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Abstract. This is an informal tutorial on the supersingular isogeny
Diffie-Hellman protocol aimed at non-isogenists.

1 Introduction

A non-specialist seeking a basic understanding of the schemes remaining in the
NIST post-quantum standardisation effort [15] would likely find that the SIKE
protocol [8] has one of the highest barriers of entry. Indeed, it is occasionally an
experience of the author that the sheer amount of background and jargon needed
to get an isogeny-based talk off the ground is enough to overwhelm audience
members into their laptops or underwhelm them to sleep. The purpose of this
tutorial is to try and give a beginner’s guide to Jao and De Feo’s supersingular
isogeny Diffie-Hellman (SIDH) protocol [9] by way of an illustrated toy example.
Any reader that can grasp the toy example will find it trivial to extrapolate their
understanding to the parameters of cryptographic size, e.g. those in the SIKE1

proposal.

The aim is that this be a starting point for non-isogenists seeking a gentle
introduction to the topic. As such, it is not intended to act as any kind of
survey of the field of isogeny-based cryptography. The last few years have seen
an avalanche of new constructions and protocols based on isogenies, and this
tutorial will solely focus on the original Jao-De Feo SIDH protocol – the paper
that triggered this avalanche. Furthermore, excellent surveys of the now broad
field of isogeny-based cryptography already exist: the lecture notes of De Feo [4]
and the Galbraith-Vercauteren [7] and Smith [13] surveys all give much more
in-depth expositions. The hope is that potential newcomers to the field may
dip their toes in here first, find (via an explicit toy example) that the isogeny
waters are much less daunting than they seem, and then feel more comfortable
diving into [4], [7], [13], or into the fast-expanding literature on the field. A
recommended alternative starting point is Urbanik’s friendly introduction [16].

1SIKE stands for supersingular isogeny key encapsulation, a variant of SIDH whose
differences are mostly unimportant in this tutorial (further details are in Section 7).



2 The set of supersingular j-invariants

SIDH works in the quadratic extensions of large prime fields Fp with p ≡ 3 mod 4,
for which we typically choose the most convenient representation as Fp2 = Fp(i)
with i2 + 1 = 0; elements are then of the form u+ vi where u, v ∈ Fp.

Of the p2 elements in Fp2 , we are interested in a subset of size bp/12c + z,
where z ∈ {0, 1, 2}. The value of z depends on p mod 12 [12, Theorem V.4.1(c)],
but it is unimportant; what is important to note is that as p grows exponen-
tially large, so does the size of the subset we are interested in. This subset is
precisely the set of supersingular j-invariants in Fp2 (we will describe what this
terminology means in a moment).

For the purpose of being able to write this full set down, and in order to be
able to carry out and visualise a mini SIDH protocol in full, herein we will focus
on the toy example with

p := 431.

In this case there are bp/12c+2 = 37 supersingular j-invariants in Fp2 , and they
are depicted in Figure 1.
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Fig. 1. The set of 37 supersingular j-invariants in F4312 .

Every elliptic curve has a unique j-invariant, and two elliptic curves are
isomorphic to each other if and only if they have the same j-invariant. Each of
the j-invariants in Figure 1 should therefore be thought of as representing any
(and all) elliptic curve(s) with that j-invariant. For example, elliptic curves in
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Montgomery form [11]

Ea : y2 = x3 + ax2 + x

have j-invariant

j(Ea) =
256(a2 − 3)3

(a2 − 4)
.

Taking a1 = 208i+ 161 and a2 = 172i+ 162 gives

j(Ea1) = j(Ea2) = 364i+ 304,

so
Ea1

: y2 = x3 + (208i+ 161)x2 + x

and
Ea2 : y2 = x3 + (172i+ 162)x2 + x

are isomorphic, and both correspond to the leftmost j-invariant depicted in
Figure 1. The isomorphisms are

ψ : Ea1
→ Ea2

,

(x, y) 7→
(
(66i+ 182)x+ (300i+ 109), (122i+ 159)y

)
,

and

ψ−1 : Ea2 → Ea1 ,

(x, y) 7→
(
(156i+ 40)x+ (304i+ 202), (419i+ 270)y

)
.

Write O1 and O2 for the identity elements (i.e. points at infinity) on Ea1 and
Ea2 . Note that2 ψ(O1) = O2 and ψ−1(O2) = O1, and since the maps above do
not have denominators, they are well-defined for all of the other (affine) points
in Ea1

(Fp2) and Ea2
(Fp2). The composition of these two maps is the identity

map on Ea1
or Ea2

(depending on the ordering).
An elliptic curve in characteristic p is either supersingular, or it is ordinary.

In practice the supersingular case offers a number of advantages; instantiating
efficient constructions is much easier, and the best known classical and quantum
attacks against the related computational problems have exponential complex-
ity3.

The 37 j-invariants in Figure 1 are all of the supersingular j-invariants in
characteristic p; supersingular curves always have j-invariants in Fp2 [12, Theo-
rem V.3.1], so there are no more supersingular j-invariants to be found in higher
extension fields.

