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Abstract—Image classification using Deep Neural Networks
that preserve the privacy of both the input image and the model
being used, has received considerable attention in the last couple
of years. Recent work in this area have shown that it is possible
to perform image classification with realistically sized networks
using e.g., Garbled Circuits as in XONN (USENIX ’19) or MPC
(CrypTFlow, Eprint ’19). These, and other prior work, require
models to be either trained in a specific way or postprocessed in
order to be evaluated securely.

We contribute to this line of research by showing that this
postprocessing can be handled by standard Machine Learning
frameworks. More precisely, we show that quantization as present
in Tensorflow suffices to obtain models that can be evaluated
directly and as-is in standard off-the-shelve MPC. We implement
secure inference of these quantized models in MP-SPDZ, and
the generality of our technique means we can demonstrate
benchmarks for a wide variety of threat models, something
that has not been done before. In particular, we provide a
comprehensive comparison between running secure inference of
large ImageNet models with active and passive security, as well as
honest and dishonest majority. The most efficient inference can
be performed using a passive honest majority protocol which
takes between 0.9 and 25.8 seconds, depending on the size of the
model; for active security and an honest majority, inference is
possible between 9.5 and 147.8 seconds.

Summary of Changes: This version of the preprint adds a
Jfull implementation of inference in MPC. Assi Barak has been
removed from the authors at his request.

I. INTRODUCTION

Machine Learning (ML) models are becoming more rele-
vant in our day-to-day lives due to their ability to perform
predictions on several types of data. Neural Networks (NNs),
and in particular Convolutional Neural Networks (CNNs), have
emerged as a promising solution for many real-life problems
such as facial recognition [45], image and video analysis for
self-driving cars [[6] and even for playing games (most readers
probably know of AlphaGo [58] which in 2016 beat one
of the top Go players). CNNs have also found applications
within areas of medicine. [[22], for example, demonstrates that
CNN s are as effective as experts at detecting skin cancers from
images, and [20]] investigated using CNNs to examine chest
X-rays.

Many applications that use Machine Learning to infer
something about a piece of data, does so on data of sensitive
nature, such as in the two examples cited above. In such
cases the ideal would be to allow the input data to remain
private. Conversely, and since model training is by far the most
expensive part of deploying a model in practice preserving
model privacy may be desirable as well.

'For example, the network by Yang et al. [67] costs between $61 000
and $250000 to train according to https://syncedreview.com/2019/06/27/
the- staggering-cost-of-training-sota-ai-models/.

In order to break this apparent contradiction (performing
computation on data that is ought to be kept secret) tools like
secure multiparty computation (MPC) can be used. Using such
tools, image classification can be performed so that it discloses
neither the image to the model owner, nor the model to the
input owner. In the client-server model this is achieved by
letting the data owner and the model owner secret-share their
input towards a set of servers, who then run the computation
over these shares. It is nevertheless worth noting that an
adversary with black-box access to a model, such as in the
Machine Learning As A Service scenario, who can request
predictions on arbitrary inputs can steal the model with near-
perfect fidelity in some cases [62 64]. We consider this an
orthogonal work to secure inference using MPC techniques.

Research in the area of secure evaluation of CNNs has been
rich during the last couple of years [24} [55| 156l 147, 150} 38|
63, 54, 144]. The main goal of this prior research has been
to reduce the performance gap between evaluating a CNN
in the clear and doing it securely. Current state of the art
solutions rely on for example Garbled Circuits, such as the
XONN [54] or MPC [44]. Both of these works manage to
evaluate large ImageNet type models (tens of layers and 1000
classes) with reasonable efficiency. Moreover, the CrypTFlow
framework [44] also support secure inference with malicious
security albeit by relying on a secure hardware assumption.

Evaluating these models securely still takes in the order of
seconds, which is definitely too slow for applications that re-
quire real-time image classification. However, for applications
like [20) 22] this delay is definitely acceptable and in any event
faster than having a doctor manually examine the image. (In
practice, a human would probably still examine the image.
However ML provides an appealing aid for the doctor.)

A. Towards practical secure inference.

The ultimate goal of all previous work on secure inference
is to obtain a system—or at least move towards a system—that
can be used for practical tasks.

While inference in the clear can work with floating point
numbers and still be efficient, the same cannot be said for
Secret Sharing based MPC which are better suited for modular
integer-based computation. One can map a set of floating-point
numbers with finite precision to integers and use a modulus
that is large enough so that overflows do not occur (effectively
emulating integer arithmetic), as done by Gilad-Bachrach et
al. [24]]. However, this approach is prohibitive when many
multiplications are to be performed. On the other hand, one
can also use fixed-point arithmetic, i.e. a real number z € R
is approximated by x ~ 27‘2 where & € Zy; for some ¢, M,
where ¢, the precision, is the same for all values. Under this
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representation, the arithmetic is performed over the integer
representation z. In order to perform multiplications in this
representation, truncation protocols are needed. Different to
plaintext computation, this truncation is more expensive than
the multiplication.

Another source of complexity arises from the fact that
non-linear operations that are trivial in the clear, such as
comparisons, become expensive or even impossible when
computed securely. The consequence of this is that common
activation functions such as Rectified Linear activation or sign
functions suddenly impose a significant overhead when com-
pute securely. Depending on the system, previous solutions use
e.g., garbled circuits to compute these functions [S0} 47, |38]]
or rely on ad-hoc approximations (e.g., z +> 2 instead
of x — max(z,0)) [24] that affects both training and the
accuracy of the model.

1) Model sizes: The paragraphs above argue that there are
some limitations that restricts the size and kind of models that
it is possible to evaluate securely. These limitations are re-
flected in the type and size of models that are used to illustrate
practicality in previous work on secure inference. In particular,
previous work only evaluate small networks on small datasets,
such as Cifarl0 or MNIST. This choice is understandable—
secure evaluation impose a significant overhead and more real-
istic models typically require 100s of millions of multiply-add
operations—but it leaves open questions as to the efficiency
for larger models. More importantly—in particular when one
considers that the secure evaluation process requires modifying
the networks as described above—it is not clear if the results
with respect to accuracy for these smaller models, also carry
over to larger models.

There are essentially two ways of addressing these issues:
Either one needs to evaluate the larger models and so show
that the modifications that are made do not affect the accuracy
(or if they do, to what extent). This approach is taken in the
recent and concurrent works XONN [54] and CrypTFlow [44].
Another approach is to evaluate models without modifying
them. This approach allows one to argue that any guarantees
about accuracy which are reported by the tool used for training
the model will still be valid when evaluated securely.

2) Usability: A final obstacle for practical deployment has
to do with usability of the secure evaluation solution, and is an
obstacle that arise as a result of the challenges pointed out so
far. In particular, and as a result of previous work using custom
tailored protocols and a special purpose training phase, each
solution carries with it a full set of tools that the end-user needs
to become familiar with. For the purpose of having a usable
system, this is clearly unreasonable: it is simply not realistic
to expect an end-user to relearn a new framework every time a
better secure solution is released. For this reason, some recent
work [44] 2] strive to make their solution work with standard
Tensorflow models.

A second issue with respect to usability, arises because
different end-users will have different requirements in terms
of security of the system. Because previous solutions develop
specifically tailored protocols for secure evaluation, only one
threat model is supported. To the best of our knowledge, it is
only CryptFlow [44] that also support active security. However

CryptFlow relies on SGX to obtain active security and so it
remains an open problem of getting efficient secure inference
without relying on a secure hardware assumption.

B. Our Contribution

Improvements to the viability of evaluating Machine Learn-
ing models in a secure way has been driven by advances
in MPC; however, recent research in the area of Machine
Learning itself may be beneficial towards this goal. At a high
level, our main contribution is showing that existing techniques
from the realm of Machine Learning plays very nicely with
recent advances in MPC towards the goal of getting efficient
inference. More precisely, the research area of quantization
provides us with a well tested and widely deployed approach
to performing practically relevant prediction tasks securely.

Quantization is motivated by the deployment of ML models
in resource-constrained environments like mobile phones or
embedded devices, and aims at reducing the size of neural
networks by lowering the precision of the values involved.
Besides lowering precision, another goal of quantization is to
simplify the arithmetic used, so that only integer and bit-wise
operations are used. These techniques, quite coincidentally, are
highly convenient when we consider a secure implementation
using MPC.

