
Secure Evaluation of Quantized Neural Networks

Assi Barak∗ Daniel Escudero† Anders Dalskov† Marcel Keller‡

Abstract

Machine Learning models, and specially convolutional neural networks (CNNs), are
at the heart of many day-to-day applications like image classification and speech recog-
nition. The need for evaluating such models whilst preserving the privacy of the input
provided increases as the models are used for more information-sensitive tasks like
DNA analysis or facial recognition. Research on evaluating CNNs securely has been
very active during the last couple of years, e.g. Mohassel & Zhang (S&P’17) and Liu
et al. (CCS’17), leading to very efficient frameworks like SecureNN (ePrint:2018:442),
which can perform evaluation of some CNNs with a multplicative overhead of only
17–33 with respect to evaluation in the clear.

We contribute to this line of research by introducing a technique from the Machine
Learning domain, namely quantization, which allows us to scale secure evaluation
of CNNs to much larger networks without the accuracy loss that could happen by
adapting the network to the MPC setting. Quantization is motivated by the de-
ployment of ML models in resource-constrained devices, and we show it to be useful
in the MPC setting as well. Our results show that it is possible to evaluate realistic
models—specifically Google’s MobileNets line of models for image recognition—within
seconds.

Our performance gain can be mainly attributed to two key ingredients: One is
the use of the three-party MPC protocol based on replicated secret sharing by Araki
et al. (S&P’17), whose multiplication only requires sending one number per party.
Moreover, it allows to evaluate arbitrary long dot products at the same communication
cost of a single multiplication, which facilitates matrix multiplications considerably.
The second main ingredient is the use of arithmetic modulo 264, for which we develop
a set of primitives of indepedent interest that are necessary for the quantization like
comparison and truncation by a secret shift.

1 Introduction

Machine Learning (ML) models are becoming more relevant in our day-to-day lives due to
their ability to perform predictions on several types of data. Neural Networks (NNs), and
in particular convolutional neural networks (CNNs), have emerged as a possible solution
for many real-life problems such as facial recognition [36], image and video analysis for
self-driving cars [7] and even for playing boardgames (most readers probably know of Al-
phaGo [52] which in 2016 beat one of the best Go players currently alive, Lee Sedol [60]).
CNNs have also found applications within areas of medicine. [18], For example, demon-
strates that CNNs are as effective as experts at detecting skin cancers from images.

In many applications the data on which the prediction is performed is sensitive and
should ideally not be disclosed to the model owner. As an example, most airports now take

∗Bar Ilan University
†Aarhus University
‡Data61

1

pictures of travelers faces when they pass through emigration and immigration control,
and one could imagine that a facial recognition algorithm could be used to check for
wanted terrorists, fugitives or persona non grata in general. However, this would require
the airport to send images of all travelers to the entity performing the prediction—most
likely a government agency—arguably violating peoples right to privacy. Similarly, it
may be desirable to also keep the model hidden. For instance, the model might be the
result of a hard training process performed by some company, and such an economical
advantage should not be lost. It is nevertheless worth noting that an adversary with
black-box access to a model, such as in the Machine Learning As A Service scenario, who
can request predictions on arbitrary inputs can steal the model with near-perfect fidelity
in some cases, as shown in [56, 58]. Defenses against such attacks exist (e.g. [44]) and can
be seen as complimentary to this work.

In order to break this apparent contradiction (performing computation on data that
is ought to be kept secret) tools like secure multiparty computation (MPC) can be used.
Using these tools, the prediction can be performed so that it discloses neither the data
nor the model. In the client-server model this is achieved by letting the data owner
and the model owner secret-share their input towards a set of servers, who then run the
computation over these shares.

Research in the area of secure evaluation of CNNs has been rich during the last couple
of years, with very important works such as [22, 47, 49, 37, 40, 33, 57]. The main goal
has been to reduce the performance gap between evaluating a CNN in the clear and doing
it securely, and SecureNN [57], which is the state-of-the art in secure CNN evaluation,
reports an overhead in the running time of a factor of 17–33 with respect to a non-secure
evaluation in the clear. Even though this factor may be too high for some applications
(such as the real-time image segmentation needed by self-driving cars), it may nevertheless
be acceptable for many others, such as the example from earlier about detecting skin
cancers in patients. However, we describe below observed patterns shared by some of
these works which undermine their potential deployment in real-life scenarios.

No floating-point arithmetic and expensive activation functions. An important
source of complexity that arises when securely evaluating a CNN using MPC is the fact
that CNNs are based on floating-point arithmetic. This is problematic since secret-sharing-
based MPC protocols are typically better suited for modular integer-based arithmetic.
Several ways of overcoming this issue have been considered in the literature. One can map
a set of floating-point numbers with finite precision to integers and use a modulus that
is large enough so that overflows do not occur (effectively emulating integer arithmetic),
as in [22]. However, this approach is prohibitive when many multiplications are to be
performed. On the other hand, one can also use fixed-point arithmetic, i.e. a real number
x ∈ R is approximated by x ≈ 2−`x̂ where x̂ ∈ ZM for some `,M , where `, the precision,
is the same for all values. Under this representation, the arithmetic is performed over
the integer representation x̂. However, for this to work one must maintain a consistent
representation for all the values. This is trivial to achieve for the addition of two fixed-
point numbers, but, for a multiplication, the result must be truncated in order to reduce
the precision and maintain the invariant. This can be done in MPC by computing the
truncation using a binary garbled circuit or by executing a secret-sharing-based protocol
for truncation. In either case, an additional overhead for supporting fixed-point arithmetic
is introduced.

In the machine learning context there is an additional issue of using fixed-point arith-
metic besides the complexity overhead, and it comes from the fact that reducing the

2

precision may hurt the accuracy of the model’s predictions. Well-tested models in the
ML literature typically work with 32-bit or 64-bit floating-point arithmetic since it is
very efficient when performed in the clear, but the effect on the accuracy of reducing
the precision of the datatypes is not a trivial concern. Most previous work on secure
ML treat this issue only superficially, by tweaking the precision parameters in an ad-hoc
manner, usually dependent on the model under consideration. (An example of this is
[8] in which the parameters for the homomorphic encryption scheme used depend on the
model.) Moreover, the effect these heuristics have on the model’s accuracy of prediction is
not fully understood, in particular when considering model architectures beyond the one
under consideration.

Finally, the complexity of some non-linear activation functions, like ReLU, often require
the use of non-arithmetic MPC like garbled circuits, which imposes a significant overhead.
This technique has been used, for instance, in [40, 37, 33], and it is reported in [57] that
the most expensive part of the execution of these protocols lie in the garbled circuits. One
way of avoiding the computation of such functions is to replace them by MPC-friendly
alternatives that are cheaper to compute, as done, for instance, in SecureML [40].

Only small models are benchmarked. These works are mostly exclusively concerned
with speed, and, understandably, they use smaller models (such as Cifar10 and MNIST)
that are typically of little relevance in real-life applications. Moreover, as these models are
usually significantly smaller than “real-life models”, they provide little meaningful insight
on how evaluation of larger and more complex models will fare, besides micro-benchmarks.

There are also little or no guarantees that the ad-hoc techniques for integer arithmetic
mentioned before will scale well to more complex models, as these may have been developed
and tested in the context of a specific benchmark model. Although it is true that in
general many ML algorithms are based on empirical observations and heuristics, these are
typically supported by an extensive and non-trivial research body from the ML domain,
which deals with the choice of the architecture/parameters to obtain the best accuracy
for a particular ML algorithm. We believe that this analysis should not be addressed
superficially. Modifications to ML algorithms that are introduced when implementing
them securely must be extensively studied to verify their validity. This includes techniques
like the reduction in the precision or the modification of critical pieces like activation
functions, which are necessary to boost the efficiency of secure ML algorithms.

Given the above we believe that secure solutions in the area of privacy-preserving ML
should stick as much as possible to existing research and methods in the field of ML in order
to guarantee, via a solid and extensive research body, the validity of the functionalities
being implemented.

It is not clear how to extend these frameworks to other models. Even if these
evaluation frameworks may extend easily to other CNNs in theory (ignoring the potential
accuracy degradation we already mentioned), this is very hard to achieve in practice since
the design of their implementations is not taking the user into account. As a consequence,
even if the performance of certain CNN secure-evaluation framework may be acceptable
for some applications, deploying it in a real-life scenario requires special care and expertise.
This reduces the adoption of these techniques, and also the possibility of testing them in
wider settings.

3

1.1 Our Contribution

It is not only the advances in MPC that may improve the viability of evaluating Machine
Learning models in a secure way; recent research in the area of Machine Learning itself
may be beneficial towards this goal. In this work we focus on developing solutions for
securely evaluating a convolutional neural network (CNN) in an efficient manner, but we
differ from previous works in that we address the issues mentioned above by relying on
state-of-the-art machine learning research on the area of quantization instead of providing
our own heuristic arguments for the validity of several ad-hoc modifications like reduced
precision or replacing the activation functions (which may or may not work in more general
scenarios).

Quantization, which is motivated by the deployment of ML models in resource-constrained
environments like mobile phones or embedded devices, aims at reducing the size of neural
networks by lowering the precision of the values involved. Furthermore, this also simpli-
fies the arithmetic in some cases, leading to integer-only arithmetic and simpler activation
functions. These techniques, quite coincidentally, are highly convenient when we consider
a secure implementation using MPC.

By using quantization techniques we are able to tackle the issues mentioned in the
previous section. We can summarize our main contributions as follow.

1. An extensive research body from the ML community supports the validity and am-
plitude of our techniques, thus it is clear that our protocol extends correctly to other
settings without undermining accuracy substantially. We focus on the quantization
scheme developed by Jacob et al. [32], which is already implemented in Tensorflow
Lite and has been demonstrated to work outstandingly well in several challenging
prediction tasks.

2. Secondly, we benchmark our protocol using models that are of practical importance
and already in wide use. In particular, we use models from the MobileNets architec-
ture [28] which have demonstrated very good accuracy (almost 90% top-5 accuracy
on the LSVRC dataset for the largest V2 model) despite their small size (between
500kb and 4.3mb depending on choice of hyperparameters).