2Those unfamiliar with projective space can take this at face value, while those in
the know can substitute x = X/Z and y = y/Z to cast these equations into P2 and
observe that ψ((0 : 1 : 0) = (0: 1 : 0), and vice versa.

3Note that this is the opposite of the situation for discrete logarithm-based ECC,
where supersingular curves are avoided for security reasons. Discrete logarithms are no
longer useful as hard underlying problems in the post-quantum setting, and they have
no relevance to the security of SIDH.
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SIDH in a nutshell. At this point it helps to see the high-level analogue
between SIDH and the traditional Diffie-Hellman protocol in a generic, cyclic
group G. Let g be the public generator with 〈g〉 = G, and let Alice and Bob’s
respective public keys be ga and gb, so that gab is their shared secret. Referring
back to Figure 1, the (blue) j-invariant 87i + 190 is where Alice and Bob both
begin; this is analogous to the generator g. In our example, Alice will choose a
secret integer that, in turn, moves her around a subset of the 37 values until
she arrives at the (green) j-invariant 222i+ 118; this will be the public key she
sends to Bob, analogous to ga. Bob will also choose a secret integer that moves
him around some of the values in Figure 1, and he will eventually arrive at the
yellow j-invariant 344i+ 190; he sends this as his public key to Alice, analogous
to gb. Together with Bob’s public key and her secret integer, Alice then performs
another sequence of moves to land at the (red) j-invariant 234; this acts as the
analogue of gab, and it is the same j-invariant Bob will arrive at when he starts
at Alice’s public j-invariant and walks according to his secret integer.

The public keys contain additional information that is used to ensure that
Alice and Bob can arrive at the same shared secret, but these details will come
later. The purpose of the next section is to describe how both parties move
between j-invariants: these moves are made with isogenies.

3 Isogenies

Just like the isomorphisms ψ and ψ−1 above, maps on a given elliptic curve, or
between two elliptic curves, are written as (x, y) 7→ (f(x, y), g(x, y)) for some
functions f and g. The main reason Montgomery-form elliptic curves are often
the preferred choice in both old-school ECC and in isogeny-based cryptography
is that they facilitate very efficient x-only arithmetic, i.e. maps that ignore the
y-coordinates entirely. In what follows we will also ignore the y-coordinates and
simply write maps as

x 7→ f(x),

but any reader wanting to complete the picture can recover the full maps by
taking

(x, y) 7→ (f(x), c · yf ′(x)),

where f ′ is the derivative of f and c is a fixed constant.
Consider the multiplication-by-2 or point doubling map on a fixed Mont-

gomery curve Ea : y2 = x3 + ax2 + x, written as

[2] : Ea → Ea, x 7→ (x2 − 1)2

4x(x2 + ax+ 1)
. (1)

Observe that, unlike the isomorphisms in the previous section, the doubling
map has a denominator that will create exceptional points. Viewing the curve
equation, we see that these are the three points with y = 0, namely (0, 0), (α, 0)
and (1/α, 0), where α2 + aα+ 1 = 0. Indeed, these are the three points of order
2 on Ea, and together with the neutral element, O, they are the entire kernel of
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the doubling map. This kernel forms a subgroup of the points in Ea, with group
structure

ker([2]) ∼= Z2 × Z2,

i.e. the 2-torsion is precisely three cyclic subgroups of order 2. Each subgroup
has one of the three points of exact order 2, together with the identity element
O. This is depicted in Figure 2.

Now consider the multiplication-by-3 or point tripling map on Ea : y2 =
x3 + ax2 + x, written as

[3] : Ea → Ea, x 7→ x(x4 − 6x2 − 4ax3 − 3)2

(3x4 + 4ax3 + 6x2 − 1)2
(2)

Again, the denominator will give rise to exceptional points to the tripling map.
Suppose its four roots are β, δ, ζ, θ; each of these correspond to x-coordinates of
points of order 3 in Ea, and this time there are two (non-zero) y-coordinates for
each such x. Together with O, there are then 9 points that are sent to O under
[3], and this time we have

ker([3]) ∼= Z3 × Z3,

i.e. the 3-torsion is precisely four cyclic subgroups of order 3. This is depicted
in Figure 3.

Fig. 2. The kernel ker([2]) ∼= Z2 × Z2 of
the doubling map; three cyclic subgroups
of order 2.

Fig. 3. The kernel ker([3]) ∼= Z3 × Z3 of
the tripling map; four cyclic subgroups of
order 3.

It turns out that this pattern holds true for any ` where p - `. The set of
points in the `-torsion, i.e. the set of points sent to O under the multiplication-
by-` map, is such that

ker([`]) ∼= Z` × Z`,

forming `+ 1 cyclic subgroups of order `.
Both the doubling and tripling maps above are rather special cases of more

general maps between elliptic curves that we call isogenies. In both of these
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instances, it just so happens that their domain and codomain are the same
elliptic curve. In general, an isogeny is a map

φ : E → E′

from one elliptic curve to another. Isogenies are said to be either separable or
inseparable; these definitions are not important here, but it should be said that
we will only be interested in the former case.

