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Abstract. In this work, we explore the problem of secure and efficient scalar multiplication on binary
field using Kummer lines. Gaudry and Lubicz first introduced the idea of Kummer line in [12]. We
investigate the possibilities of speedups using Kummer lines compared to binary Edwards curve and
Weierstrass curves. Firstly, we propose a binary Kummer line BKL251 on binary field F2251 where the
associated elliptic curve satisfies the required security conditions and offers 124.5-bit security which
is same as the BBE251 and CURVE2251. BKL251 also has small parameter and small base point. We
implement the software of BKL251 using the instruction PCLMULQDQ of modern Intel processors. For fair
comparison, we also implement the software BEd251 for binary Edwards curve introduced in [4] using
the same field arithmetic library of the BKL251 and thus this work also complements the works of [7, 4].
In both the implementations, scalar multiplications take constant time which use Montgomery ladder.
Binary Kummer line requires 4[M]+5[S]+1[C]+1[B] field operations for each ladder step where ladder
step of binary Edwards curve requires 4[M] + 4[S] + 2[C] + 1[B]. Our experimental results show that
fixed-base scalar multiplication of BKL251 is 8.36%− 9.33% faster than that of BEd251. On the other
hand, variable-base scalar multiplications take almost same time for both the curves (variable-base
scalar multiplication of BKL251 is 0.25%− 1.55% faster than that of BEd251).

Keywords: Binary Finite Field Arithmetic, Elliptic Curve Cryptography, Kummer Line, Edwards
Curve, Montgomery Ladder, Scalar Multiplication.

1 Introduction

Elliptic curve cryptography provides a secure and efficient platform for public-key cryptography.
Since the introduction of elliptic curve cryptography by Miller [21] and Koblitz [17] and hyperelliptic
curve cryptography by Koblitz [18], this area of research remains an extremely important one. The
security of elliptic curve cryptography is derived from the hardness of discrete logarithm problem
on the underlying group of the elliptic curve. To ensure security, it remains an important question
that which curve should be chosen for use. Choice of the curve normally starts with determination
of the underlying field of the elliptic curve based on the applications: large characteristics field
(characteristics greater than 3) or binary field.

It is a common practice to choose large characteristics field for software implementation and
binary field for the hardware implementation. For a long time, the speed records of the fastest
variable-base elliptic curve scalar multiplications were held by curves defined over large character-
istics field such as:

– 59,000 clock cycles (clks) and 1,09,000 clks for finite field F(2127−1)2 by Four(Q) curve with
and without endomorphism, respectively, on the Haswell architecture [9, 16],

– 1,56,060 clks for variable-base scalar multiplications by Curve25519 on finite field F2255−19 on
Haswell architecture [3, 16],



– 95,424 clks, 1,28,178 clks and 1,23,818 clks for large prime fields F2251−9, F2255−19 and F2266−3
respectively by Kummer lines KL2519, KL25519 and KL2663 [16].

Curve25519 and Kummer lines (KL2519, KL25519 and KL2663) have small base points and as a
consequence they achieve 8% − 24% faster fixed-base scalar multiplications compared to variable-
base scalar multiplication. Curve25519, KL2519, KL25519 and KL2663 require only 1,44,224 clks,
93,020 clks, 1,16,832 clks and 1,19,564 clks for fixed-base scalar multiplication, respectively, with-
out any precomputation on Haswell architecture [16].

On the other hand, for the binary fields,

– the reported fastest scalar multiplication is 3,14,323 clks by batch binary Edwards curve soft-
ware BBE251 [4] on Core 2 Quad Q6600 processor.

– [8] reports 5,37,000 clks for binary Weierstrass curve CURVE2251 on Core-i7 processor.

Both of these curves are defined over binary field F2251 . These softwares use “bitslicing” technique
to achieve the best possible result by avoiding the shifting operations. Also they compute 128
scalar multiplications in batches. In other words, without a requirement of a large number scalar
multiplications, we can not get the speedups mentioned for these software. For a busy server, these
softwares are effective ones. But for resource-constraint clients, these software are not suitable.
Previous to these works, [13] reports 8,55,036 clks for one scalar multiplication on the same field
F2251 .

From the above mentioned results, two things can be observed. Firstly, the works of [4, 8] focus
on batch implementation using variable-base point. But if we consider the most important two pro-
tocols of public key cryptography: Diffie-Hellman key exchange [10] and digital signatures [25], we
see that fixed-based scalar multiplications also take an important role to determine the performance
of these protocols. In Diffie-Hellman key exchange, each party has to compute one fixed-base and
one variable-base scalar multiplication, and the performance is measured as the sum of those two
scalar multiplication. If we consider the x-coordinate based digital signature algorithm qDSA [16,
26], then key generation and signing algorithm use only fixed-base scalar multiplications. On the
other hand, verification uses one fixed base and one variable-base scalar multiplication. Also it is
shown in [16, 3] that small base point can improve the performance of fixed-base scalar multiplica-
tion compared to variable-base scalar multiplication.

Secondly, It clear that software implementations of binary elliptic curves are slower than that
of elliptic curves over large characteristics fields. But multiplications on binary fields are similar
to the multiplications on prime fields without any forwarded carry and squaring is just rearrange-
ment of the coefficients. The reason behind the slower results is the absence of F2[t] multiplication
circuit in the modern processors while the existence of highly optimized mid-level Z multiplication
circuit [4]. Recently, Intel has introduced F2[t] multiplication circuit (as the instructions PCLMULQDQ
and VPCLMULQDQ) in the processors which can multiply 2 64-bit long F2[t] elements or can perform
multiple F2[t] multiplications in parallel [15]. In this work, we analysis the effect of PCLMULQDQ

instruction on binary Edwards curve BEd251 [4] and binary Kummer line BKL251 (introduced in
this work) and achieve fastest Diffie-Hellman key exchange [10] on binary field. The details of our
contributions are as given below.

Our Contributions:

1. Binary Kummer Line. The idea of Kummer line over binary field is introduced by Gaudry
and Lubicz in [12]. But it was not clear whether it is possible to achieve competitive speed
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using binary Kummer line compared to the binary Edwards curve or Kummer lines over prime
fields. Our main contribution is that we show that it is possible by developing software using
instruction PCLMULQDQ. To achieve this, we further develop the theory of binary Kummer line
from [12]. We show the consistency between scalar multiplication on binary Kummer line and
that of binary Weierstrass which in turn proves the equivalence of discrete logarithm problem
on binary Kummer line and the associated elliptic curve. We propose a binary Kummer line
BKL251 whose details are as given below:
– Choice of Finite Field. Our target is 128-bit security. For fair comparison with BEd251

and CURVE2251, we also choose the finite field F2251 .
– Choice of Kummer line. The binary Kummer line BKL251 is one with the smallest curve

parameter b = t13 + t9 + t8 + t7 + t2 + t+ 1 of the underlying field F2251 such that it satisfies
certain security conditions. For the line, we also identify a small base point (t3 + t2, 1) with
small coordinates. Later we provide the details of the above mentioned security details and
show that BKL251 offers 124-bit security similar to BEd251 and CURVE2251.

