
Reverse Firewalls for Actively Secure MPCs

Suvradip Chakraborty ?, Stefan Dziembowski??, and Jesper Buus Nielsen? ? ?

Abstract. Reverse firewalls were introduced at Eurocrypt 2015 by Mironov and Stephens-
Davidowitz, as a method for protecting cryptographic protocols against attacks on the devices
of the honest parties. In a nutshell: a reverse firewall is placed outside of a device and its
goal is to “sanitize” the messages sent by it, in such a way that a malicious device cannot
leak its secrets to the outside world. It is typically assumed that the cryptographic devices
are attacked in a “functionality-preserving way” (i.e. informally speaking, the functionality of
the protocol remains unchanged under this attacks). In their paper, Mironov and Stephens-
Davidowitz construct a protocol for passively-secure two-party computations with firewalls,
leaving extension of this result to stronger models as an open question.

In this paper, we address this problem by constructing a protocol for secure computation with
firewalls that has two main advantages over the original protocol from Eurocrypt 2015. Firstly,
it is a multiparty computation protocol (i.e. it works for an arbitrary number n of the parties,
and not just for 2). Secondly, it is secure in much stronger corruption settings, namely in the
actively corruption model. More precisely: we consider an adversary that can fully corrupt up
to n− 1 parties, while the remaining parties are corrupt in a functionality-preserving way.
Our core techniques are: malleable commitments and malleable non-interactive zero-knowledge,
which in particular allow us to create a novel protocol for multiparty augmented coin-tossing
into the well with reverse firewalls (that is based on a protocol of Lindell from Crypto 2001).

1 Introduction

Traditional approach to cryptography is to design schemes in a black-box way, i.e, under assumption
that the devices that execute cryptographic algorithms are fully trusted. The abstract, “black-box”,
cryptography is currently well-understood, and there exist several algorithms that implement the
basic cryptographic tasks in a way that is secure against a large class of attacks (under very plausible
assumptions). Therefore, one can say that the cryptographic algorithms (if implemented correctly)
are the most secure part of the digital systems.

Unfortunately, once we get closer to the real “physical world” the situation becomes much less
satisfactory. This is because several real-life attacks on cryptographic devices are based on attacking
the implementation, not the abstract mathematical algorithm. In particular, the adversary can
exploit the so-called side-channels information emitted of a device, or tamper with it, by changing
the way they behave. This can be achieved by attacking the cryptographic software by computer
viruses or Trojan horses. What can be viewed as the extreme case of the tampering attacks are
scenarios in which the device is produced by an adversarial manufacturer, who maliciously modifies
its design. Such attacks are quite realistic, since, for the economical reasons, private companies
and government agencies are often forced to use hardware that they did not produce themselves.
Another source of such attacks are the insiders that originate from within a given company or

? Department of CSE, Indian Institute of Technology Madras. suvradip@cse.iitm.ac.in
?? Cryptography and Data Security Group, University of Warsaw. s.dziembowski@crypto.edu.pl

? ? ? Department of Computer Science, Aarhus University. jbn@cs.au.dk

organization. Last but not least, some attacks of this type can originate from the governments. The
recent revelations of Edward Snowden disclosed a massive scale of the US government cyberattacks
directed against the individuals (both within the US and abroad). It is generally believed that many
other governments take similar actions, one recent example being the “Chinese hack chip” attack
(revealed in October 2018) that reached almost 30 U.S. companies, including Amazon and Apple.

Countermeasures. Starting from 1990s there has been a significant effort in the cryptographic
community to address this kind of “implementation attacks”, by extending the black-box model to
cover also them (see, e.g., [17, 15]). An interesting alternative approach has been recently proposed
by Mironov and Stephens-Davidowitz [18] under the name “reverse firewalls”. On a high level
(for a formal definition see Sect. 2.1), this technique addresses the problem of information leakage
from cryptographic implementations that are malicious, either because they were produced by
an adversarial manufacturer, or because they are were maliciously modified at a later stage. More
concretely, reverse firewalls are used to protect against attacks in which a malicious implementation
leaks some of its secrets via so-called “subliminal channels” [19], i.e, by encoding this secrets in
innocently-looking protocol messages. In a nutshell, a reverse firewall is an external device that is
put between a party P and the external world in order to “sanitize” the messages that are sent
and received by P . A reverse firewall is not a trusted third party, and, in particular, it cannot
be used to keep P ’s secrets and to perform operations “in P ’s name”. Reverse firewalls come in
different variants. The most popular one, that we also consider in this paper, is to require that the
reverse firewalls provide protection only against the aforementioned “informational leakage” attack
(and not against attacks that may influence the output of the computation). In particular, in this
model, we are not concerned with the correctness of the computation. More formally, we assume
that all the adversarial tampering cannot change the functionality of the entire protocol. This type
of attacks are called “functionality maintaining” corruptions [18]. The authors of this paper provide
a construction of a two-party1 passively secure computation protocol with a reverse firewall, leaving
the generalization of this construction to stronger security notions as an open problem.

Our contribution. We address the open problem of [18] by providing a construction of reverse
firewalls for secure computation in a much stronger security model, and in a more general set-
ting. More concretely, we show a solution to the problem by constructing multiparty computation
protocols with active security. Recall that in the active security settings the corrupt parties can mis-
behave in an arbitrary way, i.e., the adversary takes a full control over them, and, besides learning
their inputs, can instruct them to take any actions of his choice. It is well-known [11, 10] that such
protocols can be constructed even if a majority of parties is corrupt (assuming that no fairness is
guaranteed, i.e., the adversary can prevent the honest parties from learning their outputs, after she
learns the outputs of corrupt parties). In this work, we show an MPC protocol (based on [11, 10]),
together with a reverse firewall for it, that provides security in a very strong sense: it can tolerate
up to n − 1 “standard” (active) corruptions (where n is the number of parties) plus a corruption
of the remaining parties, as long as it is “functionality maintaining” and this party is protected
by a reverse firewall. The core technique that we use in this construction is a novel protocol for
multiparty augmented parallel coin-tossing into the well with reverse firewalls (our starting point
for this construction is a protocol of Lindell [16]).

1 Two-party computation protocols, or, more generally, multiparty computation protocols (MPCs) are
protocols in which a group of parties compute a publicly-known function on their inputs in such a way
that these inputs remain secret, see Sect. 2, or [7].

2

Other related work. After the publication of [18] there has been some follow-up work on the
reverse firewalls. In particular [8] constructed a firewalled protocol for CCA-secure message trans-
mission, and [6] provide protocols for oblivious signature-based envelopes with firewalls, and oblivi-
ous transfer (this is done using a new technique called “malleable smooth projective hash function”
that they develop in this paper). In [1] Ateniese et al. use reverse firewalls to construct signature
schemes secure against arbitrary tampering. Reverse firewalls are also related to several earlier top-
ics in cryptography such as the algorithm-substitution attacks, subliminal channels and divertible
protocols, combiners, kleptography, collusion-free protocols and mediated collusion-free protocols
and more. Due to space constraints, we refer the reader to Sect. 1.1 of [18] for an overview of these
topics and their relation to reverse firewalls.

1.1 Overview of our construction

On a high level, our construction can be viewed as “adding reverse firewalls to the MPC protocol
of [11, 10]”. In particular, we follow the protocol structure presented in Sect. 3.3.3 of [10], i.e.:
the parties generate random strings to which they are committed (this is called “augmented coin-
tossing”), they commit to their inputs (the “input commitment protocol”), and finally they perform
the “authenticated computation” in which they do computations on these values, simultaneously
proving (in zero knowledge) that the computation is done correctly (in our construction we use
a non-interactive version of zero-knowledge protocols, NIZKs, [3]). The main things that need to
be addressed in adding reverse firewalls to this protocol is to construct protocols for commitment
schemes and NIZKs with firewalls (since the correctness of every step of the computation is proven
in zero knowledge, we do not need to construct separate firewalls for the computations itself). Essen-
tially, these firewalls are constructed by “re-randomizing” the messages that are sent by the parties.
More precisely: for messages that come from commitments, we exploit the standard homomorphic
properties of such schemes, and for NIZKs we use the “controlled-malleable NIZK proof systems” of
[5]2. On a high level, the firewalls can re-randomize a protocol transcript exploiting homomorphic
properties of the commitment scheme, and controlled malleability property of the NIZK proofs
(where the controlled malleability is “tied” to the appropriate mauling of the commitments). One
of the key ingredients of our construction is a firewalled scheme for augmented coin tossing. This
is built by combining the firewalled protocols for commitment and NIZKs with the coin-tossing
protocol of Lindell [16].

Reverse Firewalls for multi-party (augmented) coin-tossing. Let us explain the design
principle of our reverse firewall for the multi-party augmented coin-tossing protocol in more details.
The starting point of our protocol is the 2-party augmented parallel coin-tossing of Lindell [16]. The
protocol of [16] uses a “commit-and-proof” technique, where one party (often called the initiating
party) commits to a random bit-string and proves in zero-knowledge about the consistency of the
committed value. The other party also sends a random bit-string to this party. The final string is the
exclusive OR of both these strings and the initiating party commits to this final string. The protocol
ends by outputting a random bit-string (which the initiating party gets), and the commitment value
to the final bit-string (which the other party receives). First, we extend this protocol to the multi-
party setting, and finally design a reverse firewall for this protocol. We assume that the honest

2 Since we use a NIZK proof system, we need to assume a trusted setup algorithm which generates a
common reference string (CRS) to be used by all the parties. We assume that the CRS is hardwired
inside the code of each party.

3

parties are corrupted in a functionality-maintaining way. The first observation is that the corrupted
parties may not necessarily commit to a random bit-string. Even if it does so, the commitment may
also leak information about the committed value (say the randomness used to commit may leak
additional information about the bit-string). Secondly, the bit-strings sent by the other parties to
the initiating party may also act as a subliminal channel to leak secret information.

The main idea behind our firewall design is that it should somehow be possible to maul the
commitment in such a way that the committed element is random (even if the initial bit-string
is not chosen randomly) and the commitment is itself re-randomizable (so that the commitment
appears to be “fresh”). For this, we assume the commitment scheme to be additively homomorphic
(with respect to an appropriate relation), which suffices for our purpose. At this point, the original
zero-knowledge proof (that conforms to the initial commitment) is no longer valid with respect
to the mauled commitment. Hence, the firewall needs a way to appropriately maul the proof (so
that the mauled proof is consistent with the mauled commitment), and also to re-randomize the
proof (so that the randomness used to proof does not leak any information on the witness, which
is the committed string). To this end, we use the controlled-malleable NIZK proof systems (cm-
NIZK) introduced by Chase et al. [5]. We replace the (interactive) zero-knowledge proofs used in
the protocol of [16] with cm-NIZK proofs (with a trusted setup procedure). The firewall then re-
randomizes the shares (bit-strings) of the other parties in such a way that is consistent with the
initial mauling of the commitment and the proof.

However, at this point another technical difficulty arises: the views of all the parties are not
identical– in particular, the view of the initiating party and the other parties are not same, due to
the above mauling by the firewall. While this appears to be problematic as far as the functionality
of the protocols is concerned, we show that the firewall can again re-maul the transcript in such a
way that the views of all the parties become consistent, without compromising on the security of
the protocol. We show that, indeed at the end the initiating party ends up with a random bit-string
(as required by the functionality), even if its corrupted (in a functionality-maintaining way) and
the other parties obtains a secure commitment to this bit-string. We show that the above firewall
maintains functionality, preserves security for the honest parties, and also provide weak exfiltration-
resistant3 against other parties. Finally, we stress that the above mauling operations, specially the
mauling of the NIZK proofs, does not require the firewall to know the original witness (chosen by
the initiating party), which makes it interesting and doable from the firewall perspective (since it
shares no secret with any of the parties). We refer the reader to section 5.1 for the details.

Reverse Firewalls for other protocols. We also present design of reverse firewalls for the multi-
party input commitment protocol and the multi-party authenticated computation protocol, which
are also used as key ingredients for our final actively-secure MPC protocol. The reverse firewalls for
these protocols are relatively much simpler and involves only re-randomizing the commitment and
the NIZK proof (in case of the input commitment protocol) and re-randomizing the proof (for the
authenticated computation protocol). We show that both the firewalls corresponding to these two
protocols preserve security and is exfiltration-resistant against other parties.

