
Homomorphic Encryption Random Beacon

Alisa Cherniaeva
Corestar ∗

Ilia Shirobokov
Corestar †

Omer Shlomovits
ZenGo ‡

November 14, 2019

Abstract

A reliable source of randomness is a critical element in many cryptographic systems.
A public randomness beacon is a randomness source generated in a distributed manner
that satisfies the following requirements: Liveness, Unpredictability, Unbiasability and
Public Verifiability.

In this work we introduce HERB: a new randomness beacon protocol based on ad-
ditively homomorphic encryption. We show that this protocol meets the requirements
listed above and additionaly provides Guaranteed Output Delivery.

HERB has a modular structure with two replaceable modules: an homomorphic
cryptosystem and a consensus algorithm.

In our analysis we instantiate HERB using ElGamal encryption and a public blockchain.
We implemented a prototype using Cosmos SDK to demonstrate the simplicity and effi-
ciency of our approach. HERB allows splitting all protocol participants into two groups
that can relate in any way. This property can be used for building more complex par-
ticipation and reward systems based on the HERB solution.

1 Introduction
A lot of modern applications require a reliable source of randomness. Individual parties can
rely on local random generators but there are many cases when participants want to obtain
a publicity verifiable randomness source that cannot be biased by a third party. This ap-
proach is especially important for decentralized systems since even a single centralized node
within a system eliminates the whole idea of a decentralized approach. Distributed random
generation can benefit such systems as Tor Hidden Services [SDM04]; secure generation of
cryptographic protocols parameters [Ber+15]; voting protocols like Helios [Adi08]; private
messaging systems like Vuvuzela [VDH+15] or Herbivore [GRPS03]; gambling companies
such as FunFair [LH17], TruePlay [TP], DAO Casino [DC]; Byzantine agreement algorithms
[CKS05]; etc.

Rabin [Rab83] first proposed the concept of randomness beacon that publishes unpre-
dictable and unbiased numbers at some regular intervals. The original concept relies on a
trusted third party such as NIST random beacon [NIST], Random.org [Rand] or Oraclize.it
[Ora]. This approach carries drawbacks associated with centralized services, in particular,
∗a.cherniaeva@corestar.io
†i.shirobokov@corestar.io
‡omer@ZenGo.com

1

inability to verify a random number generated, risk of tampering and risk of benefit from
the prior knowledge of the randomness. In this paper we aim to develop a decentralized
randomness beacon with the following properties, specified in other randomness beacon
research works [AMM18], [Syt+17], [SJSW18]:

• Availability (or liveness) - any single participant (or colluding participants) should
not be able to prevent a random number generation process.

• Unpredictability - any single participant (or colluding participants) should not be
able to obtain any information about future random beacon values.

• Unbiasability (or bias-resistance) - any single participant (or colluding partici-
pants) should not be able to influence future random beacon values to their advantage.

• Public-Verifiability - third parties should be able to verify the correctness of gen-
erated values using public information only.

Definition 1.1. We call a randomness generation process a Random Beacon if the properties
of availability, unpredictability, bias-resistance and public verifiability holds.

Below we introduce a publicly verifiable random beacon protocol based on partially ho-
momorphic encryption scheme. Details about our implementation of the scheme and per-
formance metrics can be found in Section 5.

1.1 Related Work
The decentralized random number generation problem was originally raised in [Blu83] by
Blum. This article covers a protocol allowing to generate a random bit via a telephone line.
Lack of a bias-resistance property appeared to be the core issue of the coin tossing protocol
and of more complex protocols [LMR83], [MNS09], [BOO10] built on it. Cleve [Cle86]
demonstrated that for any r-round coin-tossing protocol there exists an efficient adversary
that can bias the output of the honest party. This bias gets reduced as the number of rounds
increases causing such protocols to be complicated communication-wise.

With decentralized systems and blockchain technology gaining popularity over the recent
years, research in randomness beacons has gained interest.

A closely related result to our work is a concurrent paper by Nguyen-Van et. al [NV+].
This protocol uses homomorphic encryption, verifiable random functions and a public dis-
tributed ledger. The protocol is driven by leader (requester) and does not provide the
liveness and bias-resistance properties without trusted third party.

A large class of considered random beacon protocols is based on the Schoenmakers’ Public
Verifiable Secret Sharing scheme [Sch99] and its improved modifications. This class includes
number generation protocols like RandHound and RandHerd [Syt+17], Scrape [CD17], Hy-
dRand [SJSW18], as well as Caucus [AMM18] and Ouroboros [KRDO17] solutions. The
approach features a high level of communication complexity and all attempts to reduce it
entail drawbacks. [Syt+17] has failure probability, [SJSW18] solution provides probabilistic
guarantees for unpredictability and complete unpredictability is only achievable for ran-
dom data generated after a specific number of rounds. For some use cases this approach
represents a considerable issue.

2

Dfinity protocol [HMW18] is based on unique signatures [GO92]. It uses the threshold
version of the BLS signature [BLS01]. Unique signatures enable computation and commu-
nication complexities that fully comply with requirements to randomness beacon practical
use. Yet, a new challenge arises when it comes to selecting the best initialization vector for
this scheme. At a first glance, it may seem that we are back to the problem of distributed
random number generation, however in terms of both security and performance this proce-
dure may be subject to less strict requirements. The BLS signature scheme assumes elliptic
curve pairings, which is an additional security assumption not necessary in our solution.
Finally, Dfinity protocol requires trusted setup or distributed key generation phase.

Slow-timed hash functions defined by Lenstra and Wesolowski [LW15] represent one of
the Verifiable Delay Functions (VDF) described in [BBBF18] by Boneh et al. The VDF
concept was elaborated in papers by Wesolowski [Wes18], Pietrzak [Pie18] and Boneh ,
Bünz and Fisch [BBF18]. The main idea is that the adversary cannot bias the output of the
random beacon because it cannot calculate the result in the given time window. Applying
VDF is closely interrelated with issues posed by implementing ASICs or protection from it,
as hardware solutions may considerably accelerate the VDF computation. Another challenge
is designing a secure way of getting input for the VDF.

Honey Badger BFT protocol [Mil+16] is a randomized BFT asynchronous protocol with
unpredictable output that can also be used as a randomness beacon. As the BLS-based
protocol, Honey Badger requires trusted setup or distributed key generation. The idea to
use a PoW blockchain as a random number source is covered by Bonneau et al. in [BCG15]
and Bentov et al. in [BGZ16]. The main issue is that PoW blockchains cannnot provide
bias-resistance property. Finally, there are approaches other than randomness beacon; these
are aimed at number generation between two parties only, see Game Channels [CSD18] and
Fate Channels [LH17].

More information about related solutions can be found in Section 7.

1.2 Our contribution
This paper introduces Homomorphic Encryption Randomness Beacon (HERB), a proto-
col geared towards the continuous provision of publicly verifiable randomness at regular
intervals. We demonstrate an analysis including proofs showing that the protocol indeed
meets the above requirements. Additionally, HERB protocol provides Guaranteed Output
Delivery [RBO89] which is considered an important additional property for random beacon
security in [CD17]. [KRDO17], [SJSW18]. We suggest using the threshold version of ElGa-
mal cryptosystem as homomorphic encryption for HERB, but other threshold homomorphic
encryption scheme can be suitable. We use ElGamal based on elliptic curve group of prime
order with a message encrypted to support linear homomrphism (ElGamal in the exponant
[ST04]). ElGamal is fast, well studied, and assumes only EC-DDH.

In simplified terms the random number generation process can be represented in the
following way: each participant encrypts their part of the secret and publishes the cipher-
text. Then, all the encrypted shares are joined. Only after being joined, the fragments are
cooperatively decrypted by participants. Thus each participant contributes to the random
number generation, and the result can only be derived through their joint effort.

This approach allows for obtaining a communication complexity of O(n3) without using
Public Blockchain and O(n2) with it. The optimizations presented in this article may reduce
complexity to O(n2) without using Public Blockchain, but they require more elaborate
research.

3

Each HERB participant can select their own entropy source, in particular, they can use
the True Random Number Generators based on quantum physics [Ste+00].