2. Implementation of Scalar Multiplication over binary Kummer line. One of the major
concern of implementation of scalar multiplication is the resistance against side-channel attack
like timing attacks [7]. The solution is the constant time scalar multiplication and one of the
popular choices is the use of Montgomery ladder [24] like x-coordinate-based ladder with dif-
ferential additions and doubling operations. In binary Kummer line, one ladder step requires
4 field multiplications, 5 field squaring, 1 field multiplication by Kummer line parameter and
1 field multiplication by base point. By carefully choosing small Kummer line parameter and
small base point, we achieve one ladder step at the cost of 4 field multiplications, 5 field squaring
and 2 field multiplications by small constants for fixed-base scalar multiplications and 5 field
multiplications, 5 field squaring and 1 field multiplications by small constants for variable-base
scalar multiplications.
In binary Edwards Curve [7], one ladder step needs 4 field multiplications, 4 field squaring, 2 field
multiplication by curve parameter and 1 field multiplication by base point in WZ-coordinate
system. Because of WZ-coordinate system, base point becomes a full length element of the field.
As a consequence, the operation count for each ladder step becomes 5 field multiplications, 4
field squaring and 2 field multiplications by small constant.
By trading off 1 field multiplication at the cost of 1 field squaring, Kummer line gains significant
amount of speed ups for fixed-base scalar multiplication. On the other hand, the required times
for variable-base scalar multiplications are very close for Kummer line and Edwards curve.

3. Implementation of Scalar Multiplication over binary Edwards Curve. To make a fair
comparison, the possible candidates are mpfq [13], CURVE2251 and BEd251. But there exist
certain problems associated with the available software of each of the curves.
(a) mpfq uses similar curve arithmetic as the binary Kummer line but the software is approxi-

mately 12 years old and it does not take advantage of the present processors. The software
is developed for the curve

Em : Y 2 +XY = X3 + (t13 + t9 + t8 + t7 + t2 + t+ 1),

and uses the base point (t3 + 1, 1) for fixed-based scalar multiplications. But (t3 + 1, 1) is
not a point of Em rather it is a point on the twist of Em [11].

(b) Latest implementation of CURVE2251 is available as a part of the RELIC [1] but each ladder
step takes 6 field multiplications, 5 field squaring [27] which is higher than the operation
count of ladder step of the binary Edwards curve.
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(c) The only available software of BEd251 is BBE251 which is available at [5] and uses bitslicing
technique to compute 128 variable-base scalar multiplications in batches.

As BEd251 has lower operation counts than CURVE2251, we choose to implement the binary
Edwards curve BEd251 and make a comparison with the proposed binary Kummer line BKL251.
Our experiments show that BKL251 is 9.3% faster than BEd251 in case of fixed-base scalar
multiplication and for variable-base scalar multiplication both of them are takes approximately
same time (BKL251 is 1.5% faster than BEd251).

Both the softwares are publicly available at the following links:

BKL251 https://github.com/sk5891/BKL251

BEd251 https://github.com/sk5891/BEd251

2 Binary Kummer Line

Binary Kummer Line is introduced by Gaudry and Lubicz in [12]. Here we only give the brief
description of the arithmetic of binary Kummer line and we refer [12] to interested reader for
further details. Let k be a finite field of characteristics two. Let BKL(1,b) be a Kummer Line defined
by the parameter b ∈ k where b 6= 0.

The arithmetic of Kummer line is given in projective coordinate system. Let P = (x1, z1) and
Q = (x2, z2) be two points on the Kummer line such that P 6= (0, 0) and Q 6= (0, 0). We say that
P and Q are equivalent if there exists a non-zero ξ ∈ k such that

x1 = ξx2 and z1 = ξz2.

Suppose that P = (x1, z1) be a projective point on the Kummer line BKL(1,b). Given the point
P, doubling Algorithm dbl of Table 1 shows that how to compute 2P = (x3, z3). Let Q = (x2, z2)
be another point on the BKL(1,b) and we want to compute P + Q = (x4, z4). Given the point
P−Q = (x, z), computation of (x4, z4) is shown by the differential addition Algorithm diffAdd of
Table 1.

(x3, z3) = dbl(x1, z1) : (x4, z5) = diffAdd(x1, z1, x2, z2, x, z) :
x3 = b(x21 + z21)2; x4 = z(x1x2 + z1z2)2;
z3 = (x1z1)2; x4 = x(x1z2 + x2z1)2;

Table 1. Doubling and Differential Addition on Binary Kummer Line

In Kummer Line BKL(1,b), the point (1, 0) acts as an identity. This can be proved by showing

diffAdd(x, z, 1, 0, x, z) = (x2z, xz2) ∼ (x, z)
diffAdd(1, 0, x, z, x, z) = (x2z, xz2) ∼ (x, z)

dbl(1, 0) = (b, 0) ∼ (1, 0)

 (1)

It also can be shown that the point (0, 1) is a point of order 2 as given in Equation 2

dbl(0, 1) = (b, 0) ∼ (1, 0) (2)

In the rest of the paper, we will consider Kummer line BKL(1,b) for some non-zero b ∈ k.
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2.1 Scalar Multiplication

Let P = (x, z) be a point on the Kummer line BKL(1,b) and n be a l-bit scalar as n = {1, nl−2, . . . , n0}.
Our objective is to compute nP = (xn, zn). We use Montgomery ladder like ladder to perform this
operation [22]. This methods loops for l − 1 times and each ladder step performs a dbl and a
diffAdd operation.

Assume that at a ladder step, the inputs are the points (x1, z1) and (x2, z2). At the end of
the ladder step, the outputs are two point (x3, z3) and (x4, z4). Suppose, that we need to compute
double of the point (x1, z1), and addition of the points (x1, z1) and (x2, z2), then during ladder
step we compute (x3, z3) = dbl(x1, z1) and (x4, z4) = diffAdd(x1, z1, x2, z2, x, z). The details of
the Algorithms scalarMult and ladderStep are given in the Table 2. Notice that, Algorithm
ladderStep uses “If” condition, but in our implementation and code of the ladder step we do not
use any branching instruction.