A key fact to digest is that separable isogenies are in one-to-one correspon-
dence with finite subgroups: every subgroup G of points on an elliptic curve E
gives rise to a unique isogeny φ : E → E′ whose kernel is G, and vice versa. In
this case we often see the codomain being written as E/G. Vélu’s formulas [18]
make this explicit: on input of (the curve constants defining) E and the points in
G, these formulas output the constants defining E′ = E/G and the explicit maps
for φ, i.e. the maps that move any points on E (except those in the kernel G)
to their corresponding image on E′. Writing the general form of Vélu’s formulas
down is unnecessary here, as we will only require two instances. Nevertheless, it
is worth noting that these formulas are simply rational functions of the inputs
mentioned above, and the degrees of these functions are the same size as the size
of the subgroup G.

Referring back to Figure 2, suppose we set G = {O, (α, 0), (1/α, 0), (0, 0)}
and input it into Vélu’s formulas, together with the curve Ea. The output would
then be the unique map with kernel G, i.e. the doubling map in (1), together
with Ea itself.

Suppose we instead choose our kernel to be one of the cyclic subgroups of
order 2, e.g. set G = {O, (α, 0)}, and input this and Ea into Vélu’s formulas. In
this case the map we get is

φ : Ea → Ea′ , x 7→ x(αx− 1)

x− α
,

with

a′ = 2(1− 2α2). (3)

This map can be used to compute 2-isogenies on any Montgomery curve. For
example, recall one of the curves from Section 2 as

Ea : y2 = x3 + (208i+ 161)x2 + x, with j(Ea) = 364i+ 304.

The point (α, 0) ∈ Ea with α = 350i + 68 has order 2. Applying (3) yields the
image curve

Ea′ : y2 = x3 + (102i+ 423)x2 + x, with j(Ea′) = 344i+ 190,

and the map

φ : x 7→ x((350i+ 68)x− 1)

x− (350i+ 68)
(4)
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that will take (the x-coordinate of) any point not in {O, (α, 0)} to the (x-
coordinate of the) corresponding point on Ea′ .

Now suppose we set the kernel as one of the subgroups of order 3 in Figure 3,
e.g. G = {O, (β, γ), (β,−γ)}. Vélu’s formulas output

φ : Ea → Ea′ , x 7→ x(βx− 1)2

(x− β)2
,

with

a′ = (aβ − 6β2 + 6)β (5)

The point (β, γ) = (321i + 56, 303i + 174) has order 3 on Ea : y2 = x3 +
(208i+ 161)x2 + x. Applying (5) yields the image curve

Ea′ : y2 = x3 + 415x2 + x, with j(Ea′) = 189,

and the map

φ : x 7→ x((321i+ 56)x− 1)2

(x− (321i+ 56))2

that will move points from Ea to Ea′ .
Unlike the isomorphisms in Section 2 which preserve the j-invariant, the

isogenies in this section give image curves with different j-invariants; in this
case the curves are no longer isomorphic, but are instead said to be isogenous.

The degree of a non-zero separable isogeny is the number of elements in its
kernel [12, Theorem III.4.10], and it is also the degree of the isogeny as a rational
map (in the sense of [12, p. 21]). For our purposes, one can see from eyeballing
any of the examples above that the number of kernel elements match the degree
of the corresponding map.

Isomorphisms are actually a special case of an isogeny where the kernel is
trivial, i.e. the kernel is just {O} (as we saw in Section 2), so they are isogenies
of degree 1. By definition, composing an isomorphism with its inverse gives the
identity map. In general, however, isogenies do not have an inverse that behaves
like this; instead, every isogeny has a unique dual isogeny [12, Theorem III.6.1],
that almost behaves like an inverse. If φ : E → E′ is an isogeny of degree d,
then the dual isogeny φ̂ is such that the composition (φ̂ ◦ φ) = [d], i.e. the

multiplication-by-d map on E, and the composition (φ◦ φ̂) is the multiplication-
by-d map on E′. Just like inverse isomorphisms, the composition of dual isogenies
lands us back on the same curve; the difference is that the kernel of this compo-
sition becomes the d-torsion in general (which is non-trivial when d > 1). As an
example, composing the degree-2 isogeny φ : Ea → Ea′ in (3) with its degree-2

dual φ̂ : Ea′ → Ea gives the degree-4 doubling map in (1) (whose kernel is in
Figure 2).

It is important to note that isogenies are well-behaved maps (the fancy word
is morphisms [12, p. 12]) in both the geometric and algebraic sense. Our focus
above has mostly been on the former side, where we have seen them map points
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between two geometric curves. But isogenies are also algebraic in that they are
group homomorphisms: an isogeny φ : E → E′ satisfies

φ(P +Q) = φ(P ) + φ(Q)

for all P,Q ∈ E [12, Theorem III.4.8]; the sum on the left corresponds to the
elliptic curve group law on E, while the sum on the right is the group law on E′.