Our protocol requires performing a distributed key generation protocol before the core
generation phase.

Note that we are far from suggesting HERB as some silver bullet fighting all problems
in decentralized random number generation. It is just one more approach that can be more
suitable than others for some specific cases. For example, HERB fits well with smart-
contract based random beacon implementation such as it has a straightforward structure,
doesn’t require pairings and participants have to send only two transactions with relatively
small amounts of data.

This paper is organized as follows. Section 2 contains a network model description.
Section 3 gives basic notations and cryptographic primitives used in the HERB protocol.
Section 4 covers the HERB protocol and Distributed Key Generation protocol used as a
setup phase for HERB. Section 5 contains detailed coverage of HERB’s security properties.
Section 6 describes HERB implementation. Section 7 compares HERB to other related
protocols and concludes the paper.

2 Model
We assume a synchronous system with a fully connected network point–to–point channels
between n parties (nodes). It is assumed that there is a malicious adversary able of control-
ling t system participants at most, where n = 3t + 1. The adversary can diverge from the
specified protocol in any way.

3 Preliminaries
In this section, we introduce definitions and notation used throughout the paper.

We denote the set of nodes as {idi}i=1,...,n, where idi is Identifier of i-th participant.
Let G be a cyclic group written in additive notation of prime order q with generator G.
We use an additive notation for all groups in this article since it is assumed that further
implementation of the suggested protocols is most likely to occur within elliptic curves.
When writing x $←− S we mean that x is chosen uniformly at random from the set S. By
hash we denote some cryptographic hash function.

Let G be a large cyclic group of prime order q with generator G. The Decisional Diffie-
Hellman (DDH) problem is, for the given quadruple G, x·G, y ·G and z ·G, where x, y, z ∈ Zq,
to determine whether or not z ·G = (xy) ·G.

We assume that the DDH problem is hard in the chosen cyclic group.

3.1 Zero Knowledge Proofs for Discrete Logarithm Relations
ZK-proofs are protocols involving two parties: the Verifier and the Prover. When the
protocol is executed, the Prover convinces the Verifier that they have a solution for a certain
mathematical witness without disclosing any further data. The Verifier has to make sure that
the Prover indeed has the necessary information. Generally, the following core properties
for such proof systems are specified:

4

1. Completeness. The Prover can convince the Verifier of a true statement using a
witness.

2. Soundness. The Prover cannot convince the Verifier of a false statement.

3. Zero-knowledge. If a statement is true then the proof does not reveal any useful
information about the witness.

We use non-interactive zero-knowledge proofs (NIZK) for discrete logarithm relations in
our protocol. We describe these proofs for groups in additive notation.

NIZK of Correct ElGamal Encryption. We use Σ protocol described in Appendix
A and turn it into NIZK using Fiat-Shamir heuristic [FS86]. Proof of Correct Encryption
(CE) allows to the Prover convince the Verifier that they knows the witness ω = (x, r) for
the statement δ = (G,Q,B,A), where Q = xG, (A,B) = (rG, xG+ rQ).

Algorithm 1 CE(G,Q,A,B)
Input: G,Q,A,B ∈ G; x, r ∈ Zq
Output: π = (e, z1, z2) - proof that the prover knows valid x, r.

1. T = s1 ·G+ s2 ·Q, E = s2 ·G, s1, s2
$←− Zq

2. e = hash(A,B, T,E)

3. z1 = s1 + x · e (mod q), z2 = s2 + r · e (mod q)

4. π = (e, z1, z2)

Everyone, who knows π,G,Q,A,B can verify the proof by reconstructing the commit-
ments T ′ and E′ then checking equation how it shown in CE-Verify. This is an algorithm
that either accepts (b = 1) or rejects (b = 0) proof π to secret values x, r.

Algorithm 2 CE-Verify(π,Q, T,A,B)
Input: π = (e, z1, z2);G,Q,A,B ∈ G
Output: b ∈ {1, 0}

1. T ′ = z1 ·G+ z2 ·Q− e ·B

2. E′ = z2 ·G− e ·A

3. e′ = hash(A,B, T ′, E′)

4. If e′ ?
= e then b = 1

Else b = 0

We use CE proofs to enforce parties to publish only correct ciphertexts.

5

NIZK for Discrete Logarithm Equality. Proof for Discrete Logarithm Equality (DLEQ)
allows to the Prover convince the Verifier that they knows the witness x ∈ Zq such that
Y = xG, Z = xQ for the statement (Y,G,Z,Q). We use Σ protocol descrived by Chaum
and Pedersen [CP92] and turn it into a NIZK using Fiat-Shamir heuristic [FS86].

Algorithm 3 DLEQ (Y,G,Z,Q)
Input: Y,G,Z,Q ∈ G, x ∈ Zq
Output: π = (e, z) - proof.

1. A1 = w ·G, A2 = w ·Q for w $←− Zq

2. e = hash(Y, Z,A1, A2)

3. z = w − x · e (mod q)

4. π = (e, z)

Everyone, who knows π, Y,G,Z,Q can verify the proof by reconstructing the commit-
ments A′1 and A′2 then checking equation how it shown in DLEQ-Verify. This is algorithm
that either accepts (b = 1) or rejects (b = 0) proof π to secret value x.

Algorithm 4 DLEQ-Verify(π, Y,G,Z,Q)
Input: π = (e, z);Y,G,Z,Q ∈ G
Output: b ∈ {1, 0}

1. A′1 = z ·G+ e · Y

2. A′2 = z ·Q+ e · Z

3. e′ = hash(Y, Z,A′1, A
′
2)

4. If e′ ?
= e then b = 1

Else b = 0

We use DLEQ proof for verification of partial decryption of an ElGamal ciphertext.

3.2 Homomorphic Properties of Cryptosystems
Homomorphic encryption allows us to operate with ciphertext directly without decryption.
Let’s assume that there is an encryption function E(k,m), where k stands for the encryption
key and m is a public text. E is then considered partially homomorphic with respect to
some operation ∗ as long as there is an effective T algorithm that receives E(k,m1) and
E(k,m2) as input and returns an encrypted ciphertext C = T (E(k,m1), E(k,m2)) that
yields a public m1 ∗m2 message after decryption C.

The difference between partially homomorphic encryption (PHE) and fully homomor-
phic encryption (FHE) is that FHE schemes support arbitrary computation on ciphertexts.

6

In this article PHE is considered and, unless stated otherwise, any further reference to
homomorphic encryption implies PHE.

3.3 ElGamal
ElGamal Encryption system is an asymmetric key encryption algorithm for public key cryp-
tography described by ElGamal in 1985 [ElG85]. This scheme is secure if the decision
Diffie-Hellman assumption holds [TY98]. In this paper, we are going to use elliptic curve
ElGamal cryptosystem. Below we are going to cover the classic and threshold versions of
ElGamal cryptosystem.

Let p - large prime number. The elliptic curve E defined in field Fp, its cyclic subgroup
G ∈ E(Fp) has prime order q. Generator of group G is G.

Classic ElGamal Cryptosystem defined by the following algorithms:

• Setup(1λ): Choose a private key x $←− Zq and a public key Q = xG.

• Encrypt(Q,m): Encode message m to the pointM ∈ G (e.g. using Koblitz’s method
[BCR10]). The ciphertext is C = (rG,M + rQ), r $←− Zq.

• Decrypt(C, x): For the ciphertext C = (A,B) ∈ E(Fp)× E(Fp), decrypted point is
M = B − xA. Decode point M to the message m.

For our purpose, we need a threshold ElGamal cryptosystem. Threshold cryptosystem
allows any system participant to encrypt a message so that only a subset of size greater
t parties could decrypt it. Note that for the Setup phase we need a DKG protocol. We
discuss this question in 4.1 section.

(t, n)-Threshold ElGamal Cryptosystem comprises five algorithms [FP01]:

• Setup(n, t, 1λ): Key Generation Procedure, which generates the common public key
PK, participants’ secret keys ski, i ∈ {1, ..., n} and verification keys V Ki, i ∈ {1, ..., n}.
This procedure detailed described in section 4.1.

• Encrypt(PK, m): Same as classic ElGamal encryption.