We start Algorithm scalarMult with two points P and 2P = dbl(P). Let at i-th iteration, the
inputs be the points mP and (m+ 1)P. Then if ni = 0, the ladderStep outputs the points 2mP
and (2m+ 1)P. On the other hand, if ni = 1, the ladderStep computes the points (2m+ 1)P and
2(m+ 1)P.

nP = scalarMult(P, n) : ladderStep(S,R, ni):
1. Let n = {1, nl−2, . . . , n0}; 1. If ni = 0 then
2. Set S = P and R = dbl(P); 2. R = diffAdd(S,R,P);S = dbl(S);
3. For i = l − 2 to 0 do 3. Else If ni = 1 then
4. ladderStep(S,R, ni); 4. S = diffAdd(S,R,P);R = dbl(R);
5. End For; 5. End If;
6. Return S;

Table 2. Scalar Multiplication and Ladder Step

2.2 Binary Kummer Line to Elliptic Curve

Let b ∈ k and b 6= 0. Let Eb be an elliptic curve defined over field k by Equation 3

Eb : Y 2 +XY = X3 + b4. (3)

We can map a point of Kummer Line to elliptic curve by the mapping π : BKL(1,b) → Eb/{±1} [12]
which is defined as

π(P = (x, z)) =

{
(bz, ·, x), if x 6= 0
∞, if x = 0

(4)

Putting X = bz
x in Equation 3, we can compute the Y -coordinate upto to the sign. We can also

convert a point of Eb/{±1} to a point of Kummer line using the inverse mapping π−1 as defined
by Equation 5. Let P = (X, ·, Z) be a point of Eb then

π−1(P ) =

{
(bZ, ·, X), if X 6= 0
(0, 1), if X = 0

(5)

But the mapping π along does not conserve the consistency of the scalar multiplications between
Kummer line BKL(1,b) and the elliptic curve Eb. We also need help of a point of order two of the
elliptic curve Eb as given in the next section.
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2.3 Equivalence between BKL(1,b) and Eb

Let BKL(1,b) be a Kummer line on the field k and Eb be the associated elliptic curve as defined by
Equation 3. Let P be a point on Kummer line BKL(1,b). Also consider the point T2 = (0, b2) which
is a point of order two on Eb. As π(P) is a point on Eb, π(P) + T2 is also a point on Eb. Now we
extend the mapping π to π̂ as given Equation 6

π̂(P) = π(P) + T2. (6)

The inverse of the mapping of π̂ is defined as

π̂−1(P ) = π(P + T2), (7)

where P is a point on Eb. Let P = (x, z) be a point on the Kummer line such that it is not a point
of order 2 or identity, then Equation 8 holds.

2π̂(P) = π̂(dbl(P)). (8)

Let P1 and P2 be any two points on Eb such that P1 6= ±P2 and neither of them is point at infinity
nor of order 2. Then Equations 9 hold.

π̂
(
dbl(π̂−1(Pi))

)
= 2Pi, i = 1, 2

π̂
(
diffAdd(π̂−1(P1), π̂

−1(P2), π̂
−1(P1 − P2))

)
= P1 + P2

}
(9)

Notice that 2π̂(P) = 2 (π(P) + T2) = 2π(P). The proofs of Equations 8 and 9 are trivial, but the
expressions grow very fast and hard to compute manually. Therefore, we used GP/PARI script
to verify them symbolically and made available along with the software. Equations 8 and 9 are
important as they forms the consistency between the scalar multiplication between binary Kummer
Line BKL(1,b) and elliptic curve Eb. Let P ∈ BKL(1,b). Then we have π̂(nP) = nπ̂(P). Again, we
have that π̂(nP) = π(nP) + T2 and nπ̂(P) = n (π(P) + T2) = nπ(P) + n (mod 2) T2. Therefore,
π̂(nP) = nπ̂(P) can be rewritten as

π(nP) = nπ(P) + (1 + n (mod 2)) T2

which is pictorially shown in Figure 1. The equivalence of scalar multiplication on Kummer line

P

Pn

P

Pn

Q

Qn

π +T2

π +T2

n· n·

Q P P

PnPnQn +T2

+T2 π−1

π−1

(i) KL(1,b) to Eb (ii) Eb to KL(1,b)

Fig. 1. Consistency of scalar multiplications between BKL(1,b) and Eb

and the associated elliptic curve is exactly the same as the Kummer line on prime field [16]. From
Figure 1, it can be concluded that discrete logarithm problem is equally hard on the Kummer line
BKL(1,b) and on the elliptic curve Eb.
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3 Binary Edwards Curve

In this section, we give a brief description of binary Edward curve to make the paper self-contained.
Let k be a field of characteristics 2. Let d ∈ k r {0}. We define binary Edwards curve [7, 4] by
Equation 10.

BEd : d(x+ x2 + y + y2) = (x+ x2)(y + y2) (10)

The neutral element is the point (0, 0). The point (1, 1) has order 2. The curve Edwards curve BEd
is birationally equivalent to the ordinary curve Ed of Equation 11.

Ed : X2 +XY = X3 + (d2 + d)X + d8. (11)

The mapping from BEd to Ed is given by Equation 12.

φ : (x, y) 7→ (X,Y )

X =
d3(x+ y)

xy + d(x+ y)
(12)

Y = d3
(

x

xy + d(x+ y)
+ d+ 1

)
[7, 4] suggests the use ofWZ-coordinate system, whereW = X+Y , which provides the minimum

operation count for the ladder step of Montgomery like scalar multiplication on binary Edwards
curve. Let P,Q ∈ BEd such that P = (w2, z2), Q = (w3, z3) and P − Q = (w1, 1) are given. We
compute 2P = (w3, z3) and P + Q = (w4, z4) using mixed differential and doubling operation as
given in Table 3. We refer [7, 4] for further details of binary Edwards curve.

c = w2(w2 + z2); w4 = c4; z4 = d(z22)2 + w4;
v = cw3(w3 + z3) z5 = v + d(z2z3)2 w5 = v + z5w1;

Table 3. Mixed differential and doubling of binary Edwards Curve

4 Kummer Line over Field F2251

Let q be an integer and k = F2q be a finite field of characteristics 2 with 2q elements. We choose
Kummer line BKL(1,b) such that b 6= 0 and b ∈ F2q and then we check whether the associated elliptic
curve Eb is one with all the required security criteria like curve and the twist of it have near prime
orders, has large prime subgroups, resistance against pairing attacks and others which we discuss in
details for the proposed Kummer line later. In this work, we target 128-bit security and we choose
field F2251 = F2[t]/(t

251 + t7 + t4 + t2 + 1) as the binary Edwards curve BEd251 [7, 4] and the binary
Weierstrass curve CURVE2251 [27]. For BEd251, d = t57 + t54 + t44 + 1.

To find the appropriate Kummer line, the value of b is increased from 1 onwards, and then we
compute the associated elliptic curve and checked the security details. In our experiment, we found
that b = t13 + t9 + t8 + t7 + t2 + t + 1 is the smallest value for which the associated elliptic curve
Eb of the Kummer line BKL(1,b) satisfies the following security details.
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1. Order of the curve is 4p1 where p1 = 2249 − δ1 and δ1 = 16097863035246445898362306\
660609333279. Therefore, the curve order is near prime with cofactor h = 4 [4].

2. Order of the twist curve is 2p2 where p2 = 2250 + δ2 and δ2 = 3219572607049289179672\
4613321218666559. Similarly, the twist curve order is near prime with cofactor hT = 2 [4].

3. The largest prime subgroup has order p1 and of size 249-bit. Therefore the curve provides
approximately 124.5-bit security against discrete logarithms problem.