In terms of SIDH, it is helpful to see what this homomorphic behaviour means
with some examples. Returning to the 2-isogeny in (4) from

Ea : y2 = x3 + (208i+ 161)x2 + x to Ea′ : y2 = x3 + (102i+ 423)x2 + x,

recall that the kernel of φ was {O, (α, 0)} with α = 350i+ 68.
We will now observe what becomes of various points on E as they move

through φ, momentarily returning to both coordinates under the map φ : (x, y) 7→
(f(x), c · yf ′(x)), with f(x) as above and with the constant c satisfying c2 = α.
The points

P = (390i+ 23, 104i+ 7) and Q = (151i+ 140, 110i+ 136)

both have order 8 on Ea, but when φ is the 2-isogeny above, the points

φ(P ) = (23i+ 231, 309i+ 61) and φ(Q) = (80i+ 261, 192i+ 259)

have orders 4 and 8 on Ea′ , respectively. The reason the order of P decreased is
because it lies above a non-trivial element in the kernel: [4]P = (α, 0) ∈ ker(φ),
thus φ([4]P ) = O on Ea′ , and since φ is a homomorphism, φ([4]P ) = [4]φ(P );
given that [2]P 6∈ ker(φ), it must therefore be that φ(P ) has order 4. The same
reasoning shows that, in general, a degree-d isogeny will decrease the order of
any point lying above the kernel by a factor of d. On the other hand, other
points preserve their orders when moving through isogenies, as we saw above
for the point Q. As another example, the image of the point R = (β, γ) =
(321i+56, 303i+174) of order 3 on Ea is the point φ(R) = (102i+238, 346i+193)
of order 3 on Ea′ . In general, evaluating a degree-d isogeny at a point of order `
will preserve this order if d and ` are coprime; it is useful to keep this property
in mind in the sections that follow.

A theorem of Tate [14] says that two elliptic curves E/Fq and E′/Fq are
isogenous over Fq if and only if they have the same number of points over Fq.
Returning to our running example, all of the j-invariants in Figure 1 correspond
to elliptic curves E/F4312 with group orders #E(F4312) = 4322. Moreover, they
all have the same group structure Z432×Z432. This is an instance of the general
case in which supersingular curves E/Fp2 always have their full rational (p− 1)-
or (p+1)-torsion defined over Fp2 . Moreover, in our case the elliptic curve group
is precisely the (p + 1)-torsion and, as we saw at the beginning of the section,
we have ker([p+ 1]) ∼= Zp+1 × Zp+1, from which it follows that

E(Fp2) ∼= Zp+1 × Zp+1.
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Suppose φ : E → E′ is an Fq-rational isogeny of degree d > 1, i.e. #ker(φ) =
d. One point of confusion that can sometimes arise for isogeny newcomers is
how E/Fq and E′/Fq can have the same number of points. There are d elements
mapped to O under φ, meaning there are #E(Fq)− d elements in E(Fq) which
are carried through to non-zero points in E′(Fq). If d > 1, then at first sight
it can appear that the group orders should not match. However, the unbalance
that seems to arise is resolved by points in higher extension fields that map down
to E′(Fq) under φ, and the same thing happens in the reverse direction when
considering the dual isogeny from E′ back to E.

The composition of isogenies is as we might expect. Composing the two iso-
genies

φ : E → E′ and ψ : E′ → E′′

gives the isogeny
(ψ ◦ φ) : E → E′′,

whose degree is the product of the two individual degrees. We have already seen
a special example of this above: when φ is the degree-2 isogeny in (3), then

composing with the degree-2 dual isogeny φ̂ gave the degree-4 doubling map
in (1).

As we will get a glimpse of in Section 5, this notion of composition is crucial
to the practicality of SIDH. In real-world instantiations, we compute isogenies
whose degrees are exponentially large, e.g. isogenies of degree 2e for e > 200.
Given that algorithms for general isogeny computation are linear in the degree
of the isogeny, this would be out of the question if it was not for our being able
to instead compute it as the composition of e individual 2-isogenies.

Finally, when speaking of isogenies, we are often implicitly speaking up to
isomorphism. For example, in the fact we stated above whereby every subgroup
of points gives rise to a unique isogeny, it would be more precise to state that this
isogeny is unique up to isomorphism. We could always compose an isogeny with
an isomorphism to get a different looking map, but for all intents and purposes
these isogenies will be considered equivalent.

