
ABERand: Effective Distributed Randomness on

Decentralized Ciphertext-Policy Attribute-Based

Encryption

Liang Zhang, Haibin Kan, Zening Chen, Ziqi Mao, and Jinjie Gao

Abstract—Distributed randomness is very useful for many
applications, such as smart contract, proof-of-stake-based
blockchain, elliptic curve generation and lottery. Randomness
beacon protocols are proposed, which are aimed at continuously
distributed randomness generation. However, a reliable source
of distributed randomness is gained with difficulty because of
Byzantine behavior, which may lead to bias for distributed
randomness. These Byzantine behaviors include, but not limited
to, the “last actor” problem, DoS attack and collusion attack.
Various cryptography schemes have been used to generate
distributed randomness. Current constructions face challenging
obstacles due to high complexity and bias problems. Given these
barriers, we propose a new protocol that is the first precept to
utilize attribute-based encryption in a commit-and-reveal scheme
for distributed randomness (ABERand). Compared to existing
public distributed randomness protocols, ABERand possesses
distinguished flexibility, security and efficiency. It is primarily
because of trading space for time. More specifically, we resolve
the “last actor” problem and make ABERand an intensive out-
put randomness beacon with communication complexity O(n3),
computation complexity O(1), verification complexity O(n) and
communication complexity O(n) of nodes adding/removing.

Index Terms—distributed randomness, ciphertext-policy
attribute-based encryption, space-for-time, commit-and-reveal,
blockchain

I. INTRODUCTION

How to generate public distributed random values among

mutually distrustful nodes over a distributed network was first

proposed by Blum [1] in 1981, thereby introducing coin-

tossing protocols. Public randomness beacon, which aims to

generate fresh, unpredictable and unbiased random values at

certain intervals, was formalized by Rabin [2] in 1983. Many

facts have indicated that the process of generating randomness

should be more public and transparent to establish credibility

and impartiality. For example, transparent machines with balls

flying inside which seems to create complete chaos for the

final result, are commonly used for national lotteries. However,

a method like this is exposed to be unreliable.1 The teams

Liang Zhang, Haibin Kan, Zening Chen, Ziqi Mao, and Jinjie Gao are
with Shanghai Key Laboratory of Intelligent Information Processing, School
of Computer Science, Fudan University, Shanghai 200433, P. R. China, and
Fudan-Zhongan Joint Laboratory of Blockchain and Information Security,
Shanghai Engineering Research Center of Blockchain, Shanghai Institute of
Intelligent Electronics & Systems, Shanghai Institute for Advanced Commu-
nication and Data Science, Shanghai, P.R. China, Email: hbkan@fudan.edu.cn

This work was supported by National Natural Science Foundation of
China (Grant No. 61672166), the Plan of Shanghai Excellent Academic
Leaders (Grant No. 16XD1400200), the Innovation Plan of Shanghai Science
and Technology (Grant No. 16JC1402700) and Shanghai Leading Talent
Programmes.

in NBA that missed the playoffs in the previous year will

participate in a lottery to determine the draft order to sign top

amateur players. Technologies related to blockchain [3], [4],

such as consensus protocols [5], [6] and smart contracts [7],

[8], have increased the demand for randomness beacons. These

situations indicate that random values should not be predicted

before being generated but must be publicized later. Recently,

coin-tossing protocols and distributed randomness beacons

have received increasing attention because randomness is both

a vital component and application of blockchain. It is critical

that the random number must be generated reliably.

The rise of blockchain has brought about a new perspective

on how to gain and how to use distributed randomness [5], [6],

[9], [10], [12]. Permissionless blockchain systems implement

consensus protocol by picking one or a subset of participants

to pack the new block and announce the network’s latest

state. Some blockchain systems select leaders via proof of

work (PoW) [3], in which candidates solve difficult puzzles.

However, the performance of PoW is low, and the compu-

tational cost of PoW is high. Proof-of-stake (PoS) [5], [11]

protocols, which rely on virtual resources, needs an algorithm

to elect a leader for packing the next block. Kiayias et al. [5]

pointed out that leader election is a fundamental issue of PoS-

based protocols since an adversary may manipulate the result

if any entropy is introduced. The generation of manipulation

resistant and unpredictable distributed randomness beacon is

a solution of leader election for PoS-based protocols. It is of

vital importance that distributed randomness beacons possess

properties of availability, unpredictability, bias resistance and

public verifiability [13]. In other words, public distributed ran-

domnesses should be unpredictable before generation, should

be unbiased at the time of generation, and should be publicly

verifiable after generation, even if there are malicious or

collusive participants. We follow the notions [13], [16] to

describe the properties of a beacon:

Liveness/Availability. For a majority of honest participants,

the protocol produces randomnesses output continuously.

Bias resistance. Each produced randomness is an unbiased

and uniformly random value.

Unpredictability. No one learns anything about the final

randomness until it is calculated.

Public verifiability. Any third party could verify the cor-

rectness of the final randomness with unforgeable proofs that

produced in the protocol.

Flexibility is also an important indicator that nodes in

the group could join or leave because of either crashes or

deliberation.

A. Background and Motivation

A substantial number of studies related to distributed

randomness beacon protocols have been published both in

academia and in the industry due to the rise of blockchain.

Some protocols, such as national lotteries [14], NIST Random-

ness Beacon2, and Lavarand3, rely on third parties or physical

sources of noises. Some other protocols abide by the commit-

and-reveal protocol or commitment scheme4 [17] principle.

In the commit-and-reveal protocol, values are chosen and

“locked” in the commit phase, and they are verified after the

reveal phase. To illustrate the protocols from the perspective

of cryptography, they are divided into PoW-based ones [9],

[15], hash-based ones [17], [18], publicly verifiable secret

sharing (PVSS)-based ones [5], [16], [19], and signature-based

ones [20], [21].

PoW-based method. In the traditional method, financial

data are regarded as a seed of public random numbers [22].

Heuristically, public random numbers can be obtained as a

side-effect of Bitcoin’s [9] proof-of-work-based consensus

system. Compared to traditional financial data, the bitcoin

market is open 24 hours a day, 7 days a week, and no

trusted or centralized party is needed to maintain the system.

The incentives of bitcoin consensus make every participant

scramble to publish the nonce of a new block header. The

nonce is therefore used to generate distributed randomness.

However, if a miner gets more benefit than the incentives from

manipulating the randomness by withholding attack [23], the

final randomness will be biased. [9] focused on analyzing the

financial cost when a miner withheld the nonce rather than

providing an unbiased solution. Pierrot et al. [24] presented a

detailed analysis of how a malicious entity could manipulate

the random numbers on a public blockchain, even with a

limited financial budget and computational power.

Hash-based method. Popov’s research [25] introduced the

principle of the hash-based distributed randomness protocol.

To solve the “last actor” problem, wherein the last one has the

option never to reveal his/her input, participants are divided

into groups, and strong settings are assumed. More precisely,

the settings are 1) at least one group contains only honest

members, and 2) no group consists entirely of colluding

parties. Iterated hash [17] is the basic idea to form a delay

function [17], [18], [26], which is also called a slow-time func-

tion. A delay function relies on proof-of-Work blockchain [18]

can get rid of the “last actor” problem.

PVSS-based method. In 1999, Schoenmakers [27] pro-

posed the publicly verifiable secret sharing (PVSS) scheme.

A dealer in PVSS is a temporary participant who distributes

shares according to his/her secret. PVSS is a verifiable secret

sharing scheme with the property that anyone can verify

the validity of the shares distributed by the dealer. It is

reported that Ouroboros [5] was the first to adopt PVSS as

a provably secure proof-of-stake blockchain protocol. It relies

on a combination of PVSS and other cryptographic primitives

to obtain the last verifiable randomness. To achieve scalability,

RandHound and RandHerd are systems with a failure proba-

bility of 0.08%, based on PVSS and collective signing [28].

Scrape [19] optimizes a variant of Schoenmakers’s PVSS with

an existing bulletin board. HydRand [13] was proposed as a

standalone, self-contained protocol with a permissioned and

fixed number of members system model.

Signature-based method. Algorand [20] builds a dis-

tributed ledger by combining a randomized Byzantine agree-

ment protocol [29] and a randomness beacon based on Veri-

fiable Random Function (VRF) [30]. VRF is used to produce

unique signatures. However, strictly speaking, the produced

randomness is not bias-resistant. Dfinity [21] is a blockchain

project, and its core technique lies in a decentralized random-

ness beacon, which acts as a VRF. The innovative beacon

is based on the threshold Boneh-Lynn-Shacham (tBLS) [31]

signature and distributed key generation (DKG) [32], [33].