4. Avoiding subfields: The j-invariant 1/b4 is a primitive element of the field F2251 .
5. The discriminant of the curve is ∆ =

(
(2251 + 1− 4p1)− 4 · 2251

)
which is 1 (mod 4) and a

square-free term. The discriminant is also divisible by the large prime ∆/(−7 · 31 · 599 · 2207).
6. The multiplicative order of 2251 (mod p1) and 2251 (mod p2) are very large and they are

respectively λ = (p1 − 1)/2 and λT = (p2 − 1)/6. Therefore, the curve is resistant against
pairing attacks.

7. Similar to the BEd251, it is also resistant against GHS attack as the degree of the extension
field is 251 which is a prime [4, 20].

From hereon, BKL251 denotes the BKL(1,b) with b = t13 + t9 + t8 + t7 + t2 + t+ 1 over the finite field
F2251 . The Kummer line BKL251 also has a small base point (t3 + t2, 1), where other two curves
have long base points. Table 4 lists the comparative study of (estimates of) the sizes of the various
parameters of the associated elliptic curve of the proposed Kummer lines BKL(1,b) with respect to
the BEd251 and the CURVE2251.

(lg p1, lg p2) (h, hT ) (λ, λT ) lg(−∆) Base point

BEd251 [7, 4] (249,250) (4,2) ( p1−1
2
, p2−1

2
) 252 -

CURVE2251 [27] (249,250) (4,2) ( p1−1
2
, p2−1

6
) 253 (α1, γ1)

BKL251 (this work) (249,250) (4,2) ( p1−1
2
, p2−1

6
) 253 (α2, 1)

α1 = 0x6AD0278D8686F4BA4250B2DE565F0A373AA54D9A154ABEFACB90\
DC03501D57C,

γ1 = 0x50B1D29DAD5616363249F477B05A1592BA16045BE1A9F218180C5150\
ABE8573,

α2 = 0xC.

Table 4. Comparison of BKL251 against BEd251 and CURVE2251

4.1 Set of Scalars

In this work, the allowed range of scalars are of length 251 bits and have the from

2250 + 4 · {0, 1, 2, . . . , 2248 − 1}.

We call this scalars as clamped scalar following the terminology of [16]. Use of clamped scalars,
ensures two things:

1. Resistance to Small Subgroup Attacks. Small subgroup attacks are effective when curves
have small cofactors [19]. The attack becomes infeasible if the scalars are the multiples of the
cofactor. The clamped scalars here are all multiples of 4 for BKL251 where 4 is the cofactor of
the curve.
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2. Constant time scalar multiplication. The most traditional way to achieve constant time
scalar multiplication is the use of Montgomery ladder. In Montgomery ladder, the ladder step
iterates (l − 1) times where l is the bit-length of the scalar. This implies that the constant
time is relative to the length of scalar. By clamping, we ensure the use of constant number of
iterations in the ladder step irrespective of the choice of the scalar. For BKL251, we always need
250 differential additions and 250 doubling.

Generation of Clamped Scalars One can create a clamped scalar from a 32-byte random binary
string. First, clear the least significant two bits (that is, set zero to bit number 0 and 1 of 0-th
byte). Second, clear the most significant 5 bits (that is, set 0 to bit number 7, 6, 4, 5, 4, and 3 of
31-st byte). Lastly set the 3-rd least significant bit of 31-st byte to 1 (that is, set 1 to bit number
2 of 31-st byte).

5 Field Arithmetic

Efficient field arithmetic are extremely necessary to have efficient scalar multiplication. There are
many efficient algorithms are available for binary field arithmetic, but we focus only on the finite
field F2251 = F2[t]/(t

251 + t7 + t4 + t2 + 1) where f(t) = t251 + r(t) is a irreducible polynomial with
r(t) = (t7 + t4 + t2 + 1). Each element of u ∈ F2251 can be represented as a polynomial of the form

u = u250t
250 + u249t

249 + · · ·+ u1t+ u0, where each ui ∈ F2,∀0 6 i 6 250.

Element u can also be represented as binary vector of the form (u250, u249, . . . , u1, u0). We can
divide this vector into ν small vectors and we call this small vectors as limbs. Assume that the least
significant ν−1 limbs have length κ and then length the most significant limb is η = 251−κ ·(ν−1)
as given in Figure 2.

uκ−1uκ−2 · · ·u0u2κ−1u2κ−2 · · ·uκu3κ−1u3κ−2 · · ·u2κu3κ+η−1u3κ+η−2 · · ·u3κ

limb ν0limb ν1limb ν2limb ν3

Fig. 2. Field element representation

In our implementation, our main objective is to explore the operation PCLMULQDQ of Intel Intrin-
sic [15]. Let x and y be two 128-bit registers as m128i. We represent x as a vector (x0, x1) where
x0 is the least significant 64 bits and x1 is the most significant 64 bits. Similarly we also represent
the y as (y0, y1). The instruction PCLMULQDQ takes two m128i variables and an 8-bit integer 0xij
(0x stands for hexadecimal representation), where i, j ∈ {0, 1}, as inputs. Let z be another m128i

register. The PCLMULQDQ outputs

z = (z0, z1) = PCLMULQDQ(x, y, 0xij) = xi �2 yj ,

where (z1‖z0) is the binary multiplication of xi and yj , ‖ denotes string concatenation and �2

denotes multiplication on F2. Notice that PCLMULQDQ can only multiply two binary elements of
length at most 64. Because of this, we choose κ = 64 and consequently we have ν = 4. The length
of the ν3 is η = 59 bits.
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5.1 Notation

The following notions are used to explain the algorithms of field arithmetic used to implement the
software.

‖ concatenation of binary strings,
�` left shift by ` bits,
�` right shift by ` bits,

& bitwise AND,
⊕ bitwise XOR,
�2 multiplication of two elements in F2[t] by PCLMULQDQ,

len(u) length of a binary string u,
lsb`(u) least significant ` bits of a binary string u, and
deg(f) degree of the polynomial f .

5.2 Field Element Representation

Let θ = t64 ∈ F2[t]. Each element u ∈ F2251 is represented as u(θ) as given below:

u(θ) = u0 + u1θ + u2θ
2 + u3θ

3,

where each ui is the i-th limb as shown in Figure 2. We call u(θ) is of proper representation if each
ui < θ for i = 0, 1, 2 and u3 < t59. In other words, len(ui) 6 64 for i = 0, 1, 2 and len(u3) 6 59 as
len(ui) = deg(ui) + 1 where ui is a binary polynomial.

5.3 Reduction

Reduction is one of the most important algorithms of field arithmetic. Let u(t) ∈ F2[t] such that
deg(u) = 251 + i. Then we can write u = h(t)t251 + g(t) where h(t), g(t) ∈ F2[t]/f(t) such that
deg(h(t)) = i and deg(g(t)) 6 250. Now we have

u(t) = h(t)t251 + g(t) = r(t)h(t) + g(t) (mod f(t)).