• ShareDecrypt(PK, C, ski): For the ciphertext C = (A,B) decryption share µi =
(i, µ′i, πi), where µ′i = ski ·A, πi - proof of correctness of decryption share.

• ShareVerify(PK, C, µi, V Ki): Verification of the proof πi.

• Decrypt(PK, C, µ1, ..., µt+1): D = Recover(µ1, ..., µt+1). Decrypted messageM =
B −D.

Function Recover can reconstruct the point D from a list of public shares µ1, ..., µt+1

using Lagrange interpolation.

7

4 HERB Protocol
The HERB protocol is aimed at implementing a bias-resistant, publicly-verifiable and unpre-
dictable random beacon. The protocol is based on the ElGamal encryption system covered
in §3.3. If needed, it can be replaced with any other threshold homomorphic encryption
scheme that has an efficient algorithm for decentralized key generation. The HERB proto-
col implies two participant roles: key holders cooperating at all protocol stages and entropy
providers only contributing when ciphertext are published. These two sets can relate in any
way.

Let’s introduce the notion of a ciphertext share. Ciphertext share is a random number
encrypted by a single entropy provider via a specific encryption system.

HERB protocol works in rounds, Each round includes the publication and the disclosure
phases as described below:

1. Setup phase: All key holders together generate the common public key and shares of
the private key. Setup is carried out once.

2. Publication phase: Each entropy provider publishes a ciphertext share. Upon comple-
tion, every participant can aggregate the published ciphertext shares into a common
ciphertext.

3. Disclosure phase: Threshold of Key holders together decrypt the aggregated cipher-
text.

Note that for convenience we use a cryptographic hash function to convert the protocol
result into a fixed-length bit string.

The homomorphic property of suitable cryptosystems makes them malleable, i.e. for
given C = Enc(PK,m) it is feasible to compute C ′ = Enc(PK, f(m)), where f is nontrivial
function and C ′ 6= C [Wik02]. Therefore, the entropy provider that is the last to publish
their ciphertext share is able to obtain the random number they need. We avoid this by
using non-interactive zero-knowledge proofs. As far as the protocol herein is concerned, the
homomorphic property enables creating aggregated ciphertext and decrypting it without
decrypting the shares it consists of. To ensure non-malleability, the validity of the ciphertext
shares and of decryption shares will be confirmed via published NIZKs.

4.1 Setup
Let p is large prime number. The elliptic curve E defined over field Fp. Group G = E(Fp)
has prime order q. For instance, E can be represented by P -256, P -384 and P -521 curves
from FIPS 186-4[KD13]. Let G be the generator of group G. Let H be another generator of
G with unknown discrete log. H can be derived in a deterministic way from G by hashing
G and interpret as a point or in a similar way as described in [Tan05]. We assume a group
of n key holders and m entropy providers. Any subset of size t + 1 key holders can obtain
the result of the random number generation.

Key generation is an initial phase for the threshold ElGamal system. We cannot use
centralized solutions, e.g. Shamir’s Secret Sharing [Sha79], which will make HERB pre-
dictable and non bias-resistant by a centralized key generator. Instead we are going to use
distributed key generation (DKG) protocol. It allows a set of n key holders to generate
jointly a public key and shares of the secret key spread among the participants of the DKG

8

protocol such that any subset of size greater then threshold value t can use distributed secret
key without revealing this key.

We prefer to use the DKG protocol described by Gennaro et al. in [Gen+07]. We note
that one can use any other DKG protocol Depending on the system security assumptions
suitable of one system.

We slightly modify the DKG from [Gen+07] by adding verification key computation at
the last phase of the protocol (step 4.3). Verification keys ensure that each key holder is
able to prove fair acting in the course of the joint message decryption. See Appendix for
our modified DKG.

4.2 Random Generation Process
In this part, we introduce our random generation algorithm. Given in protocol 5. We use the
linear homomorphism property to sum ciphertext shares from t+ 1 entropy providers. Each
entropy provider is free to select their own local entropy source for their random number
share. In that sense the randomness is additive.

Communication can be done using a peer-to-peer fully connected network and Byzantine
Fault Tolerance consensus algorithm but we describe our solution using a bulletin board or
a public ledger that can run arbitrary logic (smart contract) on public information. More
information about using a consensus algorithm presented in the Future Work section.

A bulletin-board ensures tamper-proof history, integrity, availability, support of user
authentication and publicly auditability. In practice, a public blockchain can be used as
a bulletin board. In the case of HERB, this approach is implemented as follows: entropy
providers send their ciphertext shares Ci and relevant proofs to the blockchain where the
system (e.g. smart contract) records and checks them. Once the predefined conditions are
met (time period or a sufficient number of ciphertexts, depending on the system settings),
an aggregated ciphertext C is built from all the obtained shares. Therefore, published
ciphertext shares with the relevant proofs publicly available and each participant can check
them independently.

Remark. To generate a random pointM , participant takes y $←− Zq and calculates y ·G = M .
This random point generation method was selected to enable proofs πCE generation, as to
do it a participant has to know the logGM number.

5 Security
This section covers how HERB meets guaranteed output delivery property and core re-
quirements to a decentralized randomness beacon: liveness, unpredictability, bias-resistance
and public verifiability. Let’s assume that at the moment of execution the random number
generation goal is fixed and cannot be changed (for example, if results are to be used in a
round of roulette, all bets have to be off).

Since key generation is somewhat out of the scope of the present let us assume that
the key generation protocol was already executed and that the private keys of the honest
protocol participants were kept private. Security of the selected DKG within the suggested
model is proved in [Gen+07].

We consider adaptive adversary, that can choose which nodes to corrupt after the pro-
tocol execution begins. It is also assumed that each honest node complies with the protocol

9

Protocol 5 HERB
We start by running DKG between n key holders {idi}1≤i≤n, where it is assumed that
at most t are malicious. These key holders use the DKG protocol to obtain keys for the
ElGamal cryptosystem. There is a set of m entropy providers {ej}1≤j≤m that are able to
submit ciphertext shares.

1. Each entropy provider ej , 1 ≤ j ≤ m, generates random pointMj ∈ G. Then encrypts
it:

Encrypt(Q,Mj) = (rjG,Mj + rjQ) = (Aj , Bj) = Cj , for rj
$←− Fq.

2. ej publishes Cj along with NIZK of correct encryption (see algorithm 1):

Cj = (Aj , Bj), πCEj = CE(G,Q,Aj , Bj)

3. When Cj is published, participants agree that the ciphertext share is correct, if CE-
Verify(πCEj

, G,Q,Aj , Bj) = 1 (see 2).

4. When all correct Cj are published, participants calculate C = (A,B), where

A =
∑
j∈J Aj , B =

∑
j∈J Bj

where J is subset of entropy providers which published correct Cj .
Notice that C is ciphertext for plaintext M =

∑
j∈JMj . Also notice that size of J

depends on system parameters.

5. Key holder idi, 1 ≤ i ≤ n, with secret key xi publishes decryption shares along with
NIZK of discrete logarithm equality (see algorithm 3):

Di = xi ·A, πDLEQi
= DLEQ(Di, A, V Ki, G)

6. When Di is published, participants verify that DLEQ-
Verify(πDLEQi

, Di, A, V Ki, G) = 1 (see algorithm 4).

7. When t+ 1 decryption shares published, participants calculate M :

7.1 D =
∑
i∈I

λi ·Di, where |I| = t + 1 - set of indexes of parties, who published

decryption shares and λi - Lagrange coefficients.

7.2 Resulting random number is M = B −D

10

and timely publishes the required data. A malicious node is a node controlled by a polyno-
mial time Byzantine adversary; it can diverge from the defined protocol in any way. Our
model assumes that an adversary cannot take over more than t nodes within a single gener-
ation epoch (between two DKG protocol execution sessions). The adversary cannot predict
the results of honest participants local PRNG.

It is assumed that all cryptographic primitives within the protocol provide their intended
security properties. The ElGamal encryption scheme is secure if decision Diffie-Hellman
assumption holds [TY98]. Security for multi-user setting was proved by Bellare, Boldyreva
and Micali [BBM00]. Non-malleable property for the ElGamal system is achieved via zero-
knowledge proofs. For simplicity, we use (t, n)-threshold ElGamal scheme.