In this work we demonstrate that models as trained and
output by Tensorflow can be evaluated directly and as-is using
more or less off-the-shelve MPC. This illustrates a particularly
attractive and user-friendly approach to secure evaluation as
(1) models can be trained by users that do not have to be
familiar with the secure protocol, and (2) that users can
select a secure protocol that more closely matches the threat
model that they need. The first point has seen some treatment
in previous work, such as MiniONN [47] or CrypTFlow
[44]. The second point has been examined in previous work
such as XONN [54], which permits standard techniques to
obtain active security (although they do not implement it),
or CrypTFlow which achieve active security by relying on
SGX. However, supporting a wider array of threat models
while allowing for arbitrary Tensorflow models have not been
achieved yet.

Our contributions can be summarized as follows:

1) We demonstrate that currently deployed and actively
researched methods of quantization from Machine Learn-
ing solve many of the problems currently faced when
developing MPC based secure inference. We employ
a specific quantization scheme developed by Jacob et
al. [37]. The reason for choosing this particular scheme,
is that it (1) solves issues faced when performing secure
inference using MPC, and (2) that it is already present
in Tensorflow. In relation to the latter point, using this
quantization scheme means we can use standard tools
for training models without having to develop specialized
tools that later convert the trained model into something
which can be run by the MPC (this is unlike concurrent
work such as CryptTFlow [44] which, while it works with
standard Tensorflow models, still require a specific piece
of software which converts the model into something that
can be run securely).



2) Because of the generality of our approach—in particular
that it is black box with respect to the underlying MPC—
we provide benchmarks and implementations using sev-
eral different protocols. This, we argue, is important
for practical deployment, as it allows the user to pick
from a variety of different threat and system models
in order to best fit their need. Consequently, we are
also the first to provide secure inference benchmarks
for large ImageNet models (in particular, models of the
MobileNets architecture [32]) that enjoy active security
without relying on hardware assumptions. (As pointed out
earlier, CrypTFlow achieve malicious security as well, but
rely on SGX to obtain malicious security.)

3) Lastly, we develop a simple truncation protocol, which
might be of independent interest, that allows one to
compute a right shift by a secret value at essentially
the cost of a public right shift. The downside is that
computation needs to take place over a potentially larger
modulus.

C. Techniques

1) Quantization: As mentioned in the preceding section,
the core of our work is the theory of quantization. In a nutshell,
this allows a set of real numbers {aq,...,a,} € R to be
represented by a set of integers {a1,...,an} € Zps in a way
so that basic operations such as additions and multiplications
are preserved, at least up to some extent. In the context
of CNNs the motivation of using quantization is to reduce
storage: Instead of storing a set of real numbers (say, 32-
bit floating-point numbers), one can replace this set by small
integers; in practice either 8 or 16-bits.

Research in developing quantization schemes for several
ML models and understanding the effect of these techniques
in the accuracy is extensive in the ML community, as can be
seen from the recent survey by Guo [29]. We choose to focus
our work on the quantization scheme by Jacob et al. [37],
which works by mapping a real number a; € R to z; € Zyy
such that o; &~ m - (z; — z), where m € R and z € Zy,
are parameters depending only on the set being quantized and
the bound M. This affine mapping, which can be seen as a
shifted version of fixed-point arithmetic, turns out to preserve
accuracy quite well even when using 8-bit integers [42].

By making use of this quantization scheme we can im-
plement the core operations used in CNNs, like convolutions
and fully connected layers, by using mostly integer-only arith-
metic. Most of these operations rely on taking dot products,
which can be done very easily with this quantization scheme
by taking the corresponding integer dot product over the
quantized values and then performing a truncation afterwards.
Moreover, the effect of using this type of quantization on the
accuracy of the model has been studied extensively already
and has been found to be very small. For example, the models
we consider in this work achieve up to 70.7% top-1 accuracy
and 89.5% accuracyf]

2For ImageNet models, top-1 refers to the accuracy with which the model
correctly classifies an image, while top-5 means that the correct label is within
the top 5 predictions.

In must be said that in technical terms this quantization
technique is not much different from using fixed-point arith-
metic directly (for instance, this quantization method requires
truncation just like fixed-point does), which is what most
previous works in privacy-preserving ML have done.

2) Secure Computation: We implement our inference pro-
tocol in MP-SPDZ [[17], and we benchmark several different
ImageNet networks. This allows us to illustrate the trade-offs
between security and performance, in order to get a better
understanding on the right protocol to choose for a given
application.

We benchmark these networks using a total of different 8
protocols, and present the results in detail in Section[[II-B] The
protocols are distinguished based on the following factors:

« Active vs. passive security
« Computation modulo a power of two vs. modulo a prime
o Dishonest majority vs. Honest majority

We use MP-SPDZ because it provides an efficient implemen-
tation of most of the necessary primitives as well as high-level
programming interface for it, and we added missing routines
like truncation by a secret shift, as shown in Section [[I[-D3|
and cheap sums-of-products, which forms the basis of the most
efficient setting (honest majority over a ring). The MP-SPDZ
compiler supports a high level Python-like language and so it
is easy to extend it with support for more models in the future.

D. Related Work

Secure evaluation of Neural Networks can be traced back
to at least the work by Orlandi et al. [5, I51]] which present a
solution based on HE techniques. Several later works rely on
HE techniques either in full or in part. CryptoNets [24] use
Leveled Homomorphic Encryption (LHE), which necessitates
bounding the number of operations a priori. In addition, HE
only permits evaluation of polynomials and as such cannot
compute e.g., the Rectified Linear activation functions (the
function  — max(0,2)) and the authors therefor rely on
the approximation x ~— z2. However, and as pointed out
by Gilad-Bachrach et al. [24]], such an approximation makes
training difficult for larger networks, the issue being that the
derivative of x2 is unbounded. Chabanne et al. [10] improve
upon CryptoNets by evaluating networks with 6 hidden layers
(as opposed to only 2 as in Gilad-Bachrach et al.). More
recently, Bourse et al. [7] obtain faster evaluation albeit for
a smaller network (one and two hidden layers) by combining
FHE and Discretized Neural Networks (i.e., networks where
weights are in {1, —1}).

One of the downsides of HE based solutions are their inef-
ficiency and inability to handle common activation functions.
Gazelle [39] combines garbled circuits (GC) with additive HE
(AHE) in order to obtain a more efficient system. The boost
in efficiency is attributed to an efficient method of switching
between the AHE scheme and a GC, where the former is used
to compute convolutions and fully connected layers, while the
latter is used to compute the network’s activation functions.

The idea of using multiple different protocols to achieve
faster predictions have been used before [39]. MiniONN [47]]
develops a technique for turning a pretrained model into an



oblivious one, which can be evaluated using a mix of HE,
additive secret sharing and GC. Chameleon [55], which is an
extension of the ABY framework by Demmler et al. [19],
likewise use secret sharing for matrix operations and GC
for activation functions. More recently, ABY3 by Mohassel
and Rindal [49], also benchmark secure evaluation (albeit the
authors do not implement full inference) in a framework that
relies on a mix of secret sharing, boolean (i.e., GMW) and
garbled circuits.

Finally, like solutions relying purely on HE have been
considered before, so has solutions that rely purely on GC
or MPC; the latter of which is most relevant to this work.
DeepSecure [56] is perhaps the first work to take a pure
GC based approach for evaluating Neural Networks. More
recently XONN [54]] builds a very efficient GC based solution
by noting that Binarized Neural Networks [34] (i.e., networks
with weights that are bits) can be evaluated very efficiently.
XONN shows that evaluating deep networks (> 20 layers)
is possible. A different approach is taken by Ball et al. [2]]
where the authors use the arithmetic garbling technique of
Ball et al. [3] to evaluate Neural Networks. Pure MPC based
solutions have been studied in SecureML [50], which employs
a three-party honest majority protocol. A major performance
boost in SecureML can be attributed to the way fixed point
arithmetic is handled, where the authors show that it is possible
to just have parties perform the truncation locally. SecureNN
[63] can be seen as an extension of SecureML where both
three- and four-party protocols (both with one corrupted party)
are used. Concurrently to this work, CrypTFlow [44] builds
a system on top of SecureNN that is capable of evaluating
very large networks (>100 layers) in reasonable time. Another
very attractive feature of CrypTFlow is that it provides a more
complete framework that accepts standard Tensorflow trained
models as input (hence the name).