Let u(θ) =
∑3

i=0 u0θ
i where deg(ui) < 127 for i = 0, 1, 2 and deg(u3) < 118. Now if for

any i = 0, 1, 2, deg(ui) > 63 and/or deg(u3) > 58 then u(θ) is not a proper one. Following the
ideas of [3, 14, 2, 16], the reduction algorithm reduce is given in Table 5. Notice that the returned
v(θ) is a proper one. After the For loop at line 4, len(vi) 6 64 for i = 0, 1, 2 and len(v3) 6
max{len(u3), len(w2)} 6 max{118, 127 − 64} = 118. After line 5, len(v3) 6 59 and len(w3) 6 59.
This implies that w3 is a binary polynomial of maximum degree 58. As r is a polynomial of degree
7, deg(w3) can be at most 65 after line 6 that is len(w3) 6 66. Then v0 can be of length 66 bits
after line 7 which is just 2-bit greater than the allowed 64-bit. Line 8 takes care of this overflow
from v0. As XOR do not increase the length of the input binary strings and len(v1) 6 64 at the
beginning of line 8, then len(v1) is still at most 64 bits after line 8. This concludes that the output
v(θ) is the proper representation of u(θ).
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v(θ) = reduce(u(θ)) where u(θ) =
∑3

i=0 u0θ
i :

1. v0 = u0;
2. For i = 0 to 2 do
3. wi = vi �64; vi = lsb64(vi); vi+1 = ui+1 ⊕ wi;
4. End For;
5. w3 = v3 �59; v3 = lsb59(v3);
6. w3 = w3 �2 r, where r is the binary vector representation of r(t);
7. v0 = v0 ⊕ w3;
8. w0 = v0 �64; v0 = lsb64(v0); v1 = v1 ⊕ w0;

9. Return v(θ) =
∑3

i=0 v0θ
i;

Table 5. Algorithm reduce

5.4 Addition and Subtraction

Let u(θ) =
∑3

i=0 u0θ
i and v(θ) =

∑3
i=0 v0θ

i be two elements of F2251 with proper representations.
Let w(θ) = u(θ) + v(θ) ∈ F2251 . Addition over binary field is very easy and only needs XOR
operations. We compute addition algorithm add as wi = ui ⊕ vi for all i = 0, 1, 2, 3 where w(θ) =∑3

i=0wiθ
i is also in proper representation. As binary addition operation is component-wise XOR,

it is not followed by the reduce algorithm.

On binary field, subtraction is the same as the addition as −1 = 2 − 1 = 1. Therefore, we do
not define subtraction separately.

5.5 Multiplication by Small Constant

Let u(θ) =
∑3

i=0 uiθ
i be an element of the field F2251 . We would like to multiply u by a small

constant c (let). By small constant, we mean that c ∈ F2[t] and deg(c) 6 63. This also implies that
c can be stored using only one limb. We compute the multiplication as u′(θ) = constMult(u(θ), c) =∑3

i=0(c�2 ui)θ
i and then apply reduce on u′(θ) to achieve proper representation. The Algorithm

is summarized in Table 6.

v(θ) = constMult(u(θ), c) :
1. For i = 0 to 3 do
2. u′i = ui �2 c;
3. End For;
4. v = reduce(u′(θ))

5. Return v(θ) =
∑3

i=0 v0θ
i;

Table 6. Algorithm constMult

5.6 Field Multiplication

Let u(θ) =
∑3

i=0 u0θ
i and v(θ) =

∑3
i=0 v0θ

i be two elements to be multiplied. Let u and v are
in proper representation. Then the multiplication algorithm is given in the Table 7. The function
polyMult of u(θ) and v(θ) computes a polynomial of degree 6 in θ. Let the polynomial be w =

11



∑6
i=0wiθ

i. We apply expandM function on w(θ) to achieve a polynomial of 8 limbs where each limb
is of at most 64-bit. The steps of the Algorithm expandM are given in the Table 7. Let the expanded
polynomial be w =

∑7
i=0wiθ

i with len(wi) 6 64. Then we can derive Equation 14 from the output
of the function expandM (that is Equation 13) using the function fold(w(θ)) as given below.

w = w7θ
7 + w6θ

6 + w5θ
5 + w4θ

4 + w3θ
3 + w2θ

2 + w1θ + w0 (13)

= (w7θ
3 + w6θ

2 + w5θ + w4)θ
4 + (w3θ

3 + w2θ
2 + w1θ + w0)

= (w7θ
3 + w6θ

2 + w5θ + w4)t
5t251 + (w3θ

3 + w2θ
2 + w1θ + w0)

= (w7θ
3 + w6θ

2 + w5θ + w4)rt
5 + (w3θ

3 + w2θ
2 + w1θ + w0) [As f(t) = t251 + r(t)]

= (w3 + w7rt
5)θ3 + (w2 + w6rt

5)θ2 + (w1 + w5rt
5)θ + (w0 + w4rt

5) (14)

w(θ) = mult(u(θ), v(θ)) : w = expandM(w(θ)) :
1. w(θ) = polyMult(u(θ), v(θ)) 1. w7 = 0;
2. w(θ) = expandM(w); 2. For i = 0 to 6 do
3. w(θ) = fold(w); 3. wi+1 = wi+1 ⊕ (wi �64); wi = lsb64(wi);
4. w(θ) = reduce(w(θ)) 4. End For;

5. Return w(θ) =
∑3

i=0 wiθ
i; 5. Return w(θ) =

∑7
i=0 wiθ

i;

Table 7. Algorithms mult and expandM

Notice that the expandM is absolutely necessary. In the absence of expandM function, consider
the term w4rt

5. After polyMult(u(θ), v(θ)), w4 is a polynomial of degree at most 127. As deg(r) = 7,
then w4rt

5 can be a polynomial of degree 127 + 7 + 5 = 139 which requires 140 bits to store. In our
implementation, we use m128i whose capacity is 128-bit. Therefore, without expand, there will
be overflow. This issue of overflow is also true for w6rt

5 and w5rt
5. As expand introduces the term

w7, w7rt
5 will not be there in the absence of expand.

Computation polyMult(u(θ), v(θ)) Let u(θ) and v(θ) be in proper representation with 4 limbs
and let w(θ) = polyMult(u(θ), v(θ)). w(θ) is a polynomial of the form w(θ) =

∑6
i=0wiθ

i. The
main objective of the function polyMult is the computation of the coefficients of w(θ) that is
wi for i = 0, 1, . . . , 6. We use PCLMULQDQ and XOR to compute the coefficients using a hybrid
method of 2-2 Karatsuba [23] method and school-book method. The 2-2 Karatsuba method used
in implementation is as given below:

w(θ) = polyMult(u(θ), v(θ))

= polyMult2(u1θ + u0, v1θ + v0) + polyMult2(u3θ + u2, v3θ + v2)θ
4 +

(polyMult2((u1 ⊕ u3)θ + (u0 ⊕ u2), (v1 ⊕ v3)θ + (v0 ⊕ v2)) +

(polyMult2(u1θ + u0, v1θ + v0) + polyMult2(u3θ + u2, v3θ + v2))) θ
2

On the other hand, polyMult2 is computed using school-book method as

polyMult2(u1θ + u0, v1θ + v0) = (u1 �2 v1)θ
2 + + ((v1 �2 u0)⊕ (v0 �2 u1)) θ

(u0 �2 v0)

12



Each polyMult2 requires 4 PCLMULQDQ operations and 1 XORs. Consequently, polyMult requires
12 PCLMULQDQ operations and 13 XORs.