B. Our Contributions

We define a totally decentralized threshold multi-authority

ciphertext-policy attribute-based encryption (MA CP-ABE,

more details in II-D)) protocol based on the Rouselakis’s

construction [34] and use it as a commit-and-reveal scheme

to construct ABERand as a public distributed randomness

beacon. In a commit-and-reveal scheme with the property of

enforcement 6, no adversaries could succeed to abort the proto-

col or bias the beacon in a meaningful way. Compared to PoW-

based, hash-based and other public-key based approaches,

ABERand solves the fatal “last actor” problem. Compared to

PVSS-based and signature-based approaches that share secrets

by broadcasting over the internet, ABERand hides secret

sharing (Linear Secret Sharing Schemes, LSSS) in ciphertext,

thus lowering complexity and enhancing flexibility. Moreover,

compared to currently existing methods, ABERand lowers

the computation and verification complexity on the whole.

The whole network communication complexity is O(n3),
permitting no more than 1/2 malicious nodes. The single

node computation complexity is only O(n) and the verification

complexity of final randomness is only O(1) in ABERand,

while the single node computation complexity is only O(1)
and the verification complexity of final randomness is only

O(n) in ABERand′. The network communication complexity

is only O(n) when nodes join or leave.

C. Organization

Section II introduces the notation and cryptographic prim-

itives that will be used throughout the paper. Section III

provides the model of our protocol. Section IV briefly gives

the idea of a totally decentralized threshold MA CP-ABE in a

commit-and-reveal scheme, followed by concrete construction

of ABERand in Section V. In section VI, we evaluate the

performance and properties of our protocols. Section VII,

we analyze the security and possible attacks of the protocol.

Finally, in section VIII, we conclude with directions for future

work.

II. PRELIMINARIES

In this section, we provide a brief review of the background

theory on access structures, linear secret-sharing schemes,

bilinear maps, CP-ABE, multi-authority CP-ABE, eXclusive-

OR to Generate Randomness and commit-and-reveal scheme.

A. Access Structures

Definition 1: [36] Let P = {P1, P2, ..., Pn} be a set of

parties. A collection A ⊆ 2{P1,P2,...,Pn} is monotone if for any

B and C, the following holds: if B ∈ A and C ⊆ B, then C ∈
A. An access structure is a collection A of nonempty subsets

of {P1, P2, ..., Pn}, i.e., A ⊆ 2{P1,P2,...Pn} \ {∅}. The sets

in A are called the authorized sets, and the sets not in A are

called the unauthorized sets.

In an ABE system, the roles of the parties are defined

by attributes. An access structure in ABE contains the au-

thorized sets of attributes. In our construction, we only con-

sider monotone access structures, which means that when a

user acquires more attributes, he will not lose his possible

decryption privileges. There are different forms to describe

access policies [38], such as minimal form access structures,

monotone boolean formulas, threshold-gate access trees and

monotone access trees. In this paper, we take advantage of

the threshold-gate access trees.

B. Linear Secret Sharing Schemes

Definition 2: [42] Let p be a prime and Ω be the attribute

universe. A secret sharing scheme Π with a domain of secrets

Zp realizing access structures on Ω is linear over Zp if:

1. The shares of a secret z ∈ Zp for each attribute form a

vector over Zp.

2. For each access structure A on Ω, there exists a matrix

a matrix A ∈ Z
l×n
p , called the share-generating matrix, and

a function σ that labels the rows of A with attributes from

Ω, i.e., σ: [l] −→ Ω, which satisfy the following: during the

generation of the shares, we consider the column vector υ

= (z, r2, ..., rn)
⊥, where r2, ..., rn

R
←− Zp. Then, the vector

of l shares of the secret z according to Π is equal to λ =

Aυ ∈ Z
l×1
p . The share λj with j ∈ [l] “belongs” to attribute

σ(j).

We will be referring to the pair (A, σ) as the policy of the

access structure A.

As shown in [36], any monotone access structure can be

achieved by a linear secret sharing scheme. Any monotone

access structure can be converted into LSSS matrices. [38]

C. Bilinear Maps and Complexity Assumption

Let G1 and GT be two multiplicative cyclic groups of prime

order p. Let g be a generator of G1 and e be a bilinear map,

e : G1 × G1 → GT . The bilinear map e has the following

properties [41]:

1. Bilinearity: for all µ, υ ∈ G1 and a,b ∈ Zp, we have

e(µa, υb) = e(µ, υ)ab.

2. Nondegeneracy: e(g, g) 6= 1.

3. Computability: There is an efficient algorithm for com-

puting e(µ, υ) ∀ µ, υ ∈ G1.

We call G1 a bilinear group if the group operation in

G1 and the bilinear map e : G1 × G1 → GT are both

efficiently computable. The above definition considers the so-

called symmetric groups, where the two arguments of the

pairing belong to the same group. In general, there exist

asymmetric bilinear groups, where e′ : G1 × G2 → GT and

G1, G2, and GT are three different groups of prime order p.

Several asymmetric instantiations of bilinear groups possess

beneficial properties such as faster operations under the same

security level and/or easier hashing to group elements.

Definition 3: (q-Decisional Parallel Bilinear Diffie-Hellman

Exponent 2 Assumption). [34] Choose a bilinear group G of

order p, and a non-degenerate bilinear mapping e : G1 × G1

→ GT . Let s,a,b1,b2,...,bq ∈ Zp, R ∈ GT choose at random.

Let

D =
(G, p, e, g, gs, {ga

i

}i∈[2q],i6=q+1, {g
bja

i

}(i,j)∈[2q,q],i6=q+1,

{gs/bi}i∈[q], {g
saibj/bj′}(i,j,j′)∈[q+1,q,q],j 6=j′)

No probabilistic polynomial-time algorithm A can distinguish

the tuple (D, e(g, g)sa
q+1

) from the tuple (D,R) with more

than a negligible advantage. The advantage of A is
∣

∣

∣
Pr[A(D, e(g, g)sa

q+1

) = 1]− Pr[A(D,R) = 1]
∣

∣

∣

where the probability is taken over the random choice of

s, a, b1, b2, ..., bq ∈ Zp, R ∈ GT , and the random bits con-

sumed by A.

D. Multi-Authority CP-ABE

A great variety of ABE schemes have been proposed,

and they are mainly divided into two categories: key-policy

attribute-based encryption (KP-ABE), such as in [39], [40],

and ciphertext-policy attribute-based encryption (CP-ABE),

such as in [41]–[44]. In the KP-ABE scheme, an access

structure is embedded in the secret key, and the ciphertext

is associated with an attribute set. In the CP-ABE scheme, an

attribute set is embedded in the secret key, and the ciphertext is

associated with an access structure. In our situation, CP-ABE

is our preferred choice. A nice feature of CP-ABE is that

data can be encrypted without knowledge of the decryptors.

Therefore, users can obtain keys for decryption sometime later

after the data have been encrypted with some specific policy.

Most existing CP-ABE schemes [41]–[44] have only one

authority that is responsible for attribute management and key

distribution. This one-authority scenario can be problematic

since the single authority can issue private keys to every user

in the system. If the authority is malicious or compromised,

the encrypted data are at risk. A multi-authority (MA) CP-

ABE [34] system is comprised of the following five algo-

rithms:

Global Setup(λ) −→ GP. it takes in the security parameter

λ and outputs global parameters GP for the whole system.

Authority Setup(GP, θ) −→ SKθ, PKθ. Each authority θ
takes GP as input to produce its secret key and public key

pair, SKθ, PKθ.

Encrypt(M, (A, σ), GP, {PKθ}) −→ CT. The algorithm

takes in a message M, an access structure (A, σ), a set of

public keys, and the global parameters. It outputs a ciphertext

CT.

KeyGen(GID, GP, u, SKθ) −→ Ku,GID. The algorithm

takes in an identity GID, the global parameters, an attribute

u belonging to the authority θ, and the secret key SKθ for

this authority. It produces a key Ku,GID for this attribute and

identity pair (GID, u).

Decrypt(CT, GP, {Ku,GID}) −→ M. The decryption algo-

rithm takes in the global parameters, the ciphertext, and a

collection of keys corresponding to the attribute and identity

pairs that all have the same fixed identity GID. Only and only

if the collection of attributes u satisfies the access structure

corresponding to the ciphertext, it outputs the message M.