1) Quantization in prior work: Whether implicitly or ex-
plicitly, most prior work already uses some form of quantiza-
tion. For instance, replacing directly floating-point by fixed-
point numbers can already be seen as quantization. More
often than not, however, this conversion is done in a very
naive manner where the primary goal has been to fit the
model parameters to the secure framework without further
consideration about any potential impact it might have on the
model’s accuracy. Relatively little work has made explicit use
of quantization in the context of securely evaluating Machine
Learning models. One example is the recent work by Bourse et
al. [7], where the authors use a quantization technique that is
similar to the one described by Courbariaux and Bengio [[11]].
Sanyal et al. [57] use the same techniques. Nevertheless, their
work lies in the FHE domain, which differs from multiparty
computation. For instance, the fact that the weights are kept in
the clear by the model owner changes the way the computation
is performed, and allows them to use only additions and
subtractions. XONN [54], which as mentioned is based on
Garbled Circuits, use a quantization scheme which converts
weights into bits [34]. For this to work, the authors need to
increase the number of neurons of the network and a large
part of the above work is dedicated to describing how this
scaling can be performed. CrypTFlow [44] employ what can

be seen as a custom fixed-point-to-floating-point conversion
protocol (called Athos) that automatically converts the floating
point weights of a Tensorflow model into a fixed points
representation, where the parameters are chosen so as to not
compromise on the models original accuracy.

2) Frameworks for secure evaluation: Several previous
works provide what can be viewed as a more complete
framework for secure evaluation. The first of these is Min-
iONN [47] which provides techniques for converting existing
models into models that can be evaluated securely. The authors
demonstrate this framework by converting and running several
models for interesting problem domains, such as Language
modeling, as well as more standard problems such as hand
writing recognition (MNIST) and image recognition (Cifar10).
CrypTFlow [44] also provides more complete framework. As
already mentioned above, the first step in their framework is
a protocol for converting an Tensorflow trained model into a
model that can later be evaluated securely using a protocol
based on SecureNN [63]].

E. Outline of the Document

In Section [lIf we give a brief introduction to Neural Net-
works after which we describe the quantization scheme we
will be using. In Section we provide a self-contained
description of our protocol for secure inference, describing the
basic building blocks. We discuss implementation details and
present benchmarks in Section |IV] and conclude in Section

II. DEEP LEARNING AND QUANTIZATION

Deep learning models are at the core of many real-world
tasks like computer vision, natural language processing and
speech recognition. However, in spite of their high accuracy
for many such tasks, their usage on embedded devices like
mobile phones, which have tight resource constrains, becomes
restricted by the large amount of storage required to store
the model and the high amount of energy consumption when
carrying the computations that are typically done over floating-
point numbers. To this end, researchers in the machine learning
community have developed techniques that allow weights to be
represented by low-width integers instead of the usual 32-bit
floating-point numbers, and quantization is recognized to be
the most effective such technique when the storage/accuracy
ratio is taken into account.

Quantization allows the representation of the weights and
activations to be as low as 8 bits, or even 1 bit in some cases
(11, 53]E] This is a long-standing research area, with initial
works already dating back to the 1990s [23| 4, 61, 48], and
this extensive research body have enabled modern quantized
neural networks to have essentially the same accuracy as their
full-precision counterparts [12 68, 26, 30, [52], even with
large CNN architectures like AlexNet [43], VGGNet [39],
GoogleNet [[60] and ResNet [31].

3Furthermore, some quantization techniques also allow to represent gra-
dients with a small number of bits, which effectively allows for quantized
training of neural networks. However, this is still in a very early stage, and
since we are focused only on inference in this work, we do not present such
techniques.
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Fig. 1: Visualization of a Convolutional Neural Network.

A. Notation

For a value & € RN *N2XNs we use zi, j, ] € R to denote
taking ¢’th value across the first dimension, the j’th value
across the second dimension and the c’th value across the
last dimension. In a similar way, we might write x[-, -, c] €
RN1xN2 to denote the matrix obtained by fixing a specific
value for the last dimension. A real value interval is denoted
by [a, b] and a discrete interval by [a, b]z. We define clamping
of a value x € R to the interval [a, b], denoted by clamp,, ,(z),
by setting x < a if ¢ < a, x < b if x > b and otherwise
z < x. (Clamping to a discrete interval is similarly defined.)
We denote by N, the set {1,...,¢}.

B. Deep Learning

An artificial Neural Network, or simply Neural Network
(NN) for short, is a machine learning model that is used to
obtain predictions on some data that has proven to be very
successful at specific tasks like character recognition, data
processing and image classification. In a very general setting,
a neural network is an ordered set of functions (f1,..., fr)
where f; : D;_1 — D;, with D; some space of the form
RNvXXNe; - for some ¢; > 0. An element of such a set is
known as a fensor, and each function f; is known as a layer.
The input to the neural network is a tensor * € Dy, and
the output is y = f, o--- o fi(x) € D,. For convolutional
neural networks (CNNs) in practice Dy could be R128%128x3
to represent 128 x 128 images with 3 color channels (RGB),
and the output set D,, could be a vector where the i-th entry
represents the probability that the input image has a given
label indexed by . See Figure [I] for a visual representation of
a neural network.

Some of the types of layers considered in practice include
affine layers like fully connected and convolutional layers,
non-linear activations like ReLU and ReLU6, and down-
sampling layers like average or max pooling. Below we discuss
some of the layers we will consider in this work.

1) Two-Dimensional Convolutional Layer: A two-
dimensional convolution is an operation performed between
two three-dimensional tensors to produce another three-
dimensional tensor. The parameters for a two-dimensional
convolution are the input dimensions I, I,,, I, the output
dimensions Oy, O,,,04 and the dimension of the windows
Wy, Wy. On input & € RI»¥Iwxla 3 weight tensor
w € ROXWrxWuxla and a bias vector b € RO | the
convolution performs the following operations.

1) For each (i,7) € Np, xNp,,, a sub-tensor of &, denoted
by ;; € RWnxWuwxla jg extracted. We will not dive
into the details of how this is done besides saying that it

depends on some extra parameters like the stride and the
padding type, which are part of the architectureﬂ
2) The entry indexed by (7,7, k) € No, xNp, xNg, of the

output is computed as dot(x; jw(k, -, -, ]) + b[k], where
dot represents the sum of the point-wise products of the
two inputs.

2) ReLU and ReLU6: 1t should be clear from the descrip-
tion of the convolutional layer above that this operation is
affine, and any composition of such functions would result in
an affine function as well. The purpose of non-linear activation
functions like ReLU and ReLU6, as the name suggests, is
to break this linear relation between input and output. ReLU
(REctified Linear Unit) takes as input a tensor and applies the
following to each one of its entries: if the entry is negative then
replace it with 0, and leave it unchanged otherwise. ReLU6
works in a similar way, but if the entry is greater than 6 then
it is replaced by 6. This can be seen as clamping the input to
the interval [0, 6].

3) Average and Max Pooling: A pooling operation takes
as input a tensor & € R»*Tw*lo and returns a tensor y €
RO»*OwxOa with O, < I, Oy < I, and Oy = I, which
can be seen as a down-sampling operation. Each entry y[i, j, k]
is computed by applying a given operation to the entries of
some sub-matrix x; ;[-,-, k| of «[-,-, k], which is extracted in
a similar way as in a convolution. For average pooling the
operation is just the mean of the entries in the matrix, and for
max pooling the maximum of the entries is returned.

4) Output: The output of a CNN is typically a vector.
The index with the maximum value in this vector represents
the most likely label corresponding to the input, and this
vector can be normalized into a probability distribution via
a monotonous function like Softmax so that the value corre-
sponding to index ¢ is the probability that the input has label
i.