3. In the process of evaluating the models above we implement in our protocol some of
the basic kernels for CNNs included in the Tensorflow Lite framework like convolu-
tions, depthwise convolutions and more. This ultimately means that, in addition to
supporting secure evaluation of MobileNets networks (which are already useful for
a very broad range of applications), a large family of TFLite models are supported,
which we believe is an important milestone towards deploying secure ML in real-life
scenarios.

4. Finally, we show through benchmarks that all of the currently available MobileNets
models are feasible to compute within reasonable time and communication using our
protocol (between 1 and 11 seconds, and 1.2 and 15 gb, respectively for the semi-
honest case). Moreover, we demonstrate this fact both for a semi-honest protocol
over Z264 , and for an actively secure protocol over a prime field. To the best of our
knowledge, this is first result showing that inference in MPC with active security is
possible.

In this work we devise the first consistent, scalable method for private evaluation of ma-
chine learning models, which can be applied accurately and efficiently to real-world CNNs
with millions of weights by combining recent research in deep learning (quantization) and

4

MPC optimization. We demonstrate evaluating some of the smaller MobileNetsV1 models
in less than 2 seconds. Our approach is easily extensible to additional security models and
computation domains using the SPDZ multi-protocol compiler, and is within engineering
range to a full-blown private model evaluation framework. Moreover, it is important to
add that TFLite already provides methods to take any (floating-point) Tensorflow model
and convert it into a quantized model with only a small loss of precision. All these tools to-
gether provide a complete pipeline to execute virtually any neural network that is trained
in Tensorflow.1 Given that Tensorflow is one of the most important industrial-grade frame-
works for machine learning, we expect our work to be a key step towards the widespread
adoption of MPC techniques to enhance privacy in current services and platforms.

Our protocol constitutes the first MPC-based solution to privacy-preserving CNN eval-
uation using quantization. It is developed in the client-server model, in which a set of
clients secret-share the model and the data towards a set of servers, which then execute
the protocol. We use three servers, and the data and the model remain secret even if at
most one server is passively corrupted (semi-honest security).

Since our work is the first in using quantization for secure evaluation of CNNs in
MPC, and since we use different NN architectures than previous work, establishing a fair
comparison with other work is not a trivial task. We do however extrapolate from our
micro-benchmarks in Section 4.2 a rough estimate of the performance of our protocol on
the networks considered in SecureNN [57], which is the state of the art in secure neural
network evaluation and whose networks are the same as those used in SecureML [40],
Chameleon [47] and MiniONN [37]. Our result show that our protocol is in general faster,
but that it sends more data for models that contain more non-convolution layers.

1.2 Techniques

1.2.1 Quantization

As mentioned in the preceding section, the core of our work is the theory of quantization.
In a nutshell, this allows a set of real numbers {α1, . . . , αn} ∈ R to be represented by
a set of integers {a1, . . . , an} ∈ ZM in a way so that basic operations such as additions
and multiplications are preserved, at least up to some extent. In the context of CNNs
the motivation of using quantization is to reduce storage: Instead of storing a set of real
numbers (say, 32-bit floating-point numbers), one can replace this set by the corresponding
integers; in practice either 8 or 16-bits.

Research in developing quantization schemes for several ML models and understanding
the effect of these techniques in the accuracy is extensive in the ML community, as can
be seen from the very recent survey by Guo [25]. We choose to focus our work on the
quantization scheme by Jacob et al. [32], which works by mapping a real number αi ∈ R to
xi ∈ ZM such that αi ≈ m · (xi − z), where m ∈ R and z ∈ ZM are parameters depending
only on the set being quantized and the bound M . This affine mapping, which can be
seen as a shifted version of fixed-point arithmetic, turns out to preserve accuracy quite
well even when using 8-bit integers [34].

By making use of this quantization scheme we can implement the core operations
used in CNNs, like convolutions and fully connected layers, by using mostly integer-only
arithmetic. Because these operations essentially rely on taking dot products, which can be
done very easily with this quantization scheme, by taking the corresponding integer dot
product over the quantized values and then performing a truncation afterwards. However,
as we will see, the two approaches differ in a number of places, especially when considering

1We remark that we do not support currently all the kernels available in TFLite.

5

activation functions and special layers like batch normalization. Moreover, the effect of
using this type of quantization in the accuracy of the model has been studied extensively
already and has been found to be very small. For example, some of the MobileNets models
we consider in this work still achieve above 70% success rate on the ImageNet dataset.

1.2.2 Secure Computation

We implement our CNN interpreter using the ring version of the 3-party replicated-secret-
sharing-based protocol from [3], which is secure against one passive corruption. The ring
Z264 fits naturally with the quantization scheme, as described in [32], and many bit-
operations over this ring can be done much more efficiently than its field counterpart, as
shown in [2]. We use MP-SPDZ [41] because it provides an efficient implementation of
most of the necessary primitives as well as high-level programming interface for it, and
we added missing routines like truncation by a secret shift, as shown in Section 3.2.2, and
cheap sums-of-products, which are at the core of our efficiency gains. Furthermore, the use
of the MP-SPDZ compiler allows us to write our CNN evaluator in a clean, Python-like
programming language, which is easy to extend to other models.

We outline our implementation of various basic algorithms such as comparison and
truncation in the context of arithmetic circuits over Z264 . There is a body of work for the
case of fields of prime order [9, 10], but to the best of our knowledge, there is no prior
work for rings such as the one used here.

Finally, as we already hinted above, a significant advantage of protocols based on
multiplicative secret sharing such as ours consists in allowing for cheap computation of
dot products, which is an essential operation in CNNs. This protocol, just like any other
secret-sharing based protocol, requires interaction to process any multiplication. However,
due to the special properties of multiplicative secret sharing, the dot product of two vectors
of any length can be computed at the communication cost of only one single multiplication,
which is one ring element per party, as shown in Section 3.1. This optimization is at the
core of our performance improvement with respect to previous work.

1.3 Related Work

Early work in the area of evaluating neural networks securely can be traced back at least to
the work by Orlandi et al. [5, 43], which is mostly based on HE techniques. CryptoNets
[22] uses Leveled Homomorphic Encryption (LHE). However, due to the limitations on
this cryptographic primitive, several ad-hoc alternatives to the activation functions are
introduced, as well as alternatives to some other layers in the CNN like max pooling. As
we have already argued, the validity of introducing such methods in terms of the accuracy
obtained is questionable. Moreover, for the case of CryptoNets this is explicitly addressed
in [11] where the ad-hoc activation function (squaring) is replaced by a polynomial approx-
imation of known activations like ReLU. Unfortunately, the degree of these polynomials
needed to provide an acceptable accuracy is prohibitive for LHE. Lastly, CryptoNets only
performs evaluation of MNIST.

SecureML [40] studies the problem of securely training and evaluating different ML
models like linear/logistic regression and convolutional networks. Their protocol achieves
passive security in the two-server model, and it is based on additive secret sharing over
a large enough ring. Non-linear activation functions (which are expensive on arithmetic
shares) are handled by switching between arithmetic secret sharing and using a garbled
circuit instead. However, to this end SecureML introduces new ad-hoc activation func-
tions that can be represented by suitable binary circuits. More precisely, SecureML uses

6

fixed-point arithmetic with a simple truncation mechanism which works thanks to the
particular 2-party scenario with additive secret sharing: Each party truncates its share
locally. However, for this to work without a significant error probability, either the ring
has to be large or the number of multiplications between each truncation have to be small.
How to determine these parameters will depend on the concrete model being computed
and it is not obvious how to select them.

This approach yields an improvement of a factor of 4–8 with respect to previous solu-
tions to the arithmetic issue like embedding the computations in a large enough field to
avoid overflows (as done in Cryptonets [22]) or using a garbled circuit to perform fixed-
point [21] or floating-point [42] multiplication. However, this truncation mechanism is not
perfect and it has an error of ±1 with some probability, which can be made arbitrarily
small by choosing a ring/field that is much larger than the one needed for the actual
computation (see Theorem 1 in [40]). Although the techniques sketched above to fit neu-
ral network training/evaluation to the MPC setting (alternative activation functions and
probabilistic fixed-point arithmetic) improve efficiency, their effect in the accuracy is not
completely understood. Mohassel et al. [40] provide arguments and intuition on this mat-
ter, but they only perform tests for very restricted datasets: MNIST for neural networks
and Arcene for regression.

MiniONN [37] is the first work that identifies and tackles the problems we have high-
lighted on SecureML and CryptoNets about the modifications on existing neural network
models and builds on top of [40] to address these issues. The authors aim at providing
a framework that implements the most basic operations involved in common NNs like
linear transformations and activation functions. This work uses polynomial splines to ap-
proximate widely-used nonlinear functions in ML like sigmoid and tanh, which yields a
negligible loss in accuracy. Arithmetic is handled like in [21] by using a garbled circuit
to scale down the data. More precisely, the authors scale the floating-point numbers up
to integers using the same factor for all values and then drop the fractional parts using
a garbled circuit. The effect of this approach, which can be already seen as some form
of quantization, has not been extensively tested, not even in the reference [39] provided
by the authors on this matter. MiniONN works in the 2-party setting by using a mix of
secure 2-party computation (namely, garbled circuits) and homomorphic encryption.

Chameleon [47] achieves faster running times due to a technique that uses an additional
party that acts as a helper in order to avoid expensive protocols like oblivious transfer,
which is used for example in SecureML. Chameleon uses conversions between garbled
circuits and additive shares, and it is based on the ABY framework [17]. However, despite
the performance improvement of Chameleon with respect to previous work, this work is
only benchmarked using fixed-point arithmetic on small models like MNIST, and it is not
clear what the impact in accuracy of this type of finite-precision arithmetic for a larger
model would be. Furthermore, the authors left as future work extending their techniques
to the floating-point setting like those from [1], which would achieve more fidelity with
respect to the evaluation of a model in the clear.