Definition 4: [34] A multi-authority CP-ABE system is

said to be correct if GP is obtained from the global setup

algorithm, CT is obtained from the encryption algorithm on

the message M, and Ku,GID is a set of keys obtained from

the key generation algorithm for the same identity GID and

for a set of attributes satisfying the access structure of the

ciphertext, Decrypt(CT, GP, Ku,GID) = M.

E. eXclusive-OR (XOR) to Generate Randomness

Given a set S of pseudorandom numbers in the range [0,b]
that are uniformly distributed over the range and independent,

the XORing calculation on them produces a new pseudoran-

dom number in [0,b]. b is a power of 2.

Proof. It is easy to observe that the map x ↔ x⊕c is a

bijection over the range [0,b] regardless of the value of the

constant c. Thus, if x is uniformly distributed over the range,

then so is x⊕c. Since this is true for any constant c, it is also

true even if c itself is a random variable, as long as it does

not depend on x.

F. Commit-and-Reveal Scheme

A commit-and-reveal scheme or commitment scheme [45],

is an efficient two-phase protocol in which one commits itself

to a value or a statement. The committed result is commitment.

The scheme has the following two properties:

Secrecy/Hiding: At the end of the first phase (or commit

phase), no one else gains meaningful knowledge of the value

or statement, even by all means.

Unambiguity/Binding: There is only one value or statement

that is bound with the commitment even though one wants

to cheat. The only corresponding value or statement, when

uncovered, can be accepted as a legal “opening” of the

commitment in the second phase (or reveal phase).

III. SYSTEM AND THREAT MODEL

We assume a partially synchronized model with pairwise

connected but public channels network for broadcasting. An

upper bound-time of the maximum delay of the network is

∆t, and honest nodes could accomplish communication in

this period. An epoch is a round to produce a distributed

verifiable randomness, and we separate an epoch into several

steps for the commit-and-reveal scheme. Nodes in each epoch

are asynchronized, nodes in each step are asynchronized, but

each step in an epoch should be synchronized. We target the

number of participants in the system n in an epoch. f (< n/2)

is the maximum number of malicious nodes that may crash

or may cause Byzantine failures or disobey our protocol in an

epoch. Malicious nodes, also called adversaries, can send their

preset data through collaboration. A node is considered to be

honest if it abides by the protocol; otherwise, it is considered to

be faulty. We assume that the goal of the adversary is to bias

or DoS-attack the protocol. The sender signs each message

of the protocol. The counterparts only accept and act upon a

message if it is correctly signed. If the adversary could disobey

or abort the protocol by preventing the ciphertexts from being

decrypted, then bias is introduced into the final result. We are

considering adding or removing nodes in our model. There

should be a reputation system, for practical usage, to prevent

Sybil attack [37] that violates the f < n/2 assumption. And

the reputation system is beyond discussion in this paper.

IV. DECENTRALIZED THRESHOLD MA CP-ABE IN A

COMMIT-AND-REVEAL SCHEME

From [38], we can know that threshold-gate access tree

is equal to boolean formulas for an access structure. So a

multi-authority CP-ABE is born to be a threshold MA CP-

ABE. In some MA CP-ABE schemes, such as [34], [46],

[47], multiple authorities jointly manage the attribute sets of

the decryptors. [46] realizes a robust and verifiable multi-

authority access control system in public cloud storage, but it

has a certificate authority (CA). [34], [47] satisfy the scenario

in which attributes are obtained from different authorities

and guarantee that the secret key cannot be obtained by

any authority alone. However, the attribute universe of [47]

is restricted. A threshold MA CP-ABE scheme that is also

somewhat decentralized [35]. We adapt MA CP-ABE [34]

into a totally decentralized threshold MA CP-ABE protocol

to produce public distributed randomness. By adapting Rouse-

lakis’s MA CP-ABE into a totally decentralized threshold MA

CP-ABE, we mean his scheme is used in a decentralized

way. We inherit his static model of security and complexity

assumption [34].

A totally decentralized (t, n)-threshold multi-authority CP-

ABE is a protocol that everyone is an authority, an encryptor

and a decryptor. All participants have equal rights. It can

achieve fine-grained access in various situations. Here we only

consider a scenario in order that t-out-of-n could do “threshold

decryption” 5. In this scenario, the participants use threshold

access structures in which n attributes issued by n authorities

are specified explicitly. To make it simple, an authority makes

use of a publicly known value and his/her own identity as a

unique attribute and issue the corresponding key to a decryptor.

Concrete usage and construction in ABERand is described in

V and V-C. In order to satisfy above scenario, the KeyGen

algorithm should be invoked later than the Encrypt algorithm

which ensures Decrypt algorithm is later than the Encrypt

algorithm. In this way, we can make sure that an honest

participant’s ciphertext could act as a commitment.

Definition 5: threshold decryption. If an honest one of the

n participants encrypts a message with the above threshold

access structure. Later, any honest t-out-of-n could separately

run KeyGen to generate keys which are the inputs of the

Decrypt algorithm. No one needs to publicize their private

key.

Definition 6: Enforcement. If a committer in a commit-

and-reveal scheme is forced to open his/her commitment

with high probability, we say the scheme has the property

of enforcement. Enforcement is gained sometimes because

of economic incentives, sometimes because of cryptographic

primitives.

The decentralized threshold MA CP-ABE protocol works

well in the commit-and-reveal scheme to produce public

distributed randomness, because the Encrypt algorithm could

“lock” values in the commit phase, the KeyGen algorithm and

the Decrypt algorithm are done in the reveal phase. Apart from

secrecy and unambiguity, “threshold decryption” guarantees

the property of enforcement with an honest majority and a

synchronized clock.

Proof of Secrecy. One’s message is encrypted under the

security model and complexity assumption [34]. Except for

the possible keys generated by authorities, no other ways can

be obtained to get the message. Even the collusion of limited

malicious ones is impossible VII-A.

Proof of Unambiguity. A commitment (ciphertext) obtained

from encryption of a stated value can be bound to more than

one value is negligible. Furthermore, once a value is obtained

by the decryption algorithm, it is convincing that the decrypted

value is legal no matter whether the sender reveals it or not.

Proof of Enforcement. If a commitment (ciphertext) is well

constructed in which the access structure of it is well-defined.

An honest majority could always get the original stated value

through threshold decryption.

The totally decentralized (t, n)-threshold multi-authority

CP-ABE makes a commit-and-reveal scheme sound and

“atomic”, thus solving the “last actor” problem. To construct

distributed randomness beacon means that the reveal phase

should always be enforced correctly. The following sections

will depict, in detail, how to put decentralized threshold MA

CP-ABE into a commit-and-reveal scheme for the distributed

randomness beacon.

V. ABERAND PROTOCOL

A. System Overview

Figure 1 is the flowchart that summarizes the overview

of our protocol. During system setup, global parameters are

calculated in a public way or by a delay function [26]. A

participant generates his/her own private and public key pair

according to global parameters. All participants exchange their

public keys and store their secret keys privately. Each epoch

of ABERand beacon is separated into 7 phases in detail. Each

participant takes a random value as input and generates the

ciphertext in the 1st phase. In the 2nd phase, participants share

their ciphertexts. Then in the 3rd phase, participants generate

keys for the current epoch and broadcast keys in the 4th phase.

In the 5th phase, participants decrypt all valid ciphertexts and

obtain a final random number by calculating eXclusive-OR of

all messages in the 6th phase. Finally, the whole process can be

verified publicly in the last phase. Agreement on the random

number is automatic because of the correctness property of

the CP-ABE scheme. It is obvious that a peer-to-peer network

is utilized in the 2nd and 4th phases.

Same as CP-ABE [34], the threshold MA CP-ABE

implementation have attributes in the form of “[at-

tribute–id]@[authority–id]”. To distinguish the attributes and

to avoid collusion, the “attribute–id” and the “authority-id” are

case-sensitive alphanumeric strings. The mapping T mentioned

in Section V-C only extracts the part after the @ of the

attribute string. For simplicity, all the attributes in ABERand

follow the format of “k@nodeId”, where k is the current

epoch number, and “nodeId” is the authority’s identity. Ac-

tually, attributes in ABERand are necessary for three aspects.