The final compiler. Finally, we show the construction of our actively-secure MPC protocols in
the presence of reverse firewalls. Our final compiler is similar to the compiler presented in [10],

3 Informally, the exfiltration-resistant property stipulates that the corrupt implementation of party does
not leak any information through the firewall. Weak exfiltration-resistance guarantees the same property
when the party is corrupted in a functionality-maintaining way (and not arbitrarily).

4

however, adapted to the setting of reverse firewalls. The compiler takes as input any semi-honest
MPC protocol (without reverse firewalls) and runs the multi-party input commitment protocol,
the multi-party (augmented) coin-tossing protocol and the multi-party authenticated computation
protocol in the reverse firewall setting (in sequential order) to obtain the final actively-secure MPC
protocol. On a high level, after the input commitment and the coin-tossing protocol (in the presence
of reverse firewalls) the inputs and the random pads of all the (honest) parties are fixed. Now, since
the honest parties are corrupted in a functionality-maintaining way, the computation performed by
the party in the authenticated computation protocol is determined, and the final zero-knowledge
proofs conform to these computations. Hence, at this point, the security of the underlying semi-
honest MPC protocol (without using reverse firewalls) can be invoked to argue security of our final
actively-secure MPC protocol (in the presence of reverse firewalls).

Compiler for Reverse Firewalls for Broadcast model. As a contribution of independent
interest, we also present a compiler for reverse firewalls (RF) in the broadcast model (see Section
4). In particular, existence of a broadcast channels in the RF setting is a stronger assumption than
the existence of a broadcast channel in the classical setting. To this end, we present a version of
the Dolev Strong protocol [9] secure in the RF setting. The key idea is to somehow transform the
original Dolev Strong protocol to be a “unique message protocol”, so that, at any given point there
is only one possible message that a party can send. We implement this by replacing the signatures
in the Dolev-Strong protocol with unique signatures. Intuitively this works because: on any input in
the Dolev-Strong protocol, the only allowed message consists of adding a signature on a well-defined
message. The signature is either sent or added to a valid set. Since the signatures are unique and
the parties are corrupted in a functionality-maintaining way, it is forced to send the unique message
at that particular round. In general, the above idea also works if we replace the signatures in the
Dolev-Strong protocol with re-randomizable signatures [14, 20]. Note that unique signatures are
efficiently re-randomizable. We note that, our result also nicely complements the result of Ateniese
et al. [1], who gave a negative result for the construction of RF for arbitrary signature schemes. On
the positive side, they show constructions of RF for the class of re-randomizable signature schemes
(which includes unique signatures as well).

Organization of the paper. The basic definitions and notation are provided in Sect. 2 (Sect. 2.1
contains the definitions related to the reverse firewalls). Our main technical contribution is presented
in Sect. 3, with Sections 4 and 4.1 describing the construction of broadcast channels in the reverse
firewall setting, Sections 5—5.4 describing the ingredients of our construction, and Sect. 5.5 putting
them together into a single “protocol complier” algorithm. The security of our construction in stated
and proven in Thm. 7.

2 Preliminaries

In this section we introduce some standard notation and terminology that will be used throughout
the paper. For an integer n ∈ N, we denote by [n] the set {1, 2, · · · , n} and for any pair of integers
1 < i < j ≤ n, we denote by [i, j] the set {i, i + 1, · · · , j}. For a distribution or random variable
X, we denote x← X the action of sampling an element x according to X. For any integer m ∈ N,
we write Um to denote the uniform distribution over all m-bit strings. A decision problem related
to a language L ⊆ {0, 1}∗ requires to determine if a given string x is in L or not. In this paper, we
consider NP language. Corresponding to each NP language L, we can associate a binary relation
R ⊆ {0, 1}∗ × {0, 1}∗ defining L such that: L = {x : ∃ω s.t. (x, ω) ∈ R} and |ω| ≤ poly(|x|). We

5

call x the statement/theorem, and ω the witness testifying the membership of x in the language L,
i.e., x ∈ L. Let T = (Tx, Tω) be a pair of efficiently computable n-ary functions, Tx : {{0, 1}∗}n →
{0, 1}∗. We call such a tuple T as an n-ary transformation. Following [5], we define what it means
for a transformation T = (Tx, Tw) to be admissible with respect to a NP relation R.

Definition 1. (Admissible transformations [5]). An n-ary transformation T = (Tx, Tw) is said
to admissible for an efficient relation R, if R is closed under T , i.e, for any n-tuple
{(x1, ω1), · · · , (xn, ωn)} ∈ Rn, it holds that the pair

(
Tx(x1, · · ·xn), Tω(ω1, · · · , ωn)

)
∈ R. We say

that a class or set of transformations T is an allowable set of transformation if every transformation
T ∈ T is admissible for R.

(Homomorphic commitments.) A (non-interactive) commitment scheme consists of three poly-
nomial time algorithms (G,K, com). The probabilistic setup algorithm G takes as input the security
parameter λ and outputs the setup parameters par. The key generation algorithm K is a proba-
bilistic algorithm that takes as input par and generates a commitment key ck. We assume that the
commitment key ck includes the description of the message spaceM, the randomness space R and
the commitment space C to be used in the scheme. We also assume it is possible to efficiently sample
elements from R. The algorithm com takes as input the commitment key ck, a message m from the
message spaceM and “encodes” m to produce a commitment string c in the commitment space C.
Additionally, we also require the commitment scheme to be homomorphic [12, 13], i.e, we assume
thatM, R and C are groups with the homomorphic property, and if we add any two commitments,
the resulting commitment will encode the sum of the underlying messages. The formal definition
follows.

Definition 2 (Homomorphic commitments [12]). A homomorphic trapdoor commitment scheme
consists of the tuple of algorithms (G,K, com) as described above, with the security properties as
stated below:

– (Perfect hiding). The triple (G,K, com) is perfectly hiding if for all stateful adversaries A, we
have:

Pr

[
b′ = b

∣∣∣∣par← G(1λ); ck← K(par); (m0,m1, st)← A(par, ck);

b
$←− {0, 1}; c← comck(mb); b

′ ← A(c, st)

]
≤ 1

2
+ negl(λ).

– (Computationally binding). The triple (G,K, com) is computationally binding if for all non-
uniform polynomial time stateful adversaries A, we have:

Pr

[
m 6= m′ ∧ par← G(1λ); ck← K(par); (m,m′, r, r′)← A(par, ck) :
m,m′ 6= ⊥ comck(m; r) = comck(m

′; r′)

]
≤ negl(λ)

– (Homomorphic). The commitment scheme (G,K, com) is homomorphic if K always outputs ck
describing groups M, R, C, which are written additively, such that for all m,m′ ∈ M, r, r′ ∈ R
we have: comck(m; r) + comck(m

′; r′) = comck(m+m′; r + r′).

(Controlled Malleable Non-Interactive Zero-Knowledge Proofs.) We recall the definitions
of controlled-malleable non-interactive proof systems from [5]. A non-interactive proof system for

6

a NP language L associated with relation R consists of three (probabilistic) polynomial-time al-
gorithm (CRSGen,P,V). The Common Reference String (CRS) generation algorithm CRSGen takes
as input the security parameter 1λ, and outputs CRS σcrs. The prover algorithm P takes as input
σcrs, and a pair (x, ω) ∈ R, and outputs a proof π. The verifier algorithm V takes as input σcrs,
a statement x and a purported proof π, and outputs a decision bit b ∈ {0, 1}, indicating whether
the proof π with respect to statement x is accepted or not (with 0 indicating reject, else accept).
The two most basic requirements from such a proof system are perfect completeness and adaptive
soundness with respect to (possibly unbounded) cheating provers. Besides, we also want the NIZK
proof systems for efficient relations R that are (1) malleable with respect to an allowable set of
transformations T , i.e., for any T ∈ T , given proofs π1, · · · , πn for statements x1, · · · , xn ∈ L they
can be transformed into a proof π for the statement Tx(x1, · · · , xn), and (2) derivation private, i.e.
the resultant proof π cannot be distinguished from a fresh proof computed by the prover on input(
Tx(x1, · · · , xn), Tω(ω1, · · · , ωn)

)
. We also want zero-knowledge property and simulation-sound ex-

tractability property to hold for the NIZK proof system under controlled malleability, as defined
below.

Definition 3. (Controlled-malleable NIZK proof system [5]). A controlled malleable non-
interactive (cm-NIZK) proof system for a language L associated with a NP relation R consists
of four (probabilistic) polynomial-time algorithms (CRSGen,P,V,ZKEval) such that the following
conditions hold:

• (Completeness). For all σcrs ← CRSGen(1λ), and (x, ω) ∈ R, it holds that V(σcrs, x, π) = 1 for
all proofs π ← P(σcrs, x, ω).

• (Soundness). We say that (CRSGen,P,V) satisfies adaptive soundness if for all PPT (malicious)
provers P∗ we have:

Pr
[
σcrs ← CRSGen(1λ); (x, π)← P∗(σcrs) : V(σcrs, x, π) = 0 if x /∈ R

]
> 1− negl(κ).

for some negligible function negl(κ). Perfect soundness is achieved when this probability is
always 1.

• (Malleability). Let T be a set of allowable transformation for an efficient relation R. Then the
proof system (CRSGen,P,V) is said to be malleable with respect to T , if there exists an efficient
algorithm ZKEval that does the following: ZKEval takes as input σcrs, the description of a n-ary
admissible transformation T ∈ T , statement-proof pairs (xi, πi), where 1 ≤ i ≤ n, such that
V(σcrs, xi, πi) = 1 for all i, and outputs a proof π for the statement x = T ({xi}) such that
V(σcrs, x, π) = 1.

• (Rerandomizability). We say that the NIZK proof system (CRSGen,P,V) for relation R is re-
randomizable if there exists an additional algorithm RandProof, such that the probability of the
event that b′ = 0 in the following game is negligible:

– σcrs ← CRSGen(1λ).

–
(
state, x, w, π)

$←− A(σcrs).
– If V(σcrs, x, π) = 0, or (x,w) /∈ R, output ⊥. Otherwise form

π′ ←

{
P
(
σcrs, x, w

)
if b = 0

RandProof(σcrs, x, π) if b = 1.

7

– b′ ← A(σcrs, π
′)

• (Derivation privacy). We say that the NIZK proof system (CRSGen,P,V,ZKEval) for relation R
with respect to T is derivation-private, if for all adversaries A and bit b, the probability pAb (λ)
that the event b′ = 0 in the following game is negligible:

– σcrs ← CRSGen(1λ).
–
(
state, (x1, ω1, π1), · · · , (xq, ωq, πq), T

)
← A(σcrs).

– If V(σcrs, xi, πi) = 0 for some i, (xi, ωi) /∈ R for some i, or T /∈ T , abort and output ⊥.
Otherwise compute,

π ←

{
P
(
σcrs, Tx(x1, · · · , xq), Tω(ω1, · · · , ωq)

)
if b = 0

ZKEval(σcrs, T, {(xi, πi)}i∈[q]) if b = 1.

– b′ ← A(state, π).

Theorem 1. [5] If a proof system is both malleable and randomizable and uses ZKEval′ =
RandProof ◦ ZKEval, then it is also derivation private.

• (Controlled-malleable simulation-sound extractability). Let (CRSGen,P,V) be a NIZK proof of
knowledge (NIZKPoK) system for the relation R, with a simulator (S1,S2) and an extractor
(E1, E2). Let T be an allowable set of unary transformation for the relation R such that member-
ship in T is efficiently testable. Let SE1 be an algorithm, that on input 1λ outputs (σcrs, τs, τe)
such that (σcrs, τs) is distributed identically to the output of S1. Consider the following game
with the adversary A:

– (σcrs, τs, τe)← SE1(1λ).
– (x, π)← AS2(σcrs,τs,·)(σcrs, τe).
– (ω, x′, T)← E2(σcrs, τe, x, π).