Gazelle [33] uses a hybrid approach that combines additive homomorphic encryption
with garbled circuits. Their benchmarking is done using Cifar10 and MNIST datasets, and
they achieve an improvement of a factor between 20 and 30 with respect to MiniONN and
Chameleon, respectively. However, like Chameleon, Gazelle uses fixed-point arithmetic
and the selection of parameters like the amount of precision is done in an ad-hoc per-
model basis whose generality is not fully understood.

DeepSecure [49] focuses on using garbled circuits (GC) to implement a library con-
taining several basic building blocks for evaluating neural networks like two-dimensional

7

convolutions, pooling (both max and mean), fully connected and non-linearities like soft-
max, sigmoid, Tanh and ReLU. This work focuses on performance, introducing several
optimizations on the GC protocol to improve the speed of the inference. The authors
benchmark their implementation using several networks for visual and audio recognition
and smart-sensing, and the errors due to fixed-point arithmetic and approximation of acti-
vations are analyzed in a per-operation basis. It is important to remark that DeepSecure’s
library supports floating-point arithmetic as well.

Finally, SecureNN [57], which is the state-of-the-art protocol in secure training and
inference of CNNs, is one of the few solutions which is solely based on additive secret
sharing only. The protocol is information-theoretically secure and it is developed for
the three and four-party settings. Part of the performance gain comes from a technique
that allows the parties to securely compute integer comparisons cheaply, which is as key
ingredient for some activation functions such as ReLU. However, this method only works
for odd-modulus arithmetic while for efficiency reasons SecureNN uses arithmetic modulo
powers of 2. To allow for the best of both worlds, the authors also introduce a simple
but effective method to move from one sharing to the other. Additionally, their sharing
scheme is not symmetric for all parties, i.e. one of the parties has a different role in the
computation, which simplifies many of the expensive procedures like generating random
multiplication triples [6]. Despite the improved efficiency of SecureNN, the impact in
accuracy of using fixed-point arithmetic is not discussed by the authors.

Quantization in prior work. Whether implicitly or explicitly, most prior work uses
some form of quantization already. For instance, replacing directly floating-point by fixed-
point numbers can already be seen as quantization. However, as we have already argued
extensively, more often than not this is done in a not very robust manner. Relatively little
work has made explicit use of quantization in the context of securely evaluating Machine
Learning models. One example is the recent work by Bourse et al. [8], where the authors
use a quantization technique that is similar to the one described in the by Courbariaux and
Bengio [12]. Another recent work which use the same techniques is [51]. Nevertheless, their
work lies in the FHE domain, which differs from multiparty computation. For instance,
the fact that the weights are kept in the clear by the model owner changes the way the
computation is performed, and allows them to use only additions and subtractions.

1.4 Outline of the Document

In Section 2 we give a brief introduction to neural networks and then we describe quan-
tization in this domain, focusing on the quantization scheme by Jacob et al. [32]. Then
in Section 3 we provide a self-contained description of our protocol for secure inference,
describing the basic building blocks. We discuss implementation details and present bench-
marks in Section 4, and conclude in Section 5.

2 Quantization

Deep learning models are at the core of many real-world tasks like computer vision, natural
language processing and speech recognition. However, in spite of their high accuracy for
many such tasks, their usage on embedded devices like mobile phones, which have tight
resource constrains, becomes restricted by the large amount of storage required to store the
model and the high amount of energy consumption when carrying the computations, which
are typically done over floating-point numbers. To this end, researchers in the machine

8

learning community have developed techniques that allow weights to be represented by
low-width integers instead of the usual 32-bit floating-point numbers, and quantization
is recognized to be the most effective such technique when the storage/accuracy ratio is
taken into account.

Quantization allows the representation of the weights and activations to be as low as
8 bits, or even 1 bit in some cases [12, 46].2 This is a long-standing research area, with
initial works already dating back to the 1990s (e.g. [19, 4, 55, 38]), and this extensive
research body have enabled modern quantized neural networks to have essentially the
same accuracy as their full-precision counterparts [13, 62, 24, 26, 45], even with very large
CNN architectures like AlexNet [35], VGGNet [53], GoogleNet [54] and ResNet [27].

It is not our goal to provide a survey on quantization techniques, and we refer the
reader to Guo [25] for a thorough discussion on the topic. However, we do want to
illustrate that quantization is an effective mechanism to reduce the size of a CNN and
simplify computation without affecting accuracy significantly, and that this is due to a
very large, long-standing, non-trivial and active research body.

In what follows we provide a superficial but sufficient introduction to Deep learning,
and then we present the quantization scheme our work is based on Jacob et al. [32], which
is already implemented in Tensorflow.

2.1 Notation

For a value x ∈ RN1×N2×N3 we use x[i, j, c] ∈ R to denote taking i’th value across the
first dimension, the j’th value across the second dimension and the c’th value across the
last dimension. In a similar way, we might write x[·, ·, c] ∈ RN1×N2 to denote the matrix
obtained by fixing a specific value for the last dimension. A real value interval is denoted
by [a, b] and a discrete interval by [a, b]Z. We define clamping of a value x ∈ R to the
interval [a, b], denoted by clampa,b(x), by setting x ← a if x < a, x ← b if x > b and
otherwise x← x. (Clamping to a discrete interval is similarly defined.) We denote by N`

the set {1, . . . , `}.

2.2 Deep Learning

An artificial neural network, or simply neural network (NN) for short, is a machine learning
model that is used to obtain predictions on some data that has proven to be very successful
at specific tasks like character recognition, data processing, classification, and many more.
In a very general setting, a neural network is an ordered set of functions (f1, . . . , fn) where
fi : Di−1 → Di, with Di some space of the form RN1×···×N`i . An element of such a set
is known as a tensor, and each function fi is known as a layer. The input to the neural
network is a tensor x ∈ D0, and the output is y = fn ◦ · · · ◦ f1(x) ∈ Dn. For convolutional
neural networks (CNNs) in practice D0 could be R128×128×3 to represent 128×128 images
with 3 color channels (RGB), and the output set Dn could be a vector where the i-th
entry represents the probability that the input image has a given label indexed by i. See
Figure 1 for a visual representation of a neural network.

Some of the layers considered typically in practice include affine layers like fully con-
nected and convolutional layers, non-linear activations like ReLU and ReLU6, and down-
sampling layers like average or max pooling. Below we discuss some of the layers we will
consider in this work.

2Furthermore, some quantization techniques also allow to represent gradients with a small number of
bits, which effectively allows for quantized training of neural networks. However, this is still in a very early
stage, and since we are focused only on inference in this work, we do not present such techniques.

9

f1 f2 fn
car

Figure 1: Visualization of a Convolutional Neural Network.

Two-Dimensional Convolutional Layer. A two-dimensional convolution is an opera-
tion performed between two three-dimensional tensors to produce another three-dimensional
tensor. The parameters for a two-dimensional convolution are the input dimensions
Ih, Iw, Id, the output dimensions Oh, Ow, Od and the dimension of the windows Wh,Ww.
On input x ∈ RIh×Iw×Id , a weight tensor w ∈ ROd×Wh×Ww×Id and a bias vector b ∈ ROd

, the convolution performs the following operations.

1. For each (i, j) ∈ NOh
× NOw , a sub-tensor of x, denoted by xi,j ∈ RWh×Ww×Id , is

extracted. We will not dive into the details of how this is done besides saying that
it depends on some extra parameters like the stride and the padding type, which are
part of the architecture.3

2. The entry indexed by (i, j, k) ∈ NOh
× NOw × NOd

of the output is computed as
dot(xi.jw[k, ·, ·, ·]) + b[k], where dot represents the sum of the point-wise products
of the two inputs.

ReLU and ReLU6. It should be clear from the description of the convolutional layer
above that this operation is affine, and any composition of such functions would result in
an affine function as well. The purpose of non-linear activation functions like ReLU and
ReLU6, as the name suggests, is to break this linear relation between input and output by
using non-linear operations. ReLU, which stands for rectified linear unit, takes as input
a tensor and applies the following to each one of its entries: if the entry is negative then
replace it with 0, and leave it unchanged otherwise. ReLU6 works in a similar way, but
if the entry is greater than 6 then it is replaced by 6. This can be seen as clamping the
input to the interval [0, 6].

Average and Max Pooling. A pooling operation takes as input a tensor x ∈ RIh×Iw×Io

and returns a tensor y ∈ ROh×Ow×Od with Oh < Ih, Ow < Iw and Od = Id, which can be
seen as a down-sampling operation. Each entry y[i, j, k] is computed by applying a given
operation to the entries of some sub-matrix xi,j [·, ·, k] of x[·, ·, k], which is extracted in a
similar way as in a convolution. For average pooling the operation is just the mean of the
entries in the matrix, and for max pooling the maximum of the entries is returned.

Output. The output of a CNN is typically a vector. The index with the maximum value
in this vector represents the most likely label corresponding to the input, and this vector
can be normalized into a probability distribution via a monotonous function like Softmax
so that the value corresponding to index i is the probability that the input has label i.

2.3 Google’s Quantization Scheme

Now that we have seen some of the different operations involved in a typical CNN, we
describe one possible way of quantizing these operations. This is based on the quantization

3See https://cs231n.github.io/convolutional-networks/#conv for an elementary and thorough ex-
planation.

10

https://cs231n.github.io/convolutional-networks/#conv

scheme developed by Google’s researchers [32, 34], which is part of Tensorflow Lite,4 a
library for running machine learning models on mobile and embedded devices. We choose
this quantization scheme for the following reasons.

Simplicity. The procedures for quantization and de-quantization are very simple and
suitable for our MPC protocol.

Reference Implementation. Since their scheme is already implemented in TFLite, this
allows us to contrast our implementation with theirs to make sure we match their
models with as high fidelity as possible.

Framework for Testing. TFLite already provides us with some pre-trained quantized
models that facilitate the testing. Moreover, as we will see in Section 4, it also pro-
vides a fully functional pipeline to convert any floating-point model into a quantized
model with little to none loss in accuracy, which extends the impact of our results.