Firstly, “[attribute–id]” represents the unique epoch number

as a common-sense according to our protocol; Secondly, “[at-

tribute–id]@[authority–id]” is used in access structure which

makes threshold cryptography possible. Thirdly, attributes are

designed in this way so that ABERand is a totally decen-

tralized protocol. In traditional public-key encryption schemes

without attributes, malicious participants have the opportunity

to hide their private key which will bias or abort distributed

randomness beacon.

B. Data Structure in Communication

In real application environments, the peer-to-peer network

is very complicated due to the free joining and exiting of

nodes and the existence of malicious nodes. To guarantee the

transferred data is valid, a sender signs data. To describe the

data structure, we simplify it as <message, ts, pk, sig>. The

signing process is noninteractive.

C. Details of the Protocol

System Initialization. The system invokes the

Global Setup algorithm in a public way and sets the

initial round variable k to 1 (k increases by 1 at the end

of every round). The global setup algorithm takes as input

the security parameter λ and chooses a suitable bilinear

group G of prime order p with generator g. It also defines

a function H that maps global identities GID to elements of

G and another function F that maps strings, interpreted as

attributes, to elements of G. Both of these functions will be

modeled as random oracles in the security proof. T: U −→
Uθ is a publicly computable mapping function that maps each

attribute to a unique authority θ.

The initial number of participants is n; thus, the number of

honest participants t should satisfy the demand t ≥ 1 + n/2.

Each of the n participants, with nodeIdθ as its identity, invokes

the Authority Setup algorithm and acquires key pairs {PKθ,

SKθ}. The authority setup algorithm chooses two random

exponents, αθ,yθ
R
←− Zp, and calculates [34]

PKθ = (e(g, g)αθ , gyθ), SKθ = (αθ, yθ).

Key Points:

0.1 global setup:

output: gp=<g1, g2, H, F>

0.2 auth setup:

input: gp

output: <pkθ, skθ>

1 encrypt:

input: Mθ=random(), {pkθ}, gp, policy = (t/n

of k@node1, k@node2, ..., k@nodeN)

output: CTθ

3 key generation:

input: skθ, gp attribute = {k@nodeθ}

output: keyθ

5 decrypt:

input: {CTθ}, {keyθ}, gp,{Mθ}

output: {M′θ} and {Mθ} ?= {M′θ}

6 calculate randomness

random = ⊕ {M′θ}

Fig. 1. System overview

All {PKθ}for all θ are public, while {SKθ}for all θ are pri-

vate. We denote ∆t as the upper bound overhead of one round

of communication when sharing data among participants.

Therefore, the global parameters of ABERand are GP =

{k, G1, g1, G2, g2, H, F, T, t, n, ∆t, {PKθ}for all θ,

{nodeIdθ}for all θ}. g1, g2 are the generators of G1 and G2,

respectively.

Encrypt and Broadcast Ciphertext. The Encrypt algo-

rithm takes as input a message M, an access structure (A, σ)

with A ∈ Zl×n, the public keys of the relevant authorities,

and the global parameters. The function ρ : [l] as ρ(·) =

T(σ(·)) to realize the mapping of rows to authorities. The

algorithm first creates vectors υ = (z, υ2, · · · , υn)
⊥ and

ω = (0, ω2, · · · , ωn)
⊥, where z, υ2, · · · , υn, ω2, · · · , ωn

R
←−

Zp. We let λx denote the share of z corresponding to row x,

i.e., λx = Axυ, and ωx denote the share of 0, i.e., ωx = Axω,

where Ax is the x-th row of A. For each row x of A, it chooses

a random tx
R
←− Zp. The ciphertext is computed as: [34]

C0 = Me(g, g)z ,

{C1,x = e(g, g)λxe(g, g)αρ(x)tx , C2,x = g−tx ,

C3,x = gyρ(x)txgωx , C4,x = F(σ(x))}

Each epoch starts when all participants begin to generate

their own random numbers. We use t0 to denote the current

time. The random number will be the input of the encrypt

algorithm. The access structure for the random number is

constructed as “t-of-n {k@nodeIdθ}for all θ” so that the

output ciphertext can be decrypted when t-out-of-n partic-

ipants combine their secret keys with attribute k@nodeIdθ
in the future. After generating ciphertext CTθ privately, all

participants broadcast their ciphertexts in the form of the data

structure mentioned in section V-B to each other via the peer-

to-peer network in the following period ∆t.

Generate and Broadcast Keys. The KeyGen algorithm

takes as input a global identifier GID, the identifier θ of the

authority, the attribute u, and the authority’s secret key and

the global parameters. It should be the case that u ∈T−1(θ),
i.e., the attribute is controlled by the specific authority. The

algorithm first chooses a random t
R
←− Zp, and then it outputs

the secret key: [34]

SKGID,u = {KGID,u = gαθH(GID)yθF (u)t,
K

′

GID,u = gt}

From t0 to t1, all participants have encrypted their

random values and shared them. At the time of t1,

participantθ/authorityθ starts to generate his/her key with the

attribute “k@nodeIdθ” for a known “virtual decryptor” GID.

Then, in the next ∆t, SKGID,u are exchanged in the form

of the data structure mentioned in section V-B among the

participants; subsequently, t2 (= t1 + ∆t). At the moment

t2, as long as more than t-out-of-n of the total nodes behave

honestly and have shared their real keys, they can decrypt the

valid ciphertexts generated at t0.

To accelerate the verification and to check out whether the

key is valid, we demand he/she to send two extra fields along

with the key, namely “affliated ct” and “M”. “affliated ct” is

a small affiliated ciphertext whose original message is “k” and

whose access structure is “1-of-1 k@nodeθ”. The key in this

way could be proved to be valid when used to decrypt the

affiliated ciphertext. “M” is the original random number Mθ

generated at t0, so that anyone could verify the decryption

with computation complexity O(1).
Decrypt ciphertexts. Let (A, σ) be the access struc-

ture of the ciphertext. If the decryptor has the secret keys

{KGID,σ(x),K
′

GID,σ(x)} for a subset of rows Ax of A such

that (1,0,· · · ,0) is in the span of these rows, then for each such

row x, he/she invokes the Decrypt algorithm by computing the

following: [34]

C1,x · e(KGID,σ(x), C2,x) · e(H(GID), C3,x) ·

e(K
′

GID,σ(x), C4,x) = e(g, g)λxe(H(GID), g)ωx

The decryptor then calculates constants cx ∈ Zp such that
∑

x cxAx = (1,0,· · · ,0) and computes:
∏

x(e(g, g)
λxe(H(GID), g)ωx)cx = e(g, g)z

This is true because λx = Axυ and ωx = Axω, where

(1, 0, · · · , 0)υ = z and (1, 0, · · · , 0)ω = 0. The message can

then be obtained as follows:

M = C0/e(g, g)
z

After collecting at least t honest participants’ keys, every

participant can run the Decrypt algorithm. Since keyθ is

associated with attribute “k@nodeθ”, with at least t reliably

generated keys, the decrypt algorithm runs soundly for every-

one.

Generate Random Number. By now, i.e., t2, the random

values {M ′
θ} independently generated by participants are

obtained with the decrypt algorithm. All participants calculate

exclusive-or for these random values and will obtain the same

random value for the current epoch of ABERand, i.e., res =

⊕{M ′
θ}.

All the broadcasted messages are recorded for public ver-

ification. The public verification could be done instantly just

by comparing res with ⊕{Mθ}.
Nodes Join/Leave. ABERand is a flexible protocol that per-

mits participants to join and leave freely. When a participant

joins, he/she runs the authority setup algorithm according to

the global parameters, keeps the secret key, and broadcasts the

public key. Meanwhile, the algorithm collects the counterparts’

public keys. Then, the t and n in the global parameters are

updated to t← 1+(n+1)/2, n← n+1. The new participant

will participate in the next epoch to distribute his/her random

value, which will finally be used in the XOR calculation. When

a node in the system leaves, if the time of leaving is in t0 ∼ t1,

his/her random value will be not included in current epoch’s

XOR calculation; if the time of leaving is in t1 ∼ t2, it will

have no impact on the final randomness of the current epoch.

Then set t← 1 + (n− 1)/2, n← n− 1.