4 Isogeny graphs

Recall that, for each prime p, we are working with the set of all j-invariants in
Fp2 that correspond to supersingular curves in characteristic p. We will continue
with our example of p = 431, for which the 37 j-invariants are depicted back in
Figure 1. The important notion illustrated in this section is that, when we intro-
duce any other prime ` 6= p, this set becomes a graph with surprising properties.
The vertices of each graph remain fixed as the j-invariants themselves, but the
edges between them correspond to `-isogenies, and therefore the edges change
for each `. In SIDH we only need two of the graphs: one for Alice, for which
we usually take ` = 2, and one for Bob, for which we usually take ` = 3 (these
choices of the two smallest primes currently give the most efficient instantiation
of SIDH).
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To draw the graphs for our example, we proceed as in the previous section.
Recall that the 2-isogeny in (4) was from the curve Ea : y2 = x3+(208i+161)x2+
x with j(Ea) = 364i+ 304 to the curve Ea′ : y2 = x3 + (102i+ 423)x2 + x with
j(Ea′) = 344i+190; the kernel was generated by (α, 0) ∈ Ea with α = 350i+68.
Thus, we can draw an edge between these two j-invariants. Furthermore, recall
(see Figure 2) that there are two other kernels of 2-isogenies on Ea: one generated
by (1/α, 0) and the other generated by (0, 0). These produce two more edges,
one connecting j = 364i + 304 to j = 67 and one connecting j = 364i + 304 to
j = 319. Continuing in this fashion, we visit every j-invariant in the graph until
all three 2-torsion points have been used to generate three outgoing edges, and
eventually we produce the full 2-isogeny graph that is depicted in Figure 4.
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Fig. 4. The 2-isogeny graph for p = 431. The 37 nodes are the supersingular j-
invariants and the edges between them correspond to 2-isogenies.

Observe that, for all j 6∈ {0, 4, 242} (we will talk about these exceptions in
Section 6), there are exactly 3 edges connecting a given node to other 2-isogenous
j-invariants. Moreover, we have not written any directions on the arrows; the
reasoning here is that, for any edge from j(E) to j(E′) corresponding to an
isogeny φ : E → E′, the dual isogeny gives an edge from j(E′) back to j(E).

The 3-isogeny graph is drawn analogously, but recall (see Figure 3) that
there are now four outgoing edges corresponding to every j-invariant (we again
have a small number of exceptions for j ∈ {0, 4, 125, 242}). We saw explicitly in
Section 3 that the point (β, γ) = (321i + 56, 303i + 174) of order 3 on Ea (as
above) was the kernel of an isogeny to the curve Ea′ : y2 = x3 + 415x2 + x with
j(Ea′) = 189. Inputting the three other 3-torsion subgroups into Vélu’s formulas
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gives three image curves with j = 19, j = 42i+ 141, and j = 106i+ 379. Again,
working through each node gives rise to the graph depicted in Figure 5.
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Fig. 5. The 3-isogeny graph for p = 431. The 37 nodes are the supersingular j-
invariants and the edges between them correspond to 3-isogenies.

We are now in a position to discuss how SIDH primes are chosen. State-of-
the-art instantiations of SIDH (including those in the SIKE specification [8])
always fix primes p of the form

p = 2eA3eB − 1,

where eA and eB are such that 2eA ≈ 3eB . In fact, SIDH actually allows more
flexibility by introducing a cofactor f and permitting primes of the form p =
f · 2eA3eB − 1, but (as it currently stands) the case of f = 1 is flexible enough
to find suitable primes at all of the interesting security levels.

The rationale behind choosing primes of this form ties back to the discussion
in the previous section; we work with supersingular curves for which the elliptic
curve group E(Fp2) is the full (p+1)-torsion, that which is isomorphic to Zp+1×
Zp+1. Thus, for our choice of primes, the elliptic curve group is

E(Fp2) ∼= Z(2eA3eB ) × Z(2eA3eB ).

In other words, there are two points P and Q, both of order 2eA3eB , that are
a basis for the full elliptic curve group E(Fp2). Moreover, linear combinations
[α]P + [β]Q with α, β ∈ Z(2eA3eB ) can be used to generate all of the points
whose orders are any factor of 2eA3eB . In particular, every point of order 2eA or
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of order 3eB lies in E(Fp2). We will see at the beginning of the next section that
these are precisely the points that are used as secret generators of subgroups
(i.e. isogenies) in the SIDH framework, so choosing primes in the above fashion
ultimately means that Alice and Bob will only ever have to work with points
inside E(Fp2).
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Fig. 6. The 6 edges at the node j = 209i+ 118 corresponding to the 5-isogeny graph,
and the 8 edges at the node 67i+ 304 corresponding to the 7-isogeny graph.

It is worth revisiting the fact that, although we only need to consider the
graphs corresponding to ` = 2 and ` = 3, isogeny graphs exist for every prime
` for which p - `. In Figure 6 we give the 6 edges corresponding to ` = 5 at j =
209i+ 118, and the 8 edges corresponding to ` = 7 at j = 67i+ 304 (these could
be done at every node, but Figure 5 was already messy enough!). Although the j-
invariants connected by these edges are always in Fp2 , the isogenies corresponding
to ` 6∈ {2, 3} would be computed using points that are not Fp2 -rational. In other
words, points of order `e for ` 6∈ {2, 3} are not found in E(Fp2) (with our prime
p chosen as above), so to compute these isogenies we would have to perform
computations in the larger extension fields of Fp where these points are found.