High Impact. Many widely-used products of Google and its sister companies are already
using TFLite for their prediction tasks. We believe that integrating secure compu-
tation into these platforms allow for a more rapid deployment of these technologies.

2.3.1 Quantization and De-Quantization

The scheme comes in two variants, one for 8-bit integers and another one for 16-bit integers.
In this work we focus in the former, and we provide our description only in that setting.

Let m ∈ R and z ∈ [0, 28)Z and consider the function dequantm,z : [0, 28)Z → R given
by dequantm,z(x) = m · (x − z). This function transforms the interval [0, 28)Z injectively
into the interval I = [−m · z,m · (28 − 1− z)) and as such it admits and inverse quantm,z

mapping elements in the image of dequantm.z into [0, 28)Z. We define the quantization of
a number α ∈ I to be quantm,z(α

′), where α′ is closest number to α such that α′ is in the
image of dequantm,z.

The constants m, z above are the parameters of the quantization, and are known as
the scale and the zero-point, respectively. This quantization method will be applied on a
per-tensor basis, i.e. each individual tensor α has a single pair m, z associated to it. These
parameters are determined at training time by recording the ranges on which the entries
of a given tensor lie, and computing m, z such that the interval [−m · z,m · (28 − 1− z))
is large enough to hold these values. See Figure 2 for a visualization of this quantization
method, and see Jacob et al. [32] for details.

0 z 28 − 1
Z

αmin 0 αmax

R

Figure 2: Visualization of the Quantization Scheme in [32]. The continuous interval on
top is mapped to the discrete interval below, and multiple numbers may map to the same
integer due to the rounding.

4https://www.tensorflow.org/lite/

11

https://www.tensorflow.org/lite/

2.3.2 Dot Products

Computing dot products is a core arithmetic operation in any CNN. We discuss this how
to do this with the quantization method described above.

Let α = (α1, . . . , αN) and β = (β1, . . . , βN) be two vectors of numbers with quantiza-
tion parameters (m1, z1) and (m2, z2), respectively. Let γ =

∑N
i=1 αi ·βi, and suppose that

γ is part of a tensor whose quantization parameters are (m3, z3). Let c = quantm3,z3(γ),
ai = quantm1,z1(αi) and bi = quantm2,z2(βi). It turns out we can compute c from all
the ai, bi by using integer-only arithmetic and fixed-point multiplication, as shown in the
following.

Since γ ≈ m3 · (c− z3), αi ≈ m1(ai − z1) and βi ≈ m2(bi − z2), it holds that

m3 · (c− z3) ≈ γ =

N∑
i=1

αi · βi ≈
N∑
i=1

m1 · (ai − z1) ·m2 · (bi − z3).

Hence, we can approximate c as

c = z3 +
m1 ·m2

m3
·

N∑
i=1

(ai − z1) · (bi − z2) (1)

The summation s =
∑N

i=1(ai − z1) · (bi − z2) involves integer-only arithmetic and it
is guaranteed to fit in 16 logN bits, since each summand, being the product of two 8-bit
integers, fits in 16 bits. However, since m = (m1m2)/m3 is a float, the product m·s cannot
be done with integer-only arithmetic. This product is handled in TFLite by essentially
transforming m into a fixed-point number and then performing fixed-point multiplication,
rounding to the nearest integer. More precisely, m is first normalized as m = 2−nm′′

where m′′ ∈ [0.5, 1),5 and then m′′ is approximated as m′′ ≈ 2−31m′, where m′ is a 32-bit
integer. This is highly accurate since m′′ ≥ 1/2, so there are at least 30 bits of relative
accuracy.

Thus, given the above, the multiplication m·s is done by computing the integer product
m · s, which fits in 64 bits since both m and s use at most 32 bits (if N ≤ 216), and then
multiplying by 2−n−31 followed by a rounding-to-nearest operation. Finally, addition with
z3 is done as simple integer addition.

If the quantization parameters for γ were computed correctly, it should be the case,
by construction, that the result c lies in the correct interval [0, 28)Z. However, due to the
different rounding errors that can occur above, this may not be the case. Thus, the result
obtained with the previous steps is clamped into the interval [0, 28)Z.

Addition of bias. In the context of CNNs the dot products above will come from two-
dimensional convolutions. However, these operations not only involve dot products but
also the addition of a single number, the bias. In order to handle this in a smooth manner
with respect to the dot product above, the scale for the bias is set as m1m2/m3 and the
zero-point it set to 0. This allows the quantized bias to be placed inside the summation
s, involving no further changes to our description above.

5Jacob et al. [32] find that in practice m ∈ [0, 1), which is the reason why such normalization is possible.
We also confirm this observation in our experiments, although it is not hard to extend this to the general
case (in fact, TFLite already supports it).

12

2.3.3 Other layers.

Other layers like ReLU, ReLU6 or max pooling, which involve only comparisons, can be
implemented with relative ease directly on the quantized values, assuming these share the
same quantization parameters. This is because if α = m(a − z) and β = m(b − z), then
α ≤ β if and only if a ≤ b, so the comparisons can be performed directly on the quantized
values.

In fact, activations like ReLU6 (which is used extensively in the models we consider in
this work) can be entirely fused into the dot product that precedes it, as shown in Section
2.4 of [32]. Since ReLU6 is essentially a clamping operation, it is possible, by carefully
picking the quantization parameters, to make the clamping of the product to the interval
[0, 28)Z also take care of the ReLU6 operation. In short, if the zero-point is 0 and the
scale is 6/255, then we are guaranteed that m(q − z) ∈ [0, 6] for any q ∈ {0, . . . , 28 − 1}.

On the other hand, mathematical functions like sigmoid must be handled differently.
We will not be concerned with this type of functions in this document since it is the case
in practice that ReLU and ReLU6 (or similar activation functions) are typically enough.6

3 Secure Evaluation of Quantized Neural Networks

Here we describe our protocol for secure evaluation of quantized neural networks. We
begin by describing the MPC protocol our work is based on in Section 3.1, and then we
proceed to describe the different components of the NN evaluation.

3.1 Replicated-SS-based MPC Over Rings

Consider a setting with three parties P1, P2, P3 among which at most one is corrupted by
a passive adversary. We use the protocol by Araki et al. [3], which is based on replicated
secret sharing, and we primarily employ it in the ring defined by arithmetic modulo 264.
In said protocol, a value x ∈ Z264 is secret-shared among P1, P2, P3 if each Pi holds a
random pair (xi, xi−1) (indexes wrap modulo 3) such that x1 + x2 + x3 = x mod 264. We
denote this sharing by 〈x〉. Clearly, if the adversary only controls one party passively, it
cannot learn anything about x.

It is easy to see that addition of two shared values can be done locally by letting each
party add its shares component-wise, and so can multiplication by a public value. However,
multiplication of two shared values requires interaction. To this end, it is assumed that
the parties hold additive shares of zero, i.e. each party Pi holds αi ∈ Z264 such that
α1 + α2 + α3 = 0. Then, in order to multiply 〈x〉 and 〈y〉, each Pi computes ti =
xiyi + xiyi1 + xi1yi + αi and sends this value to Pi+1. Then Pi defines its share of x · y to
be the pair (ti, ti−1), where ti−1 was received from party Pi−1.

This protocol involves sending only one ring element per party to compute shares
of a product. Moreover, the sharing of zero above can be preprocessed in a very efficient
manner by an initial set-up phase in which each Pi sends a key to Pi+1 for a pseudorandom
function [15, 20].

Efficient Sums-Of-Products. Suppose that the parties have shares
〈
x1
〉
, . . . 〈xn〉 and〈

y1
〉
, . . . , 〈yn〉, and they want to compute shares of the dot product, or sum-of-product

z =
∑n

i=1 x
i · yi. A naive way of doing it is to compute shares of each product xi · yi as we

have shown above and then let each party add its shares locally. However, applying this

6See [32] for a discussion on quantization of mathematical functions.

13

method would have the communication cost of n individual multiplication, which means
n ring elements per party. Instead, a simple observation allows this dot product to be
computed at a communication cost which is completely independent of n. This turns out
to be a key optimization tool for our particular application since most of the computations
in a CNN are precisely dot products.

In order to obtain shares of z, each party Pi computes ti =
∑n

j=1

(
xjiy

j
i + xjiy

j
i1

+ xji1y
j
i

)
+

αi, where αi is defined as before, and Pi sends this value to Pi+1. Then Pi+1 defines its
share of z to be (ti, ti−1). A straightforward calculation shows that this produces shares
of z, and it was done at the communication cost of one single multiplication.

3.2 Quantized CNNs in MPC

Now we turn to the question of how to implement inference of a quantized CNN, using
the quantization scheme we described in Section 2.3 using the MPC protocol from the
previous section. We begin by describing the setting.

Recall from Section 2 that each weight tensor a in a quantized CNN has a scale
m ∈ R and a zero-point z ∈ Z28 associated to it, such that α ≈ m · (a − z) is the actual
floating-point numbers corresponding to each 8-bit integer a in the tensor. Also, biases are
quantized in a similar manner but with a 32-bit integer instead, a zero point of zero, and
a scale that depends on the inputs and output to the layer it belongs to, as explained in
Section 2.3.2. We assume that the model owner, who knows all this information, distributes
to the three parties P1, P2, P3 shares using the scheme described above of the quantized
weights and biases of each layer in the network.7 Also, the zero points associated to each
tensor is shared towards the partes.

The scales of the model, on the other hand, are handled in a slightly different way.
Each dot product in the quantized network requires a fixed-point multiplication by a factor
m = (m1 ·m2)/m3, borrowing the notation from Section 2.3.2. Recall that this product
was handled by writing m = 2−n−31 ·m′, where m′ is a 32-bit integer. The model owner
canb either perform this decomposition locally for each dot product of the network, and
then share the values m′ and n with the parties, or the parties can compute these with a
secret floating-point division [1].