Optimization. As mentioned in the above subsections, the

generating process of distributed randomness is divided into

a series of steps, i.e., t0 ∼ t1, and t1 ∼ t2. Although

each step is dependent on the previous steps, two continuous

randomness occurrences are independent. Specifically, with

pipelining optimization, ABERand can produce randomness

with any small interval. Pipelining does not reduce the time

that it takes to generate a random number, but it increases

the number of steps that can be processed simultaneously and

eliminates the delay between the generation of two random

values, thus increasing throughput. Figure 2 shows how to

optimize the randomness beacon in a pipelining way. In the

pipelining design, every random number is delivered by the

interval ∆t’ which is much smaller than ∆t, instead of 2∆t.

Fig. 2. Optimize randomness beacon in a pipelining way

Pseudocode. Algorithm 1 “ABERand” demonstrates how

one node participant in generating distributed verifiable ran-

domness beacon.

VI. IMPLEMENTATION AND EVALUATION

Framework. We implemented decentralized threshold MA

CP-ABE in Charm [48], which is a framework for constructing

cryptographic schemes and protocols. It is written in Python

language. The Charm framework relies on the gmp (GNU

multiple precision) arithmetic library and the PBC (pairing-

based cryptography) library written in C language. We imple-

mented the peer-to-peer network in which “ip:port” was used

to represent a node. All our experiments were executed on 8

cores of an Intel(R) Xeon(R) CPU E5-2690 v2 @ 3.00 GHz

with 32 GB RAM running Linux Ubuntu 4.10.0 and Python

3.6.7.

Implementation Details. We chose supersingular symmet-

ric EC group “SS512”, which is an asymmetric group in

our experiment. Namely, we had three groups, G1, G2 and

GT , and the pairing e was a function from G1 × G2 to GT .

The GID was set to the epoch k as a virtual decryptor. We

initiated from 2 to 24 nodes to test the randomness beacon ef-

ficiency, in which nodes were full connected. The nodes in the

network mainly responded to “NODECONNECTED”, which

represented a new connection event, and “NODEMESSAGE”,

which informed the node that new data are arriving.

Algorithm 1 ABERand on a nodeθ

1: procedure ABERAND

2: public keyθ, private keyθ = AuthSetup()

3: broadcast public keyθ
4: for all public key ∈ all received public key do

5: pass ← check signature of public key
6: if pass then

7: public key.append(public key)

8: while true do

9: CTθ ← Encrypt(RANDOM, policy, public keys)

10: broadcast CTθ

11: for all ct ∈ all received CTs do

12: pass ← check signature of ct
13: if pass then

14: CTs.append(ct)

15: KEYθ ← KeyGen(public keys, attributes)

16: broadcast KEYθ

17: for all key ∈ all received KEY do

18: pass ← check signature of key
19: if pass then

20: KEY s.append(key)

21: for all CT ∈ CTs do

22: RANDOM← Decrypt(CT, KEYs)

23: RANDOMs append RANDOM

24: random← ⊕{RANDOMs}
25: broadcast and record random

A. Properties of ABERand

Liveness/Availability: In the commit-and-reveal system

with decentralized MA CP-ABE, the protocol successfully

produces the final random output accurately. Since there are

a sufficient number of honest parties, the (t, n)-threshold

decryption ensures the enforcement 6 and guarantees the

finality of an epoch. With an honest majority, all parties join

in a commit-and-reveal game epoch after epoch, thus ensuring

the availability of ABERand.

Bias resistance: Hash or public-key encryption can also be

used in commit-and-reveal schemes in a distributed system to

lock value in the commit phase. However, a rushing adversary

who tries to speak the last may bias the result by revealing

or withholding its original value in the reveal phase. On the

contrary, adversaries cannot bias the value of the random

output with the property of enforcement 6 and property of

XOR calulation II-E. If f (< n/2) malicious parties try to

modify or abort the protocol, they can only gain parts of the

inputs for the XOR operation. If crashed participants fail to

participate or malicious adversaries deliberately broadcast bad

ciphertext in the commit phase, the original random of them

are omitted. No matter the values of malicious adversaries

are gained in advance or abandoned in the reveal phase, the

final random output represents an unbiased, uniformly random

value with at least one honest random input.

Unpredictability: There is an upper bound-time δt of the

network. In a commit-and-reveal scheme, for a committer, its

committed value can be known only after the reveal phase.

All committed values are locked and tamper-resistant. Once

the commitment is open, all values are obtained irreversibly,

including the ones of the adversaries. Only after authorities

generate keys in the reveal phase can nodes start to decrypt and

get the original value. No party can learn anything about the

final random output before the generated keys are broadcast.

In our commit-and-reveal scheme, the property of unambiguity

makes the original values definite, and the property of privacy

scheme makes the original values unpredictable. What’s more,

everyone could checkout whether another one is a malicious

one or not according to the decryption result.

Public verifiability: Public distributed randomness beacon

construction must be able to garner public belief in its fairness.

When having got the final randomness, any third party must

be able to verify that it is correctly generated with > t + 1
correct keys. The broadcasted data are public, which can be

used to replay the protocol and verify the result. If an adversary

can forge the verification process, the adversary must have

owned t-out-of-n of the secret keys in the system, violating

the assumption that at most f (< n/2) nodes are controlled

by the adversary. Therefore, any party could verify the legality

of the random output with computation complexity O(1) in

ABERand and O(n) in ABERand′.

Flexibility: ABERand considers the situation that nodes

join or leave. In a public-key cryptography system, such as

Bitcoin and Ethereum, nodes join or leave without affecting

others whose communication complexity is O(1). In PVSS or

DKG ones, nodes have to negotiate with each other to re-run

PVSSS or DKG, which is at least communication complexity

of O(n2). While in our protocol, nodes are decentralized

with respective long-term key pair. Other nodes only need to

be notified with the node which is joining or leaving. The

join/leave event that happens in the connected network costs

communication complexity of O(n), and other nodes hardly

need to do anything except for updating t and n.

B. Performance Analysis

For a distributed randomness beacon, the frequency of pro-

ducing a random value is critical. We mostly focus on the time

consumption in our experiment and analyze the bottleneck

parts that prevent our protocol from speeding up. We first

provide a chart depicting the overhead of the decentralized

threshold multi-authority CP-ABE scheme. Then, we imple-

ment the scheme in a real peer-to-peer network environment

and provide charts describing the overhead of each step in our

protocol. Finally, we analyze the experimental data and draw

conclusions.

Figure 3 shows that the encryption and key generation time

cost increase linearly with the number of attribute authorities.

Figure 4 shows the decryption time cost comparison between

t = n/2 and t = n ∗ 2/3. Figure 5 shows that the ciphertext

size increases linearly with the number of attribute authorities.

All of the above are tested on one core of the CPU group.

Figure 6 shows the histogram of the comparison of the time

cost of different steps in ABERand. We can conclude that

0 20 40 60 80 100

0

0.5

1

number of participants

ti
m

e
co

st
(s

)
encryption

key generation

Fig. 3. Encryption and key generation cost

0 20 40 60 80 100

0

0.2

0.4

number of participants

ti
m

e
co

st
(s

)

t = n/2

t = n ∗ 2/3

Fig. 4. Decryption cost

the “Dec” is the most time-consuming step in ABERand

if ciphertexts are decrypted one after one. However, these

decryptions can be done simultaneously if a node has enough

computation resources.

When the group size is 100, a node in an epoch produces

∼8MB data which could be further compressed. To get the

final beacon value, it takes ∼0.9s to encrypt, ∼1.1s to generate

key and ∼0.3s × 100 to decrypt. To optimize, the decryp-

tions could be done in parallel. Because of limited system

resources, deviation exists when conducting experiments in

a fully connected network. To test ABERand, we prepare 2

running environments, i.e., 2 to 24 nodes run on one physical

machine and on 6 physical machines. All 8 cores of the CPU

groups of a machine are used in the above two situations.

Figure 7 provides the results to compare the frequency of

the distributed randomness in the 2 different environments. It

is evident that when the number of participants is ≤ 8 (8 is

the number of cores of a machine), the overhead of ABERand

in the two situations is nearly the same. It also implies that

performance is much better if one machine runs only one node.

Figure 8 shows the average CPU usage of a machine in the 2

different environments.