We assume a synchronous communication model as in [Gen+07].
Our proof uses a bulletin board model with a set of entropy providers coinciding with

the set of key holders. Each entropy provider can send only one ciphertext share per round.
It is also assumed that before embarking on the aggregation of the joint ciphertext C

at least t + 1 ciphertext shares have to be published. In general, an increase of the set of
entropy providers compared to the set of key holders does not necessarily entail an increase
in the security level or an improvement in the random number generation quality.

Proactive security. After a certain interval expressed as the number rounds executed,
the protocol participants perform a new DKG procedure. Thanks to this regular key update,
loss/theft of a participant secret key has a smaller impact on the overall protocol security
level.

Unpredictability
Lemma 5.1. An adversary cannot precompute future random beacon values unless with
negligible probability.

Proof Sketch. According to the security model, the number of malicious nodes cannot exceed
t. Denote adversary ciphertext shares published at stage 2 as C1 = E(M1), ..., Ct+1 =
E(Mt+1). According to the protocol model, generation of the common ciphertext C requires
at least t + 1 ciphertext shares Ci, therefore, an adversary lacks at least one plaintext
Mt+j , j > 1 to compute the algorithm outcome without decryption.

Therefore, an adversary cannot obtain M without assistance from the honest nodes.
These nodes do not publish decryption shares until step 5 of the protocol. So, it can be
concluded that the prediction of the algorithm outcome at the stage of common ciphertext
generation is not possible.

At the stage of decryption, an adversary can compute the algorithm outcome after the
first Di is published by any of the honest nodes. After t+1 decryption shares are published,
the outcome becomes known to all parties. This short delay at the point of decryption gives
an adversary no advantage whatsoever since by this point they cannot change decisions
related to the random number generation goal recorded before.

Bias-resistance
Lemma 5.2. Neither a separate node nor a smaller then threshold set of malicious nodes
can bias (influence) the random value at the end of the protocol.

Proof Sketch. Each new ciphertext share Ci 6= 0 changes the aggregated ciphertext C =∑
Ci, therefore the algorithm outcome M can change as well. At the same time, according

11

to lemma 5.1, the adversary cannot learn the nature of the last changes. Thus, the adversary
needs to generate a ciphertext that somehow depends on the rest of the published Ci.
Given that non-malleable encryption is applied by condition, the only way the adversary
can consciously impact the algorithm outcome to turn it to their advantage is by attempting
to obtain plaintexts Mi of all parties. From unpredicatbility property, the adversary cannot
do it at earlier protocol stages. By the time the adversary gets all the data needed to bias
the output, the final ciphertext C (and, therefore, the final random number) is already
generated and thus cannot be changed. Therefore, in the course of a round, neither a single
node nor a set of malicious nodes can bias the algorithm outcome.

Liveness

Lemma 5.3. To generate a common ciphertext C, we need t+ 1 nodes.

Proof Sketch. Immediate derived from the adversary model.

Lemma 5.4. According to the security model, the algorithm completes successfully.

Proof Sketch. Assuming there are at least t+ 1 honest nodes timely publishing valid data,
we get t + 1 ciphertext shares Ci. The previous lemma demonstrates that this number is
sufficient to ensure secure generation of a joint ciphertext C.

Given t + 1 of honest nodes, at least t + 1 decryption shares Di are to be published;
generally, these do not have to come from the same nodes that generated the common
ciphertext C. The t + 1 published decryption shares are sufficient to disclose the random
M message within the given threshold scheme (t, n). Thus all the nodes involved in the
generation, as well as network users having access to the published data get a random
number and the algorithm completes successfully.

Guaranteed Output Delivery

Lemma 5.5. Malicious nodes cannot prevent honest nodes from receiving the protocol’s
output.

Proof Sketch. Follow from proof of the lemma 5.4 and using bulletin boards.

Public Verifiability

Lemma 5.6. A third-party verifier can verify the published random message M .

Proof Sketch. Given the use of a public verifiable bulletin board, all published Ci values are
known to a third party. Also, the third party has access to the CE NIZK-proof that ensure
non-malleability of the published Ci. A verifier can verify this proof using algorithm 2;
therefore, they can verify the correctness of the published ciphertext shares. The common
ciphertext C =

∑
Ci can be independently computed by a third party. Thus a verifier can

make sure that the C is generated correctly.
Once C = (A,B) is generated, each key holder publishes decryption shares Di = xi ∗ A

with the ZK-proof of discrete logarithm equality into a bulletin board, where xi represents
the share of the common private key. To verify Di a third party only needs to verify the
ZK-proof by using algorithm 4. A DLEQ proof allows convincing a verifier that the Di

decryption share was obtained from A by the idi private key.

12

Having t + 1 of valid Di, a verifier can compute D =
∑
λi ·Di, where λi are Lagrange

coefficients. M = B −D is the algorithm output. Thus, third party verifier can verify the
the HERB output.

Theorem 5.7. HERB protocol is a random beacon per definition 1

Proof. Follow from lemmas 5.1, 5.2, 5.3, 5.4, 5.6,

6 Implementation
We present a random beacon protocol with the following selectable parameters: key genera-
tion protocol, encryption scheme, consensus algorithm and ratio between entropy providers
and key holders. A specific HERB protocol implementation is demonstrated as a proof of
concept. It has the following parameters:

• DKG: Gennaro et al.’s protocol [Gen+07];

• Encryption scheme: Threshold ElGamal encryption [ElG85];

• Consensus: Using public blockchain as bulletin board;

• Entropy Providers and Key Holders: Both set are equal.

In the previous section, we demonstrated that such scheme meets all requirements to avail-
ability, unpredictability, bias-resistance and public-verifiability. We also implemented1 this
scheme [HERB] using Kyber library [Kyb], Cosmos-SDK [Cos] and Tendermint [Ten].

• For test purposes, the (67, 100)-threshold ElGamal scheme is used.

• Common ciphertext is being aggregated after t = 67 ciphertext shares were sent.

• Each entropy provider can send only one ciphertext share per round.

• For our tests, we use DigitalOcean’s [DO] machines (4 CPU 2.6 GHz, 8GB RAM).

• We launch a test network with 34 blockchain full nodes and 100 entropy providers/key
holders.

• We use Prometheus [Prom] for metrics recording.

• We implemented transactions for sending ciphertext shares and decryption shares.
Calculations with participants secret keys are performed on the client side. Aggrega-
tion is taking place at server (blockchain) side.

• Average block time is 1 second.

• DigitalOcean’s droplets were randomly located in the different regions: NYC1 - 5
droplets, TOR1 - 3, SGP1 - 7, LON1 - 2, BLR1 - 6, FRA1 - 4, SF2 - 5, AMS3 - 2.

Third party can verify the HERB results with parameters selected as specified above.
They need:

1https://github.com/corestario/HERB

13

https://github.com/corestario/HERB

• t+ 1 ciphertextes Ci and t+ 1 CE-proofs;

• t+ 1 decryption shares Di and t+ 1 DLEQ proofs.

Our application writes only the first t+1 transactions with ciphertext shares to the blockchain
as well as only first t+ 1 transactions with decryption shares.

Random number generation is taking around 4.1 seconds with these parameters (see
figure 1). Each block contains from 35 to 65 transactions. One transaction with a ciphertext
share weighs 640 bytes. One transaction with a decryption share weighs 744 bytes. Other
measurements about transactions are described in the table below.

Transactions set Weight
One tx (ciphertext share) 640 bytes
One tx (decryption share) 744 bytes

All sent txs per block (publication phase) from 22 to 41 Kb
All sent txs per block (disclosure phase) from 26 to 48 Kb

All sent txs per round 136Kb
All saved to blockchain txs per round 93Kb

Note that our protocol can be both used as a stand-alone solution for distributed random
numbers generation and as an additional source of incoming entropy for other random
number generation protocols. For example, Dfinity’s approach [HMW18] suggests using the
nothing-up-my-sleeve number as the starting input value for VRF. However, this method
is subject to the possibility of manipulation [Ber+14], therefore, to obtain input values we
have to apply an additional source of randomness, for example, the HERB protocol.