We say that the NIZKPoK satisfies controlled-malleable simulation-sound extractability (CMSSE)
if for all PPT algorithms A there exists a negligible function ν(·) such that the probability that
V(σcrs, x, π) = 1 and (x, π) /∈ Q (where Q is the set of queried statements and their responses)
but either (1) ω 6=⊥ and (x, ω) /∈ R; (2) (x′, T) 6= (⊥,⊥) and either x′ /∈ Qx (the set of queried
instances), x 6= Tx(x′), or T /∈ T ; (3) (ω, x′, T) = (⊥,⊥,⊥) is at most ν(λ).

Remark 1. The definition of CM-SSE is a weakening of the definition of (standard) simulation-
sound extractability (SSE). The notion of CM-SEE intuitively says that the extractor will either
extract a valid witness ω corresponding to the new statement x (as in SSE), or a previously proved
statement x′ and a transformation T in the allowable set T that could be used to transform x′

into the new statement x. Note that, when T = ∅, we obtain the standard notion of SSE-NIZK as
defined by Groth [13]. However, as shown in [5], this definitional relaxation is necessary, since the
standard notion of SSE is impossible to achieve for malleable proof systems.

Secure computation We present the definition of general multi-party computation protocols (for
an introduction to this topic see, e.g., [7]). We follow the definitions as presented in [10, 16], which
in turn follows the definitions of [4, 2].

Multi-party protocols. Let n denote the number of parties involved in the protocol. We assume
that n is fixed. A multi-party protocol problem is casted by specifying a random process which

8

maps sequences of inputs (one input per each of the n parties) to sequences of outputs (one for each
of the n parties). We refer to such a process as a n-ary functionality, denoted by f : ({0, 1}∗)n →
({0, 1}∗)n, where f = (f1, · · · , fn). For a input vector x = {x1, · · · , xn} the output is a tuple of
random variables denoted by (f1(x), · · · , fn(x)). The ith party Pi initially holds the input xi and
obtains the ith element in f(x1, · · · , xn), i.e. fi(x1, · · · , xn). We also assume that all the parties
hold input of equal length, i.e., |xi| = |xj | for all i, j ∈ [n]. We will denote such a functionality as
(x1, · · · , xn) 7→ (f1(x1, · · ·xn), · · · , fn(x1, · · ·xn)).

Adversarial behavior. For the analysis of our protocols we consider the malicious adversarial
model. A malicious adversary may corrupt a subset of parties and can completely control these
parties and deviate arbitrarily from the specified protocol. We assume a static corruption model,
where the set of corrupted or dishonest parties are already specified before the execution of the
protocol. A weaker model of security is the semi-honest model, where the adversary has to follow
the protocol as per its specification, but it may record the entire transcript of the protocol to infer
something beyond the output of the protocol. We consider the definition of security in terms of
a real-world and ideal-world simulation paradigm, as in [10]. In the ideal model, we assume the
existence of an in-corruptible trusted third party (TTP). In the semi-honest model, all the parties
send their local inputs to the TTP, who computes the desired functionality and send back the
prescribed outputs to them. The honest parties then output their respective outputs, while the
semi-honest parties output an arbitrary probabilistic polynomial-time function of their respective
inputs and the outputs obtained from the TTP. In contrast, in the malicious model the malicious
parties may substitute their local input and send it to the TTP in the first place. We assume that the
TTP always answers the malicious parties first. The malicious parties may also abort the execution
of the protocol by refraining from sending their own messages. Finally, as in the semi-honest model,
each honest party outputs its output as received from the TTP, while the malicious parties may
output an arbitrary probabilistic polynomial-time function of their initial inputs and the outputs
obtained from the TTP.

Definition 4 (Malicious adversaries–the ideal model). Let f : ({0, 1}∗)n → ({0, 1}∗)n be a
n-ary functionality as defined above. Let I = {i1, · · · , iq} ⊂ [n], and (x1, · · · , xn)I = (xi1 , · · · , xiq).
A pair (I, C) where I ⊂ [n] and C is a polynomial-size circuit family represents an adversary
in the ideal model. The joint execution under (I, C) in the ideal model (on input sequence x =
(x1, · · · , xn)), denoted by IDEALf,(I,C)(x) is defined as follows:

(C(xI ,⊥),⊥, · · · ,⊥) if C(xI) =⊥ .
(C(xI , fI(C(xI),xĪ),⊥),⊥, · · · ,⊥) if C(xI) 6=⊥ , 1 ∈ I and yI =⊥, where

yI
def
= (C(xI , fI(C(xI),xĪ))

(C(xI , fI(C(xI),xĪ)), fĪ(C(xI),xĪ)) otherwise.

where Ī = [n] \ I.

The first equation represents the case where the adversary makes some dishonest party to abort
before invoking the trusted party. The second equation represents the case where the trusted is
invoked with possibly substituted inputs C(xI) and is halted right after supplying the adversary
with the I-part of the output yI = fI(C(xI),xĪ)). This case is allowed only when 1 ∈ I, i.e, the
party P1 can only be blamed for early abort. Finally, the third equation presents the case where
the trusted is invoked with possibly substituted inputs C(xI), but is also allowed to answer to all
the parties.

9

Definition 5 (Malicious adversaries–the real model). Let f : ({0, 1}∗)n → ({0, 1}∗)n be a
n-ary functionality as defined above. Let Π be a protocol for computing f . The joint execution
under (I, C) in the real model (on input sequence x = (x1, · · · , xn)), denoted by REALΠ,(I,C)(x) is
defined as the output sequence resulting of the interaction between the n parties where the messages
of parties in I are computed according to C and the messages of parties not in I are computed
according to Π.

Now that the ideal and real models are defined, we put forward the notion of security for a multi-
party protocol. Informally, it says that a secure multi-party protocol in the real model emulates the
ideal model.

Definition 6 (Security in the Malicious model). Let f and Π be as in Def. 5. Protocol
Π is said to securely compute f if there exists a polynomial-time computable transformation of
polynomial-size circuit families A = {Aλ} for the real model (of Def. 5) into polynomial-size circuit
families B = {Bλ} for the ideal model (of Def. 4) such that for every subset I ⊂ [n] we have that
{IDEALf,(I,B)(x)}λ∈N,x∈({0,1}λ)n ≡c {REALΠ,(I,A)(x)}λ∈N,x∈({0,1}λ)n .

2.1 Cryptographic Reverse Firewalls

Following [18, 8], we present the definition of cryptographic reverse firewalls (CRF). As in [18], we
assume that a cryptographic protocol comes with some functionality (i.e., correctness) requirements
F and some security requirements S. For a party A and reverse firewall W we define W ◦ A as
the “composed” party in which the incoming and outgoing messages of A are “sanitized” by W. In
other words, W is applied to (1) the outgoing messages of A before they leave the local network of
A and (2) the incoming messages of A before A sees them. We stress that the reverse firewall W
neither share any private input with party A nor does it get to know the output of party A. The
firewall W is allowed to see only the public parameters of the system. Besides this, it can internally
toss its own random coins and can also maintain state. We require the firewall W to preserve the
functionality of the protocol (in case the parties are not corrupted), i.e., the composed party W ◦A
should not break the correctness of the protocol. Following [18, 8] we actually require the stronger
property that the reverse firewalls be “stackable”, i.e, many firewalls can be composed in series
W ◦ · · · ◦W ◦A without breaking the functionality of the protocol. In addition, we would want the
firewall W to preserve the security S of the underlying protocol, even in the case of compromise.
The strongest notion of security requires the security of the protocol to be preserved even when a
party P is arbitrarily corrupted (denote as P). A weaker notion of security requires the security
of the protocol to hold, even when the party P is tampered in a functionality-maintaining way
(denoted by P̂), i.e., when the tampered implementation still maintains the functionality F of the
protocol. For a protocol Π with party P , we write ΠP→P̂ to represent the protocol in which the

role of party A is replaced by party P̂ . Further, we require exfiltration resistance from the reverse
firewall, which informally says that “no corrupt implementation of party A can leak any information
through the firewall”. We generalize the definition of exfiltration-resistance, as defined in [18, 8], to
the multi-party setting. Finally, following [8], we will also need the notion of “detectable failure”
from the reverse firewall. Informally, this notion stipulates that a protocol fails detectably if we can
distinguish transcripts of valid runs of a protocol from invalid transcripts. This property will be
used by the firewall of a large protocol to test whether some sub-protocol failed or not. We now
formally define all these properties below.

10

Definition 7. (Functionality-maintaining CRF [18]). For any reverse firewall W and a party
P , let W1 ◦P =W◦P , and Wk ◦P =W ◦ · · · ◦ W︸ ︷︷ ︸

k times

◦P . A reverse firewall W maintains functionality

F for a party P in protocol Π if Π satisfies F , the protocol ΠP→W◦P satisfies F , and the protocol
ΠP→Wk◦P also satisfies F .

Definition 8. (Security-preserving CRF [18]). A reverse firewall strongly preserves security
S for a party P in the protocol Π if Π satisfies S, and for any polynomial time algorithm P , the
protocol ΠP→W◦P satisfies S. (I.e., the firewall can guarantee security even when the adversary has
tampered with the implementation of P).

A reverse firewall preserves security S for a protocol P in the protocol Π satisfying functionality
F if Π satisfies S, and for any polynomial time algorithm P̂ such that ΠP→P̂ satisfies F , the
protocol ΠP→W◦P̂ satisfies S. (I.e., the firewall can guarantee security even when the adversary has
tampered with the implementation of P , provided that the tampered implementation preserves the
functionality of the protocol).

We also need the notion of exfiltration-resistance from the reverse firewall. In formally, a reverse
firewall is exfiltration-resistant if “no corrupt implementation of a party can leak any information
through the firewall”. Our definition of exfiltration-resistance generalizes the definition of [18, 8] in
the multi-party setting.

Definition 9. (Exfiltration-resistant CRF [18]). Let Π be a multi-party protocol run between
the parties P1, · · · , Pn satisfying functionality F and having a reverse firewall W. Then:

– We say that the firewallW is strongly exfiltration-resistant for party Pi against the other parties
(P1, · · · , Pi−1, Pi+1, · · · , Pn), if for any PPT adversary E, the advantage AdvLEAKE,W (λ) of E in the
game LEAK as shown below is negligible in the security parameter λ, and

– We say that the firewall W is weakly exfiltration-resistant for party Pi against the other parties
(P1, · · · , Pi−1, Pi+1, · · · , Pn), if for any PPT adversary E, the advantage AdvLEAKE,W (λ) of E in the
game LEAK (see Figure 1)is negligible in the security parameter λ, provided that Pi maintains
functionality F for Pi.

Proc. LEAK(Π, i, {P1, · · · , Pn},Wi, λ)

(P1, · · · , Pn, I)← E(1λ).

b
$←− {0, 1}.

IF b = 1, P ∗i ←Wi ◦ Pi.
ELSE, P ∗i ←Wi ◦ Pi.
T ∗ ← ΠPi→P∗i ,{Pj→Pj}j∈[n\i]

(I).

b∗ ← E(T ∗, {stPj}j∈[n\i]).
OUTPUT (b = b∗)

Fig. 1. LEAK(Π, i, {P1, · · · , Pn},Wi, λ) is the exfiltration-resistance security game for a reverse firewall W
for a party Pi in protocol Π against the set of parties {Pj}j∈[n\i] with input I. E is the adversary, λ is the
security parameter, {stPj}j∈[n\i] denote the states of the parties {Pj}j∈[n\i] after the run of the protocol,
I is the valid input for Π, and T ∗ is the transcript of running the protocol ΠPi→P∗i ,{Pj→Pj}j∈[n\i]

(I).

11

The advantage of any adversary E in the game LEAK is defined as:

AdvLEAKE,W (λ) =
∣∣∣Pr[LEAK(Π, i, {P1, · · · , Pn},Wi, λ) = 1]− 1

2

∣∣∣
Finally, we define another technical condition related to detectable failures of reverse firewalls,

as presented in [8]. First, we recall the definition for what it means for a transcript to be valid, and
then define detectable failures.

Definition 10 (Valid Transcripts [8]). A sequence of bits r and private input I generate tran-
script T in protocol Π if a run of the protocol Π with input I in which the parties’ coin flips are
taken from r results in the transcript T . A transcript T is a valid transcript for protocol Π if there
is a sequence r and private input I generating T such that no party outputs ⊥ at the end of the run.
A protocol has unambiguous transcripts if for any valid transcript T , there is no possible input I
and coins r generating T that results in a party outputting ⊥.