Since original random number is along with key in “Gener-

ate and Broadcast Keys” phase, see more in V-C. An exciting

optimization is that the original random number is directly

used for the final randomness and decryption is only used

for verification. Thus, the computation complexity is O(1),

0 20 40 60 80 100

0

20

40

60

number of participants

ci
h
p
er

te
x
t

si
ze

(k
B

)

Fig. 5. Ciphertext sizes against number of AAs

2 3 4 5 6 7

0.1

0.2

0.3

number of participants

ti
m

e
co

st

CT Key Dec

Fig. 6. Cost of different steps with different nodes

CT: cost of generating and broadcasting cihpertexts;

Key: cost of generating and broadcasting keys;

Dec: cost of decryptions.

and the verification complexity is O(n). We call this protocol

ABERand′. Figure 9 and figure 10 depict the performance of

ABERand′, and the results show great improvement compared

to figure 7 and figure 8.

For a participant, ABERand receives n− 1 ciphertexts and

n − 1 keys and performs n times of decryptions. In the

broadcast environment, one node receives data from n − 1
counterparts, and a ciphertext size is O(n), so the total com-

munication overhead is (n3), and the one node computation

overhead is O(n). Decryptions are dense for a node, but could

be calculated in parallel. With multiple nodes on one physical

machine, there is no much difference using pipelining methods

in our testing experiment.

C. Comparison

With Hash-Based or PoW-Based. Hash-Based method is

a basic idea to implement the commit-and-reveal protocol to

resist tampering. However, it has the “last actor” problem.

When a participant receives all counterparts’ original ran-

0 5 10 15 20 25

0

2

4

6

8

10

12

number of participants

ti
m

e
co

st
(s

)
ABERand on one machine

ABERand on 6 machines

Fig. 7. Total cost of ABERand randomness

0 5 10 15 20 25

0
20
40
60
80

100

number of participants

av
er

ag
e

C
P

U
u
sa

g
e Average CPU usage on one machine

Average CPU usage on 6 machines

Fig. 8. CPU usage of ABERand randomness

doms, he/she could compute the final beacon results. If the

result is little of an advantage to him/her, he/she could abort

the commit-and-reveal protocol, which is fatal to distributed

randomness beacons. ABERand achieves the commit-and-

reveal protocol which has no “last actor” problem because of

threshold cryptography. Iterated hash [17] or verifiable delay

function [26] suffers from the problem of how to set a specific

time to delay. It has to rely on a proof-of-work blockchain to

produce a distributed randomness beacon, which may bias the

result as described in the previous part. The consensus algo-

rithm and a standalone distributed randomness are somewhat

chicken and egg situation. ABERand is a standalone protocol

that could enhance the ability of a blockchain rather than rely

on it.

With PVSS-Based. PVSS-based projects [5], [16], [19]

are mainly pragmatic and complex. In PVSS-Based methods,

computation and verification are intensive and costly. The

communication complexity of most of them are O(n3). Rand-

Hound and RandHerd [16] use PVSS and other cryptographic

primitives, such as BFT and Collective Signature [28] to

support scalability. They lowered communication complexity

to O(c2 · n) and O(c2 · logn) where c is the group size.

However, they have the “self-DoS” problem and a high

faulty probability of 0.08%. Scrape [19] lowered PVSS to

communication complexity of O(n2), which uses a public

bulletin board. Hydrand [13], which makes use of Scrape’s

protocol, lowered communication complexity to O(n2) by

0 5 10 15 20 25

0

2

4

6

8

10

12

number of participants

ti
m

e
co

st
(s

)

ABERand′ on one machine

ABERand′ on 6 machines

Fig. 9. Total cost of ABERand′ randomness

0 5 10 15 20 25

0
20
40
60
80

100

number of participants

av
er

ag
e

C
P

U
u
sa

g
e Average CPU usage on one machine

Average CPU usage on 6 machines

Fig. 10. CPU usage of ABERand′ randomness

running one PVSS in a round. It has to wait for f+1 rounds to

produce a distributed randomness in Hydrand, and all nodes

have to be “online” which is hardly possible in a practical

peer-to-peer system. Hydrand has a strong assumption that the

number of participants is fixed and it ignores the “flexibility”

property of a beacon. ABERand permits nodes join or leave

with communication complexity of O(n) and could produce

randomness simultaneously with parallel running epochs. In

addition, ABERand has no DoS attack and solves the “last

actor” problem which both may lead bias to a beacon. In a

word, ABERand is more flexible, bias-resistant and effective.

With BLS-Based. Dfinity [21] combines DKG and BLS

to produce distributed randomness. DKG requires the com-

munication complexity of at least O(n2) to share secrets

securely. When f evil nodes exist, f “complaints” [33] will

be broadcasted which will delay the protocol, and the worst

communication complexity of running DKG is O(n2 · f). For

this reason, in our opinion, to lower the communication cost

and improve efficiency, participants are divided into small

groups by threshold relay protocol [21]. Groups in Dfinity5

are fixed in each epoch, which brings the faulty probability

of 10−17. Parameters, such as group size, epoch interval,

may further affect the availability when members leave since

it will take long (e.g., one week) to update a group. DKG

of Dfinity uses Joint-Feldman verifiable secret sharing [33],

which was proved to be insecure [33] in some situations. The

security of such a system (DKG + tBLS) needs to be more

Protocol
Availability/

Faulty prop.

Comm.

Complexity

Unpredi-

ctability

Bias-

resistant

Comp.

complexity

Add/remove

participant

Verification

Comp.

Trusted

dealer
DKG

Byzantine

nodes

Algorand 1e-12 O(cn) √ × O(c) O(n2) O(1) × × < n/3

Dfinity 1e-17 O(cn) √ √ O(c) O(n2) O(1) × √ < n/2

Ouroboros √ O(n3) √ √ O(n3) O(n3) O(n3) × × < n/2

Scrape √ O(n3) √ √ O(n2) O(n2) O(n2) × × < n/2

RandHound 0.08% O(c2 n) √ √ O(c2 n) O(n2) O(c2 n) × × < n/3

RandHerd 0.08% O(c2logn) √ √ O(c2 log n) O(n2) O(1) √ × < n/3

PoW √ O(n) √ × very high O(1) O(1) × × < n/2

Hydrand √ O(n2) √ √ O(n) very high O(n) × × < n/3

ABERand √ O(n3) √ √ O(n) O(n) O(1) × × < n/2

ABERand′ √ O(n3) √ √ O(1) O(n) O(n) × × < n/2

Fig. 11. Comparisons based on Hydrand’s [13]

The “Availability/Faulty prop.” column shows the result whether it is bias-resistant. The “Comm. Complexity” column gives the

total network communication cost. The “Unpredictability” column shows whether the final result of an epoch can be predicted.

The “Comp. complexity”, “Add/remove participant” and “Verification Comp.” columns show the computation cost in one node

with one processor. The “Trusted dealer” and “DKG” columns show whether a trusted dealer and DKG is needed, respectively.

The “Byzantine nodes” column gives the permitted maximum amount of malicious nodes.

discussed. Compared to BLS-based protocol, ABERand is a

standalone randomness beacon independent of any blockchain

or public bulletin board. Multiple epochs in ABERand could

generate randomness simultaneously. Most importantly, no

DKG protocol is needed, and a participator’s public key and

private key pair are once and for all.

When considering adding/removing participants, the partici-

pants in PVSS-based or BLS-based methods have to re-run the

PVSS or DKG protocol, both of which need secret sharing and

cost at least O(n2). ABERand uses a decentralized threshold

MA CP-ABE scheme whose ciphertext already contains secret

sharing (LSSS). When the CP-ABE scheme is combined with

a commit-and-reveal scheme, a ciphertext not only contains

“shares” [27] but also acts as “commitment”. Figure 11 gives a

detailed comparison of various distributed randomness beacon

mentioned in section I.

In a word, our construction is more simpler, flexible, bias-

resistant and effective, because CP-ABE uses space to ex-

change time to lower complexity by hiding secret sharing in

ciphertexts.

VII. POSSIBLE ATTACKS AND SECURITY

Possible attacks on ABERand are analyzed below, which

proves that ABERand is a secure and sound protocol.

A. Collusion Attack

To prevent collusion attacks, we prove that ABERand is

secure in two aspects.

On the one hand, from the perspective of the MA CP-

ABE scheme [34], the global identities are “tied” together

with the various attributes that belong to a specific user so

that they cannot be successfully combined with another user’s

attributes in the decryption. More specifically, the encryption

algorithm blinds the message M with e(g1, g1)
s, where g1

is a generator of the subgroup Gp1
, and s is a randomly

chosen value in ZN . The value s is then split into shares

λx according to the LSSS matrix, and the value 0 is split

into shares ωx. The decryptor must recover the blinding factor

e(g1, g1)
s by pairing their keys for the attribute and identity

pairs (i, GID) with the ciphertext elements to obtain the shares

of s. In doing so, the decryptor will introduce terms of the

form e(g1, H(GID))ωx . If the decryptor has a satisfying set

of keys with the same identity GID, these additional terms will

be canceled from the final result since the ωxs are shares of 0.