5) Batch Normalization: The networks we will be working
with use Batch Normalization [36], which is a technique used
to speed up training. The idea is to normalize the inputs to
each activation: instead of computing ¢(z) for input z and
activation function g, we instead compute g(y) where

T — UB
y=7|—7==—=]+5
\op Te€

where v, /3 are parameters learned during training, and p, 0%
is the mean and variance, respectively, of a batch B of which
x is a member. Consider an input y = W + b to g. During
inference, we can “fold” the batch normalization parameters
into the weights, which is done by using W’ and &’ defined
as

(D

b_
W=, b/:fy( U“>+5.

It is straight forward to verify that using y' = W'+’ yields
the expression in Eq. (I).

4See https://cs23 1n.github.io/convolutional-networks/#conv, for an elemen-
tary and thorough explanation.
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C. Google’s Quantization Scheme

The goal of this section is to provide an overview of the
quantization technique of Jacob et al. [37] (see also [42])
that we will be relying on to get efficient secure inference.
While this particular quantization scheme might not be state
of the art, or even the best for all choices of secure inference
(e.g., XONN [54] rely on a different scheme to get efficient
inference) we choose this particular scheme for the following
reasons: It is implemented in Tensorflow (more precisely,
TFLite [28]]) and as such we get an user friendly, widely
available and well documented way of training models that
can securely evaluated. The fact that Tensorflow can be used to
directly train models for our framework is very handy indeed
as it removes the need to develop custom tooling that has little
to do with the secure framework itself. Moreover, Tensorflow
provide several pre-trained ImageNet models which provides a
very good point of reference for not only our benchmarks, but
for future work that wish to compare against us. Indeed, few
if any previous work on secure inference provide pretrained
models which makes an accuracy oriented comparison very
hard |

It bears mentioning that this section does not aim at pro-
viding a comparison or treatment of the different quantization
schemes that exist. For a broader survey of the various of the
different quantization techniques that exist we direct the reader
to Guo [29].

We note that this scheme is benefitial for MPC since it
simplifies the activations and the arithmetic needed to evaluate
a CNN. However, the original goal of Jacob et al. was to
reduce the size of the models, rather than simplifying the
arithmetic or the activations. Unfortunately, we do not get the
benefits in the size reduction since, even if the network can be
stored using 8-bit integers, arithmetic must be done modulo
232 and even 254 in some cases.

1) Quantization and De-Quantization: The scheme comes
in two variants, one for 8-bit integers and another one for
16-bit integers. In this work we focus in the former, and we
provide our description only in that setting.

Let m € R and 2 € [0,2%)z and consider the function
dequant,, . : [0,2%)z — R given by dequant,,, _(z) = m-(z—
z). This function transforms the interval [0,2%)z injectively
into the interval I = [—m -z, m - (28 —1 — 2)) and as such it
admits and inverse quant,, , mapping elements in the image
of dequant,, . into [0,2%);. We define the quantization of a
number « € I to be quant,, , (o), where o is closest number
to a such that o is in the image of dequant,,, ..

The constants m, z above are the parameters of the quan-
tization, and are known as the scale and the zero-point,
respectively. This quantization method will be applied on a
per-tensor basis, i.e. each individual tensor a has a single
pair m, z associated to it. These parameters are determined at
training time by recording the ranges on which the entries of
a given tensor lie, and computing m, z such that the interval
[~m-z,m- (2% —1—2)) is large enough to hold these values.

SThis is especially the case if it is not clear exactly how the model was
trained and which training and test data was used.

See Figure 2] for a visualization of this quantization method,
and see Jacob et al. [37] for details.
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Fig. 2: Visualization of the Quantization Scheme by Jacob
et al. [37]. The continuous interval on top is mapped to the
discrete interval below, and multiple numbers may map to the
same integer due to the rounding.

2) Dot Products: Computing dot products is a core arith-
metic operation in any CNN. In this section we discuss how
to do this with the quantization method described above.

Let « = (a,...,ay) and B8 = (B1,...,58n) be two
vectors of numbers with quantization parameters (m1, z1) and
(ma, z9), respectively. Let v = Z?;lai - B;, and suppose
that ~y is part of a tensor whose quantization parameters are
(m3,23). Let ¢ = quant,,_ . (), a; = quant,, . (a;) and
bi = quant,,, . (B;). It turns out we can compute ¢ from
all the a;, b; by using integer-only arithmetic and fixed-point
multiplication, as shown in the following.

Since v ~ ms3 - (¢ — z3), a; = my(a; — z1) and B; =
mo (bl — 22), it holds that

N N
ma-(c—z3) =y =Y o Y ma-(ai—21)ma-(bi—2z3).
i=1 i=1

Hence, we can approximate c as

N

: Z(ai —z1) - (bi — 22) 2

=1

miy - Mg
c=23+ —
ms3

The summation s = Zf\;(ai — 21) - (b — z2) involves
integer-only arithmetic and it is guaranteed to fit in 16log N
bits, since each summand, being the product of two 8-bit
integers, fits in 16 bits. However, since m = (mims)/ms
is a float, the product m - s cannot be done with integer-
only arithmetic. This product is handled in TFLite by es-
sentially transforming m into a fixed-point number and then
performing fixed-point multiplication, rounding to the nearest
integer. More precisely, m is first normalized as m = 2~ "m”
where m” € [0.5,1)F] and then m” is approximated as
m” ~ 273m’, where m’ is a 32-bit integer. This is highly
accurate since m” > 1/2, so there are at least 30 bits of
relative accuracy.

Thus, given the above, the multiplication m - s is done by
computing the integer product m - s, which fits in 64 bits
since both m and s use at most 32 bits (if N < 216), and

6Jacob et al. [37] find that in practice m € [0, 1), which is the reason
why such normalization is possible. We also confirm this observation in our
experiments, although it is not hard to extend this to the general case (in fact,
TFLite already supports it).



then multiplying by 27" ~3! followed by a rounding-to-nearest
operation. Finally, addition with z3 is done as simple integer
addition.

If the quantization parameters for v were computed cor-
rectly, it should be the case, by construction, that the result
c lies in the correct interval [0728)2. However, due to the
different rounding errors that can occur above, this may not
be the case. Thus, the result obtained with the previous steps
is clamped into the interval [0, 28)z.

3) Addition of bias: In the context of CNNs the dot
products above will come from two-dimensional convolutions.
However, these operations not only involve dot products but
also the addition of a single number, the bias. In order to
handle this in a smooth manner with respect to the dot product
above, the scale for the bias is set as mims/mg3 and the zero-
point it set to 0. This allows the quantized bias to be placed
inside the summation s, involving no further changes to our
description above.

4) Other layers: Other layers like ReLU, ReLU6 or max
pooling, which involve only comparisons, can be implemented
with relative ease directly on the quantized values, assuming
these share the same quantization parameters. This is because
if a =m(a—2) and § = m(b— 2), then o < § if and only
if a < b, so the comparisons can be performed directly on the
quantized values.

In fact, activations like ReLU6 (which is used extensively
in the models we consider in this work) can be entirely fused
into the dot product that precedes it, as shown in Section 2.4
of [37]. Since ReLU®6 is essentially a clamping operation, it
is possible, by carefully picking the quantization parameters,
to make the clamping of the product to the interval [0, 2%)z
also take care of the ReLU6 operation. In short, if the zero-
point is 0 and the scale is 6/255, then we are guaranteed that
m(q — z) €[0,6] for any g € {0,...,2% —1}.

On the other hand, mathematical functions like sigmoid
must be handled differently. We will not be concerned with
this type of functions in this document since it is the case
in practice that ReLU and ReLU6 (or similar activation
functions) are typically enoughﬂ

III. QUANTIZED CNNS IN MPC

In the previous section we discussed how quantization of
neural networks works, or, more specifically, we discussed the
quantization scheme by Jacob et al. [37]. Now, we turn to
the discussion about how to implement these operations using
MPC. However, before diving into the details of the protocols
we use in this work, we describe the setting we consider for
the secure evaluation of CNNs.

A. System and Threat Model

Like most previous work on secure inference using MPC,
we consider a setting where both the model owner and client
outsource their model, respectively input to a set of servers
that perform that actual secure inference.

7See [37] for a discussion on quantization of mathematical functions.

