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Abstract. Motivated by the algorithm of differential probability calcu-
lation of Lipmaa and Moriai, we revisit the differential properties of mod-
ular addition. We propose an efficient approach to generate the input-
output difference tuples with non-zero probabilities. A novel concept of
combinational DDT and the corresponding construction algorithm are
introduced to make it possible to obtain all valid output differences for
fixed input differences. According to the upper bound of differential prob-
ability of modular addition, combining the optimization strategies with
branch and bound search algorithm, we can reduce the search space of
the first round and prune the invalid difference branches of the middle
rounds. Applying this tool, the provable optimal differential trails cov-
ering more rounds for SPECK32/48/64 with tight probabilities can be
found, and the differentials with larger probabilities are also obtained. In
addition, the optimal differential trails cover more rounds than exisiting
results for SPARX variants are obtained. A 12-round differential with
a probability of 2−54.83 for SPARX-64, and a 11-round differential trail
with a probability of 2−53 for SPARX-128 are found. For CHAM-64/128
and CHAM-128/*, the 39/63-round differential characteristics we find
cover 3/18 rounds more than the known results respectively.

Keywords: SPECK · SPARX · CHAM · ARX · Differential cryptanal-
ysis· Automatic search · Block cipher

1 Introduction

ARX-based ciphers rely on modular addition to provide non-linearity while ro-
tation and XOR provide diffusion, hence the name: Addition, Rotation, XOR
[7]. Benefiting from the high efficiency of modular addition in software imple-
mentation, the ARX construction is favored by many cryptography designers. In
recent years, a large number of primitives based on the ARX construction have
emerged, such as HIGHT [15], LEA [14], SPECK [5], SPARX [11], CHAM [18]
and the augmented ARX ciphers SIMON [5] and SIMECK [30]. On April 18,
2019, in the Round 1 Candidates of Lightweight Cryptographic (LWC) standards
announced by NIST [1], the permutations of COMET, Limdolen, SNEIK and
SPARKLE [2] etc. also adopt ARX construction (all available online at [1]).
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Since the ARX-based primitives are not so well understood as the S-box
based ciphers, the security analysis on them is more difficult. And the proof
of the rigorous security of the ARX ciphers is still a challenging task. In the
cryptographic community, investigations on ARX ciphers are still going on.

Differential cryptanalysis [6,25] is one of the most important means to eval-
uate the security of ARX ciphers. For differential attack, the first step is to find
some differentials with high probabilities, as well as covering enough rounds.
Differentials with high probabilities can be used to mount key recovery attack
with less data and/or time complexity, and differentials with longer rounds can
be ultilized to attack more rounds in the iterative block ciphers. To obtain good
differentials of ARX ciphers, an effective method is with the help of automated
analysis tools at present. Therefore, constructing efficient automated analysis
tools to get the differential characteristics on ARX ciphers worth the effort.

Related works. There are mainly three types of automated analysis tools for
ARX ciphers until now. The first one, by characterizing the properties of compo-
nents in ARX ciphers as a set of satisfiability problems, then use the SAT/SMT
solvers (MiniSAT, STP, Boolector, etc.) to search for the characteristics, such
as in [3,4,17,22,26,28,29]. The second ones are based on the inequality solving
tools, by converting the cryptographic properties into inequalities characteriza-
tion problems, constructing (mixed) integer linear programming (MILP) models,
and solving them by third-party softwares (such as Gurobi, SAGE, etc.). MILP
method is also very efficient in searching differential characteristics for ARX ci-
phers [13,31,32,33]. The third ones, which are constructed directly by the branch
and bound search algorithm (Matsui’s approach) under the Markov assump-
tion [19]. By investigating the differential propagation properties of the round
function, the differential characteristics can be searched according to depth-
first [8,10,16,23,24] or breadth-first strategies [9]. The execution efficiency in the
search phase of the first two tools depend on the performance of the third-party
softwares and the representation of the equalities/inequalities of differential prop-
erties, while the third tool mostly depends on the optimizing strategies to reduce
the invalid difference branches for improving the search efficiency.

In 2014, Biryukov et al. applied Matsui’s approach to the differential anal-
ysis on SPECK, and proposed a concept of partial difference distribution table
(pDDT) [8,9]. Based on some heuristic strategies, the differential trails they ob-
tained can not be guaranteed as optimal ones. Then, at FSE’16 [10], Biryukov
et al. further improved the branch and bound algorithm for SPECK. In the first
round, they traversed the input-output difference space by gradually increasing
the number of active bits of the input-output difference tuple, according to the
monotonicity of the differential probability of modular addition. In the middle
rounds, they used the calculation algorithm of Lipmaa and Moriai to compute
the differential probability directly. The optimal differential characterstic cov-
ering 9-round for SPECK32 with a probability of 2−30 was obtained in [10].
Fu et al. applied the MILP method in [13] and Song et al. adopted the SAT
method in [28] to search for the optimal differential characteristics of SPECK,
and the obtained optimal differential trails cover 9/11-round for SPECK32/48
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with probabilities of 2−30/2−45 respectively. In [13,28], for SPECK64/96/128,
the good differential trails were obtained by connecting two or three short trails
from the extention of one intermediate difference state with a differential proba-
bility weight of 0. For SPECK64/96/128, it is still difficult to directly search for
the optimal differential trails that cover more rounds and tight probabilities. In
[4], Ankele et al. analyzed the differential characteristics of SPARX-64 by suing
the SAT method, and they got a 10-round optimal differential trail with a prob-
ability of 2−42. Up to now, there are still no third-party differential cryptanalysis
results for SPARX-128 and CHAM.

Our Contributions. Firstly, we propose a method to construct the space of
the valid input-output difference tuples of certain differential probability weight.
We adopt the way to increase the differential probability weight monotonously,
which can exclude the search space of impossible large probability weight of the
first round. Secondly, in order to quickly obtain the possible output differences
with non-zero probabilities correspond to the fixed input differences, we propose
a concept of combinational difference distribution table (cDDT) with feasible
storage complexity. All valid output differences can be combined dynamicly by
looking up the pre-computed tables. Thirdly, in the middle rounds, we achieve
more delicate pruning conditions based on the probability upper bound of modu-
lar addition. Finally, combining these optimization strategies, the automatic tool
to search for the differential characteristics on ARX ciphers can be constructed.

Applying this tool to several ciphers, better differential characteristics are
obtained comparing to the existing results. For SPECK64, a 15-round optimal
differential trail with probability of 2−62 is found. Meanwhile, a new 12-round
differential for SPECK48 with probability of 2−47.3 is found. For SPARX-64,
a 11-round optimal differential trail with probability of 2−48, a 12-round good
differential trail with probability of 2−56 and the corresponding 12-round dif-
ferential with probability of 2−54.83 are obtained. For SPARX-128, a 10-round
differential with probability of 2−39.98 is obtained. For CHAM-64/128, we find
a 39-round optimal differential trail with probability of 2−64. For CHAM-128/*,
the 63-round optimal differential trail we obtained with probability of 2−127 is
a good improvement compared to the results already announced.

Outline. The remainder of this paper is organized as follows. In Section 2, we
present some preliminaries encountered in this paper. In Section 3, we present
the approach to construct the space of input-output difference tuples and the
construction method of cDDT. We introduce an automatic search tool for ARX
ciphers in Section 4. And we apply the new tool to SPECK, SPARX and CHAM
in Section 5. Finally, we conclude our work in Section 6.

2 Preliminaries

2.1 Notation

In this paper, we mainly focus on the XOR-difference probability of modular
addition, which is marked by xdp+. If not specified, the differential probabilities
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in this paper all represent xdp+. For modular additon x⊞y = z with input differ-
ence (α, β) and output difference γ, the XOR-difference probability of modular
addition is defined by

xdp+((α, β) → γ) =
#{(x, y)|((x ⊕ α)⊞ (y ⊕ β)) ⊕ (x⊞ y) = γ}

#(x, y)
. (1)

Modular addition is the only nonlinear component in ARX ciphers that pro-
duces differential probabilities. The differential probability of each round is decid-
ed by the number of active modular additions (i.e NA) in it. Let (αi,j , βi,j , γi,j)
be the differences of the jth addition in the ith round, there have,

Pr(∆xi−1 → ∆xi) =

NA
∏

j=1

xdp+((αi,j , βi,j) → γi,j). (2)

Under the Markov assumption, when the round keys are choosen uniformly,
the probability of a differential trail is the product of the probabilities of each
round. For a r-round reduced iterative cipher, with input difference ∆x0 and
output difference ∆xr, the probability of the differential trail is denoted by

Pr(∆x0
r

−→ ∆xr) =

r
∏

i=1

NA
∏

j=1

xdp+((αi,j , βi,j) → γi,j). (3)

For the differential effect, the differential probability (DP) can be counted
by the probabilities of the differential trails with the same input and output
differences. Let N be the number of trails be counted, it will contribute to get a
more compact DP when N is large enough.