Separately, the input owner secret-shares his input as floating-point number, after
which the parties compute the quantization, again with secret floating-point computation.
See Figure 3 for a visualization of the input model.

3.2.1 Secure Computation of a Quantized Dot Product

In this section we show how to compute securely the expression in Eq. (1). Given the
setting we described above, here the parties have shares of the zero points z1, z2, z3, the
quantized inputs ai, bi for i = 1, . . . , N , the integer scale m′ and the power 2n, where
2−n−31 ·m′ ≈ m = (m1 ·m2)/m3.

In order to compute the expression in Eq. (1), the parties begin by computing the dot
product 〈s〉 =

∑N
i=1(〈ai〉 − 〈z1〉) · (〈bi〉 − 〈z2〉), which can be done at the cost of a single

secure multiplication as explained in Section 3.1. Then, an additional secure multiplication
is used in order to compute 〈m · s〉 = 〈m〉 · 〈s〉. Next, shares of

⌊
2−n−31 · (m · s)

⌉
are

computed from 〈n〉 and 〈m · s〉 using the method described in the next section. Finally,

7Notice that these values are only 8-bit long in the clear, but the shares are 64-bit long. The reason
is that, although the values are small, the computation must be carried without overflow. Therefore we
cannot use a modulus that is smaller than the maximum possible intermediate value.

14

Model owner

Data owner

P1

P2 P3

Figure 3: Visualization of the Client-Server model we consider in this work. The model
and data owner secret-share their data towards the three servers, who then execute the
secure computation and return the result to the clients.

addition with 〈z3〉 is local, and it is followed by the clamping method described in Section
3.2.5.

3.2.2 Truncation by a Secret Shift

Assume the parties have shared values 〈x〉 and 〈k〉 for k ≤ K for some public K, and they
wish to compute shares of

⌊
2−k · x

⌉
. Trivially, 2−k ·x = 2K−k ·2−K ·x. We use this because

truncation by a public number of bits is more efficient to achieve. 2K−k can computed
from a bit decomposition K−k =

∑
i bi ·2i as

∏
i(1 + bi · (22

i−1)). It remains to compute
the public shift below.

3.2.3 Truncation by a Public Shift

Assume the parties have shared value 〈x〉 and public k, and they wish to compute shares
of
⌊
2−k · x

⌉
. Note that

⌊
2−k · x

⌉
=
⌊
2−k · x+ 0.5

⌋
=
⌊
2−k · (x+ 2k−1)

⌋
for breaking a tie

by rounding up. It therefore suffices to compute
⌊
2−k · x

⌋
, that is plainly shifting to the

right. First compute 〈x′〉 = 〈x〉 mod 2k as explained below. 〈x− x′〉 is then guaranteed to
have the k least significant bits set to zero. We proceed by masking the top-most 64− k
bits, that is, computing 〈x− x′〉+ 2k

∑64−k
i=0 〈bi〉 · 2i, for fresh random bits 〈bi〉.8 Because

of the wrap-around modulo 264 and the fact that the k least significant bits of x−x′ are 0,
the masked number does not reveal any information and can thus be revealed as c. We can
then shift c to the right and undo the addition of

∑64−k
i=0 〈bi〉 · 2i. However, this does not

undo the potential wrap-around. We therefore have to compute the comparison of c� k
and

∑64−k
i=0 〈bi〉 · 2i as a binary circuit and subtract 264−k from the result if necessary.

3.2.4 Modulo a Public Power of Two

Assume the parties have shared value 〈x〉 and public k, and they wish to compute shares
of 〈x mod 2k〉. This can be computed using a similar building blocks as in the last section.
We start by computing x� (64−k), effictively erasing the bits of x that do not form part
of the result. Then, we can mask the remaining bits using k random bits, reveal the result,
shift the public number to the right. As above we need to compute a binary comparison
in order to account for the wrap-around.

8These can be simply computed as XOR of two random bits input by separate parties because we
assume that they follow the protocol.

15

3.2.5 Clamping

For the final operation the parties hold 〈x〉 and need to compute 〈y〉 where y = clamp0,28−1(x).
This is done by comparing 〈x〉 to the limits (0 and 255), followed by oblivious selection:
If s ∈ {0, 1}, it holds trivially that as = s · (a1 − a0) + a0 for arbitrary a0, a1.

3.2.6 Comparison

Assume the parties have shared values 〈x〉 and 〈y〉 and would like to compute a bit 〈c〉 such

that c = x
?
< y. Clearly, c = x− y

?
< 0. We therefore reduce the problem to extraction of

the most significant bit of a secret value. This is a special case of the bit decomposition
below.

3.2.7 Bit decomposition

Assume the parties have a shared value 〈x〉 and public k and would like to compute the k
most significant bits 〈x63〉 , . . . , 〈x64−k〉 of x. We first set to other bits to 0 by computing
〈x−x mod 264−k〉 using the algorithm above. Then, we mask the relevant bits with random
bits and reveal x− x mod 264−k − 264−k ·

∑
i bi2

i. This allows us to compute (x−
∑

i bi2
i)

mod 264−k. Finally, we use a binary adder to add the bit decomposition to the random
bits, which will result in the desired bits. Note that for the comparison, k = 1, which
means that the binary adder is simply one XOR (computed as a+ b− 2ab).

3.2.8 Average and Max Pooling

Average pooling involves computing 〈y〉 from 〈x1〉 , . . . , 〈xn〉, where y =
⌊
1
n ·
∑n

i=1 xi
⌉
.

This can be achieved using Goldschmidt’s algorithm [23], a widely used iterative algorithm
for division. For its usage in the context of secure multiparty computation, see for example
Catrina and Saxena [10]. It uses basic arithmetic as well as truncation, both of which we
have explained above.

On the other hand, max pooling requires implementing the max function securely,
which can be done by making use of a secure comparison protocol as described above.

3.2.9 Output Layer

Once shares of the output vector are obtained (raw output, before applying Softmax),
several options can be considered. The parties could open the vector itself towards the
input owner and/or data owner so that they compute the Softmax function and therefore
learn the probabilities for each label. However, this would reveal all the prediction vector,
which could be undesirable in some scenarios. Thus, we propose instead to securely
compute the argmax of the output array, and return this index, which returns the most
likely label since exponentiation is a monotone increasing function.

It is important to remark that Mohassel and Zhang [40] replace the exponentiation
in the Softmax function with ReLU operations, i.e. by computing ReLU(x) instead of ex.
More MPC friendly solutions exist, such as the spherical Softmax [16], which replaces ex

with x2.

16

4 Implementation and Benchmarking

4.1 MobileNets Architecture

The MobileNet line of models [50, 29] from Google has shown much promise for performing
image recognition related tasks (object detection, segmentation etc.) on computationally
constrained devices, such as smartphones or embedded devices. Their widespread use
is helped by the fact that they are fully supported by TensorFlow lite and that several
variants are readily available online already pretrained on the ImageNet dataset. Moreover,
these pretrained models exist as both floating point and quantized versions.9 In Section
A.1 in the appendix we present the different blocks used in the MobileNets networks, which
also serves as a short description of the various optimizations that Tensorflow performs as
part of the quantization process (some of which was already hinted at in Section 2.3.3). In
the following, MobileNetV1 will refer to the model by Howard et al. [29], and MobileNetV2
will refer to the model by Sandler et al. [50].

4.1.1 Network Structure

The structure of a MobileNetsV1 network is fairly straightforward: the input layer is a
regular convolution (and in fact the only such one). This layer is immediately followed
by 13 depthwise separable convolutions, i.e. 13 alternating depthwise and pointwise con-
volutions. The last two layers are an average pool followed by a fully connected layer,
for a total of 28 layers (not counting a softmax at the end for turning the result into a
probability distribution).

The architecture contains two hyper parameters that allow the user to scale the net-
work in different ways, namely a width multiplier α and a resolution multiplier ρ. The
width multiplier scales the input and output channels. I.e., the number of multiply-add
instructions in each convolution becomes αId · Ih · Iw ·Wh ·Ww · αOd: the α essentially
serves to thin the network. Note that α also affects the number of parameters and thus the
model size. The resolution parameter on the other hand simply scales the input; at ρ = 1.0
the input is set to be 224 × 224 and pretrained networks exist for ρ ≈ 0.85 (192 × 192),
ρ ≈ 0.71 (160× 160) and ρ ≈ 0.57 (128× 128). Note that scaling ρ affects the number of
multiply-add operations, but does not affect the size of the network.

4.2 Benchmarks

We have run a number of different benchmarks, providing evidence that it is indeed possible
to run realistically sized models, in particular the MobileNetsV1 models for different choice
of the two hyperparameters. Besides providing benchmarks for a computation comparable
to evaluating a full network, we also investigate, through micro-benchmarks, the effect the
number of dot products has on the running time and communication, as well as the effect
the length of the dot products have. Perhaps not surprisingly, we find that communication
is independent of the length of each dot product (due to the nature of the sum-of-product
optimization), and scales essentially linearly with the number. Also not surprisingly, we
find the running time scales linearly with the number of dot products, with 200 000 taking
less than a second (for comparison, the smallest MobileNetV1 model only has around
400 000 in total).

In addition to running all our experiments over the ring Z264 , we also ran experiments
over a prime field, showing first that Z264 is indeed the optimal choice for passive security,

9https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/models.md#

image-classification-quantized-models

17

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/models.md#image-classification-quantized-models
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/models.md#image-classification-quantized-models

as it is orders of magnitudes faster. We additional show results of running the same
operations in a protocol (also in a prime field) with active security, and observe that this
too is within realistic bounds. In particular, this is the first concrete demonstration that
evaluating a CNN with active security is feasible.

We ran all our benchmarks on co-located c9.5xlarge AWS machines, each of which
has 36 cores, 72gb of memory and a 10gpbs link between them. Throughout this section,
communication is measured per party and all timings include preprocessing.