Unreduced Field Multiplication (multUnreduced) Let u(θ) and v(θ) be two elements of F2251

with proper representation that is u(θ) =
∑3

i=0 uiθ
i and v(θ) =

∑3
i=0 viθ

i. Let w(θ) is a polynomial
of the form w(θ) =

∑6
i=0wiθ

i. We define multUnreduced as

w(θ) = multUnreduced (u(θ), v(θ)) ,

where multUnreduced (u(θ), v(θ)) = polyMult(u(θ), v(θ)). multUnreduced (u(θ), v(θ)) is exactly
the same as the mullt without expandM, fold and reduce.

Field Addition of unreduced field elements (addReduce) Let u(θ) =
∑6

i=0 uiθ
i and v(θ) =∑6

i=0 viθ
i be two elements of F2251 where you can assume that u(θ) and v(θ) are outputs of

multUnreduced. As addition over binary field is simply the bit-wise XOR of the inputs, it does not
increase the length and thus there is no issue of overflow. The details of the algorithm of addReduce
is given in Table 8. On the XORed value, we apply expandM, fold and reduce to attend a proper
representation.

w(θ) = addReduce(u(θ), v(θ)) :
1. For i = 0 to 6 do
2. wi = ui ⊕ vi;
3. End For;
4. w(θ) = expandM(w);
5. w(θ) = fold(w);
6. w(θ) = reduce(w(θ));

7. Return w(θ) =
∑3

i=0 wiθ
i;

Table 8. Algorithms addReduce

5.7 Field Squaring

Field squaring is much less expensive in binary fields compared to prime fields as here squaring
means relabeling the exponent of the input binary element. Let u(θ) =

∑3
i=0 u0θ

i be the element to
be squared. The squaring algorithm is given in Table 9. The polySq function creates a polynomial
w(θ) =

∑6
i=0wiθ

i from u as given in Equation 15.

wi =

{
u2i/2, i = 0 (mod 2)

0, , i = 1 (mod 2)
(15)

As a consequence, the expandS is also slightly different that expandM. In function expandS, if
i = 0 (mod 2), then we divide the wi in to two parts and assign the least significant 64 bits to wi

and the remaining most significant bits to wi+1. If i = 1 (mod 2), we do nothing. The details of the
function expandS in Table 9. On the output of expandS, we apply fold and reduce to compute
the proper representation of the squared value.

Notice that, polySq only needs 4 PCLMULQDQ operations and no XORs which is less than half
of the operation counts of polyMult. As a result, sq is significantly faster than mult.
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v(θ) = sq(u(θ)) : w = expandS(w(θ)) :
1. w(θ) = polySq(u(θ), v(θ)) 1. For i = 0, 2, 4, 6 do
2. w(θ) = expandS(w); 2. wi+1 = (wi �64); wi = lsb64(wi);
3. w(θ) = fold(w); 3. End For;

4. w(θ) = reduce(w(θ)) 4. Return w(θ) =
∑7

i=0 wiθ
i;

5. Return w(θ) =
∑3

i=0 wiθ
i;

Table 9. Algorithms sq and expandS

5.8 Field Inverse

We compute Kummer Line scalar multiplication in projective coordinate system and receive an
projective point (xn, zn) at the end of the iterations of ladder steps. Therefore, we compute the
affine output as xn/zn which requires one field inversion and one field multiplication. We compute
field inversion as z−1n = z2

251−2
n using 250 field squaring and 10 field multiplications following the

sequence given in [4]. The multiplications produce the terms z3n, z7n, z2
6−1

n , z2
12−1

n , z2
24−1

n , z2
25−1

n ,
z2

50−1
n , z2

100−1
n , z2

125−1
n and z2

250−1
n .

5.9 Conditional Swap

The ladderstep of Table 2 uses conditional swap based on the input bit from the scalar. But
to achieve constant time scalar multiplication, no use of branching instructions is prerequisite.
Therefore, we perform the conditional swap without any branching instruction as given in Table 10.
In Table 10, the algorithm condSwap uses branching instruction where condSwapConst performs
the same job as the condSwap without any branching instruction. In computer, 0 is represented as
a binary sting of all zeros and −1 is represented as a binary string of all ones in 2’s complement
representation. Therefore, if b is 0 then w = 0 at the end of the line 2 of Algorithm condSwapConst

else it is w = ui ⊕ vi. As a consequence, if b = 0, there is no change of values in ui and vi as
ui = ui ⊕ 0 = ui and vi = vi ⊕ 0 = vi. On the other hand, if b = 1, then ui and vi get swapped as
ui = ui ⊕ w = ui ⊕ ui ⊕ vi = vi and vi = vi ⊕ w = vi ⊕ ui ⊕ vi = ui.

condSwap(u(θ), v(θ), b) condSwapConst(u(θ), v(θ), b)
1. If (b = 1) then 1. For i = 0 to 4 do
2. For i = 0 to 4 do 2. w = ui ⊕ vi; w = w&(−b);
3. w = ui; ui = vi; vi = w; 3. ui = ui ⊕ w; vi = vi ⊕ w;
4. End For; 4. End For;
5. End If;

Table 10. Algorithm Conditional Swap

6 Scalar Multiplication

In this section, we explain the details of the algorithms implemented to compute scalar multiplica-
tion for the Kummer line BKL251 and binary Edwards curve BEd251.
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6.1 Scalar Multiplication of BKL251

The algorithms for scalar multiplication BKLscalarMult and BKLscalarMultFB are given in the
Table 11. Algorithms BKLscalarMult is scalar multiplication algorithm when the base point is un-
known from before hand and we call it variable-base scalar multiplication. On the other hand, FB of
BKLscalarMultFB stands for fixed-base and, we pre-compute the point dbl(P) and keep it in mem-
ory. We alway consider that the z-coordinate of the input base point is 1 and the implementation is
designed to take advantage of that. The total operation counts of ladder step of BKLscalarMult is
5[M]+5[S]+1[C] where [M] denotes field multiplication mult, [S] stands for field squaring sq and we
denote multiplication by small constant by [C]. 1[C] refers the multiplication by Kummer Line pa-
rameter b (line 25 of BKLscalarMult and line 22 of BKLscalarMultFB). In out implementation, the
base point is a small one (t3 + t2, 1) which can be stored in one limb and consequently the field mul-
tiplication in line 20 of BKLscalarMult becomes a multiplication by constant in BKLscalarMultFB

(line 17). The total operation counts of ladder step of BKLscalarMultFB becomes 4[M]+5[S]+2[C].