DP(∆x0
r

−→ ∆xr) =

N
∑

s=1

Pr(∆x0
r

−→ ∆xr)s. (4)

In this paper, we let Fn
2 be the n dimensional vector space over binary filed

F
1
2 = {0, 1}. We use the symbols ≪, ≫ to indicate rotation to the left and

right, and ≪, ≫ to indicate the left and right shift operation, respectively. The
binary operator symbols ⊕, ∧, ||, ¬ represent XOR, AND, concatenation, and
bitwise NOT respectively. For a vector x, its Hamming weight is denoted by
wt(x). xi represnets the ith bit in vector x, and x[j,i] represents the vector of
bits i to j in x. ∆x = x ⊕ x′ represents the XOR difference of x and x′. 0
represents a zero vector. For a r-round optimal differential trail with probability
of Pr, Bwr = − log2 Pr represents the obtained differential probability weight of
it, and Bwr+1 is the expected differential probability weight of the (r+1)-round
optimal differential trail.

2.2 Differential Probability Calculation for Modular Addition

In [20], Lipmaa andMoriai proposed an algorithm to compute the XOR-difference
probability of modular addition, which can be rewriten by Theorem 1.
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Theorem 1. (Algorithm 2 in [20]) Let α, β be the two n-bit input differences
and γ is the n-bit ouput difference of addition modulo 2n, x, x′, y, y′ ∈ F

n
2 ,

f(x, y) = x ⊞ y, x = x′ ⊕ α, y = y′ ⊕ β, and γ = f(x, y) ⊕ f(x′, y′). For
arbitrary α, β and γ, let eq(α, β, γ) := (ᾱ⊕β)∧ (ᾱ⊕ γ), mask(n) := 2n− 1, and
g(α, β, γ) := eq(α ≪ 1, β ≪ 1, γ ≪ 1) ∧ (α ⊕ β ⊕ γ ⊕ (β ≪ 1)). The differential
probability of (α, β) propagate to γ is denoted by

Pr{(α, β) → γ} =

{

2−wt(¬eq(α,β,γ)∧mask(n−1)), if g(α, β, γ) = 0;
0, else.

Theorem 2. Let α, β be the two n-bit input differences and γ is the n-bit ouput
difference of addition modulo 2n, the number of input-output difference tuples
with probability of 2−w is 4 · 6w ·

(

n−1
w

)

, for any 0 ≤ w < n (Theorem 6 in [21],
which is derived from Theorem 2 in [20]).

3 The Input-Output Differences and the Differential

Probabilities of Modular Addition

3.1 The Input-Output Difference Tuples of Non-zero Probability

In branch and bound search strategy, a naive method is to traverse the full
space of the input-output difference tuples of each modular addition in the first
round. However, it will lead to very large time complexity, when the word size
n of modular addition is too large. To address this, it’s possible to reduce the
search complexity by removing those impossible tuples of modular addition at
the startting of the search. Here, we will introduce an efficient algorithm to
achieve this goal.

Lemma 1. Let α, β be the two n-bit input differences and γ is the n-bit ouput
difference of modular addition with non-zero differential probability. Let δ be a
n-bit auxiliary vector , for 0 ≤ i ≤ n− 1, the ith bit of δ is denoted by

δi =

{

0, if αi = βi = γi;
1, else.

Therefore, there have δ = ¬eq(α, β, γ), and

Pr{(α, β) → γ} = 2−wt(δ∧mask(n−1)).

Let w = wt(δ ∧ mask(n − 1)) be the differential probability weight, there
should be 0 ≤ w ≤ n− 1. The Hamming weight of the vector δ[n−2,0] equals to
the differential probability weight w.

Definition 1. For w ≥ 1, we define an array Λ := {λw, · · · , λ1}, which contains
w elements. The elements in Λ record the subscripts of the non-zero bits of vector
δ[n−2,0], called as the probability weight active positions. For 1 ≤ j ≤ w, each
element is denoted by λj = i, when δi 6= 0, for i = 0 to n − 2. For example,
Λ = {3, 2, 0}, when δ[6,0] = (0001101)2.
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Definition 2. Let (α, β, γ) be the input-output difference tuples of addition mod-
ulo 2n with non-zero probability. Let’s define an array D := {dn−1, · · · , d0},
which contains n elements. Where di = αi||βi||γi = 4di,2 + 2di,1 + di,0, di ∈ F

3
2,

and di,2, di,1, di,0 ∈ F
1
2, for 0 ≤ i ≤ n− 1.

Definition 3. Let’s define four sets to represent the possible values that di might
belongs to, i.e. U0 = {0, 3, 5, 6}, U∗

0 = {3, 5, 6}, U1 = {1, 2, 4, 7}, U∗
1 = {1, 2, 4}.

Corollary 1. Let (α, β, γ) be the input-output difference tuples of addition mod-
ulo 2n with probability weight of w. For 1 ≤ j ≤ w, 1 ≤ w ≤ n−1 and let λ0 = 0
when λ1 > 0, there should have,
- for every element λj in Λ, the λj-th octal word in D should s.t. dλj

/∈ {0, 7};
- the elements between dλj

and dλj−1 should be all 0, if and only if dλj
∈ U∗

0 ;
- the elements between dλj

and dλj−1 should be all 7, if and only if dλj
∈ U∗

1 ;
- and dλ1 ∈ U∗

0 in any case.

Corollary 1 can be derived directly from Theorem 1. Inspired by the idea
of finite-state machine (FSM) in [27], we take the most significant octal word
dn−1 as the initial state to construct the state transition process of the elements
in array D. The state transition diagram of octal word sequence that satisfy
Corollary 1 is shown in Fig. 1. According to the distribution patterns of proba-
bility weight active positions, we introduce Algorithm 1 (marked as Gen(w)) to
construct the 4 ·6w ·

(

n−1
w

)

input-output difference tuples of a certain differential

probability weight w. All combinations of
(

n−1
w

)

are produced by only single bit
exchanges [12]. The output tuples do not need to be stored. The element di in
D correspond to the bit values (αi, βi, γi) of the input-output difference tuples.
Algorithm 1 traverses the values of the n elements in D and assigns them to the
bits (αi, βi, γi), the total complexity of it will not be greater than 4·6w ·

(

n−1
w

)

·3n.

3.2 The Combinational DDT

Generating a DDT that can be looked up is an efficient method to obtain the
valid output differences for fixed input difference. For addition modulo 2n, when
n is too large, the full DDT will be too large to store. Hence, an intuitive idea
is to store only a part of it. In [9], pDDT is introduced to precompute and
store the difference tuples with probabilities above a fixed threshold. However,
for the tuples that cannot be looked up in pDDT, their probabilities need to
be calculated by the algorithm of Lipmaa and Moriai. In order to index all
tuples, we propose a concept of combinational DDT (cDDT). cDDT represents
the difference distribution tables for m-bit chunks of the n-bit words. By cDDT,
the full DDT can be dynamically reconstructed on-the-fly during search. And
the probabilities of the tuples can also be calculated by Lemma 2.

Lemma 2. Let α, β, γ be the input-output differences of addition modulo 2n,
α′ = α ≪ 1, β′ = β ≪ 1, γ′ = γ ≪ 1, α, α′, β, β′, γ, γ′ ∈ F

n
2 and n = mt.