Micro-benchmarks. Our micro-benchmarks are focused first and foremost on measur-
ing the cost, in terms of time and communication, of the core operation of any CNN:
the sum-of-product operation (in the MobileNets models, essentially all computations are
convolutions). Table 1 shows the result of running a variable number of dot products each
of a fixed length, and Table 2 shows the result of running a fixed number of dot products
with variable length. We choose numbers that reflect realistic sizes for the convolutions,
for example, the largest convolution in the smallest MobileNetsV1 network contains some
60K dot products.

sum-of-products
mod 264 mod p mod p (active security)

Runtime (s) Comm. (gb) Runtime (s) Comm. (gb) Runtime (s) Comm. (gb)

50 000 0.25 0.15 1.6 0.54 8.8 4.3
100 000 0.41 0.31 2.5 1.07 15.6 8.5
150 000 0.57 0.46 3.6 1.59 22.5 12.8
200 000 0.73 0.62 4.5 2.12 29.2 17.0

Table 1: Results from running a variable number of sum-of-products, each with ` = 512
terms.

of terms
mod 264 mod p mod p (active security)

Runtime (s) Comm. (gb) Runtime (s) Comm. (gb) Runtime (s) Comm. (gb)

256 0.27 0.31 1.9 1.1 9.4 5.7
512 0.30 0.31 2.0 1.1 13.9 8.5
768 0.33 0.31 2.3 1.1 18.5 11.4
1024 0.36 0.31 2.4 1.1 22.9 14.3

Table 2: Running n = 100.000 sum-of-products with variable length.

Prime order field Due to capabilities of MP-SPDZ, we could also run our benchmarks
in replicated secret sharing modulo a 128-bit prime, both with semi-honest and malicious
security [20]. For example, variant 0.50 128 (width multiplier 0.5, input size 128× 128) of
V1 takes 15 seconds with semi-honest security and 48 seconds with malicious security. This
shows that using Z264 as the computation domain is preferable to prime order fields. We
consistently found at least a five-fold improvement in time and a three-fold improvement
in communication.

Full model evaluation We ran benchmarks whose sizes correspond to a full network
evaluation; for these, we construct a program which in a number of iterations perform
the number of sum-of-products that would be needed for a particular layer in a particular

18

network. Results can be seen in Table 3. For each model we ran a benchmark using
the protocol over Z264 , and over a prime field with both passive and active security. The
results we obtain heavily imply that, for passive security, Z264 is preferable.

We also ran a test on the single pretrained MobileNetV2, which has width multiplier
1.0 and input size 224× 224. This network could be evaluated in around 14 seconds with
20gb of communication. We remark we do not have all the building blocks for this network
(missing is the residual connection, cf. Appendix A.2; note that the residual connection is
not just a simple pointwise addition because we have to take the quantization parameters
into account, and so both scaling and clamping needs to be performed) and so these
numbers are only approximate.

Ver. Variant
mod 264 mod p mod p (active security) Accuracy

Runtime (s)Comm. (gb)Runtime (s)Comm. (gb)Runtime (s)Comm. (gb)Top-1 (%)Top-5 (%)

V1

0.25 128 1.1 1.3 7.1 4.4 22.3 12.9 39.5 64.4
0.25 160 1.6 2.0 10.9 6.8 34.3 20.1 42.8 68.1
0.25 192 2.5 2.9 15.7 9.8 49.0 28.9 45.7 70.8
0.25 224 3.2 3.9 21.2 13.3 66.3 39.3 48.2 72.8
0.50 128 2.3 2.5 14.0 8.7 47.5 28.2 54.9 78.1
0.50 160 3.3 4.0 21.7 13.6 73.8 44.0 57.2 80.5
0.50 192 4.7 5.7 30.9 19.5 105.5 63.3 59.9 82.1
0.50 224 5.8 7.7 42.2 26.6 143.5 86.1 61.2 83.2
0.75 128 3.0 3.8 21.0 13.0 76.7 46.0 55.9 79.1
0.75 160 4.5 5.9 32.3 20.4 119.0 71.7 62.4 83.7
0.75 192 6.5 8.5 46.2 29.3 171.0 103.2 66.1 86.2
0.75 224 8.6 11.6 63.6 39.9 232.9 140.5 66.9 86.9
1.00 128 4.2 5.1 28.3 17.4 109.8 66.2 63.3 84.1
1.00 160 6.2 7.9 43.3 27.1 170.5 103.3 66.9 86.7
1.00 192 8.5 11.4 61.9 39.1 244.3 148.7 69.1 88.1
1.00 224 11.5 15.5 83.9 53.2 332.5 202.4 70.0 89.0

Table 3: Benchmark of the MobileNets family of networks. The first number in variant
is the width multiplier and the second is the resolution multiplier. Accuracy numbers
taken from https://github.com/tensorflow/tensorflow/blob/master/tensorflow/

lite/g3doc/models.md#image-classification-quantized-models

Comparison with SecureNN In order to put our protocol into perspective of prior
literature in the area of secure evaluation of ML protocols, we extracted the relevant
parameters from the four different models used in SecureNN [57] and ran some benchmarks.
We remark that only 8 cores of the 36 available was used for these experiments, rather
than the full 36 because of the limited potential for further parallelization.

The benchmarks can be seen in Table 4. Interestingly, while our protocol is faster for
all models, only in models A and D are we also more efficient in terms of communication.
One possible explanation for this, is that networks A and D contain only convolutions (or
fully connected layers, both of which only involve dot products); while networks B and C
both contain a relatively large amount of maxpool layers. (Both B and C have five layers
of which two are maxpool layers). We see however that the difference disappears when the
network contains more sum-of-products: while B and C are essentially the same network,
the convolutions in network C are larger, and so the difference between the amount of
communication in our protocol and the one from SecureNN are smaller.

19

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/models.md#image-classification-quantized-models
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/models.md#image-classification-quantized-models

V
1

0.
25

12
8

V
1

0.
25

16
0

V
1

0.
50

12
8

V
1

0.
50

19
2

V
1

0.
75

22
4

0

50

100

39.5 42.8
54.9 59.9

66.964.4 68.1
78.1 82.1 86.9

ac
cu

ra
cy

(%
)

top-1 top-5

(a) Accuracy

V
1

0.
25

12
8

V
1

0.
25

16
0

V
1

0.
50

12
8

V
1

0.
50

19
2

V
1

0.
75

22
4

0

20

40

60

1.11 1.66 2.29 4.71
8.67.13

10.89 14.05

30.87

63.64

ru
n
ti

m
e

(s
)

mod 264 mod p

(b) Runtimes

V
1

0.
25

12
8

V
1

0.
25

16
0

V
1

0.
50

12
8

V
1

0.
50

19
2

V
1

0.
75

22
4

0

20

40

1.27 1.97 2.53
5.68

11.6

4.36
6.79 8.69

19.54

39.88

co
m

m
.

(g
b
)

mod 264 mod p

(c) Communication complexity

Figure 4: Runtime and communication for some of the networks in the MobileNet family.

Protocol Runtime (s) Communication (mb)

A
SecureNN (3PC) 0.05 4.03

Quantized 0.02 2.41

B
SecureNN (3PC) 0.22 17.28

Quantized 0.08 33.12

C
SecureNN (3PC) 0.34 37.03

Quantized 0.12 46.74

D
SecureNN (3PC) 0.10 7.93

Quantized 0.02 3.73

Table 4: Comparison of running times for our protocol with the 3-party protocol in Se-
cureNN [57].

20

4.3 Extending to Other TensorFlow Models

TensorFlow already supports quantizing pretrained floating-point models 10 and quantization-
aware training, 11 and so one could ask what steps need to be taken in order to go from
a model designed and trained in TensorFlow, to secure inference. Since the training
framework already exists, then (at least intuitively), the only step missing is connecting
a description of a pretrained TensorFlow model to an MPC framework; and if this frame-
work uses the techniques we have shown to be applicable to realistically sized models, then
this should provide a way to run these models.

Some engineering aspects needs to be addressed however. Firstly, parsing the models
output by TensorFlow is needed. This, however, is fairly straightforward as the generated
models are stored in a very well documented binary format, namely as flatbuffers in the
case for .tflite models (which are the ones output by the quantized training process).
More arduous is the handling of data, as we here need to ensure that everything can
be efficiently and correctly treated as inputs to a sum-of-products routine. This step is
complicated by the fact that windows of size larger than 1× 1 (which means all depthwise
convolutions) require non-trivial indexing. One approach to handling the data between
layers, is to ensure that all outputs are formatted as Toeplitz matrices as these allow for
convolutions to be computed as matrix products (which is essentially what we need).

5 Conclusions

Our work constitutes, to the best of our knowledge, the first protocol for secure evaluation
of quantized neural networks using MPC techniques. We show that secure evaluation
without accuracy loss of large, realistic CNNs, like those in the MobileNets family, is
within reach. Compared to existing models which have been used for secure inference, we
found that our approach faster. However, with respect to communication we find that the
networks need to contain a high amount of dot products before the effect of the sum-of-
product optimization becomes apparent. This is not an issue for the MobileNets models
(as these are essentially only dot products) but for smaller models.

We also narrow the gap between evaluating a specific hardcoded model and an arbitrary
(Tensorflow) model by using well-known tools both from the ML and MPC domains, such
as Tensorflow Lite and the MP-SPDZ compiler, and due to this we believe that a full-
fledged architecture for easy deployment of these models in real-life scenarios is already
within engineering range.

5.1 Future Work

MPC/FHE-aware ML research. We believe that it is important for researchers in
the area of secure computation of ML models to adhere to standard techniques in Machine
Learning in order to validate the accuracy of their methods. Quantization is a research area
in the ML domain that is motivated by the existence of resource-constrained devices and
the necessity of deploying machine learning models in these scenarios. We think that secure
computation of such models can also serve as a motivation to push forward research in
the machine learning domain, i.e. the study of new ML tools that are MPC/FHE-friendly,
instead of the reverse (MPC/FHE protocols that are ML friendly).