7 Analysis
Assume that Public Blockchain is used as a Bulletin Board. Most blockchains require to
pay fees for computations on the blockchain side. So participants use public blockchain only
as storage.

Such as the most of randomness beacons do not require public blockchain, we appended
a consensus version of HERB to our comparison. Tendermint is used as a default consensus
mechanism for HERB (see Future Work for more details about consensus algorithms). It
has communication complexity O(n2). For ease of comparison we take the case of the key
holders set of n participants coinciding with the set of entropy providers.

Let’s look at communication and computational complexities of the protocol.
At the first stage of the protocol (collecting Ci shares), each participant has to send

its ciphertext share to other participants. In total, (n − 1) · n ciphertexts are sent. Then
participants execute a consensus algorithm to obtain the joint ciphertext C. When the
Tendermint [BKM18] protocol is used to send n − 1 ciphertext shares, the O(n3) com-
munication complexity is obtained. Then each key holder sends their decryption share to
other n − 1 participants for decryption C. The overall protocol complexity is O(n3). And
communication complexity per node is O(n2).

14

4
.1

2

4
.0

7

4
.0

8

4
.0

9

4
.0

5

4
.0

6

4
.1

0

5
.0

7

5
.0

8

4
.0

4

5
.0

6

4
.1

1

5
.0

4

4
.1

8

5
.1

0

4
.1

3

5
.0

3

4
.1

6

5
.0

9

4
.1

5

4
.1

7

4
.1

4

5
.1

1

5
.0

5

5
.1

2

5
.1

4

5
.1

3

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

Seconds

Sa
m
pl
es

Figure 1: Test results

Clearly, with this approach applied, the HERB protocol yields a fairly high communica-
tion complexity level. One of optimization option is using the Avalanche [Roc18] algorithm
as consensus. Avalanche communication complexity is O(kn) for some small (constant)
security parameter k << n. Then the overall communication complexity is O(kn2) and
communication complexity per node is O(kn).

Third party verifier has to verify all proofs published during the protocol and check
whether the aggregated ciphertext C is computed correctly. To do it, it is sufficient to
perform O(n) arithmetic operations over elliptic curve points. Protocol participants have
to perform additional computations. However, these will not increase computational costs
in O-notation. Thus, computational complexity is O(n).

Now we will consider existing random number generation algorithms covered in HydRand
article [SJSW18]. For a detailed description of the solutions provided in the TABLE I, please,
refer to the [SJSW18]. We appended [NV+] work to this table.

The table contains three protocol types:

1. Stand-alone protocols.

2. Protocols designed for the purpose of generating randomness, leveraging resources of
existing systems.

3. Protocols, which produce randomness as a byproduct of their operation.

Given that HERB is a stand-alone solution, we will perform a more detailed comparison
between it and similar protocols. Also, we will include the concept of using the unique

15

threshold signatures covered in [HMW18] and [CKS05] into this comparison. Although both
these articles don’t cover stand-alone protocols, there are random beacon implementations
(e.g. [Dra]) based on the same concept.

The protocol presented in [NV+] uses ElGamal encryption as PHE. As of November
2019, the protocol does not impose any restrictions on the sent ciphertexts (e.g. Proof of
Correct Encryption presented in our work) so ElGamal encryption is malleable. Malleability
means that an adversary is able to obtain the random number they need. Using a requester
decreases overall complexity on the account of protocol security. The requester may refuse
to decrypt the result or collude with a contributor to bias the output. Finaly, [NV+] requires
VRF as an extra cryptographic primitive. The main disadvantage of the HERB protocol is
the requirement to use the DKG protocol during the setup phase. HERB setup phase does
not support frequent changes within the key holders set, as it consumes additional time and
requires transferring more data than the main generation cycle.

The HERB protocol has the same communication complexity as Scrape [CD17] and
Ouroboros [KRDO17]. Avalanche optimization can help improve bottleneck at the consensus
step and leads to lower overall communication complexity of the HERB protocol. HERB’s
drawback is the requirement to use DKG.

HydRand [SJSW18] has a drawback: the complete unpredictability can only be achieved
for random numbers generated in t rounds. It limits the use of the protocol in systems that
require a frequent response from the PRNG tool, e.g. multiplayer gambling applications.
This drawback reduces the benefit of smaller communication complexity obtained the Hy-
drand authors compared to Scrape [CD17] or Ouroboros [KRDO17] for some applications.
However, HydRand achieve very low level of probability of successful prefiction after a few
(constant) number of rounds. HydRand, just as Scrape and Ouroboros, does not need the
DKG procedure.

Rand* protocol family [Syt+17] contains protocols with different properties. RandShare
has all the Scrape’s benefits and drawback. The HydRand [SJSW18] authors point out that
the liveness property is lost within an asynchronous mode, so when a different communi-
cation model is selected, RandShare has all the properties required for a Random Beacon.
RandHound and RandHerd have a relatively low communication complexity and offer quite
good scalability options. The disadvantage of this is the failure probability, the reduction
of which increases the overall complexity of communication

The HERB protocol falls behind the unique signatures schemes in terms of the communi-
cation complexity. At the same time, HERB does not require elliptic curve pairings, unlike
BLS-based protocols and each new HERB’s output doesn’t depend on the previous one.
Also, the HERB protocol allows participants to use any entropy sources for their random
share including truly random number generators (e.g. [Guo+10]).

Regardless of the fact the HERB protocol is inferior to some of the mentioned protocols
in terms of scalability, it has another interesting property to make up for it. In general,
the entropy providers and key holders sets are independent of one another. It means that
there can be more entropy providers than key holders. This property can be useful in
some contexts, for example, in a lottery. Each ticket buyer becomes an entropy provider
contributing to the generation of the joint lottery result. At the same time the key holders
group is smaller and sampled to contain at most t malicious nodes.

Another advantage of the HERB protocol is an option to replace the partially homomor-
phic encryption scheme with one of the fully homomorphic lattice-based schemes. These
schemes support the distributed key generation and threshold decryption (e.g. [BD10]).
This modification ensures the post-quantum security for the HERB protocol.

16

TABLE I: Comparison of approaches for generating publicly-verifiable randomness

C
om

m
un

ic
at
io
n

m
od

el

L
iv
en

es
s
/

fa
ilu

re
pr
ob

ab
ili
ty

C
om

m
.
co
m
pl
ex
it
y

(o
ve
ra
ll
pr
ot
oc
ol
)

U
np

re
di
cr
ab

ili
ty

B
ia
s-
R
es
is
ta
nc
e

C
om

p.
co
m
pl
ex
it
y

(p
er

ho
de

)

V
er
ifi
ca
ti
on

co
m
pl
ex
it
y

(p
er

pa
ss
iv
e
ve
ri
fie

r)

C
ha

ra
ct
er
is
ti
c

cr
yp

to
gr
ap

hi
c

pr
im

it
iv
e(
s)

T
ru
st
ed

de
al
er

or
D
K
G

re
qu

ir
ed

[CM16] Algorand semi-syn. 10−12 O(cn) t
−−→ 7 O(c) O(1) VRF no

[CKS05] Cachin et al. asyn. 3 O(n2) 3 3 O(n) O(1) uniq. thr. sig. yes

[AMM18] Caucus syn. 3 O(n) t
−−→ 7 O(1) O(1) hash func. no

[HMW18] Dfinity syn. 10−12 O(cn) 3 3 O(c) O(1) BLS sig. yes

[SJSW18] HydRand syn. 3 O(n2) t
−−→3 3 O(n) O(n) PVSS no

[KRDO17] Ouroboros syn. 3 O(n3) 3 3 O(n3) O(n3) PVSS no

[DGKR18] Ourob. Praos semi-syn. 3 O(n) t
−−→ 7 O(1) O(1) VRF no

[BO83] Proof-of-Work syn. 3 O(n) t
−−→ 7 very high O(1) hash func. no

[BGB17] Proof-of-Delay syn. 3 O(n) 3 3 very high O(log(∆)) hash func. no
[Syt+17] RandShare asyn. 7 O(n3) 3 3 O(n3) O(n3) PVSS no
[Syt+17] RandHound syn. 0.08% O(c2n) 3 7 O(c2n) O(c2n) PVSS/CoSi no
[Syt+17] RandHerd syn. 0.08% O(c2log(n)) 3 3 O(c2log(n)) O(1) PVSS/CoSi yes
[CD17] Scrape syn. 3 O(n3) 3 3 O(n2) O(n2) PVSS no