ZQk IFP
. - Passive OTSemi2k OTSemiPrime
Dishonest Majority s .ive  spDz2k LowGear
Honest maiorit Passive Replicated2k ReplicatedPrime
Jority Active  PsReplicated2k  PsReplicatedPrime

TABLE I: MPC protocols we use, classified depending on
their security level (passive vs. active) and their arithmetic
properties (modulo 2* vs. modulo a prime)

We consider a setting of either two or three servers P, P
and P depending on the setting (honest or dishonest majority)
among which one is allowed to be corrupted.

The model and input owner each secret-shares their inputs
to the servers at the beginning of the protocol execution.
This preserves the privacy of this sensitive information under
certain assumptions on the adversarial corruption. Then, the
servers execute a secure multiparty computation protocol to
evaluate the quantized model on the given input, obtaining
shares of the output, which can then be sent to the party that
is supposed to get the classification result.

Our techniques have the crucial feature that virtually any
secret-sharing-based MPC protocol can be used as the under-
lying computation engine. More precisely, let R be either Zqx
or Fp,, we assume a secret-sharing scheme (-) over R for two or
three parties (depending on the setting) withstanding one cor-
ruption, allowing local additions (x + y) = () + (y), together
with a protocol for secure multiplication (x -y) = () - (y).
In this work we consider several well-studied MPC protocols
for different regimes: 2-party and 3-party computation (both
withstanding one corruption), passive and active security, and
computation modulo primes and powers-of-two. We refer to
Section for a thorough discussion on the protocols we
consider in this work.

B. MPC Protocols

We consider a total of 8 MPC protocols to support the
secure evaluation of the quantized CNNs, corresponding to all
the possible combinations of active/passive, honest/dishonest
majority and computation modolu a prime or a power-of-two.
Table [I| contains an overview of which protocol is used in
which security model. The rest of this subsection provides
some details on each protocol.

Now that we abstracted away the provision of the input
and the model, it remains to describe what MPC protocol the
servers execute in order to compute the prediction securely.
This includes the secret-sharing scheme used, and also how to
handle multiplications, truncations and comparisons, among
other details of the protocol.

In this work we leverage the capabilities of the MP-SPDZ
framework to consider a total of 8 MPC protocols, each
of them with its own advantages and disadvantages. Our
protocols can be categorized in three different dimensions:
amount of corruptions, type of corruptions and underlying
algebraic structure. For the first dimension we distinguish
between two cases: honest vs dishonest majority. In the first
case the adversary is allowed to corrupt strictly less than half



of the parties, and we instantiate this case with 3 parties
among which one corruption is tolerated. On the other hand, in
the dishonest majority scenario the adversary can corrupt any
number of parties as long as there is at least one remaining
honest party, and here we consider 2 parties, which allows
us to tolerate one corruption. While honest majority impose
a stronger security assumption than dishonest majority, they
tend to be simpler in their design and thus more efficient.

Regarding the type of corruption, we distinguish between
passive and active corruptions. Actively secure protocols are
preferred for sensitive applications since they remain secure
even if the adversary deviates arbitrarily from the protocol
specification, but they include an overhead with respect to their
passive counterpart. Finally, the algebraic structure on which
the computation takes place also plays an important role in
terms of efficiency and protocol design, with protocols over IF),
being easier to design and possibly implement, but protocols
over Zqr providing some efficiency improvements in terms of
basic arithmetic and bit-operations [16].

Given our considerations above, we proceed to describe
each one of the protocols we consider in this work. We
emphasize that the goal of implementing our CNN evaluation
algorithm using such a wide range of protocols is to provide
baselines for the performance-security tradeoff. A shared value
under any of the protocols below is denoted by (z), and we
only assume procedures for adding shared values (which do
not involve communication) and for multiplying shared values.
We also assume the existence of a procedure that allows
servers to provide inputs: If server P; has the value z, then
Input(z) results in the parties having consistent shares (z).

1) Dishonest Majority: Protocols in the dishonest majority

setting are often harder to develop and they are also more
complex than honest majority ones. They are typically based
in additive secret sharing and use authentication tags for active
security to ensure that the openings of shared values are done
correctly.
e SPDZ2k: This is the first actively secure protocol over Zqx in
the dishonest majority setting, and it was proposed initially by
Cramer et al. [[13]] and implemented subsequently by Damgéard
et al. [16]. This protocol can be seen as an extension of
MASCOT [4Q] (itself being an extension of SPDZ, hence the
name).

Multiplications in SPDZ2k are handled using multiplication
triples, which are preprocessed using oblivious transfer like in
MASCOT. Authentication is handled like in SPDZ, but with
an addition that allows this method to work over Z,x which
consists of working over the ring Z,x+- and using the upper
s bits for authentication.

e OTSemi2k, OTSemiPrime: These protocols denote cut-
down versions of SPDZ2k and MASCOT, respectively. In
particular, they omit the usage of authentication tags and the
so-called “sacrifice” where two triples are checked against
each other and only of them can subsequently used in the
protocol. There essentially remains the generation of multipli-
cation triples using OT.

e LowGear: This is an actively secure protocol for computation
modulo a prime. It uses semi-homomorphic encryption based
on learning with errors. See Keller et al. [41]] for details.

2) Honest Majority: Honest majority protocols are typi-
cally developed using Shamir Secret Sharing (for an arbitrary
number of parties) or Replicated Secret Sharing (for small
number of parties). Since we consider only a small number of
servers we focus on the replicated SS instantiations.

e Replicated2k, ReplicatedPrime: This protocol secret-shares
a value x among three parties P;, P>, P3 by letting each P,
have random pairs (z;, z;4+1) (indexes wrap around modulo 3)
subject to = 21 + x5 + 23 mod M, where M = 2F for the
ring case and M = p for the field case. The most efficient
passively secure multiplication protocol to date is the one
presented by Araki et al. [[1l], where the total communication
involves 3 ring elements.

o PsReplicatedPrime: This protocol by Lindell and Nof [46]
extends ReplicatedPrime to active security by preprocessing
potentially incorrect triples and proceeding to the online phase
using these, optimistically, checking their correctness at the
end of the execution using sacrificing techniques.

e PsReplicated2k: This protocol by Eerikson et al. [21]] is an
extension of the one by Lindell et al. [46] to the ring setting.
This is achieved by incorporating ideas by Cramer et al. [13]]
in order to adapt the post-sacrifice step by Lindell et al. to the
ring Zok.

C. Building Blocks

For many applications, the multiplication protocol assumed
for (-) is not enough. In practice, many useful functionalities
cannot be nicely expressed in terms of additions and multi-
plications and therefore, more often than not, researchers end
up developing custom protocols for specific applications. As
we argued in Section[[-D] this also includes the case of secure
evaluation of Neural Networks.

In our case, thanks to the quantization scheme by Jacob et
al. [37] most of the operations in the evaluation of a quantized
Neural Network become additions and multiplications, which
are already supported by the MPC protocols we consider here.
Furthermore, the multiplications have a very special structure:
they are part of a dot product operation, which can be com-
puted more efficiently by the passively secure protocols in the
honest majority setting. However, the evaluation still requires
non-arithmetic operations like truncations and comparisons,
which are more expensive and require specialized subprotocols
for their computation. We discuss these primitives now.

Some of these protocols have been already studied in the
setting of computation over fields (e.g. [8, [14]), however, over
rings, some of these operations are not possible anymore and
therefore some ring-compatible variants are required. Further-
more, for the particular case of quantized Neural Networks it is
also required to truncate by a secret amount, unlike the typical
scenario in which this shift is public. Also, as a contribution of
independent interest, we show how to reduce this computation
to the well-studied case in which the shift is public.

We remark that we think of x € R as a signed integer in

the interval [—M M }, where M is either p or 2*.
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1) Random Truncated Pairs: At the heart of many of the
subprotocols below lies the creation of pairs ((r), (r’})), where
r € R is uniformly random and r’ = r mod 2™ for some in-
teger 0 < m < k. This is achieved by sampling random shares
(r;) for i =1,...,k, where r; € {0,1}, and then computing
() = 251 () + 52 20 (i) and (1) = ST 27 ().
We denote this procedure by TruncPairg(m, k).

It then remains to show how to preprocess random shares
(b) where b € {0,1}. This is achieved by letting parties P; for
¢ = 1,2 sample a bit b; and call Input(b;) so that the parties
obtain (b;). Then the parties compute (b) where b = by @ by
as (b) = (b1) + (b2) — (b1) - (b2). Since at most one party
is assumed to be corrupt (either in the honest or dishonest
majority case), the resulting bit b is uniformly random.