Spliting α, α′, β, β′, γ, γ′ into t m-bit sub-vectors. If the equations

eq(α′
[(j+1)m−1,jm], β

′
[(j+1)m−1,jm], γ

′
[(j+1)m−1,jm])∧

(α[(j+1)m−1,jm] ⊕ β[(j+1)m−1,jm] ⊕ γ[(j+1)m−1,jm] ⊕ β′
[(j+1)m−1,jm]) = 0
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Fig. 1. The state transition diagram of the octal word sequence in D.

are satisfied for 0 ≤ j ≤ t− 1, there should be

− log2 Pr =

t−2
∑

j=0

wt(¬eq(α[(j+1)m−1,jm], β[(j+1)m−1,jm], γ[(j+1)m−1,jm]) ∧mask(m))

+ wt(¬eq(α[n−1,n−m], β[n−1,n−m], γ[n−1,n−1m]) ∧mask(m− 1)).

Algorithm 1: Gen(w). Generating the input-output difference tuples of
differential probability weight w for modular addition, 0 ≤ w ≤ n− 1.

Input: The patterns of the probability weight active positions can be calculated from the
combinations algorithm in [12], i.e. Λ := {the patterns of

(n−1
w

)
}.

1 Func MSB: // Constructing the most significant bits of α, β, γ.

2 for each dn−1 = dn−1,2||dn−1,1||dn−1,0 ∈ F
3
2 do

3 if dn−1 ∈ U0 then

4 α = dn−1,2||

all 0s
︷ ︸︸ ︷

0 · · · 0, β = dn−1,1||

all 0s
︷ ︸︸ ︷

0 · · · 0, γ = dn−1,0||

all 0s
︷ ︸︸ ︷

0 · · · 0;
5 If w ≥ 1, call Func Middle(w); else output each tuple (α, β, γ);

6 else

7 α = dn−1,2||

all 1s
︷ ︸︸ ︷

1 · · · 1, β = dn−1,1||

all 1s
︷ ︸︸ ︷

1 · · · 1, γ = dn−1,0||

all 1s
︷ ︸︸ ︷

1 · · · 1; //dn−1 ∈ U1.
8 If w ≥ 1, call Func Middle(w); else output each tuple (α, β, γ);

9 end

10 end

11 Func Middle(j): // Constructing the middle bits of α, β, γ.
12 if j ≤ 1 then
13 call Fun LSB;
14 end
15 for each dλj

∈ U∗

0 ∪ U∗

1 do

16 αλj
= dλj,2

, βλj
= dλj,1

, γλj
= dλj,0

;

17 if dλj
∈ U∗

0 then

18 Set the bit strings of α, β, γ with subscripts λj−1 → λj − 1 to all 0;
19 else
20 Set the bit strings of α, β, γ with subscripts λj−1 → λj − 1 to all 1; // dλj

∈ U∗

1 .

21 end
22 call Func Middle(j − 1);

23 end

24 Func LSB: // Constructing the bits of α, β, γ with subscripts 0 → λ1.
25 if λ1 > 0 then
26 Set the bit strings of (α, β, γ) with subscripts 0 → λ1 − 1 to all 0;
27 end
28 for each dλ1

∈ U∗

0 do
29 αλ1

= dλ1,2, βλ1
= dλ1,1, γλ1

= dλ1,0
;

30 Output each tuple (α, β, γ);

31 end
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Proof. When Pr 6= 0, g(α, β, γ) = 0 should be satisfied, which is equivalen-
t to each m-bit sub-vector of g(α, β, γ) should be zero vector. As − log2 Pr =
wt(δ[n−2,0]), the Hamming weight of vector δ[n−2,0] can be split into wt(δ[n−2,0]) =
∑t−2

j=0 wt(δ[(j+1)m−1,jm]) + wt(δ[n−2,n−m]). Hence, the probability weight is the
sum of the weights of each m-bit sub-vector of δ[n−2,0], when all m-bit sub-
vectors of g(α, β, γ) are zero vectors. ⊓⊔

For each sub-vector tuple (α[(j+1)m−1,jm], β[(j+1)m−1,jm], γ[(j+1)m−1,jm], or
called as sub-block, its corresponding probability weight also depends on bits
αjm−1, βjm−1, and γjm−1. Let c[j] = αjm−1||βjm−1||γjm−1 ∈ F

3
2 (called as carry

bits), and α[(j+1)m−1,jm], β[(j+1)m−1,jm], γ[(j+1)m−1,jm] ∈ F
m
2 , by traversing the

23m+3 bits, a m-bit difference distribution table with non-zero probabilities can
be pre-computed.

During the search process, the input differences (α, β) of modular addition are
known, while the output difference γ and corresponding probability are unknown.
For each m-bit sub-block (α[(j+1)m−1,jm], β[(j+1)m−1,jm], γ[(j+1)m−1,jm]), where
(α[(j+1)m−1,jm], β[(j+1)m−1,jm]) are known. Considerring the ≪ 1 operator, the
bits α′

0, β
′
0, γ

′
0 should be all zeros. By traversing them-bit sub-vector γ[m−1,0], the

possible probability weights of the least significant sub-block can be generated.
And for a definite γ[m−1,0], the bits αm−1||βm−1||γm−1 can also be obtained.

Recursively, by traversing the other t− 1 sub-vectors of γ, the corresponding
probability weight of each sub-block can also be generated. Therefore, all valid
n-bit output differences γ can be concatenated by the t sub-vectors of of γ, and
the probability weight of this modular addition is the sum of probability weight
of each sub-block. The dynamic generation process of γ is shown in Fig. 2.

...

α

β

γ

+ n-1

n-1

...

... α

β
n-m

n-m

n-1
γ
n-m

...

α

β

γ

n-m-1

n-m-1

...

... α

β
n-2m

n-2m

n-m-1
γ
n-2m

...

α

β

γ

2m-1

2m-1

...

... α

β
m

m

2m-1
γ
m

...

α

β

γ

m-1

m-1

...

... α

β

m-1
γ
0

0

0 0

0

0

...

...

...

cDDT cDDT

Fig. 2. The process of generating γ by looking up the difference distribution table.

For fixed input differences (α, β), the possible output difference γ with non-
zero probability can be combined recursively by (5), where c[0] = 0 and 0 ≤
j ≤ t− 1. For each sub-block, the mapping can be pre-computed and stored by
Algorithm 2, called as combinational DDT (cDDT) of modular addition. For each
m-bit sub-vector of γ, it can be indexed by α, β, carry bits c[j], corresponding
probability weight w and the number of counts N [w]. It should be noted that,
from the LSB to MSB direction, the carry bits c[j] are obtained by the highest
bits of the adjacent lower sub-block.

{

c[j] = αjm−1||βjm−1||γjm−1;
γ[(j+1)m−1,jm] := cDDT(α[(j+1)m−1,jm], β[(j+1)m−1,jm], c[j], w,N [w]).

(5)
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Algorithm 2: Pre-computing the m-bit combinational DDTs.
1 for each α, β ∈ F

m
2 do

2 α′ = α ≪ 1, β′ = β ≪ 1, AB = α||β;

3 for each c = c2||c1||c0 ∈ F
3
2 do

4 Assign arrays N and N ′ with all zero;
5 for each γ ∈ F

m
2 do

6 γ′ = γ ≪ 1, α′

0 = c2, α
∗ = ¬α′, β′

0 = c1, γ
′

0 = c0;

7 eq = (α∗ ⊕ β′) ∧ (α∗ ⊕ γ′) ∧ (α ⊕ β ⊕ γ ⊕ β′);
8 if eq = 0 then
9 w = wt(¬((¬α⊕ β) ∧ (¬α ⊕ γ)));

10 cDDT[AB][c][w][N [w]] = γ; // 0 ≤ w ≤ m.
11 N [w] + +; // Number of γ with probability weight of w.

12 w′ = wt(¬((¬α ⊕ β) ∧ (¬α ⊕ γ)) ∧ mask(m − 1));

13 cDDT′[AB][c][w′][N ′[w′]] = γ; // 0 ≤ w′ ≤ m − 1.

14 N ′[w′] + +; // Number of γ with probability weight of w′.

15 end

16 end
17 for 0 ≤ i ≤ m do
18 cDDTnum[AB][c][i] = N [i]; // The number of γ with probability weight of i.
19 end
20 cDDTwtmin

[AB][c] = min{i|N [i] 6= 0}; // The minimum probability weight.