[NV+] Nguyen-Van et. al unknown 7 O(n) 3 7 O(1) O(n)
PHE, VRF,

Public Blockchain no

HERB with
Tendermint syn. 3 O(n3) 3 3 O(n) O(n) PHE yes

HERB with
Avalanche syn. 3 O(kn2) 3 3 O(n) O(n) PHE yes

HERB with
Public Blockchain syn. 3 O(n2) 3 3 O(n) O(n)

PHE,
Public Blockchain yes

17

7.1 Future work
Consensus Algorithm. When the HERB protocol is executed, we can run the consensus
algorithm between parties instead using bulletin boards. Existing consensus algorithms able
to resolve the Byzantine agreement problem described in [LSP82]. The Practical Byzantine
Fault Tolerance (PBFT) algorithm [CL+99] is a classical solution. More modern PBFT ver-
sions include the Ripple Protocol consensus algorithm (RPCA) [SYB+14], the Tendermint
consensus algorithm [BKM18] or the Avalanche algorithm [Roc18].

HERB protocol looks similar to bulletin boards-based solution. Participants use a chosen
consensus algorithm instead of storing data on a bulletin board to achieve consensus about
published ciphertext shares (step 2). This approach allows to avoid using bulletin boards
and related inconveniences. The drawback is higher requirements for the network connection
between participants. For example, a participant has to be online to get random results.

HERB with Leader. Using a leader in each HERB round appears to be a promising
approach to reduce the communication complexity to O(n2). The core protocol modification
then will imply node communication only with a selected leader. Participants choose a leader
randomly (for example, the previously generated random number can be used) and only for
one round. Here is the simplest case breakdown:

1. Setup phase: all key holders generate a common public key and shares of the private
key. The Setup is executed once for a predefined number of random number generation
rounds. Each of these rounds contains leader selection, publication and disclosure
phases.

2. Leader election phase: the leader for the current round is selected randomly.

3. Publication phase: each entropy provider sends a computed ciphertext share with the
relevant proof to the protocol leader. The leader then verifies the received messages,
generates the aggregated C and sends C, valid ciphertext shares Ci and their proofs
to key holders.

4. Disclosure phase: if the key holders accept the received C, they send the signed mes-
sage, which contains ciphertext C and the decryption shares with the relevant proofs
to the leader. Upon verifying the received decryption shares, the leader discloses the
protocol result M , aggregates signatures from the key holders and sends the obtained
randomM number, aggregated signature and decryption shares to them together with
the DLEQ proofs.

Note that this approach uses aggregated signatures, for example [Syt+16], [Max+18].
Communication complexity of this protocol is O(n2). However, detailed specification of this
protocol that complies with the randomness beacon requirements, as well as analysis of its
security takes additional research and will be considered in future work.

Aggregation Protocols. Another feasible approach implies using aggregation protocols,
in particular, Handel [BGKL19]. However, ciphertext aggregation has been studied less than
signature aggregation. Therefore, implementing Handel [BGKL19] in the HERB protocol
first takes selecting a ciphertext aggregation procedure that enables proving the validity of
such aggregation.

18

8 Acknowledgements
We are grateful to Vasiliy Shapovalov for a lot of discussions, advice, and feedback.

We thank Philipp Schindler and Felix Crisan for the helpful feedback.
We thank Eugene Danilenko, Andrei Zavgorodnii, and Andrey Rybnov for help with the

proof-of-concept implementation.
We also thank Maria Kondorskaya for her help with translation.

References
[Adi08] Ben Adida. “Helios: Web-based Open-Audit Voting.” In: USENIX security sym-

posium. Vol. 17. 2008, pp. 335–348.

[AMM18] Sarah Azouvi, Patric McCorry, and Sarah Meiklejohn. “Winning the Caucus
Race: Continuous Leader Election via Public Randomness”. In: arXiv preprint
arXiv:1801.07965 (2018).

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. “Verifiable delay
functions”. In: Annual International Cryptology Conference. Springer. 2018,
pp. 757–788.

[BBF18] Dan Boneh, Benedikt Bünz, and Ben Fisch. A Survey of Two Verifiable De-
lay Functions. Tech. rep. Cryptology ePrint Archive, Report 2018/712, 2018.
https://eprint. iacr. org/2018/712, 2018.

[BBM00] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. “Public-key encryp-
tion in a multi-user setting: Security proofs and improvements”. In: Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques.
Springer. 2000, pp. 259–274.

[BCG15] Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. “On Bitcoin as a public
randomness source.” In: IACR Cryptology ePrint Archive 2015 (2015), p. 1015.

[BCR10] Padma Bh, D Chandravathi, and P Prapoorna Roja. “Encoding and decoding of
a message in the implementation of Elliptic Curve cryptography using Koblitz’s
method”. In: International Journal on Computer Science and Engineering 2.5
(2010), pp. 1904–1907.

[BD10] Rikke Bendlin and Ivan Damgård. “Threshold decryption and zero-knowledge
proofs for lattice-based cryptosystems”. In: Theory of Cryptography Conference.
Springer. 2010, pp. 201–218.

[Ber+14] Daniel J Bernstein, Tung Chou, Chitchanok Chuengsatiansup, Andreas Hüls-
ing, Tanja Lange, Ruben Niederhagen, and Christine van Vredendaal. “How
to manipulate curve standards: a white paper for the black hat.” In: IACR
Cryptology ePrint Archive 2014 (2014), p. 571.

[Ber+15] Daniel J Bernstein, Tung Chou, Chitchanok Chuengsatiansup, Andreas Hüls-
ing, Eran Lambooij, Tanja Lange, Ruben Niederhagen, and Christine Van Vre-
dendaal. “How to Manipulate Curve Standards: A White Paper for the Black
Hat http://bada55. cr. yp. to”. In: International Conference on Research in
Security Standardisation. Springer. 2015, pp. 109–139.

19

[BGB17] Benedikt Bünz, Steven Goldfeder, and Joseph Bonneau. “Proofs-of-delay and
randomness beacons in ethereum”. In: IEEE Security and Privacy on the blockchain
(IEEE S&B) (2017).

[BGKL19] Olivie Begassat, Nicolas Gailly, Blazej Kolad, and Nicolas Liochon. “Handel
Aggregation protocol for large scale Byzantine committee”. Stanford Blockchain
Conference, Stanford university. 2019.

[BGZ16] Iddo Bentov, Ariel Gabizon, and David Zuckerman. “Bitcoin beacon”. In: arXiv
preprint arXiv:1605.04559 (2016).

[BKM18] Ethan Buchman, Jae Kwon, and Zarko Milosevic. “The latest gossip on BFT
consensus”. In: arXiv preprint arXiv:1807.04938 (2018).

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short signatures from the Weil
pairing”. In: International Conference on the Theory and Application of Cryp-
tology and Information Security. Springer. 2001, pp. 514–532.

[Blu83] Manuel Blum. “Coin flipping by telephone a protocol for solving impossible
problems”. In: ACM SIGACT News 15.1 (1983), pp. 23–27.

[BO83] Michael Ben-Or. “Another advantage of free choice (extended abstract): Com-
pletely asynchronous agreement protocols”. In: Proceedings of the second annual
ACM symposium on Principles of distributed computing. ACM. 1983, pp. 27–
30.

[BOO10] Amos Beimel, Eran Omri, and Ilan Orlov. “Protocols for multiparty coin toss
with dishonest majority”. In: Annual Cryptology Conference. Springer. 2010,
pp. 538–557.

[BPW12] David Bernhard, Olivier Pereira, and Bogdan Warinschi. “How not to prove
yourself: Pitfalls of the fiat-shamir heuristic and applications to helios”. In:
International Conference on the Theory and Application of Cryptology and
Information Security. Springer. 2012, pp. 626–643.