The above procedure works for R = F, or R = Zo.
However, for active security, it is crucial to enforce that
b; € {0,1}, since in principle a corrupt party can input any
b; € R. Fortunately, this can be easily checked by computing
and opening (b;) - (1 — (b;)), and verifying that it equals O.
This works since « - (1 — x) = 0 if and only if 2 = 1, both
over IF, and Zys.

We remark that our bit-generation procedure does not scale
well as more servers are involved, and we use it since we
only consider two or three servers. For the more general case,
the bit-generation procedures by Damgard [15] (for F,) and
Damgard [[16]] (for Z,x) are more suitable.

2) Comparison of Bitwise-Shared Values: In order the
reduce the number of rounds we use a divide-and-conquer
approach, that is we compare the lower and upper half
independently and then combine the result. The base case
is the comparison of two bits. This results in a logarithmic
number of rounds while keeping the number of ANDs linear.

3) Modulo a Power of Two: The subprotocol from the
previous section allows us to produce pairs ((r), (r’)) with
r’ = r mod 2™. However, it is more useful to produce shares
of ' = x mod 2™ from a given shared value x. For this task
we use the protocol Mod2m by Catrina and de Hoogh [S§]]
presented below.

,_[ Protocol Modp ({x),m) ]

The parties proceed as follows.
1) Let ((r),{r')) + TruncPairg(m,k). Further-
more, let (r’) ; be the shared bit-decomposition
of (r’), which can be outputted by TruncPair.
2) Open ¢ + 28~ + (x) + (r) and compute ¢’ =
¢ mod 2™,
3) Let (u) < BItLTR(C () g)-
4) Return {a’) = ¢ — (r') + 2™

—~

4) Truncation by a Public Value: Now we discuss sub-
protocols for computing (y) from (z), where y = [ |.
This is considered by Catrina and de Hoogh [8] by noticing
that | % | = z=omed 2™ Hence, their protocol over fields,
which we denote here by Truncr, ((z) ,m), simply calculates
(z mod 2™) < Modr, ({z),m), computes (x — 2 mod 2™),
and then multiplies by 1/2™. This last step is possible over

the field IF,, since 2™ is invertible in this structure, but not
over Zok.

We develop a specific truncation method for the Zox setting
which follows the template by Catrina and de Hoogh but
replaces the final multiplication by 1/2™ with a shift. The
protocol is described below.

'_[ Protocol Truncz,, ((z),m) ]

The parties proceed as follows.

1) Call (zmod2™) <« Modz,, ({(z),m) and let
(v) = (z) — (x mod 2™);

2) Sample k—m random bits (1) , . ..
RandBitz,, (-) and  compute
Dl o

3) Compute and open ¢ < (v) + 2™ (r), and let

)
4) Compute (u) - BitLTz,, (¢, (r)p)-

5 <7"k_m_1> —

(r) =

5) Truncation by a Secret Value: The truncation protocol
we have described in Section assumes that the amount
of bits to be truncated, m, is public. This is a natural
setting and appears for instance in fixed-point multiplication,
where m is equal to the amount of bits assigned for the
decimal part. However, as we already argued in Section [[I} the
quantization scheme we use here differs from traditional fixed-
point arithmetic in that the parameters for the discretization are
adaptively chosen for each particular layer of the network. As a
side effect, these parameters become information of the model,
and therefore they must not be revealed in the computation.
As a result, truncation by secret amounts become necessary.

In this section we present our protocol for truncation by
a secret amount. It takes as input a secret (x) and a shift m
represented by <2M m> where M is some public upper bound
on mﬁ and outputs (y) where y =

27n .

Protocol TruncPrivg({x),(m)) }

The parties proceed as follows.
1) Compute (2M=m . z) = (2M=m) . (g).
2) Return (y) + Truncg((2M=™ . z) M).

The only requirement for this protocol to work is that (M —
m) +logy(|z|) < k In this case, it can be seen that 2V ™ .
does not overflow and therefore the final truncation returns

2M2_1V7,n"$ = | 5%, as required.

6) Probabilistic Truncation: The most expensive part of the
above protocols for truncation is the bit-wise comparison. In
particular, it is the only part whose number of rounds depends
on the bit lengths m and k. Catrina and Saxena [9]] have pro-
posed a protocol that achieves truncation in a constant number
of rounds at the cost of a deterministic result. Instead, the result

8We may alternatively assume that m itself is shared. The conversion
(m) — <2M m> can be achieved then by first bit-decomposing M — m
as . 2¢ . by, computing shares of each b; and then outputting <2M m) =
IT,(1+ (bs) - (221 — 1)). However, since in our setting m is known by the
client who has the model, it is simpler to assume that the client distributes
(2M — m) to begin with.



will be probabilistically rounded up or down depending on the
how close the input is to either side. As an example consider
the truncation of z||01 by two bits, which would result in z
with probability 0.75 and x + 1 with probability 0.25.

Catrina and Saxena’s protocol works only for prime order
fields because it uses the inverse of 2™. In the following we
present an adaption for rings.

F[ Protocol TruncPrz,, ((z),m)

Pre m € [-2F—1 2F=1 1]
Post (x/2™) rounded according to text
Proceed as follows:
1) Generate k random bits (b;) and compute (r) <
Yo (i) -2
2) Open ¢ <+ (z) + (r) and compute ¢ <+
(¢/2™) mod 2k—m—1,
3) Compute (b) + (rp_1) @ (c/2F71).
4) Output ¢ — Y172 (r;) - 2i=m 4 p. 2k—m—1,

The analysis is similar to the protocol for prime order fields,
except that b accounts for the overflow of the addition z +
2572 T 2i.

7) Special probabilistic truncation: This protocol emulates
the black-box probabilistic truncation above in the setting
of semi-honest computation over a power of two with an
honest majority. Informally, it changes from a symmetric
three-party protocol to a two-party protocol where the third
party generates correlated randomness used by the the other
parties. This allows to generate random values of any bit length
at once without the need to generate such random values bit-
wise. The latter is the main cost in black-box probabilistic
truncation because the communication is independent of the
number of bits otherwise.

4 Protocol TruncPrSp; ({x) ,m)

Ps5 proceeds as follows:

1) Sample random bits {r;} for i € [0,k — 1].

2) Generate 2-out-of-2 sharings of r = Zi r; - 28,
re—1, and Zi:?i r;-28~™, and send one share to
P, and P each.

3) Generate random y1,ys € Zor and send y; to P;
and y3 to Ps.

4) Output (ys,y1).

P, and P, proceed as follows:

1) Convert (x) to a 2-out-of-2 sharing by P; com-
puting 1 + x2 and P» proceeding with x3.

2) Execute TruncPr as two-party computation using
the random values received from Ps.

3) P;: Let y; denote the share output by TruncPr
and ¢; the share received from P3; (y; or ys3).
Send y; — ; to P,_;. Denote the received value
by ;.

4) Py outputs (y1,y; — %1 + ¥1), and P> outputs
(y2 — 92 + 92, 93)-

For correctness, we have to establish that the parties output
a correct replicated secret sharing of the result. To establish
the correct replicated secret sharing, consider

Yi—th+i =y — 1+ s — G
=02+ Yy —Ja.
Furthermore,

ity Y- =ty Yy — Gy —
=y1+ys+yi— Y1+ yh— e
=y1 + Yo,
which equals the result of TruncPr by definition.

Since we only aim for semi-honest security with honest
majority, we have to show that each party does not learn any
information about z if all parties follow the protocol. This
is trivial for P53 because they do not receive anything. For P;
and P,, the randomness received from Pj is independent of z.
Furthermore, the security of the two-party TruncPr execution
follows by the black-box definition of it. Finally, y; does
not reveal information because ¢5_; is uniformly random and
unknown to F;.

8) Integer Comparison: This is derived from Catrina and de
Hoogh [8] by replacing the truncation. Essentially, we extract
the most significant bit from the difference of two values by
exact truncation.