21 for 0 ≤ i ≤ m − 1 do
22 cDDT′

num[AB][c][i] = N ′[i];
23 end

24 cDDT′

wtmin
[AB][c] = min{i|N ′[i] 6= 0};

25 end

26 end

For fixed word size n, when m is large, the number of sub-blocks t should be
small, and less times of queries in the combination phase. However, whenm is too
large, the complexity of the pre-computing time and storage space of Algorithm
2 will also be too large. After the trade-off in storage size and lookup times, we
choose m = 8. Before the procedure to search for the differential characteristics,
we first run Algorithm 2 to generate cDDT and cDDT′, where cDDT′ is used
for the most significant sub-block. Algorithm 2 takes about several seconds1

and about 16GB of storage space when m = 8. Analogously, when only input
difference α is fixed, the input difference β and output difference γ can also be
indexed by a similar construction method, this variant of cDDT is omitted here.

3.3 Probability Upper Bound and Pruning Conditions

The exact probability upper bound can be used to prune the branches in the
intermediate rounds and reduce the unnecessary search space.

Corollary 2. Let α, β be the two input differences of addition modulo 2n, for
any n-bit output difference γ with differential probability Pr 6= 0, the upper bound
of the probability should s.t. wt((α⊕ β) ∧mask(n− 1)) ≤ − log2 Pr.

Proof. When Pr 6= 0, it’s easy to get that the elements in array D should
s.t. di ∈ U∗

0 ∪ U∗
1 . When di ∈ {2, 3, 4, 5}, there have δi = αi ⊕ βi, and for

1The time cost depends on the ability of the computation environment. On a 2.5
GHz CPU, it takes about 9 seconds.
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di ∈ {1, 6} there should be δi > αi ⊕ βi. Therefore, wt(δ ∧ mask(n − 1)) ≥
wt((α ⊕ β) ∧mask(n− 1)) always hold when Pr 6= 0. ⊓⊔

For fixed input difference (α, β), the probability weight correspond to all
valid output difference γ can be obtained by summing the probability weights
of all sub-blocks. The possible probability weight should subject to (6).

− log2 Pr ≥ wt((α[n−1,n−m] ⊕ β[n−1,n−m]) ∧mask(m− 1))

+

t−2
∑

j=0

wt(α[(j+1)m−1,jm] ⊕ β[(j+1)m−1,jm]).
(6)

Let probability weights of each sub-block be WXOR[j] = wt(α[(j+1)m−1,jm]⊕
β[(j+1)m−1,jm]) for 0 ≤ j ≤ t−2, andWXOR[t−1] = wt(α[n−2,n−m]⊕β[n−2,n−m]).
For fixed input differences (α, β), 0 ≤ j ≤ t − 1, the probability weight of each
valid γ should also subject to (7).

− log2 Pr ≥

t−1
∑

l=j+1

WXOR[l]+

j
∑

k=0

− log2 Pr((α[(k+1)m−1,km], β[(k+1)m−1,km]) → γ[(k+1)m−1,km]).

(7)

Expressions (6) and (7) can be adopted as the pruning conditions to prune the
branches delicately in the process of combine the n-bit γ, which can eliminate
a large number of γ that will not be the intermediate difference states of the
optimal differential trails.

4 Automatic Search Tool for ARX ciphers

We combine Algorithm 1, Algorithm 2 and the pruning conditions with the
branch-bound search approach to construct the efficient automatic search tool.
The core idea is to prune the difference branches with impossible small probabil-
ities by gradually increasing the probability weights of each modular addition.

Assuming w1 is the probability weight of the first round in the r-round op-
timal differential trail, there should be w1 + Bwr−1 ≤ Bwr. Hence, the total

search space of the first round is no more than
∑Bwr−Bwr−1

w1=0 4 · 6w1 ·
(

n−1
w1

)

. By
gradually increasing the probability weight w1 of the first round and travers-
ing all input-output difference tuples correspond to it, the search space with
probability weight be greater than w1 can be excluded.

In the intermediate rounds, we firstly split the input differences (α, β) of each
modular additon into t m-bit sub-vectors respectively. Then, according to (6),
verifying whether the minimum probability weight correspond to (α, β) satisfies
the condition or not. For valid possible (α, β), call Cap(α, β). By looking up
cDDTs and pruning the branches by (7), the valid γ and possible probability
weight will be generated dynamically. The pseudo code given by Algorithm 3
which is applied to SPECK as an example.
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Algorithm 3: Searching for the optimal differential trails of ARX ciphers,
and taking the application to SPECK as an example, where n = mt, r > 1.

Input: The cDDTs are pre-computed by Algorithm 2. Bw1, · · · , Bwr−1 have been recorded;
1 Program entry: //Bw1 can be derived manually for most ARX ciphers.

2 Let Bwr = Bwr−1 − 1, and Bwr = null;

3 while Bwr 6= Bwr do

4 Bwr + +; //The r-round expected weight increases monotonously from Bwr−1.
5 Call Procedure Round-1;

6 end
7 Exit the program and record the differential trail be found.;

8 Round-1: //w1 increases monotonously.
9 for w1 = 0 to n − 1 do

10 if w1 + Bwr−1 > Bwr then
11 Return to the upper procedure with FALSE state;
12 end
13 Call Algorithm 1 Gen(w1) and traverse each tuple (α, β, γ);
14 if call Round-I(2,γ, β) and the return value is TRUE then
15 Break from Gen(w1) and return TRUE;
16 end

17 end
18 Return to the upper procedure with FALSE state;

19 Round-I(i, α, β): //Intermediate rounds, 2 ≤ i ≤ r.

20 α′ = α ≫ ra, β
′ = α ⊕ (β ≪ rb); // (ra, rb): rotation parameters.

21 Let WXOR [t − 1] = wt((α′

[n−1,n−m] ⊕ β′

[n−1,n−m]) ∧ mask(m − 1));

22 Let WXOR [j] = wt(α′

[(j+1)m−1,jm] ⊕ β′

[(j+1)m−1,jm] , for 0 ≤ j ≤ t − 2;

23 if w1 + ...+ wi−1 +
∑t−1

j=0 WXOR [j] + Bwr−i > Bwr then

24 Return to the upper procedure with FALSE state;
25 end

26 Let AB[j] = α′

[(j+1)m−1,jm] ||β
′

[(j+1)m−1,jm] , for 0 ≤ j ≤ t − 1;

27 Call Cap(α′, β′), and traverse each possible γ; //Where wi = − log2 xdp+((α′, β′) → γ).

28 if i = r and w1 + ...+ wi−1 + wi = Bwr then

29 Let Bwr = Bwr, break from Cap(α′, β′) and return TRUE; //The last round.
30 end

31 if call Round-I(i+ 1, γ, β′) and the return value is TRUE, then
32 Break from Cap(α′, β′) and return TRUE;
33 end
34 Return to the upper procedure with FALSE state;

35 Cap(α, β): //Combining all possible γ correspond to (α, β).

36 for k = 0 to t − 2, and let k′ = t − 1, c[0] = 0 do

37 for wk
i = cDDTwtmin

[AB[k]][c[k]] to m do

38 if
∑i−1

s=1 ws +
∑t−1

l=k+1 WXOR [l] +
∑k

j=0 w
j
i + Bwr−i ≤ Bwr then

39 for x = 0 to cDDTnum[AB[k]][c[k]][wk
i ] − 1 do

40 γ[km+m−1,km] = cDDT[AB[k]][c[k]][wk
i ][x];

41 c[k + 1] = αkm+m−1||βkm+m−1||γkm+m−1; //The carry bits.
42 if k = t − 2 then

43 for wk′

i = cDDT′

wtmin
[AB[k′]][c[k′]] to m − 1 do

44 if
∑i−1

s=1 ws +
∑t−1

j=0 w
j
i + Bwr−i ≤ Bwr then

45 for y = 0 to cDDT′

num[AB[k′]][c[k′]][wk′

i ] − 1 do

46 γ[n−1,n−m] = cDDT′[AB[k′]][c[k′]][wk′

i ][y];

47 Output each γ = γ[n−1,n−m]|| · · · ||γ[m−1,0] and

wi =
∑t−1

j=0 w
j
i ;