10https://www.tensorflow.org/lite/performance/post_training_quantization
11https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/quantize/

README.md

21

https://www.tensorflow.org/lite/performance/post_training_quantization
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/quantize/README.md
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/quantize/README.md

Other quantization schemes. We expressed in Section 2.3 the benefits of using the
quantization scheme by Jacob et al. However, secure inference using quantization is a rich
area of research in the machine learning domain, and there are many other quantization
schemes that could be also useful for the setting of secure evaluation. Unfortunately, one
of the limiting factors in applying other techniques is the fact that in the MPC setting, no
party should know anything about the underlying data and model, in contrast to the FHE
setting in which the data owner can encrypt its data so that the model owner executes the
homomorphic evaluation with its model locally in the clear. This imposes some challenges
when using quantization schemes that allow the model to have only ±1 as weights, so
that inference consists mostly of additions and subtractions only. This has been explored
very recently in the FHE setting [8, 51], but it is future work to apply these to the MPC
setting.

Training. Our protocol is designed in the inference setting, and we leave it as future
work to apply quantization techniques in order to realize secure training of quantized
CNNs with little-to-no accuracy loss with respect to their floating-point counterparts. It
is important to notice that the spectrum of research in quantized training of CNNs is much
more reduced than in quantized inference, with only a few recent works like [30], [59] and
[61]. Moreover, it is not entirely clear how compatible these methods are with MPC or
FHE techniques.

Active security. As we have shown, working modulo a prime is less efficient than
modulo a power of 2, but on the other hand it allows us to obtain a protocol with active
security. Protocols with active security modulo a power of 2 are not as straightforward,
and only recently one has been published for the dishonest majority setting [14]. We
conjecture that an active secure version of our protocol modulo 264 would outperform its
modulo p counterpart, and we leave it as future work to verify the validity of this claim.

Acknowledgements

This work has been supported by the European Research Council (ERC) under the Euro-
pean Unions’s Horizon 2020 research and innovation programme under grant agreement
No 669255 (MPCPRO), the European Research Council under the ERC consolidators
grant agreement n. 615172 (HIPS), by the BIU Center for Research in Applied Cryp-
tography and Cyber Security in conjunction with the Israel National Cyber Directorate
in the Prime Minister’s Office, and by the Alter Family Foundation, and the Danish
Independent Research Council under Grant-ID DFF-6108-00169 (FoCC) and the Euro-
pean Union’s Horizon 2020 research and innovation programme under grant agreement
No 731583 (SODA),

We thank Adrià Gascón for fruitful discussions, and also NEC and BIU members,
especially Prof. Benny Pinkas and Prof. Yehuda Lindell for very useful comments on this
work.

A Appendix

A.1 MobileNets Blocks

We present below some of the different blocks present in the MobileNets family of networks.

22

Depthwise Separable Convolutions. The majority of the computation that a CNN
performs, and the space that it uses, is tied to its convolutional operations. A regular
convolution performs at its core two steps: first it filters the input using a set of trained
weights, by moving each filter over the entire input; and second, a convolution combines the
output of each filter application to produce a single output value. The whole operation can
be viewed as an entry-wise product between a filter and each input in a specific window,
followed by a summation of all the products. The price of a convolution is therefore
Id · Ih · Iw ·Wh ·Ww · Od. What the MobileNets models does instead, is to replace these
convolutions with a depthwise separable convolution. At a high level, the idea behind a
depthwise separable convolution is to split the two tasks outlined above into to separate
operations.

More precisely, instead of performing a normal convolution, first a depthwise convolu-
tion is performed, which is like a regular convolution except it does not change the output
depth; afterwards, a pointwise convolution is performed. A pointwise is a regular convo-
lution with a 1 × 1 filter, which preserves the input dimensions but allows for scaling of
the depth. The cost of the depthwise convolution is Ih · Iw · Id ·Ww ·Wh while the cost of
the pointwise convolution is Od · Id · Ih · Iw. Replacing a normal regular convolution with
a Depthwise Separable convolution provides a saving of 1/Od + 1/(Wh ·Ww) in terms of
computation.

In MobileNetsV1, both the depthwise and pointwise convolution are followed by a
batch normalization layer, and a ReLU6 activation.

Batch Normalization. Batch normalization [31] is a technique used to speed up train-
ing by normalizing the inputs to each activation: instead of computing g(x) for some input
x and activation g, we instead compute g(y) where

y = γ

 x− µB√
σ2B + ε

+ β,

where γ, β are parameters learned during training, and µB, σ2B is the mean and variance,
respectively, of a batchB of which x is a member. During inference the same scaling applies
except the mean and variance are those of the entire training set (which are learned during
training). However, because the µ and σ used during inference are constant it is possible
to completely “fold” the batch normalization scaling and shifting into the parameters of
the model. More precisely, for an input y = xW + b to the activation function g, where we
need to compute y′ = γ((y − µ)/σ) + β (ignoring ε), we can instead use different weights
W ′ and bias b′ defined as

w′ =
γW

σ
, b′ = γ

(
b− µ
σ

)
+ β.

Note that

xW ′ + b′ = x
γW

β
+ γ

(
b− µ
σ

)
+ β = γ

(
y − µ
σ

)
+ β,

as required. That is, the Batch Normalization operation disappears during inference.

ReLU6. As mentioned already in Section 2.3.3, the ReLU6 operation can be computed
as part of the clamping when quantization is used and so this operation is also not explicit
in the quantized version of a MobileNets model. (It is, however, needed in the floating
point variant.)

23

A.2 MobileNets V2

The MobileNetsV2 architecture shares many of the same characteristics described above.
Here as well, the idea of replacing regular convolutions with depthwise separable convo-
lutions is used. However, the authors alter the design of this block by placing pointwise
convolution before the depthwise convolution. The idea is to have the first pointwise con-
volution expand the input (by some factor t), then apply the depthwise convolution, and
then finally shrink the input by t using another pointwise convolution. The first point-
wise convolution and the depthwise convolution is followed by a ReLU6 activation, while
the last uses the identity function (i.e. no activation). This operation is referred to as a
bottleneck.

The other addition to the architecture is the use of residual connections, where the
input of a bottleneck block is added to the output. That is, if f(x) computes a bottleneck
operation on the input x, then a residual bottleneck operation would compute f(x) + x.
See Figure 5 for a visualization of a part of the network.

Figure 5: Excerpt from the MobileNets V2 Network, illustrating the use of residual con-
nections. This pattern appears several times in the network (with different sizes). The
network has been visualized using Netron [48].

Otherwise the architecture remains the same: the input is first passed through a regular
convolution, then a number of bottleneck blocks, followed in the end by an average pool
and classification.

References

[1] M. Aliasgari, M. Blanton, Y. Zhang, and A. Steele. Secure computation on floating
point numbers. In ISOC Network and Distributed System Security Symposium –

24

NDSS 2013, San Diego, CA, USA, Feb. 24–27, 2013. The Internet Society.

[2] T. Araki, A. Barak, J. Furukawa, M. Keller, Y. Lindell, K. Ohara, and H. Tsuchida.
Generalizing the SPDZ compiler for other protocols. In D. Lie, M. Mannan,
M. Backes, and X. Wang, editors, ACM CCS 18: 25th Conference on Computer
and Communications Security, pages 880–895, Toronto, ON, Canada, Oct. 15–19,
2018. ACM Press.

[3] T. Araki, A. Barak, J. Furukawa, T. Lichter, Y. Lindell, A. Nof, K. Ohara, A. Watz-
man, and O. Weinstein. Optimized honest-majority MPC for malicious adversaries -
breaking the 1 billion-gate per second barrier. In 2017 IEEE Symposium on Security
and Privacy, pages 843–862, San Jose, CA, USA, May 22–26, 2017. IEEE Computer
Society Press.

[4] W. Balzer, M. Takahashi, J. Ohta, and K. Kyuma. Weight quantization in boltzmann
machines. Neural Networks, 4(3):405–409, 1991.

[5] M. Barni, C. Orlandi, and A. Piva. A privacy-preserving protocol for neural-network-
based computation. In Proceedings of the 8th workshop on Multimedia and security,
pages 146–151. ACM, 2006.

[6] D. Beaver. Efficient multiparty protocols using circuit randomization. In J. Feigen-
baum, editor, Advances in Cryptology – CRYPTO’91, volume 576 of Lecture Notes
in Computer Science, pages 420–432, Santa Barbara, CA, USA, Aug. 11–15, 1992.
Springer, Heidelberg, Germany.

[7] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.
Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba. End to
end learning for self-driving cars. CoRR, abs/1604.07316, 2016.

[8] F. Bourse, M. Minelli, M. Minihold, and P. Paillier. Fast homomorphic evaluation of
deep discretized neural networks. In H. Shacham and A. Boldyreva, editors, Advances
in Cryptology – CRYPTO 2018, Part III, volume 10993 of Lecture Notes in Computer
Science, pages 483–512, Santa Barbara, CA, USA, Aug. 19–23, 2018. Springer, Hei-
delberg, Germany.

[9] O. Catrina and S. de Hoogh. Improved primitives for secure multiparty integer com-
putation. In J. A. Garay and R. D. Prisco, editors, SCN 10: 7th International
Conference on Security in Communication Networks, volume 6280 of Lecture Notes
in Computer Science, pages 182–199, Amalfi, Italy, Sept. 13–15, 2010. Springer, Hei-
delberg, Germany.

[10] O. Catrina and A. Saxena. Secure computation with fixed-point numbers. In R. Sion,
editor, FC 2010: 14th International Conference on Financial Cryptography and Data
Security, volume 6052 of Lecture Notes in Computer Science, pages 35–50, Tenerife,
Canary Islands, Spain, Jan. 25–28, 2010. Springer, Heidelberg, Germany.

[11] H. Chabanne, A. de Wargny, J. Milgram, C. Morel, and E. Prouff. Privacy-preserving
classification on deep neural network. Cryptology ePrint Archive, Report 2017/035,
2017. http://eprint.iacr.org/2017/035.

[12] M. Courbariaux and Y. Bengio. Binarynet: Training deep neural networks with
weights and activations constrained to +1 or -1. CoRR, abs/1602.02830, 2016.