E. Putting it all Together

In this section we use the building blocks from Section [[II-C
in order to securely evaluate a CNN that is quantized under the
scheme from Section As we discussed there, evaluating a
quantized CNN consists mostly of computing the expression in
Eq. (2), followed by a clamping procedure. We describe these
computations in this section, along with the other necessary
pieces for the evaluation of a quantized CNN.

Recall from Section that each weight tensor a in a
quantized CNN has a scale m € R and a zero-point z € Zos
associated to it, such that & = m-(a— z) is the actual floating-
point numbers corresponding to each 8-bit integer a in the
tensor. Also, biases are quantized in a similar manner but with
a 32-bit integer instead, a zero point equal to 0, and a scale
that depends on the inputs and output to the layer it belongs
to, as explained in Section We assume that the model
owner, who knows all this information, distributes shares to
the servers using the scheme described above of the quantized
weights and biases of each layer in the networkﬂ Also, the
zero points associated to each tensor is shared towards the
parties.

The scales of the model, on the other hand, are handled
in a slightly different way. Each dot product in the quantized
network requires a fixed-point multiplication by a factor m =
(my - mg)/ms, borrowing the notation from Section
Recall that this product was handled by writing m = 27 731.
m/, where m’ is a 32-bit integer.

“Notice that these values are only 8-bit long in the clear, but the shares are
64-bit long. The reason is that, although the values are small, the computation
must be carried without overflow. Therefore we cannot use a modulus that is
smaller than the maximum possible intermediate value.



1) Secure Computation of a Quantized Dot Product: We
show how to compute securely the expression in Eq. ().
Given the setting we described above, the parties have shares
of the zero points z1, zo, 23, the quantized inputs a;, b; for
it =1,..., N, the integer scale m’ and the power 2L=t where
¢ =n+31 with 2731 .m/ &~ m = (my -ma)/mg, and L is
an upper bound on ZET]

In order to compute the expression in Eq. (2), the parties
begin by computing the dot product (s) = E¢i1(<ai> -
(z1)) - ({b;) — (z2)). As described in Section [II-B| some
underlying MPC protocols allow this computation to be done
at the expense of one single multiplication. Otherwise, this
must be done using N calls to the underlying multipli-
cation protocol. Then, an additional secure multiplication
is used in order to compute (m-s) = (m) - (s). Next,
shares of |27"73!. (m - s)| are computed from i2Le> and
(m - s) using Protocol TruncPriv from Section|[II-D5} together
with the observation that [27™.z| = [27™ .z +0.5] =
|27™ - (x + 2™~ 1)] for breaking a tie by rounding up.

Finally, addition with (z3) is local, and it is followed by the
clamping method described in Section below.

2) Clamping: For the final operation the parties hold (z)
and need to compute (y) where y = clampg os_; (). This is
done by comparing (x) to the limits (0 and 255) using the
protocol from Section followed by oblivious selection:
If s € {0,1}, it holds trivially that as = s- (a1 — ag) + ag for
arbitrary ag, a;.

3) Average and Max Pooling: Average pooling in-
volves computing (y) from (x1),...,{(z,), where y =
| X ->"  x;|. This can be achieved using Goldschmidt’s
algorithm [25]], a widely used iterative algorithm for division.
For its usage in the context of secure multiparty computa-
tion, see for example Catrina and Saxena [9]. It uses basic
arithmetic as well as truncation, both of which we have been
discussed already.

On the other hand, max pooling requires implementing the
max function securely, which can be easily done by making
use of a secure comparison protocol [8]].

4) Output Layer: Once shares of the output vector are
obtained (raw output, before applying Softmax), several op-
tions can be considered. The parties could open the vector
itself towards the input owner and/or data owner so that
they compute the Softmax function and therefore learn the
probabilities for each label. However, this would reveal all
the prediction vector, which could be undesirable in some
scenarios. Thus, we propose instead to securely compute the
argmax of the output array, and return this index, which returns
the most likely label since exponentiation is a monotone
increasing function.

Previous work, such as SecureML [50], replace the ex-
ponentiation in the Softmax function with ReLU operations,
i.e. by computing ReLU(x) instead of ¢*. More MPC friendly
solutions exist, such as the spherical Softmax [18]], which
replaces e® with x2.

10Since n < 32 it suffices to take M = 63. In this case, given that m > 31,
it follows that 2M—™ < 232 According to Section this imposes the
restriction that the modulus for the computation must be at least 32464 = 96.
In practice n is smaller than 32 and this bound can be improved.

IV. IMPLEMENTATION AND BENCHMARKING

This section discusses our implementation and our perfor-
mance results. We begin by describing in Section the
families of CNNs we implement on this work, MobileNets.
Then we discuss in Section the results we obtained by
running these networks with our framework.

A. MobileNets Architecture

MobileNets [33]] is a family of networks for the ImageNet
challenge. These are networks of 28 hidden layers with 1000
outputs and are used to classify images. There are currently
two versions of the MobileNets architecture, and our focus will
be on the original V1 family. The structure of a MobileNetsV 1
network is fairly straightforward: the input layer is a regular
convolution (and in fact the only such one). This layer is
immediately followed by 13 depthwise separable convolutions,
i.e. 13 alternating depthwise and pointwise convolutions. The
last two layers are an average pool followed by a fully
connected layer, for a total of 28 layers (not counting a softmax
at the end for turning the result into a probability distribution).

The architecture defines two hyper parameters that allow
the user to scale the network in different ways, namely a
width multiplier o and a resolution multiplier p. The width
multiplier scales the input and output channels. Le., the num-
ber of multiply-add instructions in each convolution becomes
alg - Iy - I, - Wy, - Wy, - aOg: the « essentially serves to
thin the network. Note that a also affects the number of
parameters and thus the model size. The resolution parameter
on the other hand simply scales the input; at p = 1.0 the
input is set to be 224 x 224 and pretrained networks exist for
p ~ 0.85 (192 x 192), p =~ 0.71 (160 x 160) and p ~ 0.57
(128 x 128). Note that scaling p affects the number of multiply-
add operations, but does not affect the size of the network. In
the following, a network with a particular set of parameters is
denoted as “V1 a_S” where H denotes the height and width
of the input (i.e., is a value related to p).

B. Implementation

We implement secure inference in the MP-SPDZ frame-
work, which allows us to get timings for all the protocols
described in Section These protocols run over either a
prime p or a ring Zox. The prime is 128 bits while the k we use
for the ring is 72 bits. As described in Section[[II-E] these arise
because we need some extra space in order for the truncation
by a secret shift to be correct. We arrive at 72 experimentally
by computing the sizes of the shift and dot-products needed
in the models we evaluate.

a) Experimental setup: We ran all our benchmarks on
colocated c5.9xlarge AWS machines, each of which has 36
cores, 72gb of memory, a 10gpbs link between them and sub-
millisecond latency. Throughout this section, communication
is measured per party and all timings include preprocessing.
Our code has been published as part of MP-SPDZ [17]

I'The scripts necessary to convert the published models and images can be
found at https://github.com/anderspkd/SecureQ8.
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TABLE II: Running time, in seconds, of securely evaluating some of the networks in the MobileNets family, in a LAN network.
The first number in variant is the width multiplier and the second is the resolution multiplier. Top-1 accuracy measures when
the truth label is predicted correctly by the model whereas Top-5 measures when the truth label is among the first 5 outputs
of the model. Prob. and Exact refer to probabilistic truncation and nearest rounding, respectively.

C. Full model evaluation

We evaluate almost all available pre-trained V1 MobileNets
models in all of our settings. For each model protocol and
model combination, we run a secure prediction using proba-
bilistic truncation and exact (rounding to nearest) truncation.
The rationale behind presenting numbers for both methods of
truncation, is to illustrate the increase in efficiency when a less
exact method of truncation protocol is used. We stress that us-
ing a probabilistic may hurt the accuracy and that the accuracy
reported by Tensorflow during training may not be guaranteed.
results are presented in two tables: Table |lI| presents running
time in seconds, while Table [[II| in the appendix shows the
amount of data that each combination needs to communicate.
Note that the figures include preprocessing where applicable
because MP-SPDZ executes this on demand. The figures for
active security with dishonest majority over I, have been
gathered using LowGear while all other dishonest-majority
protocols using OT. However, they do not include a one-time
key generation with active security because MP-SPDZ does
not implement that.

