Eng., 27:87–90 and 95, 2019.

[35] Hoeteck Wee. Dual projective hashing and its applications - lossy trapdoor
functions and more. In Advances in Cryptology - EUROCRYPT 2012 -
31st Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings,
pages 246–262, 2012.

[36] Jianjia Wu and Wei Zhao. Design and realization of winternet: From net of
things to internet of things. TCPS, 1(1):2:1–2:12, 2016.

[37] Wei Xiong and Li Xiong. Smart contract based data trading mode using
blockchain and machine learning. IEEE Access, 7:102331–102344, 2019.

[38] Maojiang Yang and Pingan Technology. A design of data trading platform
based on cryptology and blockchain technology. Information and Commu-
nications Technologies, 2016.



23

[39] Xinyu Yang, Xuebin Ren, Jie Lin, and Wei Yu. On binary decomposi-
tion based privacy-preserving aggregation schemes in real-time monitoring
systems. IEEE Trans. Parallel Distrib. Syst., 27(10):2967–2983, 2016.

[40] Andrea Zanella, Nicola Bui, Angelo Paolo Castellani, Lorenzo Vangelista,
and Michele Zorzi. Internet of things for smart cities. IEEE Internet of
Things Journal, 1(1):22–32, 2014.

[41] Yanqi Zhao, Yong Yu, Yannan Li, Gang Han, and Xiaojiang Du. Machine
learning based privacy-preserving fair data trading in big data market. Inf.
Sci., 478:449–460, 2019.

[42] Jiayu Zhou, Fengyi Tang, He Zhu, Ning Nan, and Ziheng Zhou. Dis-
tributed data vending on blockchain. In IEEE International Con-
ference on Internet of Things (iThings) and IEEE Green Comput-
ing and Communications (GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom) and IEEE Smart Data (SmartData),
iThings/GreenCom/CPSCom/SmartData 2018, Halifax, NS, Canada, July
30 - August 3, 2018, pages 1100–1107, 2018.

[43] Cong Zuo, Jun Shao, Joseph K. Liu, Guiyi Wei, and Yun Ling. Fine-grained
two-factor protection mechanism for data sharing in cloud storage. IEEE
Trans. Information Forensics and Security, 13(1):186–196, 2018.