25

http://eprint.iacr.org/2017/035

[13] M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In Advances in neural information
processing systems, pages 3123–3131, 2015.

[14] R. Cramer, I. Damg̊ard, D. Escudero, P. Scholl, and C. Xing. SPD Z2k : Efficient
MPC mod 2k for dishonest majority. In H. Shacham and A. Boldyreva, editors,
Advances in Cryptology – CRYPTO 2018, Part II, volume 10992 of Lecture Notes
in Computer Science, pages 769–798, Santa Barbara, CA, USA, Aug. 19–23, 2018.
Springer, Heidelberg, Germany.

[15] R. Cramer, I. Damg̊ard, and Y. Ishai. Share conversion, pseudorandom secret-sharing
and applications to secure computation. In J. Kilian, editor, TCC 2005: 2nd Theory of
Cryptography Conference, volume 3378 of Lecture Notes in Computer Science, pages
342–362, Cambridge, MA, USA, Feb. 10–12, 2005. Springer, Heidelberg, Germany.

[16] A. de Brébisson and P. Vincent. An exploration of softmax alternatives belonging to
the spherical loss family. arXiv preprint arXiv:1511.05042, 2015.

[17] D. Demmler, T. Schneider, and M. Zohner. ABY - A framework for efficient mixed-
protocol secure two-party computation. In ISOC Network and Distributed System
Security Symposium – NDSS 2015, San Diego, CA, USA, Feb. 8–11, 2015. The Inter-
net Society.

[18] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun.
Dermatologist-level classification of skin cancer with deep neural networks. Nature,
542(7639):115, 2017.

[19] E. Fiesler, A. Choudry, and H. J. Caulfield. Weight discretization paradigm for optical
neural networks. In Optical interconnections and networks, volume 1281, pages 164–
174. International Society for Optics and Photonics, 1990.

[20] J. Furukawa, Y. Lindell, A. Nof, and O. Weinstein. High-throughput secure three-
party computation for malicious adversaries and an honest majority. In J. Coron
and J. B. Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017, Part II,
volume 10211 of Lecture Notes in Computer Science, pages 225–255, Paris, France,
Apr. 30 – May 4, 2017. Springer, Heidelberg, Germany.

[21] A. Gascon, P. Schoppmann, B. Balle, M. Raykova, J. Doerner, S. Zahur, and D. Evans.
Secure linear regression on vertically partitioned datasets. Cryptology ePrint Archive,
Report 2016/892, 2016. http://eprint.iacr.org/2016/892.

[22] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. E. Lauter, M. Naehrig, and J. Wernsing.
Cryptonets: Applying neural networks to encrypted data with high throughput and
accuracy. In Proceedings of the 33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016, pages 201–210, 2016.

[23] R. E. Goldschmidt. Applications of division by convergence. Master’s thesis, MIT,
1964.

[24] Y. Gong, L. Liu, M. Yang, and L. Bourdev. Compressing deep convolutional networks
using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

[25] Y. Guo. A survey on methods and theories of quantized neural networks. arXiv
preprint arXiv:1808.04752, 2018.

26

http://eprint.iacr.org/2016/892

[26] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[27] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[28] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam. Mobilenets: Efficient convolutional neural networks for mobile
vision applications. CoRR, abs/1704.04861, 2017.

[29] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam. Mobilenets: Efficient convolutional neural networks for mobile
vision applications. CoRR, abs/1704.04861, 2017.

[30] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Quantized neural
networks: Training neural networks with low precision weights and activations. The
Journal of Machine Learning Research, 18(1):6869–6898, 2017.

[31] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings of the 32nd International Conference
on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, pages 448–456,
2015.

[32] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. G. Howard, H. Adam, and
D. Kalenichenko. Quantization and training of neural networks for efficient integer-
arithmetic-only inference. CoRR, abs/1712.05877, 2017.

[33] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan. GAZELLE: A low latency
framework for secure neural network inference. In 27th USENIX Security Symposium,
USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018., pages 1651–1669,
2018.

[34] R. Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A
whitepaper. arXiv preprint arXiv:1806.08342, 2018.

[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105, 2012.

[36] S. Lawrence, C. Lee Giles, A. Chung Tsoi, and A. Back. Face recognition: A con-
volutional neural network approach. Neural Networks, IEEE Transactions on, 8:98 –
113, 02 1997.

[37] J. Liu, M. Juuti, Y. Lu, and N. Asokan. Oblivious neural network predictions via
MiniONN transformations. In B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu,
editors, ACM CCS 17: 24th Conference on Computer and Communications Security,
pages 619–631, Dallas, TX, USA, Oct. 31 – Nov. 2, 2017. ACM Press.

[38] M. Marchesi, G. Orlandi, F. Piazza, and A. Uncini. Fast neural networks without
multipliers. IEEE transactions on Neural Networks, 4(1):53–62, 1993.

27

[39] T. Mikolov, I. Sutskever, A. Deoras, H.-S. Le, S. Kombrink, and J. Cernocky. Sub-
word language modeling with neural networks. preprint (http://www. fit. vutbr.
cz/imikolov/rnnlm/char. pdf), 8, 2012.

[40] P. Mohassel and Y. Zhang. SecureML: A system for scalable privacy-preserving ma-
chine learning. In 2017 IEEE Symposium on Security and Privacy, pages 19–38, San
Jose, CA, USA, May 22–26, 2017. IEEE Computer Society Press.

[41] N1 Analytics. MP-SPDZ. https://github.com/n1analytics/MP-SPDZ, 2018.

[42] K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft, and E. Shi. GraphSC:
Parallel secure computation made easy. In 2015 IEEE Symposium on Security and
Privacy, pages 377–394, San Jose, CA, USA, May 17–21, 2015. IEEE Computer
Society Press.

[43] C. Orlandi, A. Piva, and M. Barni. Oblivious neural network computing via ho-
momorphic encryption. EURASIP Journal on Information Security, 2007(1):037343,
2007.

[44] N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow, and K. Talwar. Semi-supervised
knowledge transfer for deep learning from private training data. arXiv preprint
arXiv:1610.05755, 2016.

[45] E. Park, J. Ahn, and S. Yoo. Weighted-entropy-based quantization for deep neural
networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 7197–7205. IEEE, 2017.

[46] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Imagenet classifica-
tion using binary convolutional neural networks. In Computer Vision - ECCV 2016 -
14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Pro-
ceedings, Part IV, pages 525–542, 2016.

[47] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider, and
F. Koushanfar. Chameleon: A hybrid secure computation framework for machine
learning applications. In J. Kim, G.-J. Ahn, S. Kim, Y. Kim, J. López, and T. Kim,
editors, ASIACCS 18: 13th ACM Symposium on Information, Computer and Com-
munications Security, pages 707–721, Incheon, Republic of Korea, Apr. 2–6, 2018.
ACM Press.

[48] L. Roeder. Netron, visualizer for deep learning and machine learning models. https:
//github.com/lutzroeder/Netron, 2019. Accessed: Feb 5, 2019.

[49] B. D. Rouhani, M. S. Riazi, and F. Koushanfar. Deepsecure: scalable provably-secure
deep learning. In Proceedings of the 55th Annual Design Automation Conference,
DAC 2018, San Francisco, CA, USA, June 24-29, 2018, pages 2:1–2:6, 2018.

[50] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In 2018 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22,
2018, pages 4510–4520, 2018.

[51] A. Sanyal, M. J. Kusner, A. Gascón, and V. Kanade. Tapas: Tricks to accelerate
(encrypted) prediction as a service. arXiv preprint arXiv:1806.03461, 2018.

28

https://github.com/n1analytics/MP-SPDZ
https://github.com/lutzroeder/Netron
https://github.com/lutzroeder/Netron

[52] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the
game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.

[53] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[54] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 1–9, 2015.

[55] C. Z. Tang and H. K. Kwan. Multilayer feedforward neural networks with single
powers-of-two weights. IEEE Transactions on Signal Processing, 41(8):2724–2727,
1993.

[56] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Stealing machine
learning models via prediction apis. In USENIX Security Symposium, pages 601–618,
2016.

[57] S. Wagh, D. Gupta, and N. Chandran. SecureNN: Efficient and private neural network
training. Cryptology ePrint Archive, Report 2018/442, 2018. https://eprint.iacr.
org/2018/442.

[58] B. Wang and N. Z. Gong. Stealing hyperparameters in machine learning. In 2018
IEEE Symposium on Security and Privacy, pages 36–52, San Francisco, CA, USA,
May 21–23, 2018. IEEE Computer Society Press.

[59] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan. Training deep
neural networks with 8-bit floating point numbers. In Advances in neural information
processing systems, pages 7686–7695, 2018.

[60] Wikipedia. Lee sedol. https://en.wikipedia.org/wiki/Lee_Sedol. Accessed: 19-
12-2018.

[61] S. Wu, G. Li, F. Chen, and L. Shi. Training and inference with integers in deep neural
networks. arXiv preprint arXiv:1802.04680, 2018.

[62] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou. Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

29

https://eprint.iacr.org/2018/442
https://eprint.iacr.org/2018/442
https://en.wikipedia.org/wiki/Lee_Sedol

	Introduction
	Our Contribution
	Techniques
	Quantization
	Secure Computation

	Related Work
	Outline of the Document

	Quantization
	Notation
	Deep Learning
	Google's Quantization Scheme
	Quantization and De-Quantization
	Dot Products
	Other layers.

	Secure Evaluation of Quantized Neural Networks
	Replicated-SS-based MPC Over Rings
	Quantized CNNs in MPC
	Secure Computation of a Quantized Dot Product
	Truncation by a Secret Shift
	Truncation by a Public Shift
	Modulo a Public Power of Two
	Clamping
	Comparison
	Bit decomposition
	Average and Max Pooling
	Output Layer

	Implementation and Benchmarking
	MobileNets Architecture
	Network Structure

	Benchmarks
	Extending to Other TensorFlow Models

	Conclusions
	Future Work

	Appendix
	MobileNets Blocks
	MobileNets V2