BKLscalarMult(P, n) : BKLscalarMultFB(P, dbl(P), n) :
Input: Base Point = (x(θ), 1) Input: Base Points = (x(θ), 1, x2(θ), z2(θ))

n = {1, nl−2, nl−3, . . . , n0} n = {1, nl−2, nl−3, . . . , n0}
Output: xn(θ) Output: xn(θ)

1. sx(θ) = x(θ); sz(θ) = 1; 1. sx(θ) = x(θ); sz(θ) = 1;
2. t1(θ) = add(sx(θ)), sz(θ)); 2. rx(θ) = x2(θ); rz(θ) = z2(θ);
3. rx(θ) = sq(t1(θ)); 3. pb = 0;
4. rx(θ) = multConst(rx(θ), b); 4. For i = (l − 2) to 0 do
5. rz(θ) = sq(sx(θ)); 5. b = (pb⊕ ni);
6. pb = 0; 6. condSwapConst(sx(θ), rx(θ), b);
7. For i = (l − 2) to 0 do 7. condSwapConst(sz(θ), rz(θ), b);
8. b = (pb⊕ ni); 8. t1(θ) = add(sx(θ), sz(θ));
9. condSwapConst(sx(θ), rx(θ), b); 9. t2(θ) = add(rx(θ), rz(θ));
10. condSwapConst(sz(θ), rz(θ), b); 10. t3(θ) = mult(t1(θ), t2(θ));
11. t1(θ) = add(sx(θ), sz(θ)); 11. t3(θ) = sq(t3(θ));
12. t2(θ) = add(rx(θ), rz(θ)); 12. t4(θ) = multUnreduced(sx(θ), rz(θ));
13. t3(θ) = mult(t1(θ), t2(θ)); 13. t5(θ) = multUnreduced(sz(θ), rx(θ));
14. t3(θ) = sq(t3(θ)); 14. rz(θ) = addReduce(t4(θ), t5(θ));
15. t4(θ) = multUnreduced(sx(θ), rz(θ)); 15. rz(θ) = sq(rz(θ));
16. t5(θ) = multUnreduced(sz(θ), rx(θ)); 16. rx(θ) = add(t3(θ), rz(θ));
17. rz(θ) = addReduce(t4(θ), t5(θ)); 17. rz(θ) = multConst(rz(θ), x(θ));
18. rz(θ) = sq(rz(θ)); 18. sz(θ) = mult(sx(θ), sz(θ));
19. rx(θ) = add(t3(θ), rz(θ)); 19. sz(θ) = sq(sz(θ));
20. rz(θ) = mult(rz(θ), x(θ)); 20. sx(θ) = sq(t1(θ));
21. sz(θ) = mult(sx(θ), sz(θ)); 21. sx(θ) = sq(sx(θ));
22. sz(θ) = sq(sz(θ)); 22. sx(θ) = multConst(sx(θ), b(θ));
23. sx(θ) = sq(t1(θ)); 23. pb = ni;
24. sx(θ) = sq(sx(θ)); 24. End For;
25. sx(θ) = multConst(sx(θ), b(θ)); 25. condSwapConst(sx(θ), rx(θ), n0);
26. pb = ni; 26. condSwapConst(sz(θ), rz(θ), n0);
27. End For; 27. Return (sx(θ)/sz(θ));
28. condSwapConst(sx(θ), rx(θ), n0);
29. condSwapConst(sz(θ), rz(θ), n0);
30. Return (sx(θ)/sz(θ));

Table 11. Algorithm BKLscalarMul and BKLscalarMultFB
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6.2 Scalar Multiplication of BEd251

For scalar multiplication on binary Edwards curve BEd251, we use WZ-coordinate system as
suggested in [7, 4, 6] which provides the fastest result. The algorithms for scalar multiplication
BEdscalarMult and BEdscalarMultFB are given in the Table 12. Similar to binary Kummer
line, BEdscalarMult takes care variable-base, where BEdscalarMultFB is the algorithm for fixed-
base scalar multiplication on binary Edwards curve. The operation counts of the ladder steps of
BEdscalarMult is 5[M] + 4[S] + 2[C] where [C] is the multiplication by Edwards curve parameter d
(lines 18 and 23 of BEdscalarMult and, lines 15 and 20 of BEdscalarMultFB). In WZ-coordinate
system, W = X + Y . It is very hard to find a base point (x, y) on Edwards curve such that (x, y)
is the generator of the largest prime subgroup and w = x + y becomes small enough to be stored
in a limb. Even if we try to make x small, y becomes a random element of the field which satisfies
the Equation 10, that is y becomes the roots of the quadratic Equation 16(

1 +
d

x+ x2

)
y2 +

(
1 +

d

x+ x2

)
y + d = 0. (16)

Similar thing happens if we try to control the size of y. In our experiment we could not find such
a point and it seems only way is to check all the points of BEd251 by brute-forced method1. As
a result, the operation counts in ladder step of BEdscalarMultFB remains the same as that of
BEdscalarMult, that is 5[M] + 4[S] + 2[C].

7 Implementations and Timings

We have implemented the softwares using the Intel intrinsic instructions of m128i. All the modules
of the field arithmetics and the ladder step are written in assembly language to achieve the most
optimized implementation. The 64× 64 bit binary field multiplications are done using pclmulqdq

instruction. We compute 128-bit bit-wise XOR and AND operations are implemented using instruc-
tions pxor and pand respectively. For byte-wise and bit-wise right-shift, we use psrldq and psrlq.
The rest of the details of the implementation can be found from the publicly available softwares.
The code implements the ladder algorithm with constant-time conditional swap algorithm which
takes the same amount of time for all scalars. Consequently, our code also runs in constant time.

We use reduce algorithm with mult, sq, multConst and addReduce. In case of mult and sq, the
size of the limbs are at most 76 bits after fold operations. Therefore, the w3 of line 5 of Algorithm
reduce (Table 5) will be 17 bits at most and in turn w3 becomes 24-bit after line 6. Therefore, there
will be no overflow from v0 of line 7 of Table 5. Similar situation will happen for the addReduce.

In case of multConst in scalar multiplications BKLscalarMult and BKLscalarMultFB, the max-
imum length of the constant is the length of the Kummer line parameter b which is 14-bit (where
the base point is of 4 bits). Therefore, the maximum possible length of u′3 after line 3 of Algorithm
multConst is 72-bit. During reduce of multConst, w3 of line 7 of Table 5 becomes 20-bit long and
in turn there will be no overflow from v0.