Models with higher accuracy are larger, and so it is not
surprising that accuracy and running time/communication are
correlated. More interesting is the relationship between the

different threat models. We see that honest-majority proto-
cols greatly outperform dishonest-majority protocols. In the
latter setting, the protocols require either oblivious transfer or
homomorphic encryption, which is much more costly, than
the pure secret sharing used otherwise. Another interesting
difference is between modulo 2 and modulo p protocols.
Computation in the former is in some way simpler—in par-
ticular, it is supported in hardware (e.g., mod 254 corresponds
to using unsigned long integers). However, modulo p allows
to use homomorphic, which reduces time for most models
and significantly reduces communication for all models. A
final note is with regard to the difference between the two
honest majority protocols with passive security and with active
security. Interestingly, there is a larger gap between the modulo
p and modulo 2* protocols in the passive version, than in the
active version (cf Fig.[3). We attribute this difference to the fact
that the simpler computations modulo 2* are more pronounced
when correctness does not need to be enforced (i.e., when the
protocol only needs passive security).

1) Comparison with CrypTFlow: Although we do not use
the same setup as CrypTFlow [44], a comparison is still
possible. We note that the 0.50_128 model enjoys a sim-
ilar accuracy as the SqueezeNet model that is evaluated in
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Fig. 3: Performance of securely evaluating some of the networks in the MobileNets family (the 128 and 192 variants) with

passive and active security.

CrypTFlow. Comparing these two, we see that our approach
achieves a significantly faster evaluation time for both active
and passive security, albeit at a higher communication cost.
Because of the differences in the setup, a more accurate
comparison requires us to scale our results to match those
in CrypTFlow.

D. WAN Benchmarks

We have also run the smallest model in a WAN set-
ting where each party is located on a different continent.
For computation over rings with probablistic truncation, the
timings range from 110 seconds for passive honest-majority
computation to 28,000 seconds for active dishonest-majority
computation.

V. CONCLUSIONS

We show that it is possible to securely evaluate large and
realistic networks, so called ImageNet networks, using more-
or-less existing MPC protocols. Moreover, the networks we
evaluate are unmodified and can be trained using standard
Tensorflow. This work thus provides a very appealing approach
to secure evaluation from an end-users perspective: First,
because standard MPC suffices, it is possible to choose from a
wider array of threat models than previous works allow. While
the passive security honest majority setting is by far the most
efficient, our benchmarks still provide an interesting insight
into the exact trade-off one wants secure inference against
dishonest majority. Second, the fact that models directly output
by Tensorflow can be evaluated without modification, means
that model designers can remain oblivious to the secure
framework.

Finally, and like in recent and concurrent work, we obtain
nice results by relying on quantization. Our work can therefore
be seen as further evidence towards the fact that specific
models greatly improve the range of models in terms of what
can be evaluated securely.

A. Future Work

a) MPC/FHE-aware ML research: The quantization
scheme used in TFLite is what enables us to achieve secure

inference using standard MPC protocols. Quantization tech-
niques are developed with the goal of making models smaller,
however our work shows that it applies to other problem
areas—secure inference in particular. We believe then that an
interesting problem within the intersection of machine learning
and security, is how to design quantization schemes that are
“secure evaluation friendly” from the outset.

b) Training: Our protocol is designed for secure infer-
ence, and we leave it as future work to apply quantization
techniques in order to realize secure training of quantized
CNNs with little-to-no accuracy loss with respect to their
floating-point counterparts. It is important to notice that the
spectrum of research in quantized training of CNNs is much
more reduced than in quantized inference, with only a few
recent works like [35]], [65] and [66]. Moreover, it is not clear
yet how compatible these methods are with MPC or FHE
techniques.
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APPENDIX

A. MobileNets Blocks

We present below some of the different blocks present in
the MobileNets family of networks.

a) Depthwise Separable Convolutions: The majority of
the computation that a CNN performs, and the space that
it uses, is tied to its convolutional operations. A regular
convolution performs at its core two steps: first it filters the
input using a set of trained weights, by moving each filter over
the entire input; and second, a convolution combines the output
of each filter application to produce a single output value.
The whole operation can be viewed as an entry-wise product
between a filter and each input in a specific window, followed
by a summation of all the products. The price of a convolution
is therefore I4 - I, - I, - W}, - Wy, - O4. What the MobileNets
models does instead, is to replace these convolutions with a
depthwise separable convolution. At a high level, the idea
behind a depthwise separable convolution is to split the two
tasks outlined above into to separate operations.

More precisely, instead of performing a normal convolution,
first a depthwise convolution is performed, which is like a
regular convolution except it does not change the output depth;
afterwards, a pointwise convolution is performed. A pointwise
is a regular convolution with a 1 x 1 filter, which preserves
the input dimensions but allows for scaling of the depth. The
cost of the depthwise convolution is Iy - I, - Iy - Wy, - Wy,
while the cost of the pointwise convolution is Oy - Iy - I, -
I,,. Replacing a normal regular convolution with a Depthwise
Separable convolution provides a saving of 1/04 + 1/(W}, -
W) in terms of computation.

In MobileNetsV1, both the depthwise and pointwise con-
volution are followed by a batch normalization layer, and a
ReL U6 activation.

b) ReLU6: As mentioned already in Section the
ReLU6 operation can be computed as part of the clamping
when quantization is used and so this operation is also not
explicit in the quantized version of a MobileNets model. (It
is, however, needed in the floating point variant.)

B. Quantized training with Tensorflow

Tensorflow supports quantized training in two variants: post-
training quantizatio@ which quantizes and already trained
floating point model, and quantization aware training [27]]
which performs training using floating point numbers, but
inserts specific nodes in the model during training that lets
the model “learn” that it will be quantized later on.

The following appendix illustrates via a small example how
to train and quantize an MNIST model which can then be
evaluated securely using. Training a model and obtaining a
file which can be used as input to our protocol proceeds in
three steps, each of which are simple enough that they in total
require less than 100 lines of Python and shell code.

12https://www.tensorflow.org/lite/performance/post_training_quantization

graph = tf.Graph()
sess = tf.Session(graph=graph)
keras .backend.set_session(sess)
with graph.as_default ():

# build model

model = # keras model

# create a quantized training graph. This

# inserts fake quantization nodes that

# emulate quantization when it’s actually

# used in the inference phase.

tf.contrib.quantize.create_training_graph (
graph

)

# run, compile and train the model
sess.run(tf.global_variables_initializer ())
model . compile (
optimizer="adam’,
loss="categorical_crossentropy ’,
metrics=[’accuracy ’]

)

model. fit (x_train, y_train)

# save stuff so we can resume training if

# need be. Also needed when we want
# to extract the quantized model
saver = tf.train.Saver ()

saver.save(sess, checkpoint_directory)

loss , accuracy = model.evaluate (
X_test, y_test

)

print (’\nEvaluation._results:’)
print(’test.loss’, loss)
print(’test.accuracy’, accuracy)

Fig. 4: Quantize aware training of a Keras model in Tensor-
flow.

a) Step 1. Quantize aware training: The first step is
to train a model, ideally in a way which accounts for the
quantization that is enable during inference. The details of
how this training process is implemented (in particular, how to
make the model aware of the quantization that happens during
inference) are described in the [42]. Here we only focus on
how to achieve this using Tensorflow.

The code in Fig. {4 illustrates how Tensorflow can be used
to train a model in a which takes quantization into account.
Notice that the model is specified using the Keras high level
framework, rather than directory in Tensorflow.

b) Step 2. Converting training checkpoints to a frozen
graph: The code in Figure [4| generates a set of checkpoint
files that can frozen in order to obtain a model file. That is, a
file which contains both the description of the model as well
as the weights.

c) Step 3. Quantizing the model: The final step consists
of using the tf lite_conver tool that is part of TFLite to
convert the frozen model into a quantized model file.

Bhttps://www.tensorflow.org/lite/convert/
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TABLE III: Communication complexity, in Gigabytes, of securely evaluating some of the networks in the MobileNets family, in
a LAN network. The first number in variant is the width multiplier and the second is the resolution multiplier. Top-1 accuracy
measures when the truth label is predicted correctly by the model whereas Top-5 measures when the truth label is among the
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