[CD17] Ignacio Cascudo and Bernardo David. “SCRAPE: Scalable randomness attested
by public entities”. In: International Conference on Applied Cryptography and
Network Security. Springer. 2017, pp. 537–556.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. “Proofs of partial
knowledge and simplified design of witness hiding protocols”. In: Annual Inter-
national Cryptology Conference. Springer. 1994, pp. 174–187.

[CKS05] Christian Cachin, Klaus Kursawe, and Victor Shoup. “Random oracles in Con-
stantinople: Practical asynchronous Byzantine agreement using cryptography”.
In: Journal of Cryptology 18.3 (2005), pp. 219–246.

[CL+99] Miguel Castro, Barbara Liskov, et al. “Practical Byzantine fault tolerance”. In:
OSDI. Vol. 99. 1999, pp. 173–186.

[Cle86] Richard Cleve. “Limits on the security of coin flips when half the processors are
faulty”. In: Proceedings of the eighteenth annual ACM symposium on Theory of
computing. ACM. 1986, pp. 364–369.

[CM16] Jing Chen and Silvio Micali. “Algorand”. In: arXiv preprint arXiv:1607.01341
(2016).

[Cos] Cosmos SDK - A Framework for Building High Value Public Blockchains.
https://github.com/cosmos/cosmos-sdk.

20

https://github.com/cosmos/cosmos-sdk

[CP92] David Chaum and Torben Pryds Pedersen. “Wallet databases with observers”.
In: Annual International Cryptology Conference. Springer. 1992, pp. 89–105.

[CSD18] Alisa Chernyaeva, Ilya Shirobokov, and Alexander Davydov. “Game Channels:
state channels for the gambling industry with built-in PRNG”. In: (2018).

[DC] DAO.Casino White Paper. https://github.com/DaoCasino/Whitepaper/blob/master/DAO.Casino%20WP.md.

[DGKR18] Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. “Ouroboros
praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain”. In:
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques. Springer. 2018, pp. 66–98.

[DO] DigitalOcean - The developer cloud. https://www.digitalocean.com.

[Dra] Drand - A Distributed Randomness Beacon Daemon. https://github.com/
dedis/drand.

[ElG85] Taher ElGamal. “A public key cryptosystem and a signature scheme based on
discrete logarithms”. In: IEEE transactions on information theory 31.4 (1985),
pp. 469–472.

[FP01] Pierre-Alain Fouque and David Pointcheval. “Threshold cryptosystems secure
against chosen-ciphertext attacks”. In: International Conference on the The-
ory and Application of Cryptology and Information Security. Springer. 2001,
pp. 351–368.

[FS86] Amos Fiat and Adi Shamir. “How to prove yourself: Practical solutions to
identification and signature problems”. In: Conference on the Theory and Ap-
plication of Cryptographic Techniques. Springer. 1986, pp. 186–194.

[Gen+07] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. “Secure
distributed key generation for discrete-log based cryptosystems”. In: Journal of
Cryptology 20.1 (2007), pp. 51–83.

[GO92] Shafi Goldwasser and Rafail Ostrovsky. “Invariant signatures and non-interactive
zero-knowledge proofs are equivalent”. In: Annual International Cryptology
Conference. Springer. 1992, pp. 228–245.

[GRPS03] Sharad Goel, Mark Robson, Milo Polte, and Emin Sirer. Herbivore: A scal-
able and efficient protocol for anonymous communication. Tech. rep. Cornell
University, 2003.

[Guo+10] Hong Guo, Wenzhuo Tang, Yu Liu, and Wei Wei. “Truly random number gen-
eration based on measurement of phase noise of a laser”. In: Physical Review E
81.5 (2010), p. 051137.

[HERB] Homomorphic Encryption Randomness Beacon. https://github.com/dgamingfoundation/
HERB.

[HMW18] Timo Hanke, Mahnush Movahedi, and Dominic Williams. “DFINITY Technol-
ogy Overview Series, Consensus System”. In: arXiv preprint arXiv:1805.04548
(2018).

[KD13] Cameron F Kerry and Charles Romine Director. “FIPS PUB 186-4 federal in-
formation processing standards publication digital signature standard (DSS)”.
In: (2013).

21

https://www.digitalocean.com
https://github.com/dedis/drand
https://github.com/dedis/drand
https://github.com/dgamingfoundation/HERB
https://github.com/dgamingfoundation/HERB

[KRDO17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
“Ouroboros: A provably secure proof-of-stake blockchain protocol”. In: Annual
International Cryptology Conference. Springer. 2017, pp. 357–388.

[Kyb] Kyber - Advanced crypto library for the Go language. https://github.com/
dedis/kyber.

[LH17] Jeremy Longley and Oliver Hopton. Funfair technology roadmap and discus-
sion. https://funfair.io/wp- content/uploads/FunFair- Technical-
White-Paper.pdf. 2017.

[LMR83] Michael Luby, Silvio Micali, and Charles Rackoff. “How to simultaneously ex-
change a secret bit by flipping a symmetrically-biased coin”. In: 24th Annual
Symposium on Foundations of Computer Science (sfcs 1983). IEEE. 1983,
pp. 11–22.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzantine gener-
als problem”. In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 4.3 (1982), pp. 382–401.

[LW15] Arjen K Lenstra and Benjamin Wesolowski. “A random zoo: sloth, unicorn,
and trx.” In: IACR Cryptology ePrint Archive 2015 (2015), p. 366.

[Max+18] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. “Simple
schnorr multi-signatures with applications to bitcoin”. In: Designs, Codes and
Cryptography (2018), pp. 1–26.

[Mil+16] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. “The honey
badger of BFT protocols”. In: Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security. ACM. 2016, pp. 31–42.

[MNS09] Tal Moran, Moni Naor, and Gil Segev. “An optimally fair coin toss”. In: Theory
of Cryptography Conference. Springer. 2009, pp. 1–18.

[NIST] NIST Randomness Beacon. https://www.nist.gov/programs-projects/
nist-randomness-beacon.

[NV+] Thanh Nguyen-Van, Tuan Nguyen-Anh, Tien-Dat Le, Minh-Phuoc Nguyen Ho,
Tuong Nguyen-Van, Quang Nhat Le, and Khuong Nguyen-An. “Scalable dis-
tributed random number generation based on homomorphic encryption”. In:
().

[Ora] Oraclize - Blockchain oracle service, enabling data-rich smart contracts. http:
//www.oraclize.it.

[Pie18] Krzysztof Pietrzak. “Simple Verifiable Delay Functions.” In: IACR Cryptology
ePrint Archive 2018 (2018), p. 627.

[Prom] Prometheus - Monitoring system and time series database. https://prometheus.
io.

[Rab83] Michael O Rabin. “Transaction protection by beacons”. In: Journal of Computer
and System Sciences 27.2 (1983), pp. 256–267.

[Rand] RANDOM.org - True Random Number Service. https://www.random.org.

[RBO89] Tal Rabin and Michael Ben-Or. “Verifiable secret sharing and multiparty pro-
tocols with honest majority”. In: Proceedings of the twenty-first annual ACM
symposium on Theory of computing. ACM. 1989, pp. 73–85.

22

https://github.com/dedis/kyber
https://github.com/dedis/kyber
https://funfair.io/wp-content/uploads/FunFair-Technical-White-Paper.pdf
https://funfair.io/wp-content/uploads/FunFair-Technical-White-Paper.pdf
https://www.nist.gov/programs-projects/nist-randomness-beacon
https://www.nist.gov/programs-projects/nist-randomness-beacon
http://www.oraclize.it
http://www.oraclize.it
https://prometheus.io
https://prometheus.io
https://www.random.org

[Roc18] Team Rocket. Snowflake to avalanche: A novel metastable consensus protocol
family for cryptocurrencies. 2018.

[Sch99] Berry Schoenmakers. “A simple publicly verifiable secret sharing scheme and
its application to electronic voting”. In: Annual International Cryptology Con-
ference. Springer. 1999, pp. 148–164.