Definition 11 (Detectable failure). A reverse firewall W detects failure for party P in protocol
Π if (a) ΠP→W◦P has unambiguous transcripts; (b) the firewall outputs a special symbol ⊥ when run
on any transcript that is not valid for ΠP→W◦P , and (c) there is a polynomial-time deterministic
algorithm that decides whether a transcript T is valid for ΠP→W◦P .

3 Reverse Firewalls and Actively secure MPCs

In this section, we discuss the relationship between actively secure MPC protocols and reverse
firewalls. In this work, we consider computationally-secure MPC protocols. For the protocol to be
secure, we need to assume that atleast one of the parties participating in the MPC protocol is
“honest”. However, in the setting of reverse firewalls, this assumption may not hold true, and in
general, we cannot rely on trusted implementation of any of the parties to guarantee security of
the resulting MPC protocol. In particular, in this setting, one may consider a scenario where all
the parties may be arbitrarily corrupted. To provide any sort of meaningful security guarantees
in such a strong corruption model, we assume that each of the honest parties participating in the
MPC protocol are equipped with a cryptographic reverse firewall. As mentioned earlier, none of the
firewalls share any secrets with any of the parties, nor can it access the outputs of the corresponding
parties. The firewall has access to only the public parameters used in the protocol. All the incoming
and outgoing messages sent and received by the parties are modified by the firewall. The hope is
that: even if the honest parties are corrupted, the firewall can somehow sanitize the outgoing and
incoming messages in such a way that the security of the original MPC protocol (where there is at
least one honest party) is preserved.

Ideally, we would like to build reverse firewalls for the MPC protocol, where all the honest
parties can be arbitrarily corrupted. However, in order to accomplish this goal, we will need to
consider the following scenario: Suppose that one of the parties which was assumed to be honest
in the original MPC protocol refuses to communicate (also called “attack by refusal” in [8]) in this
new model of corruption. To guarantee security against this attack, clearly the firewall needs to
produce a message which looks indistinguishable from the message the honest party would have
sent in the original MPC protocol. In order words, the firewall needs to simulate the behavior of this
(honest) party in our new corruption model, where the same party can be arbitrarily corrupted.
Now suppose that, the party has a public-secret key pair and it uses the secret key to compute

12

some message at some point in the protocol (say, a signature on the transcript so far). Clearly, this
action cannot be simulated by the firewall, since it does not have access to the secret key of the
party. Hence, in this setting, where the parties have access to key pairs (which will indeed be the
case for us), achieving security against strong or arbitrary corruption is impossible.

To circumvent the above impossibility result, we consider a hybrid model of corruption, which
is slightly weaker than the corruption model mentioned above. In particular, in our model, up to
n − 1 parties can be arbitrarily corrupted, where n is the total number of parties participating
in the protocol. The remaining honest parties can also be corrupted, albeit, in a functionality-
maintaining way. In a functionality-maintaining tampered implementation of a party, the adversary
may deviate arbitrarily from the protocol, as long as it does not break its functionality. Intuitively,
this models “more conspicuous” adversaries whose tampered circuit(s) will be noticed by honest
parties participating in the protocol with non-negligible probability [18].

Ports: For each party Pi there is a protocol port Casti. There are also special ports Leak, Replace,
and Deliver connected to the adversary.

Syntax: The inputs on Casti from parties Pi can be of the form (bid,Pi,m), where bid is a
broadcast ID and m is a message. Furthermore, parties Pj 6= Pi can give inputs of the form
(bid,Pi, ?) indicating that they know that Pi is about to give an input. Parties Pj can give
outputs of the form (bid,Pi,m) indicating that they think Pi has broadcast m.

Input: On input (bid,Pi,m) on Casti the IF outputs (bid,Pi,m) on Leak and stores (bid,Pi,m).
Replace: On input (bid,Pi,m) on Replace, where Pi is corrupted the IF stores (bid,Pi,m), over-

writing any previous value of form (bid,Pi, ·).
User Contract: Honest parties must give input according to the following contract.

Synchrony: If in some round any honest party gives an input of the form (bid,Pi, ·), then in
that round all honest parties give an input of the form (bid,Pi, ·).

Unique identifiers: If an honest party is honest then for each bid it gives at most one input
of the form (bid, ·, ·).

Total Breakdown: On input ((bid,Pi,m),Pj) on Deliver at a point in time after the user contract
was broken, output (bid,Pi,m) to Pj .

Ideal Functionality Contract: If the inputs of the honest parties are according to the user
contract, then the IF gives outputs according to the following rule.
Output: If an input of the form (bid,Pi, ·) was input on Castk for an honest Pk in round r,

then in round r + n + 2 rounds, find the stored value (bid,Pi,m). If none is stored, use
m = NoMsg. Then output (bid,Pi,m) on Castj for all honest Pj .

Fig. 2. An ideal functionality Cast for Broadcast.

4 Dolev-Strong Broadcast for Reverse Firewalls

As mentioned earlier, we will assume the availability of a broadcast channel for our construction
of the actively-secure MPC protocol in the reverse firewall (CRF) setting. However, in the CRF
setting, the assumption of broadcast channels may be stronger than the classical setting. To this end,
we present a compiler for reverse firewalls for the broadcast model. We instantiate the broadcast

13

protocol using a version of the classical Dolev-Strong protocol [9], secure in the CRF setting. The
protocol of [9] shows that one can simulate a broadcast channel using public-key infrastructure,
in particular using signature schemes as the authentication mechanism. In our construction, we
replace the signature scheme from [9] with unique signatures. Intuitively this works since: on any
input in the Dolev-Strong protocol, the only allowed message consists of adding a signature on a
well-defined message. The signature is either sent or added to a valid set. Since the signatures are
unique, this leaves only one possible message that a (even corrupted) party can send. The latter
holds since we assume that the parties are corrupted in a functionality-maintaining way.

Here we present a version of the Dolev-Strong protocol suitable for reverse firewalls. The setup
will be that each party gets a signing key. We phrase the protocols and ideal functionalities in terms
of sending values on ports. Send a message m on a port Port and a party Pi just means sending
(Port,m) to Pi. The protocol implements the ideal functionality in Fig. 2. This IF will broadcast
a value in n+ 2 rounds. It requires that all honest users start the protocol in the same round. We
model this by allowing the IF to behave arbitrarily when this user contract is broken. This makes
it trivial to simulate the IF when the user contract is broken: simply ask the IF to output the same
(faulty) messages as the protocol. Hence in the proof of security we can focus on just the case where
the user contract is never broken.

Initialize Party Pi learns the private signing key ski and the public keys of all parties,
(vk1, . . . , vkn). Then it initializes a map Relayedi which is Relayedi(bid,m) = ⊥ for all pos-
sible broadcast identifiers bid and messages m.

Broadcast On input (bid,Pi,m) on Casti compute σi ← Sigski(bid,m), SigSet = {σi}, set
Relayedi(bid,m) = >, and send (bid,Pi,m, SigSet) to all parties.

Relay In round r after input (bid,Pi, ?), if Pj 6= Pi receives a message of form (bid,m, SigSet),
where SigSet is a set of signatures, and if Relayedi(m) = ⊥, proceed as follows. Call SigSet
valid for (bid,Pi,m) in round r if it contains signatures σk from exactly r − 1 distinct parties
Pk such that Vervkk (bid,m, σk) = >. Furthermore, one of these parties has to be Pi and none
of them are Pj . If SigSet is valid, then compute σj ← Sigskj (bid,m), let SigSet′ ← SigSet∪{σj}
and send (bid,m, SigSet′) to all parties. Then set Relayedi(bid,m) = >.

Output In round n + 2 after input (bid,Pi, ?), party Pj computes its output as follows. If there
is exactly one message m such that Relayedi(bid,m) = >, then output (bid,Pi,m) on Castj .
Otherwise, output (bid,Pi,NoMsg) on Castj .

Fig. 3. The Dolev-Strong Protocol, DolevStrong

The protocol is given in Fig. 3. The analysis of Dolev-Strong is standard by now, but we sketch
the proof for completeness. Assume that some honest party output (bid,Pi, ·) in round r. Then
by the user contract all honest parties got input (bid,Pi, ·) in round r − n − 2. Therefore they all
output (bid,Pi, ·) in round r. To see that they output the same m we show that Relayedi(bid,m) =
Relayedj(bid,m) for all honest Pi and Pj when they give output. Namely, if Relayedi(bid,m) = >
then it was set to this after seeing a valid signature set in some round r after input (bid,Pi, ·). Let
I be the round where (bid,Pi, ·) was input. The valid set had size r − 1 and was received in round
I + r. It had r − 1 signatures from distinct parties and none from Pi, so it had size at most n− 1.
So r ≤ n. Then Pi added its signature and relayed the set. Therefore it is received as a valid set

14

in the next round by all parties Pj who did not already set Relayedj(bid,m) = >. This is round at
most I+n+ 1. Therefore all honest parties Pj will set Relayedj(bid,m) = > before round I+n+ 2.
The honest parties give output in round I + n + 2. Hence Relayedi(bid,m) = Relayedj(bid,m) for
all honest Pi and Pj when they give output.

In Fig. 4 we present a wrapper for party Pi in Dolev-Strong with unique signatures. We will
only treat this case here. The case with randomizable signatures follows by letting the wrapper
randomize the outgoing signatures.

Initialize The wrapper for party Pi learns the public keys of all parties, (vk1, . . . , vkn). Then it
initializes a map Relayedi which is Relayedi(bid,m) = ⊥ for all possible broadcast identifiers
bid and messages m.

Broadcast On input (bid,Pi,m) on Casti it expects Pi in the same round to send
(bid,Pi,m, SigSet), where SigSet = {σi} and Vervki(bid,m, σi) = >. If so, then it lets
(bid,Pi,m, SigSet) pass. Otherwise, output Refusal.

Relay In round r after input (bid,Pi, ?), if Pj 6= Pi receives a message of form (bid,m, SigSet),
where SigSet is a set of signatures, and if Relayedi(m) = ⊥, proceed as follows. Call SigSet valid
for (bid,Pi,m) in round r if it contains signatures σk from exactly r−1 distinct parties Pk such
that Vervkk (bid,m, σk) = >. Furthermore, one of these parties has to be Pi and none of them
are Pj . If SigSet is valid, then expect Pj in the same round to send SigSet′ = SigSet ∪ {σj}
where Vervkj (bid,m, σj) = >. If so, let the message pass. Otherwise, output Refusal.

Output In round n+ 2 after input (bid,Pi, ?), the allowed output of Pj is computed as follows. If
there is exactly one message m such that Relayedi(bid,m) = >, then (bid,Pi,m) is expected.
Otherwise, (bid,Pi,NoMsg) is expected. If Pj does not give the expected output on Castj ,
output Refusal. If it gives another output, then drop it and output Deviation.

Deviation If Pi outputs any value not explicitly expected in one of the above rules, drop it and
output Deviation.

Fig. 4. The Dolev-Strong Wrapper Wrap for the case with unique signatures

For two programs A and B we use A ≡ B to mean that they give the same outputs on the same
input sequences. The following lemma follows by construction.

Lemma 1. The wrapper Wrap is input-output preserving, i.e., Wrap(Pi) ≡ Pi.

Let P′i be a possibly corrupt implementation of Pi. We call it deviating if it makes Wrap(P′i)
output Deviation. We call it refusing if it makes Wrap(P′i) output Refusal. We call it covert if
it does not make Wrap(P′i) output neither Deviation not Refusal.

The following lemma is also straight forward.

Lemma 2. Assume that DolevStrong is implemented using unique signatures. Let P′i be a possibly
corrupt implementation of Pi. If P′i is covert, then on any input sequence to Wrap(P′i) there is
exactly one message that P′i can send, and it will always send this message.

Namely, on any input in the Dolev-Strong protocol, the only allowed message consists of adding
a signature on a well-defined message. This signature is either sent or added to a valid set. The

15

message is known by the wrapper. Since signatures are unique, this leaves one possible message P′i
can send. It will send it, as it is not refusing. It will not send other messages, as it is not deviating.

Putting the above together we get the following theorem.