We will further discuss the properties of cryptographically sized supersingular
isogeny graphs in Section 7.

5 Walking through the protocol

This section walks step by step through the entire toy example of the SIDH pro-
tocol. During both Alice and Bob’s public key generation, every computation
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is provided explicitly so active readers (perhaps equipped with their favourite
computer algebra package) can follow along; on the other hand, readers finding
the repetition tedious can happily skip the details. The shared secret computa-
tions are analogous, so less details are given there. We start with a high-level and
general description of the protocol, before returning to our concrete example.

A high-level overview. For the reasons detailed in Section 4, SIDH instanti-
ations typically take p = 2eA3eB − 1 with 2eA ≈ 3eB . The protocol begins on an
initial curve E in the corresponding supersingular isogeny graph.

Alice’s secrets will be isogenies of degree (or, equivalently, subgroups of order)
2eA , and Bob’s will be of degree 3eB . Recall from Section 3 that the `-torsion
is 2-dimensional, so Alice will compute generators of her secret subgroups by
computing secret linear combinations of two public basis points, where

〈PA, QA〉 = E[2eA ] ∼= Z2eA × Z2eA .

Similarly, Bob will compute his secret generators as secret linear combinations
of two public points, PB and QB , where

〈PB , QB〉 = E[3eB ] ∼= Z3eB × Z3eB .

This necessarily means PA and QA both have order 2eA and PB and QB both
have order 3eB . In practice (e.g. in SIKE [8]), they will typically choose their
secret generator points, SA and SB , by simply taking

SA = PA + [kA]QA with kA ∈ [0, 2eA),

and
SB = PB + [kB ]QB with kB ∈ [0, 3eB ).

To compute her public key, Alice chooses kA ∈ {0, 1, . . . 2eA − 1}, computes
SA as above, and then computes the secret isogeny φA : E → EA, where EA =
E/〈SA〉. She does this by composing eA isogenies of degree 2, i.e. taking eA steps
in the 2-isogeny graph, which are defined by SA. Her public key is then

PKA = (EA, P
′
B , Q

′
B) = (φA(E), φA(PB), φA(QB)),

where the first element is the image curve EA = φA(E), while the second and
third elements are the images of Bob’s public basis points (we will discuss why
these points are needed in a moment).

Bob chooses kB ∈ {0, 1, . . . 3eB − 1}, computes SB as above, and then com-
putes his secret isogeny φB : E → EB , where EB = E/〈SB〉. He does this by
composing eB isogenies of degree 3, i.e. taking eB steps in the 3-isogeny graph,
which are defined by SB . His public key is then

PKB = (EB , P
′
A, Q

′
A) = (φB(E), φB(PA), φB(QA)).

On input of her secret integer kA and Bob’s public key, Alice computes the
secret subgroup S′A = P ′A + [kA]Q′A on EB , and then computes another secret
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isogeny φ′A : EB → EAB , where EAB = EB/〈S′A〉. She then computes the shared
secret as jAB = j(EAB).

On Bob’s side, he takes S′B = P ′B + [kB ]Q′B on EA, computes the secret
isogeny φ′B : EA → EBA, where EBA = EA/〈S′B〉. He then computes the shared
secret as jBA = j(EBA).

Why the image points? Before proceeding, it is important to discuss why Alice
and Bob must move each other’s basis points through their secret isogenies and
include these images in their public keys. Unlike traditional Diffie-Hellman (see
the end of Section 2) where exponents commute to give (ga)b = (gb)a, in the
SIDH setting we do not have this property. Indeed, it does not even make sense
to consider a composition of the isogenies φA : E → EA and φB : E → EB , given
their domains/codomains. Instead, Alice needs a way to describe an isogeny
whose domain is EB , and Bob needs an analogous way to start from EA. Moving
each other’s basis points through the secret isogeny during key generation solves
this problem; it allows both parties to essentially redo the same computations on
the curves transmitted in the public keys and to ultimately arrive at the same
j-invariant4.

Public parameters. We now continue with our example of p = 2433 − 1, and
take the public starting curve as

Ea0 : y2 = x3 +a0x
2 +x, with a0 = 329i+423 and j(Ea0) = 87i+190.

We can take any four public basis points we like Ea0
, so long as E[24] =

〈PA, QA〉 and E[33] = 〈PB , QB〉. We fix

PA := (100i+ 248, 304i+ 199) and QA := (426i+ 394, 51i+ 79),

together with

PB := (358i+ 275, 410i+ 104) and QB := (20i+ 185, 281i+ 239).