48 end

49 end

50 end

51 end

52 end

53 end

54 end

55 end
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In the subroutine Cap(α, β), the least significant t−2 sub-blocks will look up

the cDDT. And the pruning condition
∑i−1

s=1 ws+
∑t−1

l=k+1 WXOR[l]+
∑k

j=0 w
j
i +

Bwr−i ≤ Bwr should be satisfied, in which wj
i increases monotonously. For the

most significant sub-block, to get all possible outputs of it by querying cDDT′.
Then combinining all sub-blocks’ outputs to reconstruct the n-bit output differ-
ence with probability weight of wi =

∑t−1
j=0 w

j
i , and

∑i−1
s=1 ws + wi + Bwr−i ≤

Bwr, where γ = γ[n−1,n−m]|| · · · ||γ[m−1,0]. Nevertheless, the delicate pruning

condition
∑i−1

s=1 ws +
∑t−1

l=k+1 WXOR[l] +
∑k

j=0 w
k
i +Bwr−i ≤ Bwr will exclude

most branches with small probabilities.
Formula (8) is adopted to count the probability of differential effect. In this

tool, the pruning condition can be modified as
∑i−1

s=1 ws + wi + Bwr−i ≤ wmax

(statistical condition) to filter out the trails with probability weights be larger
than wmax. wmin is the probability weight of the optimal differential trail be
selected. The DP is counted by all trails with probability weights between wmin

and wmax. When the probabilities of corresponding trails are too small, these
trails cannot or need not to be searched, as their contribution to the DP can be
ignored. #Trails[w] is the number of differential trails with probability of 2−w.

DP =

wmax
∑

w=wmin

2−w ×#Trails[w] (8)

5 Applications and Results

5.1 Differential Characteristics for SPECK32/48/64

The SPECK [5] family ciphers are typical ARX ciphers that proposed by NSA
in 2013, which have five variants, i.e. SPECK32/48/64/96/128. The state of the
ith round can be divided into two parts according to Feistel structure, i.e. X i

r

and X i
l . Therefore, the round function transition process can be denoted by

X i+1
l = ((X i

r ≫ ra)⊞X i
l )⊕ rki and X i+1

r = X i+1
l ⊕ (X i

r ≪ rb), in which the
rki is the round subkey of the ith round, and (ra, rb) are the rotation parameters
of left and right part respectively. (ra, rb) = (7,2) for SPECK32, and (ra, rb) =
(8,3) for other variants.

Property 1. For SPECK variants, let (αi, βi, γi) be the input-output differences
of modular addition in the ith round, (∆X i

l , ∆X i
r) and (∆X i+1

l , ∆X i+1
r ) are the

input and output difference of ith round. There are αi ≪ ra = ∆X i
l , β

i = ∆X i
r,

γi = ∆X i+1
l , and γi ⊕ (βi ≪ rb) = ∆X i+1

r .

By Algorithm 3, the optimal differential trails we obtained are shown in
Table 1,2. The runtime2 and the differential probabilities are slightly improved
comparing to the existing results, and the obtained optimal differential trails can
cover more rounds. A new 12-round differential for SPECK48 is obtained, shown
in Table 3. For SPECK96/128, due to the large word size, the time complexity is
still too large to directly search for the optimal differential trails covering more
rounds with probabilities close to the security bound (Pr = 2−n).
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Table 1. Runtime and the probabilities of the optimal differential trails for SPECK
variants. In the following tables, w = − log

2
Pr, the ‘s’,‘m’,‘h’,‘d’ represent the time in

seconds, minutes, hours, and days respectively. The columns of ‘tw’ indicate the time
cost in this work, and the time for pre-calculating the cDDTs are not counted.

/ SPECK32 SPECK48 SPECK64 SPECK96 SPECK128

r w
time

w
time

w
time

w
time

w
time

[10] tw [10] tw [10] tw [10] tw [10] tw

1 0 0s 0s 0 0s 0s 0 0s 0s 0 0s 0s 0 0s 0s
2 1 0s 0s 1 0s 0s 1 0s 0s 1 0s 0s 1 0s 0s
3 3 0s 0s 3 0s 0s 3 0s 0s 3 0s 0s 3 0s 0s
4 5 0s 0s 6 0s 0s 6 0s 0s 6 6s 0s 6 22s 2s
5 9 0s 0s 10 1s 0s 10 1m 8s 10 5m 2s 10 26m 13m
6 13 1s 1s 14 3s 0s 15 26m 10m 15 5h 11m 15 2d 80m
7 18 1m 7s 19 1m 17s 21 4h 19m 21 5d 18m 21 3h 2h
8 24 34m 35s 26 9m 77s 29 22h 18h 30 >3d 162h ≤30 >2d >32d
9 30 12m 3m 33 7d 6h 34 >1d 1h ≤39 >32d ≤39 >28d
10 34 6m 2m 40 >3h 16h 38 40m
11 45 2h 42 11m
12 49 40m 46 5m
13 50 5m
14 56 20m
15 62 1h
16 70 91h

Table 2. The 9/11/15-round optimal differential trails for SPECK32/48/64.

SPECK32 SPECK48 SPECK64
r ∆Xr w ∆Xr w ∆Xr w

0 8054A900 3 080048080800 3 4000409210420040 5
1 0000A402 3 400000004000 1 8202000000120200 4
2 A4023408 8 000000020000 1 0090000000001000 2
3 50C080E0 4 020000120000 3 0000800000000000 1
4 01810203 5 120200820200 4 0000008000000080 1
5 000C0800 3 821002920006 9 8000008080000480 3
6 20000000 1 918236018202 12 0080048000802084 6
7 00400040 1 0C1080000090 4 80806080848164A0 13
8 80408140 2 800480800000 2 040F240020040104 8
9 00400542 - 008004008000 3 2000082020200001 4
10 048080008080 3 0000000901000000 2
11 808400848000 - 0800000000000000 1
12 0008000000080000 2
13 0008080000480800 4
14 0048000802084008 6
15 0A0808081A4A0848 -

Table 3. The differentials for SPECK32/48/64.

2n r ∆in ∆out wmin wmax DP Reference

32 9 8054,A900 0040,0542 30 N/A 2−30 [8]

9 8054,A900 0040,0542 30 N/A 2−29.47 [28]

10 2040,0040 0800,A840 35 N/A 2−31.99 [28]
10 0040,0000 0814,0844 36 48 2−31.55 This paper.

48 11 202040,082921 808424,84A905 47 N/A 2−46.48 [8]

11 504200,004240 202001,202000 46 N/A 2−44.31 [28]

11 001202,020002 210020,200021 45 54 2−43.44 This paper.
11 080048,080800 808400,848000 45 54 2−42.86 This paper.

12 080048,080800 840084,A00080 49 52 2−47.3 This paper.

64 14 00000009,01000000 00040024,04200D01 60 N/A 2−59.02 [8]

15 04092400,20040104 808080A0,A08481A4 62 N/A 2−60.56 [28]
15 40004092,10420040 0A080808,1A4A0848 62 71 2−60.39 This paper.
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Fig. 3. The differential propagation of SPECK/SPECKEY is shown in (A), and the
differential propagation of L/L′ are shown in (B) and (C).

5.2 Differential Characteristics for SPARX Variants

SPARX [11] was introduced by Dinu et al. at ASIACRYPT’16, which is de-
signed according to the long trail strategy with provable bound. The SPECKEY
component in SPARX, or called as ARX-Box, which is modified from the round
function of SPECK32. The differential properties of SPECKEY are similar to
that of the round function in SPECK32, see Property 1. For the 3 variants of S-
PARX, we mark them as SPARX-64 and SPARX-128 according to the block size.
For the linear layer functions L/L′ (shown in Fig. 3), their differential properties
are listed in Property 2,3.

Property 2. For SPARX-64, (X ′
0, X

′
1) = L(X0, X1), let a = (∆X0 ⊕∆X1) ≪ 8,

there should be ∆X ′
0 = ∆X0 ⊕ a, and ∆X ′

1 = ∆X1 ⊕ a.