If two users with different identities GID and GID′ attempt to

collude and combine their keys, then there will be some terms

of the form e(g1, H(GID))ωx and some terms of the form

e(g1, H(GID′))ωx
′ , and these will not cancel with each other,

thereby preventing the recovery of e(g1, g1)
s. In summary,

keys in different epochs of ABERand are one-shot and could

not be combined.

On the other hand, according to the ABERand protocol

specification, the number of malicious parties f < n/2.

Therefore, in the “worst case”, these malicious parties collude

with each other in advance to decrypt the ciphertexts. Honest

parties abide by the protocol and set the threshold t, which is

higher than n/2. Since the threshold t > f , f malicious parties

fail to decrypt ciphertexts even if they share their keys in

advance, thus preventing collusion when producing distributed

randomness.

B. Attacks on ABERand

An epoch of ABERand has four stages in general when

considering the interaction among nodes. Participants join or

leave at the 1st stage; Participants encrypt a random value

and broadcast ciphertexts of their randoms at the 2nd stage;

Participants generate and broadcast keys at the 3rd stage;

Participants compute the final randomness at the 4th stage.

There is a timeout ∆t for the broadcasting stage.

Join/Leave Attack: When a participant joins after the 1st

stage, other nodes increase t and n by 1 and the new joint

one will participate in the next epoch. If a participant leaves

at the before the 2nd stage, it contributes none to the final

randomness of the current epoch; If it leaves at later stages, its

original randomness will be obtained through the decryption

by the honest ones. It neither bias the result to any one’s favor

because of XOR operation II-E nor aborts the whole process

because of the enforcement of our protocol 6.

Access Structure Attack: Malicious participants may use

a different access structure in the 2nd stage, thus producing an

illegal ciphertext. No matter whether the ciphertext could be

decrypted by more than f+1 honest ones, it will be abandoned

for the current epoch of the beacon.

KeyGen Attack: In the 3rd stage, since participant θ sends

a ciphertext whose original message is “k” and whose ac-

cess structure is “1-of-1 k@nodeθ”. Others could check out

whether the key is valid through decrypting the ciphertext. If

the key is failed to decrypt the associated ciphertext, it will not

be used in the decryption step. The original random value of

this participant is abandoned without affecting the final result

because of II-E. In addition, the one who provides a failure

key will be exposed to everyone. With an honest majority, the

whole process will go on.

Message(Ciphertext) Attack: In broadcasting stages, mes-

sages can be verified to be untampered with public key and

signature in the messages. Nodes are connected so that no

malicious one could cheat them by broadcasting different

ciphertexts. Any malicious participant could send a forged

ciphertext, thus leading to failure of decryption at the 3rd

stage. It is a situation the same as Join/Leave Attack in the

1st stage.

Public Key Attack: If a malicious participant joins and

broadcasts a fake public key, which is similar to the situation

that a participant loses his/her private key. Without a private

key, the participant will not produce the correct key in the 3rd

stage. It is a situation the same as Join/Leave Attack in the

1st stage.

Randomness Attack: Malicious participants may try col-

luding to decrypt the honest parties′ ciphertext in advance;

however, they will fail because f is less than n/2. Moreover,

they cannot stop honest ones from obtaining randomness

in each epoch under the commit-and-reveal scheme using

decentralized threshold MA CP-ABE.

DoS Attack: Malicious participants at any stage, could

deny obeying the protocol. If they initiate the DoS attack at

the 1st and 2nd stage, it is a situation the same as Join/Leave

Attack; If they attack at later stages, it is a situation the same

as Message Attack or KeyGen Attack.

Sybil Attack: As mentioned in “system and threat model”

section III, nodes are authenticated to participate and generate

distributed randomness. With “nodeId” as each node’s public

unique identity, all nodes are registered and recognized in our

protocol. No adversary could create a majority of colluding

nodes (f >= n/2) in our setting to start a Sybil attack.

VIII. CONCLUDING REMARKS

In this paper, we adapt Rouselakis’s MA CP-ABE to

the decentralized (t, n)-threshold MA CP-ABE approach, in

which t-out-of-n participants generate keys for decryption,

and propose a flexible distributed randomness beacon, named

ABERand. The decentralized (t, n)-threshold MA CP-ABE

approach is used as a commit-and-reveal scheme. ABERand

extends the commit-and-reveal scheme to obtain property of

enforcement 6. CP-ABE hides secret sharing in ciphertext

which results in lower complexity and high flexibility.

To further lower the communication cost and to improve the

performance in a real production environment, sharding [49]

is a direction from an engineering point and constant size

ciphertext ABE [50], [51] could be adopted from a theoretical

view for future job.

NOTES

1http://en.wikipedia.org/wiki/1980 Pennsylvania Lottery scandal
2https://www.nist.gov/programs-projects/nist-randomness-beacon
3https://en.wikipedia.org/wiki/Lavarand
4https://en.wikipedia.org/wiki/Commitment scheme
5https://dfinity.org/pdf-viewer/pdfs/viewer?file=../library/threshold-relay-

blockchain-stanford.pdf

REFERENCES

[1] M. Blum. Coin flipping by telephone. In Allen Gersho, editor, CRYPTO
’81, volume ECE Report 82-04, pages 11–15. U.C. Santa Barbara, Dept.
of Elec. and Computer Eng., 1981.

[2] M. O. Rabin. Transaction protection by beacons. J. Comput. Syst. Sci.,
27(2):256–267, 1983.

[3] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[4] Garay J., Kiayias A., Leonardos N. (2015) The Bitcoin Backbone
Protocol: Analysis and Applications. In: Oswald E., Fischlin M. (eds)
Advances in Cryptology - EUROCRYPT 2015. EUROCRYPT 2015.
Lecture Notes in Computer Science, vol 9057. Springer, Berlin, Heidel-
berg.

[5] Kiayias, A., Konstantinou, I., Russell, A., David, B.M., Oliynykov, R.
(2016). A Provably Secure Proof-of-Stake Blockchain Protocol. IACR
Cryptology ePrint Archive, 2016, 889.

[6] S. Azouvi, P. McCorry, and S. Meiklejohn. Winning the caucus
race: Continuous leader election via public randomness. arXiv preprint
arXiv:1801.07965, 2018.

[7] Vitalik Buterin et al. A next-generation smart contract and decentralized
application platform. white paper, 2014.

[8] Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Char-
alampos Papamanthou. Hawk: The blockchain model of cryptography
and privacy-preserving smart contracts. In 2016 IEEE Symposium on
Security and Privacy, pages 839–858. IEEE Computer Society Press,
May 2016.

[9] Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. On bitcoin
as a public randomness source. Cryptology ePrint Archive, Report
2015/1015, 2015. http://eprint.iacr.org/2015/1015.

[10] M. Milutinovic, W. He, H. Wu, M. Kanwal, ”Proof of luck: An
efficient blockchain consensus protocol”, Proc. 1st Workshop Syst.
Softw. Trusted Execution (SysTEX), pp. 1-6, 2016.

[11] King, S., Nadal, S. Ppcoin: Peer-to-peer crypto-currency with proof-of-
stake. 2012

[12] Albert Kwon, David Lu and Srinivas Devadas. XRD: Scalable Mes-
saging System with Cryptographic Privacy. Cryptology ePrint Archive,
2019. http://arxiv.org/abs/1901.04368.

[13] Schindler, Philipp, Aljosha Judmayer, Nicholas Stifter and Edgar R.
Weippl. HydRand : Efficient Continuous Distributed Randomness.
(2019).

[14] Thomas Baignères and Cécile Delerablée and Matthieu Finiasz and
Louis Goubin and Tancrède Lepoint and Matthieu Rivain. Trap Me If
You Can – Million Dollar Curve. (2015)

[15] I. Bentov, A. Gabizon, and D. Zuckerman. Bitcoin beacon.
https://arxiv.org/pdf/1605.04559v2, 2016. Accessed: 2016-06-06.