Theorem 2. Assume that DolevStrong is implemented using unique signatures. Let P′i be a possibly
corrupt implementation of Pi. If P′i is covert, then Wrap(P′i) ≡ Pi.

Namely, by the second lemma we have that Wrap(P′i) ≡Wrap(Pi). By the first lemma we have that
Wrap(Pi) ≡ Pi. And ≡ is transitive.

4.1 A Compiler for Reverse Firewalls for the Broadcast Model

We now describe how to take a reverse firewall R for a protocol π for the Cast-hybrid model and
make it into a reverse firewall R′ for the protocol π′ = π[DolevStrong/Cast] which uses Dolev-Strong
for broadcast. Let Qi be the i’th party in π. Let Pi be the i party in DolevStrong. Let Ri be the
i’th party in π′. Then Ri consists of Qi and Pi. The reverse firewall R′ is composed of R and Wrap.
We apply the reverse firewall R′ to Ri as follows. Apply R to Qi. Whenever R lets Qi broadcast
a message (bid,Pi,m), input it to Wrap(Pi) on Casti. Then send only message that are allowed by
Wrap(Pi) and send all in-coming trafic to Wrap(Pi). If Wrap(Pi) outputs (bid,Pi,m) on Castj then
give it to R(Qi).

5 Actively secure MPC protocols using Reverse Firewalls

In this section, we present a construction of multi-party computation (MPC) protocol secure against
malicious adversaries in the setting of reverse firewalls. As mentioned above, we only consider
computationally-secure MPC protocols. The starting point of our construction is the actively-secure
MPC protocol of Goldreich, Micali and Wigderson [11, 10] (henceforth referred to as the GMW
protocol). Their methodology works by first presenting a MPC protocol secure against semi-honest
adversaries, and then compiling it into a protocol secure against malicious adversaries. The resulting
actively secure GMW protocol can tolerate a corruption of up to n−1 parties, where n is the number
of parties participating in the protocol. We begin with an informal exposition of the GMW compiler.

Informal description of the GMW compiler. As mentioned before, the GMW protocol [11,
10] first constructs a semi-honest MPC protocol, and then compiles it to one which is secure against
malicious adversaries. Recall that, in the semi-honest protocol all the parties follow the protocol
specification exactly. However, in the malicious model, the parties may deviate arbitrarily from the
protocol. The way that the GMW protocol achieves security against malicious adversaries is by
somehow enforcing the parties to behave in a semi-honest manner. However, this only makes sense
relative to a given input and a random tape. The GMW protocol achieves this in the following way:

• All the parties first commit to their inputs by running a multi-party input commitment protocol.
Note that, before the protocol starts each party may replace their given inputs with arbitrary
bit strings. However, the security of this protocol guarantees that, once they commit to their
inputs, it cannot be changed afterwards during the course of execution of the protocol.

• The parties run an actively-secure multi-party (augmented) coin tossing protocol to fix their
random tapes (to be used in the actual MPC protocol). This protocol ensures that all the parties
have a uniformly random tape.

16

• After these first two steps, each party holds its own uniformly random tape, and the com-
mitments to other party’s inputs and random tapes. Hence, the parties can now be forced to
behave properly in the following way: the view of each party in the MPC protocol is simply
a deterministic function of its own input, random tape and the (public/broadcast) messages
received so far in the protocol. Hence, when a party sends a new message it also proves in
zero-knowledge that the computation was correctly done, as per the protocol specification. The
soundness of the proof system guarantees that even a malicious adversary cannot deviate from
the protocol, while the zero-knowledge property ensures that nothing other than the validity
of each computational step is revealed to the adversary. This phase is also called the protocol
emulation phase.

When we consider the actively-secure GMW protocol in the reverse firewall settings, we must ensure
that the above-mentioned protocols remain functional and secure in the setting of reverse firewalls.
Hence, we need to design reverse firewalls for each of the three main protocols (as discussed above)
used in the GMW compiler. Finally, to enable the working of the compiler, we need to show that
the reverse firewalls for each of these protocols compose together. To this end, we first propose
a multi-party augmented coin-tossing protocol with reduced round-complexity (see section 5.1) by
appropriately extending the two-party coin-tossing protocol of Lindell [16]. We then present a
reverse firewall for this multi-party coin-tossing protocol in section 5.2. In sections 5.3 and 5.4, we
present reverse firewalls for the multi-party input commitment and the multi-party authenticated
computation protocols.

5.1 Multi-party Augmented Coin-Tossing into the Well

The multi-party augmented coin tossing protocol is used to generate random pads for all the parties
participating in an actively secure multi-party computation protocol. Each party obtains the bits of
the random-pad to be held by it, whereas the other parties obtains commitments to these bits. These
random pads serve as the random coins of the corresponding parties to emulate the semi-honest
MPC protocol. Intuitively, this multi-party coin-tossing functionality guarantees that, at the end
of this protocol the malicious parties can either abort or they end up with a uniformly distributed
random pad. However, the original coin-tossing protocol of GMW [11, 10] was rather inefficient in
terms of round complexity. This is because the protocol of [11, 10] required polynomially many
rounds to generate a polynomially long random pad, since single coins were tossed sequentially
in each round. Hence this protocol is inherently sequential. Later, Lindell [16] showed a constant
round two-party protocol for augmented parallel coin-tossing into the well using a “commit-and-
proof” framework. In Figure 5, we extend the protocol of [16] in the multi-party setting with
round-complexity only 34 and achieving a comparable level of security as in [16]. In section 5.2,
we present a reverse firewall for our multiparty augmented coin-tossing protocol. This requires the
commitment scheme com to be statistically/perfectly hiding (and computationally binding) and
additively homomorphic, and also requires the NIZK argument system to be controlled-malleable
simulation-sound extractable with respect to the above homomorphic operation.

4 Although the protocol of Lindell [16] is constant round, its round-complexity is greater than 4 due to
the use of (constant-round) zero-knowledge proofs. We use NIZK arguments in a natural way to shrink
the round-complexity of the protocol to 3, albeit introducing a trusted setup assumption, as required for
NIZK protocols.

17

Definition 12 (Multi-party Augmented Parallel Coin-Tossing into the Well). An n-party
augmented coin-tossing into the well is an n-party protocol for securely computing the following
functionality with respect to a fixed commitment scheme {Gλ,Kλ, comλ}λ∈N,

(1λ, · · · , 1λ)→
(
(Ut, Ut·λ), comλ(Ut;Ut·λ), · · · , comλ(Ut;Ut·λ)

)
(1)

where Um denotes the uniform distribution over m-bit strings, and we assume that com requires λ
random bits to commit to each bit.

Similar to [16], we will actually give a protocol with respect to the functionality (1λ, · · · , 1λ) →(
Um, F (Um), · · · , F (Um)

)
, where we can set m = t+t ·λ and F (Um) = comλ(Ut;Ut·λ). Thus, all the

parties other than the one who initiates the protocol receive a commitment to a uniformly random t
bit string, and the committing/initiating party receives the random string and its decommitment. In
the final compiler, the t bit strings will be used as random pads for the parties and the decommitment
value is used to provide consistency checks for each step of the protocol (via (non-interactive) zero-
knowledge proof).

Additional Notation. The coin-tossing protocol proceed in rounds and in every round each of the
parties take turn to initialize the protocol. W.lo.g, we denote party Pi to be the initializing party,
i.e, it receives the random pad and the decommitment value (to be used later in the protocol)
and all the other parties Pj (where j ∈ [n] \ i) receive a commitment to the random string of Pi.
Specifically, in round 1, party P1 takes the role of party Pi and all other parties Pj (j ∈ [2, · · · , n])
receive the commitment to party P1’s random string. Similarly, in round 2, party P2 pays the role
of Pi, and so on.

Let {Gλ,Kλ, comλ}λ∈N be a statistically/perfectly hiding and computationally binding commitment scheme.
Also, let (CRSGen,P,V) be a strong simulation-extractable non-interactive zero-knowledge (SSE-NIZK) ar-
gument system for the following language: L = {c, (x, y) | c = comλ(x; y)}.
Inputs: Each party gets as input the security parameter 1λ.
Convention: As mentioned above, we denote the initializing party in each round by party Pi. Any deviation
from the protocol, by a party other than Party Pi, will be interpreted as a canonical legitimate message.
In case Pi aborts or is detected cheating, all honest parties halt outputting the special symbol ⊥.

(I) Party Pi chooses a random string si ∈R {0, 1}m. It then computes ci = comλ(si; r) for a random r
using a computationally binding commitment scheme. Pi then computes a proof πi ← P(σcrs, ci, (si, r))
using the SSE-NIZK argument system. Pi then places the tuple (ci, πi) on the broadcast channel. In
case, the proof πi does not verify with respect to ci, all the parties abort with output ⊥.

(II) For j ∈ [n] \ i, party Pj selects sj ∈R {0, 1}m and places sj on the broadcast channel.

(III) Party Pi sets s = si ⊕j∈[n]\i sj , and computes y = F (s). Pi then proves in zero-knowledge that there
exists a pair (si, r) such that ci = comλ(si; r) and y = F (si ⊕j∈[n]\i sj). It then places the tuple (y, π)
on the broadcast channel. As before, if the proof π does not verify with respect to (ci, y), all the parties
abort with output ⊥.

Outputs: Party Pi sets its local output to s = si⊕j∈[n]\i sj and all the other parties set their local output
to be y, provided they did not halt with output ⊥ before.

Fig. 5. Multi-party Augmented Parallel Coin-Tossing into the Well.

18

Theorem 3. Let {Gλ,Kλ, comλ}λ∈N be a perfectly hiding and computationally binding commitment
scheme. Also, let (CRSGen,P,V,ZKEval) be a strong simulation-extractable non-interactive zero-
knowledge argument system for the language defined in Figure 5. Then the protocol shown in Figure
5 is a secure protocol for multi-party augmented coin-tossing into the well.

5.2 Multi-party Augmented Coin-Tossing using Reverse Firewalls.

In this section, we present a cryptographic reverse firewall (CRF) for the multi-party augmented
parallel coin-tossing protocol, as shown in Figure 6. We present a single reverse firewall W1 for
this protocol that happens to work for all the honest parties. However, each of the honest parties
involved in the coin-tossing protocol should be equipped with their own CRF. It so happens that
the “code” of the firewall is the same for all these parties.

Main Idea. The main idea underlying the multi-party coin-tossing protocol from Figure 5 involves
a “commit-and-proof ” framework. Here, party Pi initially commits to a random m-bit string si and
proves in zero-knowledge about the consistency of the committed value. Each of the other parties
Pj (j ∈ [n] \ i) then sends a random m-bit string sj to Pi, and the final m-bit string s is then set as
the exclusive OR of all these strings. Finally Pi commits to s and proves in zero-knowledge about
the consistency of both the initial and this final commitment.

However, in reality a tampered implementation of Pi might use a commitment scheme that leaks
some information about si to an eavesdropper. The committed value might also act as a subliminal
channel to leak some of its secrets (or inputs) to the other parties or to an eavesdropper. Similarly,
a tampered implementation of a party Pj might also open up the possibility to leak m-bit of its
input (or other secrets) to Pi or to the eavesdropper. Thus, it is desirable that the CRF resists
exfiltration and also preserves security, even in the face of such a compromise. Figure 6 shows
the design of the reverse firewall for the multi-party augmented parallel coin-tossing protocol. For
constructing the reverse firewall for the above protocol, we require the underlying commitment
scheme and the NIZK proof system to be malleable (with respect to some pre-defined relation) and
re-randomizable. For our application, we require that the commitment to any m-bit string s can be
mauled to a commitment of a related but random m-bit string ŝ = s⊕s′, for any uniformly random
string s′. We also require the commitment scheme to be re-randomizable, so that the randomness
used to commit to a string cannot leak any information about the committed element. We show
how to achieve both these properties of malleability and re-randomizability by assuming that the
underlying commitment scheme com is homomorphic (with respect to an appropriate relation).