In case of multConst in scalar multiplications BEdscalarMult and BEdscalarMultFB, the max-
imum length of the constant is curve parameter d which is of degree 57. Therefore, the maximum
possible length of u′3 after line 3 of Algorithm multConst is 116-bit. During reduce of multConst,

1 [7, 4] also do not mention about small base-point
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BEdscalarMultKL(P, n) : BEdscalarMultFB(P, dbl(P ), n) :
Input: Base Point = (w(θ), 1) Input: Base Points = (w(θ), 1, w2(θ), z2(θ))

n = {1, nl−2, nl−3, . . . , n0} n = {1, nl−2, nl−3, . . . , n0}
Output: xn(θ) Output: xn(θ)

1. sw(θ) = w(θ); sz(θ) = 1; 1. sw(θ) = w(θ); sz(θ) = 1;
2. t1(θ) = add(sw(θ)), sz(θ)); 2. rw(θ) = w2(θ); sz(θ) = z2(θ);
3. t2(θ) = mult(sw(θ), t1(θ)); 3. pb = 0;
4. rw(θ) = sq(t2(θ)); 4. For i = (l − 2) to 0 do
5. rz(θ) = add(rw(θ), d(θ)); 5. b = (pb⊕ ni);
6. pb = 0; 6. condSwapConst(sw(θ), rw(θ), b);
7. For i = (l − 2) to 0 do 7. condSwapConst(sz(θ), rz(θ), b);
8. b = (pb⊕ ni); 8. t2(θ) = add(sw(θ), sz(θ));
9. condSwapConst(sw(θ), rw(θ), b); 9. t2(θ) = mult(t2(θ), sw(θ));
10. condSwapConst(sz(θ), rz(θ), b); 10. t3(θ) = add(rw(θ), rz(θ));
11. t2(θ) = add(sw(θ), sz(θ)); 11. t3(θ) = mult(t3(θ), rw(θ));
12. t2(θ) = mult(t2(θ), sw(θ)); 12. t3(θ) = mult(t2(θ), t3(θ));
13. t3(θ) = add(rw(θ), rz(θ)); 13. t4(θ) = mult(sz(θ), rz(θ));
14. t3(θ) = mult(t3(θ), rw(θ)); 14. t4(θ) = sq(t4(θ));
15. t3(θ) = mult(t2(θ), t3(θ)); 15. t4(θ) = multConst(t4(θ), d);
16. t4(θ) = mult(sz(θ), rz(θ)); 16. t4(θ) = add(t3(θ), t4(θ));
17. t4(θ) = sq(t4(θ)); 17. sw(θ) = sq(t2(θ));
18. t4(θ) = multConst(t4(θ), d); 18. sz(θ) = sq(sz(θ));
19. t4(θ) = add(t3(θ), t4(θ)); 19. sz(θ) = sq(sz(θ));
20. sw(θ) = sq(t2(θ)); 20. sz(θ) = multConst(sz(θ), d);
21. sz(θ) = sq(sz(θ)); 21. sz(θ) = add(sz(θ), sw(θ));
22. sz(θ) = sq(sz(θ)); 22. rw(θ) = mult(t4(θ), w(θ));
23. sz(θ) = multConst(sz(θ), d); 23. rw(θ) = add(rw(θ), t3(θ));
24. sz(θ) = add(sz(θ), sw(θ)); 24. rz(θ) = t4(θ);
25. rw(θ) = mult(t4(θ), w(θ)); 25. pb = ni;
26. rw(θ) = add(rw(θ), t3(θ)); 26. End For;
27. rz(θ) = t4(θ); 27. condSwapConst(sw(θ), rw(θ), n0);
28. pb = ni; 28. condSwapConst(sz(θ), rz(θ), n0);
29. End For; 29. Return (sw(θ)/sz(θ));
30. condSwapConst(sw(θ), rw(θ), n0);
31. condSwapConst(sz(θ), rz(θ), n0);
32. Return (sw(θ)/sz(θ));

Table 12. Algorithm BEdscalarMult and BEdscalarMultFB

w3 of line 7 of Table 5 can be at most 64-bit long and in turn there will also be no overflow from
v0.

As there will be no overflow from v0 after line 7 of reduce in all possible cases, we further
optimize the field arithmetic by removing the line 8 of Table 5 during implementation.

In the modules of field multiplications and squaring, a significant amount of time is taken by the
attempt of achieving the proper representation. In other words, the operations expandM/expandS,
fold and reduce are most time consuming it total compared to polyMult/polySq. Therefore using
multUnreduced and addReduce in BKLscalarMult (lines 15, 16 and 17) and in BKLscalarMultFB

(lines 12, 13 and 14), we reduce two sets of expandM, fold and reduce in to one set and it produced
a significant speed up also.

Timing experiments were carried out on a single core of three platforms and their setups are
listed in Table 13. OS of the computer with Sandy Bridge processor is 64-bit Ubuntu 16.04 and
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the code was compiled using GCC version 9.2.1. On the other hand, the OS of the computers with
Haswell and Skylake processors is 64-bit Ubuntu 14.04 with GCC version 7.3.0.

Processor Processor Ubuntu GCC Version
Architecture Make 64-bit

Sandy Bridge IntelrXeonr CPU E5-1620 v4 @ 3.50GHz 16.04 9.2.1

Haswell Intel Core™i7-4790 4-core CPU @ 3.60 Ghz 14.04 7.3.0

Skylake Intel Core™i7-6500U 2-core CPU @ 2.50GHz 14.04 7.3.0

Table 13. Experimental Setup

During timing measurements, turbo boost and hyperthreading were turned off. An initial cache
warming was done with 25,000 iterations and then the median of 1,00,000 iterations was recorded.
The Time Stamp Counter (TSC) was read from the CPU to RAX and RDX registers by RDTSC
instruction. The timings are listed in the Table 14.

In Sandy Bridge, BKL251 is faster than BEd251 by 9.33% and 1.55% for fixed-base and variable-
base scalar multiplications respectively. In Haswell architecture, we found that BKL251 is faster than
BEd251 by 8.36% and 0.80% for fixed-base and variable-base scalar multiplications respectively.
We get the similar results for Skylake architecture where the speedups fixed-base and variable-base
scalar multiplication are 8.81% and 0.25% respectively.

Sandy Bridge Haswell Skylake
Fixed-base Var-base Fixed-base Var-base Fixed-base Var-base

BKL251 82,914 90,437 1,17,592 1,27,812 86,748 95,104

BEd251 91,454 91,865 1,28,356 1,28,852 95,132 95,348

Table 14. Timings of Scalar Multiplications of BKL251 and BEd251 in clock cycles (clk)

Diffie-Hellman Key Exchange. In two-party Diffie-Hellman key exchange [10] protocol, each
party has to compute two scalar multiplication: one fixed-base and one variable-base. Ignoring
the communication time, the total computation time required by each party is the sum of the
computation time of both the scalar multiplication. The results are given in Table 15. In Sandy
Bridge, Haswell and Skylake platforms, Diffie-Hellman key exchange which uses BKL251 is 5.43%,
4.58% and 4.52% faster than Diffie-Hellman key exchange with BEd251 respectively.

Sandy Bridge Haswell Skylake

BKL251 1,73,351 2,45,404 1,81,852

BEd251 1,83,319 2,57,208 1,90,480

Table 15. Timings of Diffie-Hellman Key Exchange for BKL251 and BEd251 in clock cycles
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8 Conclusion

This work exhibits that Binary Kummer line based scalar multiplication offers competitive perfor-
mance compared to existing proposal like BEd251 and CURVE2251 over finite field of character-
istics 2 using PCLMULQDQ. Previous implementations of BEd251 and CURVE2251 focuses on batch
implementation using bitslicing technique. This work presents the first ever implementation of the
proposed BKL251 and BEd251 using the instruction PCLMULQDQ (best to our knowledge). From the
experimental results, we conclude that BKL251 is approximately 9% and 1% faster than BEd251
for fixed-base and variable-base scalar multiplication respectively.
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