Property 3. For SPARX-128, (X ′
0, X

′
1, X

′
2, X

′
3) = L′(X0, X1, X2, X3), let a =

(∆X0 ⊕∆X1 ⊕∆X2 ⊕∆X3) ≪ 8, there should be ∆X ′
0 = ∆X2 ⊕ a, ∆X ′

1 =
∆X1 ⊕ a, ∆X ′

2 = ∆X0 ⊕ a, and ∆X ′
3 = ∆X3 ⊕ a.

To obtain the optimal differential trails of SPARX, there should make some
modifications to Algorithm 3. In the first round, it is necessary to call Algorith-
m 1 for each addition modulo 216 to generate its input-output difference tuples
with probability weight increase monotonously. There should be nested call Al-
gorithm 1 2/4 times for SPARX-64/SPARX-128 respectively. For every modular
additions in each intermediate round, Cap(α, β) needs to be nested multiple
times to produce its valid output differences. The Property 2/3 of linear lay-
er functions L/L′ will be used to replace the linear properties of SPECK. The
optimal differential trails and differentials for SPARX-64 are listed in Table 43

and Table 5. The 12-round optimal differential trail for SPARX-64 cover 2 more
rounds than the existing results in [3,4]. The 12-round good differential trail is
obtained by taking the input difference of the 11-round optimal differential trail
as a fixed value. Refer to expression (8), if the searched wmax is large enough,
the time complexity and the differential probability also should be larger4.

2All experiments in this paper are carried out serially on a HPC with Intel(R)
Xeon(R) CPU E5-2680 v3 @ 2.50GHz. All differences are represented in hexadecimal.
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Table 4. Probabilities of the optimal differential trails for SPARX-64.

r − log2 Pr ∆in ∆out Time
1 0 0040 0000 0000 0000 8000 8000 0000 0000 0s
2 1 0040 0000 0000 0000 8100 8102 0000 0000 0s
3 3 0040 0000 0000 0000 8A04 8E0E 8000 840A 0s
4 5 0000 0000 2800 0010 8000 840A 0000 0000 0s
5 9 0000 0000 2800 0010 850A 9520 0000 0000 1s
6 13 0000 0000 0211 0A04 AF1A BF30 850A 9520 2s
7 24 0000 0000 1488 1008 8000 8C0A 8000 840a 2h38m
8 29 0000 0000 0010 8402 0040 0542 0040 0542 4h16m
9 35 2800 0010 2800 0010 D761 9764 D221 9224 4h54m
10 42 2800 0010 2800 0010 0204 0A04 0204 0A04 80h
11 48 2800 0010 2800 0010 0200 2A10 0200 2A10 194h35m
12 ≤56 2800 0010 2800 0010 0291 0291 2400 B502 -

Table 5. Comparison of the differentials for SPARX-64.

r ∆in ∆out wmin wmax DP #Trails Time Reference

7 000000007448B0F8 80048C0E8000840A 24 60 2−23.95 56301 28m [3][4]

0000000014881008 80008C0A8000840A 24 30 2−23.82 4 12s This paper.

8 0000000000508402 0040054200400542 29 60 2−28.53 37124 17m [3][4]
0000000000108402 0040054200400542 29 46 2−28.54 194 48m This paper.

9 2800001028000010 5761176452211224 35 58 2−32.87 233155 7h42m [3][4]

2800001028000010 D7619764D2219224 35 47 2−32.96 399 12h19m This paper.

10 2800001028000010 8081828380008002 42 73 2−38.12 1294158 35h18m [3][4]

2800001028000010 02040A0402040A04 42 49 2−38.05 362 17h18m This paper.

11 2800001028000010 02002A1002002A10 48 53 2−43.91 922 98h21m This paper.

12 2800001028000010 029102912400B502 56 58 2−54.83 9 17h37m This paper.

The differential characteristics for SPARX-128 are shown in Table 6, and
the 12/11-round good differential trail for SPARX-64/SPARX-128 are shown
in Table 7. Topt, Tdiff are the time cost for searching the optimal differential
trails and differntials respectively. The 9/10/11-round good differential trail with
probability weight of 34/41/53 are obtained by limiting the probability weight
w1 ≤ 1 of the first round, and Topt is the corresponding time cost.

Table 6. The differential characteristics for SPARX-128.

r wopt Topt ∆in ∆out wmin wmax DP #Trails Tdiff

4 0000 0000 0000 0000 0000 0000 0000 040A

5 0s 0000 0000 2800 0010 0000 0000 0000 0000 5 6 2−3 63 16s
5 0000 0000 0000 0000 0000 0000 850A 9520

9 3m25s 0000 0000 2800 0010 0000 0000 0000 0000 9 12 2−9 1 15s
6 0000 0000 0000 0000 0000 0000 850A 9520

13 7m 0000 0000 0211 0A04 0000 0000 0000 0000 13 16 2−13 1 14s
7 0000 0000 0000 0000 0000 0000 850A 9520

18 17h18m 0000 0000 0a20 4205 0000 0000 0000 0000 18 22 2−18 1 15s
8 0000 0000 0000 0000 AF1A 2A10 2A10 BF30

24 24d17h 0000 0000 1488 1008 0000 0000 850A 9520 24 28 2−23.83 2 9s
9 ≥ 29 0000 0000 0000 0000 0010 0010 0800 2800

≤ 34 27m 0000 0000 2040 0040 0000 0000 0810 2810 34 42 2−31.17 238 2h31m
10 ≥ 38 0000 0000 0000 0000 8040 8140 A040 2042

≤ 41 16h31m 0000 0000 0050 A000 0000 0000 2000 A102 41 48 2−39.98 40 45h22m
11 0000 0000 0000 0000 0040 0542 A102 200A

≤ 53 17d19h 0000 0000 0050 A000 0000 0000 6342 E748 53 53 2−53 1 -



16 Huang et al.

Table 7. The 12/11-round good differential trail for SPARX-64 and SPARX-128.

12-round trail for SPARX-64 11-round trail for SPARX-128

r ∆X0
r || · · · ||∆X3

r w0
r w1

r wr r ∆X0
r ||∆X1

r || · · · ||∆X6
r ||∆X7

r w0
r w1

r w2
r w3

r wr

1 2800001028000010 2 2 4 1 0000000000000000000000000050A000 0 0 0 1 1
2 0040000000400000 0 0 0 2 00000000000000000000000000008002 0 0 0 2 2
3 8000800080008000 2 1 3 3 0000000000000000000000008006800C 0 0 0 6 6
L 8300830281008102 - - - 4 0000000000000000000000009D0C9D3E 0 0 0 7 7
4 0000000083008302 0 5 5 L′

0000000000000000000000008478F082 - - - - -
5 000000008404880E 0 6 6 5 000000008478F0820000000000000000 0 6 0 0 6
6 00000000911AB120 0 8 8 6 00000000C08A02810000000000000000 0 7 0 0 7
L 00000000C4060084 - - - 7 000000000A0000040000000000000000 0 2 0 0 2
7 C406008400000000 8 0 8 8 00000000001000000000000000000000 0 1 0 0 1
8 0A14080400000000 4 0 4 L′

00000000200020000000000000000000 - - - - -
9 2010000000000000 2 0 2 9 20000000000020000000000020002000 1 1 0 2 4
L 2040204000000000 - - - 10 004000402000A000000000002040A040 1 2 0 2 5
10 2040204020402040 2 2 4 11 80408140A0402042000000002000A102 2 4 0 6 12
11 A0002100A0002100 3 3 6 12 00400542A102200A000000006342E748 - - - - -
12 2040A4402040A440 3 3 6
L 2400B5022400B502 - - -
13 029102912400B502 - - -

5.3 Differential Characteristics for CHAM Variants

CHAM [18] is a family of lightweight block ciphers that proposed by Koo et al.
at ICISC’17, which combines the good design features of SIMON and SPECK.
CHAM adopts a 4-branch generalized Feistel structure, and contains three vari-
ants which are denoted by CHAM-n/k with a block size of n-bit and a key size
of k-bit. For CHAM-64/128, the word size w of each branch is 16 bits, and for
CHAM-128/*, w = 32. The rotation parameters of every two consecutive rounds
are (1,8) and (8,1) respectively, and it iterates over R = 80/80/96 rounds for the
three variants.