Our main idea is that the CRF mauls and re-randomizes the initial commitment it receives
from Pi using the homomorphic properties of com. However, at this point the proof πi given by
Pi (that proves consistency of the initial commitment value) will no longer be valid with respect
to the mauled commitment. Hence, the CRF also needs to maul the proof in such a way that the
mauled proof is consistent with the mauled statement (i.,e the commitment). At first thought, it
seems that the CRF cannot produce such a proof, since it does not know the witness corresponding
to the original statement (i.e., the committed string and the randomness used for commitment)
and hence, also has no knowledge of the mauled witness (witness resulting from mauling the state-
ment/commitment). Fortunately, as we show, the CRF can still maul the proof πi without actually
knowing the mauled witness, thanks to the availability of the public evaluation algorithm ZKEval
of the underlying controlled-malleable simulation-extractable NIZK argument system. The mauled
proof is then further re-randomized using the algorithm RandProof, so that the randomness used

19

Protocol: Multi-party Augmented Parallel Coin-Tossing into the Well using CRF W1.

Let (G,K, com) be a perfectly hiding and computationally binding commitment scheme (see Def. 2), and
(CRSGen,P,V,RandProof,ZKEval)) be a re-randomizable cm-NIZK argument system (see Def 3). Assume
that Pi is the initiating party.

Party Pi Firewall Parties {Pj}j∈[n]\i

Compute (ci, πi),

Broadcast the tuple (ci, πi)

(ci,πi)−−−−−→

Do the following:

1. Sample s′i ∈R {0, 1}m and r′i ∈ R

2. Compute c′i = comλ(s′i; r
′
i),

3. Compute ĉi = ci + c′i,

4. Define Tx(ci) = ĉi = ci + c′i,

5. Compute π̂i ← ZKEval′
(
σcrs, Tx, (ci, πi)

)
,

where ZKEval′ = RandProof ◦ ZKEval
(ĉi,π̂i)−−−−−→

{s1,··· ,si−1,si+1,··· ,sn}←−−−−−−−−−−−−−−−−

6. For any ` ∈ [n] \ i, if s` /∈ {0, 1}m,

sample s`
$←− {0, 1}m.

7. For a random `′ ∈ [n] \ i,

compute ŝ`′ = s`′ ⊕ s′i.
{s1,··· ,ŝ`′ ,...,sn}←−−−−−−−−−−

(y,π)−−−−−→

8. Define T ′x(ci, (s1, · · · , ŝ`′ , . . . , sn), y) = (ĉi, (s1, · · · , s`′ , . . . , sn), y)

9. Compute π̂ ← ZKEval′(σcrs, T
′
x, (ci, (s1, · · · , ŝ`′ , . . . , sn), y), π)

(y,π̂)−−−−−−−→

Fig. 6. Reverse firewall W1 for the parties involved in the protocol from Fig. 5.

in the proof does not reveal any information about the witness. Finally, the resulting proof looks
like a fresh proof corresponding to the mauled statement. The firewall then places the mauled
commitment-proof pair on the broadcast channel. When any other party Pj sends a string sj , the
CRF checks if the string is indeed a m-bit string. If not, it chooses a random m-bit string on behalf
of Pj . It then modifies one of the strings sj it receives by adding the offset s′i chosen by the CRF at
the beginning with sj , so that it is consistent with the mauled commitment. At this point, another

20

technical difficulty arises: the views of party Pi and all other parties in the protocol are inconsistent
due to the above mauling by the CRF. However, as we show, the CRF can again appropriately
maul the transcript (which will be treated as a statement in the final NIZK proof) so that at the
end all the parties arrive at a consistent view of the protocol. The design of the reverse firewall (see
Figure 6) is now described in details:

1. The CRF W1 receives a commitment-proof pair (ci, πi) from party Pi. Let us assume, that ci
is a commitment to some m-but string si (may not be random). It then does the following:

• Sample another random m-bit string s′i ∈R {0, 1}m and a randomizer r′i ∈R R for the
commitment scheme com.

• Compute c′i = comλ(s′i, r
′
i) and then homomorphically compute the mauled commitment

ĉi = ci + c′i.
• Define the transformation Tx(ci) = ĉi = ci + c′i.
• Derive a proof for the transformed statement as: π̂i ← RandProof ◦ZKEval

(
σcrs, Tx, (ci, πi)

)
.

Note that, the proof π̂i is consistent with the mauled commitment ĉi.
• The firewall then places the tuple (ĉi, π̂i) on the broadcast channel.

2. On receiving the strings sj from party Pj (j ∈ [n]\i), the CRF checks if sj ∈ {0, 1}m. If not, then
it chooses a random string sj ∈ {0, 1}m. It then randomly selects an index `′ ∈ [n]\i and modifies
the string s`′ to the related string ŝ`′ = s`′ ⊕ s′i, and forwards the tuple {s1, · · · , ŝ`′ , · · · , sn} to
party Pi.

3. Receive the tuple (y, π) from Pi. Note that, the proof π will not be consistent with the view of
the other parties {Pj}j∈[n]\i, since the common input (or statement) for Pj will be different from
the input of party Pi. In particular, the (public) input for Pi is the tuple (ci, s1, · · · , ŝ`′ , · · · , sn),
while the (public) input for the parties Pj is the tuple (ĉi, s1, · · · , s`′ , · · · , sn). The CRF then
does the following:

• Define the following transformation: T ′x(ci, (s1, · · · , ŝ`′ , · · · , sn), y) =
(ĉi, (s1, · · · , s`′ , · · · , sn), y). Note that, this is efficiently computable, given the knowledge
of s′i.

• Compute the proof π̂ as follows: π̂ ← RandProof◦ZKEval
(
σcrs, T

′
x, (ci, (s1, · · · , ŝ`′ , · · · , sn), y), π

)
.

Broadcast the tuple (y, π̂) to all the parties Pj . Note that, the proof π̂ is now consistent
with the statement (ĉi, s1, · · · , s`′ , · · · , sn).

Theorem 4. The reverse firewall W1 for augmented multi-party coin-tossing shown in Figure 6
is functionality-maintaining. If the commitment scheme com is computationally binding and is
homomorphic with respect to the (addition) operation defined over the underlying groups (i.e, the
message space, randomness space and the commitment space of com) and the NIZK argument system
is controlled-malleable simulation-sound extractable, then the firewall W1 preserves security for
party Pj and is weakly exfiltration-resistant against the other parties {Pj}j∈[n]\i. If the commitment
scheme is perfectly/statistically hiding and homomorphic as above and the NIZK argument system
also satisfies the same property as above, W1 strongly preserves security for the parties {Pj}j∈[n]\i
and is strongly exfiltration-resistant against Pi. The firewall W1 also detects failures for all the
parties.

Proof. First, we will show that the reverse firewall shown in Figure 6 is functionality maintaining.
If the parties are honest, the output view of all these parties are consistent. In particular, the
output of party Pi is: ŝ = si ⊕ (s1 ⊕ · · · ⊕ ŝ`′ · · · ⊕ sn) = (si ⊕ s′i) ⊕j∈[n]\i sj . The output of Pi
is a commitment y to the m-bit string ŝ. Even if all the strings si and (s1, · · · , si−1, si+1, · · · , sn)

21

are not random, the resultant m-bit string ŝ is indeed random. Hence, at the end party Pi ends
up with a random pad, while the other parties receives a commitment to the string. This shows
that the CRF is functionality-maintaining. We now proceed to show that the reverse firewall for Pi
preserves security and exfiltration-resistance against the other parties {Pj}j∈[n]\i. Note that, the
homomorphically evaluated commitment ĉi is independent of the original commitment ci. This is
because the firewall chooses an independent m-bit string s′i and randomness r′i to homomorphically
evaluate the original (potentially malicious) commitment string ci. The proof πi is also appropriately
mauled so that the mauled proof π̂i is consistent with the mauled commitment ĉi. The mauled proof
is further re-randomized using the algorithm RandProof. Hence, by the derivation-privacy of the
proof of the NIZK argument system (see Thm. 1), the mauled proof π̂i looks indistinguishable from
a fresh proof of the commitment ĉi. Hence, the firewall sanitizes the messages sent across by Pi, even
though the implementation of Pi may be corrupt. Since, Pi is functionality maintaining, his second
message is fixed, unless he can find an alternate opening for ci, which by definition of binding is
computationally hard. Hence, it follows that the reverse firewall for party Pi is weakly exfiltration-
resistant for Pi against all the other parties Pj and also preserves security for Pi. To prove strong
exfiltration-resistance for any party Pj against party Pi and strong security preservation for Pj ,
one should note that the mauled commitment is a uniformly random commitment to a uniformly
random m-bit string. Since, the commitment scheme com is perfectly (statistically) hiding, it is
(statistically) independent of the string sj chosen by the party Pj . The firewall mauls one of the
strings s`′ by adding the random offset s′i, and hence the final m-bit string of party Pi is random,
irrespective of how the strings sj were chosen.

5.3 Multi-party Input Commitment phase using Reverse Firewalls

In this step, each party commits to its input to be used in the protocol. In particular, the parties
execute a secure protocol for the following functionality:(

(x, r), 1λ, · · · , 1λ
)
→
(
λ, comλ(x; r), · · · , comλ(x; r)

)
. (2)

where x is the input string of the party and r is the randomness chosen by the committing party
to commit to x. In the input commitment phase, each party P first chooses a random string x and
commits to x using randomness r to generate the commitment C. It also generates a proof π using
a simulation-extractable non-interactive zero-knowledge argument system that it knows a witness
(i.,e, the tuple (x, r)) corresponding to the commitment C. Finally, party Pi places the pair (C, π)
on the broadcast channel. Next, we present a reverse firewall W2 for the above protocol, as shown
in Figure 7. As before, we assume that Pi is the initiating party.

The main idea of the working of the reverse firewall W2 is very simple (see Fig. 6). The CRF
simply re-randomizes the commitment Ci and the proof Πi received from party Pi. The way the
CRF re-randomizes the commitment Ci is by homomorphically adding to it a fresh commitment of
the all zero string. It re-randomizes the proof Πi by using the RandProof algorithm of SSE-NIZK
argument system. The CRF then broadcasts the re-randomized commitment-proof pair.

Theorem 5. Let {Gλ,Kλ, comλ}λ∈N be a perfectly hiding and computationally binding commitment
scheme. Also, let (CRSGen,P,V,ZKEval) be a simulation-extractable non-interactive zero-knowledge
argument system for the language L = {C | C = comλ(x; y)}. Then the protocol in Figure 7 se-
curely computes the functionality presented in Eq. 2. The reverse firewall W2 shown in Figure 7 is

22

Protocol: Multi-party Input-commitment using CRF W2.

Let (G,K, com) be a perfectly hiding and computationally binding commitment scheme (see Def. 2),
and (CRSGen,P,V,RandProof,ZKEval)) be a re-randomizable SSE-NIZK argument system (see Def 3 and
remark 1) for the following language: L = {C, (x, y) |C = comλ(x; y)}.

Party Pi Firewall Party {Pj}j∈[n]\i

Compute (Ci, Πi),

Broadcast the tuple (Ci, Πi)

(Ci,Πi)−−−−−−−→
Do the following:

1. Sample ri ∈ R and

2. Compute Ci = comλ(0m; ri),

3. Compute Ĉi = Ci + Ci,

4. Define Tx(Ci) = Ĉi = Ci + Ci,

5. Compute Π̂i ← RandProof(σcrs, Ci, Πi)

(Ĉi,Π̂i)−−−−−−−→

Fig. 7. Reverse Firewall W2 for the Multi-party Input commitment protocol

functionality-maintaining and detects failure for party Pi. If the commitment scheme com is per-
fectly hiding, computationally binding and homomorphic with respect to the (addition) operation
defined over the underlying groups (i.e, the message space, randomness space and the commitment
space of com); the NIZK argument system is re-randomizable and simulation-sound extractable,
then the reverse firewall W2 preserves security for party Pi and is exfiltration-resistant against the
other parties {Pj}j∈[n]\i.