[SDM04] Paul Syverson, R Dingledine, and N Mathewson. “Tor: The secondgeneration
onion router”. In: Usenix Security. 2004.

[Sha79] Adi Shamir. “How to share a secret”. In: Communications of the ACM 22.11
(1979), pp. 612–613.

[SJSW18] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar Weippl. “Hy-
dRand: Practical Continuous Distributed Randomness”. In: 2020 IEEE Sym-
posium on Security and Privacy (SP). Ieee. 2020, to appear.

[ST04] Berry Schoenmakers and Pim Tuyls. “Practical two-party computation based
on the conditional gate”. In: International conference on the theory and appli-
cation of cryptology and information security. Springer. 2004, pp. 119–136.

[Ste+00] André Stefanov, Nicolas Gisin, Olivier Guinnard, Laurent Guinnard, and Hugo
Zbinden. “Optical quantum random number generator”. In: Journal of Modern
Optics 47.4 (2000), pp. 595–598.

[SYB+14] David Schwartz, Noah Youngs, Arthur Britto, et al. “The Ripple protocol con-
sensus algorithm”. In: Ripple Labs Inc White Paper 5 (2014).

[Syt+16] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp Jovanovic,
Linus Gasser, Nicolas Gailly, Ismail Khoffi, and Bryan Ford. “Keeping author-
ities" honest or bust" with decentralized witness cosigning”. In: 2016 IEEE
Symposium on Security and Privacy (SP). Ieee. 2016, pp. 526–545.

[Syt+17] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly, Li-
nus Gasser, Ismail Khoffi, Michael J Fischer, and Bryan Ford. “Scalable bias-
resistant distributed randomness”. In: Security and Privacy (SP), 2017 IEEE
Symposium on. Ieee. 2017, pp. 444–460.

[Tan05] Caimu Tang. “ECDKG: A Distributed Key Generation Protocol Based on El-
liptic Curve Discrete Logarithm”. In: sE· CURECOMM (2005), pp. 353–364.

[Ten] Tendermint Core (BFT Consensus) in Go. https://github.com/tendermint/
tendermint.

[TP] TruePlay White Paper. https://trueplay.io/docs/en/TruePlayWhitePaper.pdf.

[TY98] Yiannis Tsiounis and Moti Yung. “On the security of ElGamal based encryp-
tion”. In: International Workshop on Public Key Cryptography. Springer. 1998,
pp. 117–134.

[VDH+15] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. “Vu-
vuzela: Scalable private messaging resistant to traffic analysis”. In: Proceedings
of the 25th Symposium on Operating Systems Principles. ACM. 2015, pp. 137–
152.

[Wes18] Benjamin Wesolowski. “Efficient verifiable delay functions.” In: IACR Cryptol-
ogy ePrint Archive 2018 (2018), p. 623.

23

https://github.com/tendermint/tendermint
https://github.com/tendermint/tendermint

[Wik02] Douglas Wikström. “A note on the malleability of the El Gamal cryptosystem”.
In: International Conference on Cryptology in India. Springer. 2002, pp. 176–
184.

Appendices
A ElGamal Encryption Correctness
We use the definition of Σ-protocols with properties completeness, special soundness and
special honest verifier zero-knowledge as defined in [CDS94]

Proof of Correct Encryption.
This is a Σ protocol with relation R = {(δ, ω)|(B = xG+ rQ,A = r ∗G}, where stament

δ = (G,Q,A,B) and witness ω = (x, r).
Common input: The prover P and verifier V both have δ.
Private input: P has value ω

1. P chooses s1, s2 , computes T = s1G+s2Q and E = s2G and sends V message (T,E).

2. V sends P challenge e.

3. P computes z1 = s1 + ex, z2 = s2 + er and sends V reply (z1, z2, e)

4. V accepts, if z1G+ z2Q = T + eB and z2G = E + eA else rejects it.

Proof. In order to see that completeness holds observe that when P runs the protocol hon-
estly we have:

z1G+ z2Q = s1G+ exG+ s2Q+ erQ = T + e(xG+ rQ) = T + eB
z2G = s2G+ erG = E + eA.
To show special soundness we consider two accepted transcripts {T,E, e, z1, z2} and

{T,E, e′, z′1.z′2}. From z1 = s1 + ex and z′1 = s1 + e′x we can easy extract x. From
z2 = s2 + er and z′2 = s2 + e′r we can extract r. We get that x = (z1 − z′1)/(e − e′),
r = (z2 − z′2)/(e− e′).

This protocol is a special honest verifier zero-knowledge. We can simply choose ran-
dom z1, z2, e ∈ Zq and compute E = z2G − eA, T = z1G + Z2Q − eB. The transcript
{T,E, e, z1, z2} will be the output of the simulation. Also we can use just z1, z2 with e as
input value.

Remark. Special soundness and special honest verifier zero-knowledge properties of the Σ
protocol can be turned into soundness and zero-knowledge respectively using Fiat-Shamir
heuristic. [BPW12].

B Modified DKG

24

Protocol 6 Distributed Key Generation

1. Sharing phase. Each key holder has identifier idi, where i = 1, ..., n. Key holder idi
shares random value zi as a dealer:

1.1 idi generates two polynomials:

fi(x) = ai,0 + ai,1x+ ...+ ai,tx
t

f
′

i (x) = bi,0 + bi,1x+ ...+ bi,tx
t

zi = fi(0) = ai,0

1.2 idi commits these polynomials as setV = {Vi,k}k∈[0,t], where Vi,k = ai,kG+bi,kH
and publishes V.

1.3 idi calculates secret shares for j = 1, ..., n:

si,j = fi(idj), s
′

i,j = f
′

i (idj)

1.4 idi sends si,j , s
′

i,j to the party idj using the private channel between idi and idj .

1.5 Each key holder idj , j = 1, ..., n:

• Verifies

si,jG+ s
′

i,jH
?
=

t∑
k=0

idkjVi,k (1)

• If shares doesn’t satisfy the condition above then idj broadcasts complaint
against idi.

1.6 If idi recieve complaint from idj then idi broadcasts si,j and s
′

i,j that satisfy the
equation above. Correct si,j and s

′

i,j are accepted by idj .

2. Secret shares calculation. Each participant idi, i = 1, ..., n:

2.1 idi marks as disqualified any party that either

• received more than t complaints in Step 1.5 or
• answered a complaint in Step 1.6 with values that falsify eq. (1)

2.2 idi builds the set of non-disqualified parties QUAL. All honest parties build the
same set QUAL (proof of that presented in [Gen+07]).

2.3 xi =
∑
j∈QUAL sj,i is secret key share of idi.

25

3. Public shares publication phase. Each key holder idi, i ∈ QUAL:

3.1 idi broadcasts Ai,k = ai,kG, k = 0, ..., t

3.2 Each key holder idj , j ∈ QUAL:
• Verifies

si,jG
?
=

t∑
k=0

idkjAi,k (2)

• If published values doesn’t satisfy the conditions above then idj broadcasts
complaint against idi.

3.3 If idi receives complaint from idj then idi broadcasts si,j and s
′

i,j that satisfy all
equations.

4. Public key calculation phase. Each key holder idi, i ∈ QUAL:

4.1 For parties idi who receives at least one valid complaint, i.e., values which
satisfy eq. (1) and not eq. (2), the other parties run the reconstruction
phase of Pedersen-VSS protocol described in [Gen+07] to compute zi, fi(x) and
Ai,k, k = 1, ..., t in the clear.

4.2 PKi = Ai,0, i ∈ QUAL are public key shares. Common public key is PK =∑
i∈QUAL PKi.

4.3 V Ki =
∑
h∈QUAL

∑t
k=0 id

k
j ·Ah,k, i ∈ QUAL are verification keys.

26

	Introduction
	Related Work
	Our contribution

	Model
	Preliminaries
	Zero Knowledge Proofs for Discrete Logarithm Relations
	Homomorphic Properties of Cryptosystems
	ElGamal

	HERB Protocol
	Setup
	Random Generation Process

	Security
	Implementation
	Analysis
	Future work

	Acknowledgements
	ElGamal Encryption Correctness
	Modified DKG