Let Xr+1 = fr(Xr,K) be the round function of the rth round of CHAM,
1 ≤ r ≤ R. Let’s divide the input state Xr ∈ F

n
2 of the rth round into four

w-bit words, i.e. Xr = Xr[0]||Xr[1]||Xr[2]||Xr[3]. The state transformation of
the round function can be represented by

Xr+1[3] = ((Xr[0]⊕ (r− 1))⊞ ((Xr[1] ≪ ra)⊕RK[(r− 1) mod 2k/w])) ≪ rb,

Xr+1[j] = Xr[j + 1], for 0 ≤ j ≤ 2.

When r mod 2 = 1, there have (ra, rb) = (1, 8), otherwise (ra, rb) = (8, 1).
For a master key K ∈ F

k
2 of CHAM, the key schedule process will generate

2k/w w-bit round keys, i.e. RK[0], RK[1], · · · , RK[2k/w− 1]. For 0 ≤ i < k/w,
Let K = K[0]||K[1]|| · · · ||K[k/w − 1], the round keys can be generated by

RK[i] = K[i]⊕ (K[i] ≪ 1)⊕ (K[i] ≪ 8),

3For the 7-round optimal differential trail with probability weight of 24, we limit
the first round probability weight w1 ≤ 5 to speed up the search process.

4When the statistical condition is omitted in the last round, #Trails will perhaps
be greater than the sum of the number of trail with probability weight ≤ wmax.
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Fig. 4. The difference propagation for the first 4 rounds of CHAM.

RK[(i+ k/w)⊕ 1] = K[i]⊕ (K[i] ≪ 1)⊕ (K[i] ≪ 11).

The input difference ∆Xr = Xr ⊕ X ′
r of the rth round can be denoted by

∆Xr = ∆Xr[0]||∆Xr[1]||∆Xr[2]||∆Xr[3], where ∆Xr[j] ∈ F
w
2 , for 0 ≤ j ≤ 3.

Therefore, the differential propagation property of the round function of CHAM
can be denoted by Property 4. The differential propagation process of the first
4 consecutive rounds of CHAM is shown in Fig. 4.

Property 4. Let∆Xr,∆Xr+1 be the input and output difference of the rth round
of CHAM, there are ∆Xr+1[0] = ∆Xr[1], ∆Xr+1[1] = ∆Xr[2], ∆Xr+1[2] =
∆Xr[3], and ∆Xr+1[3] := δPr(∆Xr[0], ∆Xr[1] ≪ ra) ≪ rb. Where γ :=
δPr(α, β) represents the output difference γ of modular addition that generated
by input differences (α, β) with differential probability of Pr.

In the search process, the input-output difference tuples (α[1], β[1], γ[1])
can be generated by Algorithm 1 directly. Then (β[2], γ[2]) can be obtained
by querying a variant of cDDT based on α[2] = β[1] ≫ 1. And, (β[3], γ[3])
can also be queried by α[3] = β[2] ≫ 8. When r ≥ 4, the input differences
∆Xr[0]||∆Xr[1]||∆Xr[2]||∆Xr[3] can be determined, so, ∆Xr+1[3] can be ob-
tained by querying cDDT based on (∆Xr[0], ∆Xr[1] ≪ ra). The probability
weights of each splitted sub-blocks of the input-output difference tuples increase
monotonously, and the Property 4 should also be introduced, for r ≥ 2.

It should be noted that, the rotation parameters in two consecutive rounds
of CHAM are different. Let Bw∗

r be the probability weights of the truncated
optimal differential trails that starting with rotation parameter (ra, rb) = (8, 1).
Hence, when searching for the optimal differential trail of CHAM, in the pruning
condition

∑i−1
s=1 ws +wi +Bwr−i ≤ Bwr, if current round i is odd, the pruning

condition should be replaced with
∑i−1

s=1 ws + wi +Bw∗
r−i ≤ Bwr. Correspond-

ingly, when searching for Bw∗
r , if current round i is even, the pruning condition

should be
∑i−1

s=1 ws+wi+Bw∗
r−i ≤ Bw∗

r , otherwise
∑i−1

s=1 ws+wi+Bwr−i ≤ Bw∗
r .

For CHAM variants, the differential characteristics with a probability of
P ≥ 2−n we obtained are listed in Table 8 and Table 9. The details of the
differential characteristics are shown in Table 11. Compared to the results given
by the authors of CHAM, our results can cover more rounds, shown in Table
10. For CHAM-128/*, we get an interesting observation from the differential
characteristics obtained, shown in Observation 1.
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Table 8. The probability weights of the best differential trails for CHAM-64.

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Bwr 0 0 0 0 1 1 2 3 4 5 6 7 8 9 11 14 15 16 19 22
Bw∗

r 0 0 0 0 1 1 2 3 4 5 6 7 8 9 11 13 15 16 18 22
Round 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Bwr 23 26 29 30 32 35 38 39 41 44 46 48 49 51 55 56 58 61 64
Bw∗

r 23 25 29 31 34 36 38 40 42 45 47 48 50 52 54 57 58 60 64

Table 9. The probability weights of the best differential trails for CHAM-128/*.

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Bwr 0 0 0 1 1 2 2 3 5 6 7 8 9 11 13 16 17 18 21 24 26 28
Bw∗

r 0 0 0 1 1 2 2 3 5 6 7 8 9 11 13 16 17 18 21 24 26 28

Round 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
Bwr 31 33 35 39 43 46 48 53 57 61 65 67 70 72 73 75 78 80 81 83 86 87
Bw∗

r 31 34 36 39 43 46 49 51 55 62 64 67 69 72 74 76 78 81 82 83 85 88

Round 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
Bwr 88 90 93 96 97 99 102 104 105 107 110 113 114 116 119 121 122 124 127 130
Bw∗

r 90 92 94 96 99 100 102 105 107 108 110 113 115 116 118 121 123 125 127 130

Table 10. Comparison of the differential characteristics on CHAM.

V ariants r Pr ∆in ∆out Reference

CHAM-64/128 36 2−63
0004 0408 0A00 0000 0005 8502 0004 0A00 [18]

39 2−64
0020 0010 1020 2800 1008 0010 2000 1000 This paper.

CHAM-128/* 45 2−125
01028008 08200080 00000000 00110004 [18]
04000040 42040020 04089102 00080010

63 2−127
80000000 40000000 00400010 00008000 This paper.
00408000 00200080 00004000 80000040

Observation 1. For CHAM-128/*, let ∆X1
0 || · · · ||∆X1

3
16
−→ ∆X17

0 || · · · ||∆X17
3

be a 16-round differential trail Υ1 with a probability of P1, and ∆X17
j = ∆X1

j ≪

4 for 0 ≤ j ≤ 3. Hence, for consecutive 16t-round reduced CHAM-128/*, there

have such a differential trail, i.e.∆X1
0 || · · · ||∆X1

3
r=16t
−→ ∆Xr+1

0 || · · · ||∆Xr+1
3 with

a probability of P = P1 × · · · ×Pt, t ≥ 1. Where P2, · · · , Pt can be derived from
the probability of Υ1, the input differences of each round of the differential trail
can be denoted by ∆X i

j = ∆X i mod 16
j ≪ (4⌊ i

16⌋), for 0 ≤ j ≤ 3 and i > 16.

Let (∆X1
0 || · · · ||∆X1

3 ) = (80000000400000000040800000200080), the proba-
bilities of the 16-round differential trails Υ1/Υ2/Υ3/Υ4 are P1 = 2−32, P2 = 2−33,
P3 = 2−31, and P4 = 2−34. We can experimentally deduce the probabilities of the
additional two 16-round differential trail Υ5 and Υ6, where P5 = 2−33, P6 = 2−32.
Therefore, for the full round of CHAM-128/128 and CHAM-128/256, we can get
the differential characteristics Υ1 → · · · → Υ5 and Υ1 → · · · → Υ6 of 80/96-round
with probabilities of 2−163 and 2−195 respectively.

Υ1 : 80000000400000000040800000200080→ 00000008000000040408000002000800
Υ2 : 00000008000000040408000002000800→ 00000080000000404080000020008000
Υ3 : 00000080000000404080000020008000→ 00000800000004000800000400080002
Υ4 : 00000800000004000800000400080002→ 00008000000040008000004000800020
Υ5 : 00008000000040008000004000800020→ 00080000000400000000040808000200
Υ6 : 00080000000400000000040808000200→ 00800000004000000000408080002000
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Table 11. The best differential trails for CHAM-64/128 and CHAM-128/*.