Proof. The proof that the underlying protocol is secure follows from the proof of the input com-
mitment functionality, as presented in [10]. The only difference is that we use a SSE-NIZK instead
of a strong NIZK proof of knowledge. However, this change is purely an efficiency concern and in
no way impacts the security of the protocol. It is also clear that the firewall maintains functionality
and fails detectably for party Pi. The re-randomizability property of the commitment scheme com
guarantees that Ĉi is indistinguishable from a fresh commitment. Similarly, the re-randomizability
of the SSE-NIZK argument system guarantees that the re-randomized proof Π̂i is indistinguishable
from a fresh and honest proof on the statement Ci by the party Pi. Hence, the firewallW2 preserves
security for Pi and resists exfiltration for Pi against the other parties {Pj}j∈[n]\i. ut

5.4 Multi-party Authenticated Computation Protocol using Reverse Firewalls

Let f, h : {0, 1}∗×{0, 1}∗ → {0, 1}∗ be polynomial-time computable. The goal of this protocol is to
force the initializing party Pi to compute f(α, β), where β is known to all the parties, α is known
only to Pi, and h(α) (where h is one-to-one function) is known to all the parties. Here f captures
the desired computation. In particular, the parties execute this protocol for computing the following
functionality:

23

(
(α, r, β), (h(α, r), β), · · · , (h(α, r), β)

)
→
(
λ, f(α, β), · · · , f(α, β)

)
. (3)

Protocol: Multi-party Authenticated Computation Protocol using CRF W3.

Let f, h : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be two-argument functions, and let h be a 1-1 function.
Input to Pi: (α, r, β). Common input for all the parties: (u, β), where u = h(α, r). Let
(CRSGen,P,V,RandProof,ZKEval)) be a re-randomizable SSE-NIZK argument system (see Def 3 and re-
mark 1) for the following language: L = {(u, v, f, h), (x, y) |u = h(x, y) ∧ v = f(x, β)}.

Party Pi Firewall Party {Pj}j∈[n]\i

Compute (v,Π),

Broadcast the tuple (v,Π)

(v,Π)−−−−−−−→
Do the following:

Compute Π̂ ← RandProof(σcrs, (u, v, f, h), Π)

(v,Π̂)−−−−−−−→

Fig. 8. Reverse Firewall W3 for the Multi-party authenticated computation protocol

The Construction. The multi-party authenticated computation protocol is run by all the parties
after executing the multi-party input commitment and the multi-party (augmented) coin-tossing
protocols. Hence, at this point, the inputs and the random tapes of all the parties are fixed. Other
than its own input and the random tape (along with other decommitment values/randomnesses),
each party also holds the commitment to all the other parties input and random tapes. We now just
briefly recall the multi-party authenticated computation protocol. We follow the protocol as stated in
[10], except that we use strong simulation extractable NIZK (SSE-NIZK) argument systems instead
of strong zero-knowledge proof of knowledge (as in [10]). The use of NIZK arguments naturally
makes the protocol constant-round, albeit with a setup assumption. Assume that the party Pi
is the initiating party in a particular run of this protocol. The input to Pi is the tuple (α, r, β),
while the common input to all the parties is (u, β), where u = h(α, r). Party Pi then computes
the desired functionality f(α, β) and invokes a SSE-NIZK argument system to generate a proof Π
corresponding to the following language: L = {

(
(u, v, f, h), (x, y)

)
|
(
(u = h(x, y))∧ (v = f(x, β))

)
}.

It then broadcasts the tuple (v,Π). In case, the proof does not verify, all the parties abort and
output ⊥.

We now discuss the design of the reverse firewall W3 for this protocol. We assume that the
party Pi is tampered in a functionality-maintaining way. The idea for the design of the CRF is
very simple: the CRF simply re-randomizes the proof Π, since the randomness used to generate
the proof may reveal some secret information. Note that, the value v = f(α, β) given by Pi should
be correctly computed. This follows from the fact that party P ′is input and random coins are fixed,
and it is corrupted in a functionality-maintaining way. The design of the CRF is shown in Fig. 8.

24

Theorem 6. Let {Gλ,Kλ, comλ}λ∈N be a perfectly hiding and computationally binding commitment
scheme. Also, let (CRSGen,P,V,ZKEval) be a strong simulation-extractable non-interactive zero-
knowledge argument system for the language L shown in Figure 8. Then the protocol in Figure 8
securely computes the functionality presented in Eq. 3. The reverse firewall W3 shown in Figure
8 is functionality-maintaining and detects failure for party Pi. If the commitment scheme com is
perfectly hiding and computationally binding; the NIZK argument system is re-randomizable and
simulation-sound extractable, then the reverse firewall W3 preserves security for party Pi and is
exfiltration-resistance against the other parties {Pj}j∈[n]\i.

Proof. The proof that the underlying protocol is secure follows from the proof of the protocol
executing the authenticated computation functionality, as presented in [10]. The only difference
compared to [10] is that we use a SSE-NIZK, instead of a strong NIZK proof of knowledge. It
is also clear that the firewall maintains functionality and fails detectably for party Pi. Consider
a functionality-maintaining tampered implementation of party Pi, i.e, P̃i, and let (v,Π) be the

output of P̃i. Since P̃i is functionality-maintaining, the value v should be correctly computed, and
the NIZK proof Π should also comply to the fact that the computational is consistent. However, the
randomness used in the proof Π may leak some information about the witness (which is the value

(α, r)). The firewall re-randomizes the proof Π, so that the resulting proof Π̂ looks like a fresh proof
of the same statement. Hence, the security preservation and exfiltration-resistance follows. ut

5.5 The Final Compiler

We now present the final compiler which transforms any semi-honest MPC protocol Π into a
protocol Π ′ which is secure in the malicious model in the setting of reverse firewalls. We assume
the existence of a single broadcast channel. The specification of our compiler is similar to that
presented in [10]; however, adjusted to the reverse firewall setting. In particular, we present a reverse
firewall W∗ for the final MPC protocol Π ′. As we show, this firewall W∗ can be seen as consisting
of three sub-firewalls W1, W2 and W3 corresponding to the three sub-protocols or building blocks
used in the compiler, namely, input commitment, (augmented) coin-tossing, and the authenticated
computation protocols respectively. We then present a generic composition theorem for reverse
firewalls and show that the compiled protocol Π ′ is secure in the presence of the reverse firewall
W∗.
The Construction. LetΠ be a given n-party MPC protocol, secure in the semi-honest model. We
compile the protocol Π into another protocol Π ′ in the reverse firewall setting using the building
blocks we have developed so far. The specification of the protocol Π ′ follows:

Inputs. Party Pi gets input xi = xi1x
i
2 · · ·xi` ∈ {0, 1}`.

Input Commitment phase using reverse firewalls. Each of the n parties commits to their
`-bit input string using a secure implementation of the multi-party input commitment functionality
(see Eq. 2) using reverse firewall W1, as presented in Fig. 7. That is, for all j ∈ [n], β ∈ [`], party
Pj selects rjβ ∈ {0, 1}` and invokes a secure implementation of the multi-party input commitment

protocol using reverse firewallW1, playing the role of the (initializing) party Pi with input (xjβ , r
j
β).

The other parties play the role of other parties {Pk}k∈[n]\i of Fig. 7 with input 1λ, and obtain the

output comλ(xjβ ; rjβ). Party i records rjβ , and the other parties record comλ(xjβ ; rjβ).

Coin-generation phase. Each of the n parties run a secure implementation of the multi-party
augmented parallel coin-tossing functionality (see Eq. 1) using reverse firewall W2, as presented in

25

Fig. 6. This protocol is run by each party to generate a random pad of length t for emulation of the
corresponding party in the semi-honest MPC protocol Π. The other parties obtain a commitment
of the random tape of that party. That is, for all j ∈ [n], party Pj invokes a secure implementation
of the multi-party augmented parallel coin-tossing protocol using reverse firewall W2 (see Fig. 6),
playing the role of party Pi with input 1λ. The other parties play the role of parties {Pk}k∈[n]\j
of Fig. 6. Party Pj obtains a pair (sj , ωj), where sj ∈ {0, 1}t and ωj ∈ {0, 1}t·λ. The other parties
obtain the commitment comλ(sj ;ωj). Party Pj records sj , and the other parties record comλ(sj ;ωj).

Protocol emulation phase. Each of the n parties run a secure implementation of the multi-party
authenticated computation functionality (see Eq. 3) using reverse firewall W3 as presented in Fig.
8. The party which is supposed to send a message plays the role of party Pi in Eq. 3 and all the
other parties play the role of other parties {Pk}k∈[n]\i. The variables α, β, r, and the functions h, f
of the protocol are set as follows. The string α is set to be the concatenations of the party’s original
input and it’s random tape. The string r is set to be the concatenations of all the randomnesses
used to generate the commitments and h(α, r) is set to be the concatenations of the commitments
themselves.

α = (xi, si), where xi = xi1x
i
2 · · ·xi`, and si ∈ {0, 1}t,

r =
(
ri1r

i
2 · · · ri`, ωi

)
, where ∀β ∈ [`], riβ ∈ {0, 1}`, ωi ∈ {0, 1}t·λ,

h(α, r) =
(
comλ(xi1; ri1), comλ(xi2; ri2), · · · , comλ(xi`; r

i
`), comλ(si;ωi)

)
The string β is set to be the concatenation of all previous messages sent by other parties over

the broadcast channel. Finally, the function f is set to be the next message function, i.e, the
computation that determines the next message to be sent by Pi in Π. The message can be thought
of as a deterministic polynomial-time computable function of the party’s input, it’s random pad
and the messages received so far.

Aborting. We denote the composed firewall for the compiled protocol as W∗. The reverse firewall
W∗ is composed of three sub-firewalls W1, W2 and W3 corresponding to the three sub-protocols or
building blocks as mentioned above. In case, any of these sub-firewalls fails detectably, the firewall
W∗ for the larger protocol also aborts the execution and outputs ⊥. Else, the outputs are as follows:

Output. At the end of the protocol emulation phase, each party holds locally its output value. The
parties simply output their respective values.

The composition theorem below shows that the final compiled protocol Π ′ is an actively-secure
MPC protocol. The protocol Π ′ has a reverse firewall for all parties provided that each of the input
commitment, the (augmented) coin-tossing and the authenticated computation protocols have their
own firewalls satisfying some properties.

Theorem 7. (Composition Theorem for security of Π ′). Given a MPC protocol Π secure
in the semi-honest model, and provided that the multi-party input commitment protocol Π ′1, the
multi-party (augmented) coin-tossing protocol Π ′2, and the multi-party authenticated computation
protocol Π ′3 are secure in the malicious model, the compiled MPC protocol Π ′ is an actively-secure
MPC protocol. Let W∗1 , W∗2 and W∗3 denote the reverse firewalls for the protocols Π ′1, Π ′2 and Π ′3
respectively. Also, let party Pi be the initiating party for all these protocols at some point in time
(in general it can be any one of the parties corrupted in a functionality-maintaining way). Now
consider the following properties:

26

• Let Π be a MPC protocol secure in the semi-honest model (without reverse firewalls).

• Let the firewall W∗1 (for the multi-party input commitment protocol Π ′1) preserves security for
party Pi, is exfiltration-resistant against the other parties {Pj}j∈[n]\i, and detects failure for
Pi.

• Let the firewall W∗2 (for the multi-party augmented coin-tossing protocol Π ′2) preserves security
for party Pi and is weakly exfiltration-resistant against the other parties {Pj}j∈[n]\i. Also, let
W2 strongly preserve the security for the parties {Pj}j∈[n]\i and is strongly exfiltration-resistant
against Pi. Finally, let W2 detect failures for all the parties.

• Let the firewall W∗3 (for multi-party authenticated computation protocol Π ′3) preserves security
for party Pi, is weakly exfiltration-resistant against the other parties {Pj}j∈[n]\i, and detects
failure for Pi.

Then the composed reverse firewall W∗ = W∗1 ◦ W∗2 ◦ W∗3 preserves security for party Pi and is
weakly exfiltration-resistant against the parties {Pj}j∈[n]\i in the protocol Π ′.

Proof. The proof for the first part of the composition theorem is a very well-known result. We
refer the reader to [10] for the detailed proof. Before proceeding with the proof of the second part,

we introduce some additional notations. Let P̃i denote the functionality-maintaining tampered
implementation of party Pi in the final protocol Π ′. For two distinct protocols Πj and Πk, we
denote by Πj ◦Πk the composed protocol obtained by running the two protocols sequentially, i.e,

running the protocol Πj followed by the protocol Πk. Let P̃ ′i be the truncation of P̃i till the end
of the execution of the protocol Π ′1 ◦Π ′2 (i.,e, till the execution of the (augmented) coin-tossing

protocol). Also, let P̃ ′′i be the truncation of P̃i to the end of the execution of the protocol Π ′1
(i.e,. till the execution of the multi-party input-commitment protocol). We follow the game hopping
technique to prove the theorem. Consider the following sequence of games.