Alice’s public key generation. Suppose Alice chooses the secret

kA := 11

from {0, 1, . . . 15}. Her first step is to compute the secret generator corresponding
to kA, as

SA = PA + [kA]QA

= (100i+ 248, 304i+ 199) + [11](426i+ 394, 51i+ 79)

= (271i+ 79, 153i+ 430),

4Astute readers wanting to prove that jAB = jBA can argue that both j-invariants
correspond to the isomorphism class of E/〈SA, SB〉 by using the identity E/〈P,Q〉 ∼=
(E/〈P 〉)/〈φ(Q)〉 with φ : E → E/〈P 〉. Otherwise, see [9, §3].
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which is a point of order 16 on the starting curve Ea0
. Alice now proceeds to

compute her public key using only a combination of the point doubling operation
in (1) and the 2-isogeny operation in (3). Below we will use prime superscripts
to denote values that are updated/overwritten throughout the procedure, and
again, though we refer to the x-only maps in Section 3, we will still write the
points in full under the extension from x 7→ f(x) to (x, y) 7→ (f(x), cyf ′(x))
(where c2 = α and (α, 0) is the kernel of the 2-isogeny at hand).

– Compute φ0. Initialise S′A = SA = (271i + 79, 153i + 430). Three repeated
applications of the doubling in (1) produces the point R′A = [8]S′A = (18i+
37, 0), which has order 2 on Ea0 . Inputting R′A into (3) gives φ0 : Ea0 → Ea1 ,
with a1 = 275i + 132 and j(Ea1) = 107. It also gives the map φ0 : x 7→
x((18i+37)x−1)

x−(18i+37) , which is used to update P ′B = φ(P ′B) = (118i+85, 274i+150),

Q′B = (62i+124, 64i+269), and S′A = (36i+111, 175i+67); the orders of P ′B
and Q′B on Ea1

are unchanged, but the order of the new S′A has decreased
from 16 to 8. Figure 7 shows φ0 as Alice’s first step in the 2-isogeny graph.

– Compute φ1. Two repeated applications of the doubling in (1) produces the
point R′A = [4]S′A = (7i + 49, 0), which has order 2 on Ea1

. Inputting R′A
into (3) gives φ1 : Ea1

→ Ea2
, with a2 = 273i + 76 and j(Ea2

) = 344i +

190. It also gives the map φ1 : x 7→ x((7i+49)x−1)
x−(7i+49) , which is used to update

P ′B = φ(P ′B) = (274i + 251, 316i + 59), Q′B = (214i + 94, 354i + 193), and
S′A = (274i + 374, 84i + 77); the order of the new S′A has decreased from 8
to 4. Figure 7 shows φ1 as Alice’s second step in the 2-isogeny graph.

– Compute φ2. One doubling via (1) produces the point R′A = [2]S′A = (245i+
27, 0), which has order 2 on Ea2 . Inputting R′A into (3) gives φ2 : Ea2 → Ea3 ,
with a3 = 93i+ 136 and j(Ea3) = 350i+ 65. It also gives the map φ2 : x 7→
x((245i+27)x−1)

x−(245i+27) , which is used to update P ′B = φ(P ′B) = (77i+ 209, 75i+ 79),

Q′B = (339i+ 356, 12i+ 419), and S′A = (227i+ 150, 0); the order of the new
S′A has decreased from 4 to 2. Figure 7 shows φ2 as Alice’s third step in the
2-isogeny graph.

– Compute φ3. S
′
A = (227i + 150, 0) already has order 2 on Ea3

, so no scalar
multiplication is necessary in the final stage. Inputting S′A into (3) gives
φ3 : Ea3

→ Ea4
, with a4 = 423i+ 179 and j(Ea4

) = 222i+ 118. It also gives

the map φ3 : x 7→ x((227i+150)x−1)
x−(227i+150) , which is used to update P ′B = φ(P ′B) =

(142i+ 183, 119i+ 360), Q′B = (220i+ 314, 289i+ 10); the point S′A is in the
kernel and is not carried through. Figure 7 shows φ3 as Alice’s fourth and
final step in the 2-isogeny graph.

Alice’s secret 24-isogeny is the composition of the four 2-isogenies detailed
above, i.e. φA : Ea0

→ Ea4
, Q 7→ φA(Q), with φA = (φ3 ◦ φ2 ◦ φ1 ◦ φ0) - see

Figure 7. Her public key, PKA, is then

PKA = (φA(Ea0), φA(PB), φA(QB))

= (423i+ 179, (142i+ 183, 119i+ 360), (220i+ 314, 289i+ 10)). (6)
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Fig. 7. Alice’s key generation. She starts at the public curve corresponding to j =
87i + 190, her secret key is the isogeny φA = (φ3 ◦ φ2 ◦ φ1 ◦ φ0), and the destination
node 222i+ 118 becomes part of her public key.

Rather than send the j-invariant j(Ea4) ∈ Fp2 as the value defining the curve,
Alice can simply send a4 ∈ Fp4 , and Bob will do the same. The j-invariant
function is only used during the shared secret computation to guarantee that
Alice and Bob arrive at the same value.