[16] E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser, I. Khoffi, M. J.
Fischer, and B. Ford. Scalable Bias-Resistant Distributed Randomness.
In Security and Privacy (SP), 2017 IEEE Symposium on, pages 444–
460. IEEE, 2017. Accessed: 2017-08-20.

[17] A. K. Lenstra and B. Wesolowski. A random zoo: sloth, unicorn, and
trx. Cryptology ePrint Archive, Report 2015/366, 2015.

[18] B. Bunz, S. Goldfeder, and J. Bonneau. Proofs-of-delay and randomness
beacons in Ethereum. In S&B ’17: Proceedings of the 1st IEEE Security
& Privacy on the Blockchain Workshop, April 2017. Accessed: 2017-
08-21.

[19] I. Cascudo and B. David. Scrape: Scalable randomness attested by public
entities. http://eprint.iacr.org/2017/216, 2017. Accessed: 2017-03-24.

[20] Yossi Gilad and Rotem Hemo and Silvio Micali and Georgios Vlachos
and Nickolai Zeldovich. Algorand: Scaling Byzantine Agreements for
Cryptocurrencies. (2017)

[21] Timo Hanke, Mahnush Movahedi, and Dominic Williams.
DFINITY Technology Overview Series, Consensus System.
CoRR, Vol. abs/1805.04548 (2018). arxiv: 1805.04548
http://arxiv.org/abs/1805.04548

[22] Jeremy Clark and Urs Hengartner. On the use of financial data as a
random beacon. Proceedings of the 2010 international conference on
Electronic voting technology/workshop on trustworthy elections, p.1-8,
August 09-10, 2010, Washington, DC

[23] S. Bag, S. Ruj and K. Sakurai, ”Bitcoin Block Withholding Attack:
Analysis and Mitigation,” in IEEE Transactions on Information Foren-
sics and Security, vol. 12, no. 8, pp. 1967-1978, Aug. 2017. doi:
10.1109/TIFS.2016.2623588

[24] C. Pierrot and B. Wesolowski (2016). Malleability of the blockchain’s
entropy. Cryptography and Communications, 10, 211-233.

[25] S. Popov (2016). On a decentralized trustless pseudo-random number
generation algorithm. IACR Cryptology ePrint Archive, 2016, 228.

[26] Dan Boneh, Joseph Bonneau, Benedikt Bunz, and Ben Fisch. Verifiable
delay functions.In CRYPTO 2018, 2018.

[27] Schoenmakers B. (1999) A Simple Publicly Verifiable Secret Sharing
Scheme and Its Application to Electronic Voting. In: Wiener M. (eds)
Advances in Cryptology — CRYPTO’ 99. CRYPTO 1999. Lecture
Notes in Computer Science, vol 1666. Springer, Berlin, Heidelberg

[28] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,
N. Gailly, I. Khoffi, and B. Ford. Keeping Authorities “Honest or Bust”
with Decentralized Witness Cosigning. In 37th IEEE Symposium on
Security and Privacy, May 2016.

[29] S. Micali. (2017). Byzantine Agreement , Made Trivial.

[30] Micali, Silvio, Michael O. Rabin and Salil P. Vadhan. “Verifiable
Random Functions.” FOCS (1999).

[31] Boneh D., Lynn B., Shacham H. (2001) Short Signatures from the Weil
Pairing. In: Boyd C. (eds) Advances in Cryptology — ASIACRYPT
2001. ASIACRYPT 2001. Lecture Notes in Computer Science, vol 2248.
Springer, Berlin, Heidelberg

[32] Pedersen T.P. (1991) A Threshold Cryptosystem without a Trusted Party.
In: Davies D.W. (eds) Advances in Cryptology — EUROCRYPT ’91.
EUROCRYPT 1991. Lecture Notes in Computer Science, vol 547.
Springer, Berlin, Heidelberg

[33] Gennaro R., Jarecki S., Krawczyk H., Rabin T. (1999) Secure Distributed
Key Generation for Discrete-Log Based Cryptosystems. In: Stern J.
(eds) Advances in Cryptology — EUROCRYPT ’99. EUROCRYPT
1999. Lecture Notes in Computer Science, vol 1592. Springer, Berlin,
Heidelberg

[34] Rouselakis Yannis, Waters Brent. (2015). Efficient Statically-Secure
Large-Universe Multi-Authority Attribute-Based Encryption. IACR
Cryptology ePrint Archive. 2015. 315-332. 10.1007978-3-662-47854-
7 19.

[35] H. Lin, Z. Cao, X. Liang, and J. Shao. Secure threshold multi authority
attribute based encryption without a central authority. In INDOCRYPT,
pages 426–436, 2008.

[36] A. Beimel. Secure schemes for secret sharing and key distribution. Ph.D.
dissertation, Israel Institute of Technology, Technion, Haifa, Israel, 1996.

[37] J. R. Douceur. The Sybil attack. In 1st International Workshop on Peer-
to-Peer Systems (IPTPS), Mar. 2002.

[38] Liu, Z. J. et al. Efficient Generation of Linear Secret Sharing Scheme
Matrices from Threshold Access Trees. (2014).

[39] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption
for fine-grained access control of encrypted data. in Proc. 13th ACM
Conf. Comput. Commun. Security, 2006, pp. 89–98.

[40] N. Attrapadung, B. Libert, and E. Panafieu. Expressive key-policy
attribute-based encryption with constant-size ciphertexts. in Proc. 14th
Int. Conf. Practice Theory Public Key Cryptography, 2011, pp. 90–108.

[41] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-
based encryption. in Proc. IEEE Symp. Security Privacy, 2007, pp.
321–334.

[42] B. Waters. Ciphertext-policy attribute-based encryption: An expressive,
efficient, and provably secure realization. in Proc. 14th Int. Conf.
Practice Theory Public Key Cryptography, 2011, pp. 53–70.

[43] V. Goyal, A. Jain, O. Pandey, and A. Sahai. Bounded ciphertext policy
attribute based encryption. in Proc. 35th Int. Colloquium Automata,
Lang. Programm., 2008, pp. 579–591.

[44] R. Bobba, H. Khurana, and M. Prabhakaran. Attribute-sets: A practically
motivated enhancement to attribute-based encryption. in Proc. 14th Eur.
Symp. Res. Comput. Security, 2009, pp. 587–604.

[45] Oded Goldreich. Foundations of Cryptography, volume II. Cambridge
University Press, 2004.

[46] Li W, Xue K, Xue Y, Hong J. (2015). TMACS: a robust and verifiable
threshold multi-authority access control system in public cloud storage.
IEEE Trans Inf Forensics Secur 10(1):55–68

[47] Lewko A, Waters B (2011). Decentralizing attribute-based encryption.
In: Advances in cryptology–EUROCRYPT 2011, Springer, NewYork,
pp 568–588

[48] Joseph A. Akinyele, Matthew Green, and Avi Rubin. Charm: A frame-
work for rapidly prototyping cryptosystems. Cryptology ePrint Archive,
Report 2011/617, 2011. http://eprint.iacr.org/.

[49] Loi Luu , Viswesh Narayanan , Chaodong Zheng , Kunal Baweja ,
Seth Gilbert , Prateek Saxena, A Secure Sharding Protocol For Open
Blockchains, Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, October 24-28, 2016, Vienna,
Austria [doi: 10.1145/2976749.2978389]

[50] Doshi Nishant, and DeveshJinwala, ”Constant ciphertext length in multi-
authority ciphertext policy attribute based encryption.”, In Computer and
Communication Technology (ICCCT), 2011 2nd International Confer-
ence on, pp. 451-456, 2011.

[51] Zhang, Y., Li, J., Yan, H.: Constant size ciphertext distributed CP-ABE
scheme with privacy protection and fully hiding access structure. IEEE
Access 7, 47982–47990 (2019)

	Introduction
	Background and Motivation
	Our Contributions
	Organization

	Preliminaries
	Access Structures
	Linear Secret Sharing Schemes
	Bilinear Maps and Complexity Assumption
	Multi-Authority CP-ABE
	eXclusive-OR (XOR) to Generate Randomness
	Commit-and-Reveal Scheme

	System and Threat model
	Decentralized Threshold MA CP-ABE in a Commit-and-Reveal Scheme
	ABERand Protocol
	System Overview
	Data Structure in Communication
	Details of the Protocol

	Implementation and Evaluation
	Properties of ABERand
	Performance Analysis
	Comparison

	Possible Attacks and Security
	Collusion Attack
	Attacks on ABERand

	Concluding remarks
	References