Game 1 corresponds to the security model for MPC protocols in the malicious model, except
that we replace party Pi with the composed party W∗ ◦ P̃i (where W∗ is the firewall for the final
protocol Π ′). Game 2 is similar to Game 1, except that we consider the protocol Π ′ where the
multi-party input commitment protocol Π ′1 is replaced by its corresponding ideal functionality.

Game 3 is similar to Game 2, except that we replace the composed party W∗1 ◦ P̃ ′′i with W∗1 ◦ P ′′i
(i.e, the honest implementation of the “truncated” party P ′′i (till the end of the multi-party input
commitment phase) composed with the firewall W∗1). Game 4 is similar to Game 3, except that
we consider the protocol Π ′ where the multi-party augmented parallel coin-tossing protocol Π ′2 is
replaced by its corresponding ideal functionality. Game 5 is similar to Game 4, except that we

replace the composed partyW∗2 ◦P̃ ′i withW∗2 ◦P ′i (i.e, the honest implementation of the “truncated”
party P ′i (till the end of the multi-party augmented coin-tossing phase) composed with the firewall
W∗2). Game 6 is similar to Game 5, except that we consider the protocol Π ′ where the multi-party
authenticated computation protocol Π ′3 is replaced by its corresponding ideal functionality. Game

7 is similar to Game 6, except that we replace the party W∗ ◦ P̃i with the party W∗ ◦ P1 (i.e, the
honest implementation of Pi composed with the firewall W∗).

Note that, at the end of Game 7, the advantage of any PPT adversary is negligible. This is because,
when we replace the tampered implementation of the party Pi with its corresponding honest imple-
mentation, we can invoke the security of the underlying actively-secure MPC protocol mimicking
W∗ ◦ Pi as the honest party (where the firewall W∗ does nothing and simply lets all the messages

27

pass from Pi to the other parties). Then the real world-ideal world security of MPC protocols in the
semi-honest model guarantees that the advantage of any PPT adversary is negligible. Also, if there
are more than one honest parties, the security of the resulting protocol naturally generalizes, since
we have shown it to hold for an arbitrary party corrupted in a functionality-maintaining way. To
complete the proof we show a sequence of claims that prove that every Game i is indistinguishable
from Game i+ 1.

Claim 1 If the firewall W∗1 for the protocol Π ′1 preserves security for party Pi and fails detectably,
then for any PPT adversary A1, it holds that:

|AdvGame1A1
(λ)− AdvGame2A1

(λ)| ≤ negl(λ)

Proof. Suppose the claim does not hold. Then we can construct another adversary A′1 against the
multi-party input commitment protocol using A1 as a black-box. We can view the final protocol Π ′

as the composition of the sub-protocols Π ′1, Π ′2 and Π ′3. Hence, we can view the party W∗ ◦ P̃i in

the final protocol Π ′ as the composition of
(
(W∗1 ◦ P̃ ′′i) ◦ (W∗2 ◦ P̃ ′i) ◦ (W∗3 ◦ P̃i)

)
. After running the

input commitment protocolΠ ′1, the firewallW∗1 checks if the transcript of the underlying protocol is
valid forW∗1 ◦P ′′i . Note that this can be done by running the efficient algorithm that can distinguish
between valid and invalid runs of the protocol. Now, since the firewall preserves security for party
Pi in the protocol Π ′1, we can replace the protocol Π ′1 with its corresponding ideal functionality
in the malicious model, call it Fcomm. Hence, if any adversary can distinguish between Game 1
and Game 2 with noticeable advantage, it can be used as a black-box to build a distinguisher A′1
between the protocol Π ′1 and its corresponding ideal-world functionality Fcomm, which contradicts
the security of Π ′1 in the malicious model. The claim follows. ut

Claim 2 If the firewall W∗1 for the protocol Π ′1 is exfiltration-resistant for party Pi against other
parties {Pj}j∈[n]\i, then for any PPT adversary A′1, it holds that:

|AdvGame2A′1
(λ)− AdvGame3A′1

(λ)| ≤ negl(λ)

Proof. The protocol Π ′1 is replaced with its ideal functionality Fcomm (in the presence of reverse
firewalls). By definition, there is no extra leakage in the ideal world functionality beyond what is

leakage by the protocol output. Hence, the tampered implementation P̃ ′′i (recall that P ′′i is the
truncation of party Pi till the end of the input commitment phase) does not leak any information
through the firewall W∗1 , due to the exfiltration-resistant property of W∗1 . The claim follows. ut

Claim 3 If the firewall W∗2 for the protocol Π ′2 preserves security for party Pi and fails detectably,
then for any PPT adversary A2, it holds that:

|AdvGame3A2
(λ)− AdvGame4A2

(λ)| ≤ negl(λ).

Proof. As before, we can view the composed party W∗ ◦ P̃i in the protocol Π ′ as
(
(W∗1 ◦ P̃ ′′i) ◦

(W∗2 ◦ P̃ ′i) ◦ (W∗3 ◦ P̃i)
)
. However, before the beginning of this game, the multi-party input com-

mitment protocol has already been replaced by its corresponding ideal functionality Fcomm. Hence,

the composed party W∗ ◦ P̃i can be seen as the composition of
(
Fcomm ◦ (W∗2 ◦ P̃ ′i) ◦ (W∗3 ◦ P̃i)

)
. In

this game, we replace the protocol Π ′2 with its corresponding ideal functionality, call it Fcoin. Any
adversary A2 that can distinguish between these two games Game 2 and Game 3 can be used as a

28

black-box to construct another distinguisher for the real world-ideal world security of the protocol
Π ′2. This follows from the fact that the firewall W∗2 preserves security for party Pi in the protocol
Π ′2 and also fails detectably. ut

Claim 4 If the firewall W∗2 for the protocol Π ′2 is exfiltration-resistant for party Pi against other
parties {Pj}j∈[n]\i, then for any PPT adversary A2, it holds that:

|AdvGame4A2
(λ)− AdvGame5A2

(λ)| ≤ negl(λ).

Proof. The proof of this claim follows from the fact that the protocol Π ′2 is replaced by its corre-
sponding ideal functionality Fcoin and no information other than what is implied by the outputs

of the protocol are leaked by the ideal functionality. Hence, the tampered implementation P̃ ′i (re-
call that P ′i is the truncation of party Pi till the end of the coin-tossing phase) does not leak any
information through the firewall W∗2 , due to the exfiltration-resistant property of W∗2 . The claim
follows. ut

Claim 5 If the firewall W∗3 for the protocol Π ′3 preserves security for party Pi and fails detectably,
then for any PPT adversary A3, it holds that:

|AdvGame5A3
(λ)− AdvGame6A3

(λ)| ≤ negl(λ).

Proof. At the beginning of this game, the multi-party input commitment protocol Π ′1 and the
multi-party augmented parallel coin-tossing protocol Π ′2 has been replaced by the corresponding
ideal functionalities Fcomm and Fcoin respectively in the malicious model. Hence, at this point, the
inputs and the random tapes of all the parties are fixed. The composed party W∗ ◦ P̃i can be
seen as the composition of

(
Fcomm ◦ Fcoin ◦ (W∗3 ◦ P̃i)

)
. In this game, we replace the protocol Π ′3

with its corresponding ideal functionality, call it Fauth-com. Any adversary A3 that can distinguish
between Game 5 and Game 6 can be used as a black-box to construct another distinguisher for the
real world-ideal world security of the protocol Π ′3. This follows from the fact that the firewall W∗3
preserves security for party Pi in the protocol Π ′3 and also fails detectably. ut

Claim 6 For any PPT adversary A∗, it holds that:

|AdvGame6A∗ (λ)− AdvGame7A∗ (λ)| ≤ negl(λ).

Proof. Before the beginning of this game, all the sub-protocols Π ′1, Π ′2 and Π ′3 are replaced with
their respective ideal functionalities Fcomm, Fcoin and Fauth-com respectively. Hence the security of
the final protocol Π ′ can be reduced to the security of the semi-honest protocol Π. Hence, the
protocol Π ′ cannot leak any additional information about the secrets of party Pi. Hence, the
exfiltration-resistance of the composed firewall W∗ follows, and we can replace W∗ ◦ P̃i with the
party W∗ ◦ Pi. ut

Combining claims 1 - 6, we get the proof of Thm. 7. ut

6 Conclusion and Future Work

In this work, we present the first feasibility result for general MPC protocols in the setting of
reverse firewalls. Previous work in this area constructed reverse firewalls either for arbitrary 2-party

29

functionalities in the passive setting, or for a few concrete functionalities ranging from signature
schemes, oblivious transfer and key exchange protocols. Our result is obtained by revisiting the
classical compiler of Goldreich, Micali, and Widgerson and making it reverse-firewall compatible.
We leave open the construction of more efficient and round-optimal RF-compatible MPC protocols
for future work.

References

[1] G. Ateniese et al. “Subversion-Resilient Signature Schemes”. In: ACM CCS 15. 2015.
[2] D. Beaver. “Foundations of Secure Interactive Computing”. In: CRYPTO’91. 1992.
[3] M. Blum et al. “Non-Interactive Zero-Knowledge and Its Applications (Extended Abstract)”.

In: 20th ACM STOC. 1988.
[4] R. Canetti. “Security and Composition of Multiparty Cryptographic Protocols”. In: Journal

of Cryptology 1 (2000).
[5] M. Chase et al. “Malleable Proof Systems and Applications”. In: EUROCRYPT 2012. 2012.
[6] R. Chen et al. “Cryptographic Reverse Firewall via Malleable Smooth Projective Hash Func-

tions”. In: Advances in Cryptology – ASIACRYPT 2016. Berlin, Heidelberg, 2016.
[7] R. Cramer et al. Secure Multiparty Computation and Secret Sharing. 2015.
[8] Y. Dodis et al. “Message Transmission with Reverse Firewalls—Secure Communication on

Corrupted Machines”. In: CRYPTO 2016, Part I. 2016.
[9] D. Dolev and H. Strong. “Authenticated Algorithms for Byzantine Agreement”. In: SIAM

Journal on Computing 4 (1983). eprint: https://doi.org/10.1137/0212045.
[10] O. Goldreich. Secure Multi-Party Computation. manuscript available at http://www.wisdom.

weizmann.ac.il/~oded/pp.html.
[11] O. Goldreich et al. “How to Play any Mental Game or A Completeness Theorem for Protocols

with Honest Majority”. In: 19th ACM STOC. 1987.
[12] J. Groth. Homomorphic Trapdoor Commitments to Group Elements. Cryptology ePrint Archive,

Report 2009/007. http://eprint.iacr.org/2009/007. 2009.
[13] J. Groth. “Simulation-Sound NIZK Proofs for a Practical Language and Constant Size Group

Signatures”. In: ASIACRYPT 2006. 2006.
[14] D. Hofheinz et al. “Waters Signatures with Optimal Security Reduction”. In: PKC 2012. 2012.
[15] Y. Ishai et al. “Private Circuits: Securing Hardware against Probing Attacks”. In: CRYPTO 2003.

2003.
[16] Y. Lindell. “Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation”. In:

CRYPTO 2001. 2001.
[17] S. Micali and L. Reyzin. “Physically Observable Cryptography (Extended Abstract)”. In:

TCC 2004. 2004.
[18] I. Mironov and N. Stephens-Davidowitz. “Cryptographic Reverse Firewalls”. In: EURO-

CRYPT 2015, Part II. 2015.
[19] G. J. Simmons. “The Prisoners’ Problem and the Subliminal Channel”. In: CRYPTO’83.

1983.
[20] B. R. Waters. “Efficient Identity-Based Encryption Without Random Oracles”. In: EURO-

CRYPT 2005. 2005.

30

https://doi.org/10.1137/0212045
http://www.wisdom.weizmann.ac.il/~oded/pp.html
http://www.wisdom.weizmann.ac.il/~oded/pp.html
http://eprint.iacr.org/2009/007

	Reverse Firewalls for Actively Secure MPCs