39-round trail for CHAM-64/128 64-round trail for CHAM-128/*
r ∆Xr

0 || · · · ||∆Xr
3 wr r ∆Xr

0 || · · · ||∆Xr
3 wr

1 0020 0010 1020 2800 1 1 80000000 40000000 00408000 00200080 0
2 0010 1020 2800 0000 2 2 40000000 00408000 00200080 00000000 2
3 1020 2800 0000 4000 3 3 00408000 00200080 00000000 01000000 3
4 2800 0000 4000 2040 2 4 00200080 00000000 01000000 00810000 2
5 0000 4000 2040 5000 0 5 00000000 01000000 00810000 00400100 1
6 4000 2040 5000 0080 2 6 01000000 00810000 00400100 00000002 1
7 2040 5000 0080 0040 2 7 00810000 00400100 00000002 00000001 3
8 5000 0080 0040 4080 2 8 00400100 00000002 00000001 01020000 3
9 0080 0040 4080 A000 1 9 00000002 00000001 01020000 00800200 1
10 0040 4080 A000 0000 1 10 00000001 01020000 00800200 00000000 2
11 4080 A000 0000 0001 3 11 01020000 00800200 00000000 04000000 3
12 A000 0000 0001 8100 1 12 00800200 00000000 04000000 02040000 2
13 0000 0001 8100 4001 1 13 00000000 04000000 02040000 01000400 1
14 0001 8100 4001 0200 2 14 04000000 02040000 01000400 00000008 2
15 8100 4001 0200 0100 2 15 02040000 01000400 00000008 00000004 3
16 4001 0200 0100 0201 3 16 01000400 00000008 00000004 04080000 3
17 0200 0100 0201 8003 1 17 00000008 00000004 04080000 02000800 1
18 0100 0201 8003 0000 2 18 00000004 04080000 02000800 00000000 2
19 0201 8003 0000 0004 4 19 04080000 02000800 00000000 10000000 3
20 8003 0000 0004 0402 2 20 02000800 00000000 10000000 08100000 2
21 0000 0004 0402 0007 1 21 00000000 10000000 08100000 04001000 1
22 0004 0402 0007 0800 2 22 10000000 08100000 04001000 00000020 2
23 0402 0007 0800 0400 4 23 08100000 04001000 00000020 00000010 3
24 0007 0800 0400 0004 4 24 04001000 00000020 00000010 10200000 3
25 0800 0400 0004 0002 1 25 00000020 00000010 10200000 08002000 1
26 0400 0004 0002 0000 1 26 00000010 10200000 08002000 00000000 2
27 0004 0002 0000 0000 1 27 10200000 08002000 00000000 40000000 3
28 0002 0000 0000 0000 1 28 08002000 00000000 40000000 20400000 2
29 0000 0000 0000 0004 0 29 00000000 40000000 20400000 10004000 0
30 0000 0000 0004 0000 0 30 40000000 20400000 10004000 00000080 2
31 0000 0004 0000 0000 1 31 20400000 10004000 00000080 00000040 3
32 0004 0000 0000 0800 1 32 10004000 00000080 00000040 40800000 3
33 0000 0000 0800 0008 0 33 00000080 00000040 40800000 20008000 1
34 0000 0800 0008 0000 1 34 00000040 40800000 20008000 00000000 1
35 0800 0008 0000 0010 2 35 40800000 20008000 00000000 00000001 3
36 0008 0000 0010 1008 1 36 20008000 00000000 00000001 81000000 2
37 0000 0010 1008 0010 1 37 00000000 00000001 81000000 40010000 1
38 0010 1008 0010 2000 2 38 00000001 81000000 40010000 00000200 2
39 1008 0010 2000 1000 3 39 81000000 40010000 00000200 00000100 2
40 0010 2000 1000 2810 - 40 40010000 00000200 00000100 02000001 3

41 00000200 00000100 02000001 80020000 1
42 00000100 02000001 80020000 00000000 2
43 02000001 80020000 00000000 00000004 3
44 80020000 00000000 00000004 04000002 1
45 00000000 00000004 04000002 00040001 1
46 00000004 04000002 00040001 00000800 2
47 04000002 00040001 00000800 00000400 3
48 00040001 00000800 00000400 08000004 3
49 00000800 00000400 08000004 00080002 1
50 00000400 08000004 00080002 00000000 2
51 08000004 00080002 00000000 00000010 3
52 00080002 00000000 00000010 10000008 2
53 00000000 00000010 10000008 00100004 1
54 00000010 10000008 00100004 00002000 2
55 10000008 00100004 00002000 00001000 3
56 00100004 00002000 00001000 20000010 3
57 00002000 00001000 20000010 00200008 1
58 00001000 20000010 00200008 00000000 2
59 20000010 00200008 00000000 00000040 3
60 00200008 00000000 00000040 40000020 2
61 00000000 00000040 40000020 00400010 1
62 00000040 40000020 00400010 00008000 2
63 40000020 00400010 00008000 00004000 3
64 00400010 00008000 00004000 80000040 3
65 00008000 00004000 80000040 00800020 -
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6 Conclusions

In this paper, we revisit the differential properties of modular addition. An algo-
rithm to obtain all input-output difference tuples of specific probability weight,
a novel concept of cDDT, and the delicate pruning conditions are proposed.
Combining these optimization strategies, we can construct the automatic search
algorithms to achieve efficient search for the differential characteristics on ARX
ciphers. As appling, more tight differential probabilities for SPECK32/48/64
have been obtained. The differential characteristics obtained for SPARX vari-
ants are the best so far, although it does not threaten the claimed security.
When considering key recovery attacks on CHAM-128/128 and CHAM-128/256
based on the differential characteristics of CHAM we obtained, and as its au-
thors claimed that one can attack at most 4+ 2(k/w− 4)+ 3 rounds more than
that of the differential characteristics obtained, therefore, the security margin of
CHAM-128/* will be less than 20%. It can be believed that, our tool can also
be ultilized to differential cryptanalysis on other ARX-based primitives.

Acknowledgements. The authors will be very grateful to the anonymous re-
viewers for their insightful comments. And we are especially thankful to Qingju
Wang and Vesselin Velichkov for their helpful suggestions. This work was sup-
ported by the National Key Research and Development Program of China (No.
2017YFB0801900).

A. How to Apply to Other ARX Ciphers

For an iterated ARX cipher, assumming that there are NA additions modulo
2n in each round, for example, NA = 1/2/4/1 for SPECK/SPARX-64/SPARX-
128/CHAM respectively. And the difference propagation properties of the linear
layer between adjacent rounds can also be deduced, for example, as shown in
Property 1/2/3/4. The following four steps demonstrate how to model the search
strategy for the r-round optimal differential trail of an ARX cipher.

Step 1. Pre-compute and store cDDT. Call Program entry and gradually
increase the expected probability weight Bwr.

Step 2. Gradually increasing the probability weights wi (1 ≤ i ≤ r1) of
each round for the front r1 rounds. Simultaneously, generating the input-output
difference tuples (αi,j , βi,j , γi,j) for each addition by Gen(wi,j). Where wi,j = 0

to n − 1, and wi =
∑NA

j=1 wi,j . Make sure all input differences (αr1+1,j , βr1+1,j)
of each modular addition in the (r1 + 1)-round can be determined after the
propagation. For example, r1 = 1/1/3 for SPECK/SPARX/CHAM respectively.

Step 3. In the middle rounds (r1 < rm ≤ r), for each addition, spliting
its input differences (αrm,j , βrm,j) into n/m m-bit sub-blocks and verifying the
pruning condition (7). Call Cap(αrm,j, βrm,j) for fine-grained pruning, and get

the possible γrm,j and probability weight wrm,j , where wrm =
∑NA

j=1 wrm,j.
Step 4. Iteratively call Step 3 till the last round. Checking whether the

expected probability weight Bwr =
∑r

s=1 ws or not. If it is, record the trail and
stop, otherwise the execution should continue.
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