Bob’s public key generation. Suppose Bob chooses the secret

kB := 2

from {0, 1, . . . , 26}. His first step is to compute the secret generator correspond-
ing to kB , as

SB = PB + [kB ]QB

= (358i+ 275, 410i+ 104) + [2](20i+ 185, 281i+ 239)

= (122i+ 309, 291i+ 374),

which is a point of order 27 on Ea0
.

Bob proceeds to compute his public key using only a combination of the point
tripling operation in (2) and the 3-isogeny operation in (5). Below we will use
the same conventions as we did for Alice, overriding the notations for Eai

and
φi to save additional subscripts.

– Compute φ0. Initialise S′B = SB = (122i + 309, 291i + 374). Two repeated
applications of the tripling in (2) produces the point R′B = [9]S′B = (23i +
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Fig. 8. Bob’s key generation. He starts at the public curve corresponding to j = 87i+
190, his secret key is the isogeny φB = (φ2◦φ1◦φ0), and the destination node 344i+190
becomes part of his public key.

37, 4i+302), which has order 3 on Ea0
. InputtingR′B into (5) gives φ0 : Ea0

→
Ea1

, with a1 = 134i + 2 and j(Ea1
) = 106i + 379. It also gives the map

φ0 : x 7→ x((23i+37)x−1)2
(x−(23i+37))2 , which is used to update P ′A = φ(P ′A) = (418i +

155, 288i+331), Q′A = (159i+242 : 310i+425), and S′B = (295i+256, 253i+
64); the orders of P ′A and Q′A on Ea1 are unchanged, but the order of the
new S′B has decreased from 27 to 9. Figure 8 shows φ0 as Bob’s first step in
the 3-isogeny graph.

– Compute φ1. One tripling via (2) produces the point R′B = [3]S′B = ((98i+
36, 56i+155), which has order 3 on Ea1 . InputtingR′B into (5) gives φ1 : Ea1 →
Ea2

, with a2 = 117i + 54 and j(Ea2
) = 325i + 379. It also gives the

map φ1 : x 7→ x((98i+36)x−1)2
(x−(98i+36))2 , which is used to update P ′A = φ(P ′A) =

(252i + 425, 315i + 19), Q′A = (412i + 81 : 111i + 172), and S′B = (102i +
405, 375i+313); the order of the new S′B has decreased from 9 to 3. Figure 8
shows φ1 as Bob’s second step in the 3-isogeny graph.

– Compute φ2. S
′
B = (102i+405, 375i+313) already has order 3 on Ea2

, so no
scalar multiplication is needed. Inputting R′B into (5) gives φ2 : Ea2

→ Ea3
,

with a2 = 273i+ 76 and j(Ea2
) = 344i+ 190. It also gives the map φ1 : x 7→

x((98i+36)x−1)2
(x−(98i+36))2 , which is used to update P ′A = φ(P ′A) = (187i+226, 43i+360),

Q′A = (325i+ 415, 322i+ 254), and S′B = (102i+ 405, 375i+ 313); the point
S′B is in the kernel and is not carried through. Figure 8 shows φ2 as Bob’s
third and final step in the 3-isogeny graph.
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Bob’s secret 33-isogeny is the composition of the three 3-isogenies detailed
above, i.e. φB : Ea0

→ Ea3
, Q 7→ φB(Q), with φB = (φ2 ◦φ1 ◦φ0) - see Figure 8.

His public key, PKB , is then

PKB = (φB(Ea0
), φB(PA), φB(QA))

= (273i+ 76, (187i+ 226, 43i+ 360), (325i+ 415, 322i+ 254)). (7)

Alice’s shared secret computation. Alice starts from the curve output in
Bob’s public key in (7), taking her new starting curve Ea0 with a0 = 273i+ 76.
Her first step is again to compute a secret generator on Ea0 corresponding to
her secret kA, as

SA = φB(PA) + [kA]φB(QA)

= (187i+ 226, 43i+ 360) + [11](325i+ 415, 322i+ 254)

= (125i+ 357, 415i+ 249).
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Fig. 9. Alice’s shared secret computation. She starts at the curve from Bob’s public
key with j = 344i+ 190, and uses her secret key to compute the walk to the node with
j = 234, which is the shared secret.

She now proceeds exactly as before, performing the analogous sequence of op-
erations as during key generation. The only difference is that she no longer needs
to move any basis points through the isogeny, saving some computation because
it is only the destination curve that she needs. The four 2-isogeny computations
are summarised as
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φ0 : Ea0
→ Ea1

, with a1 = 289i+ 341 and j(Ea1
) = 364i+ 304;

φ1 : Ea1
→ Ea2

, with a2 = 414i+ 428 and j(Ea2
) = 67;

φ2 : Ea2
→ Ea3

, with a3 = 246i and j(Ea3
) = 242;

φ3 : Ea3
→ Ea4

, with a4 = 230 and j(Ea4
) = 234.

Figure 9 depicts Alice’s shared secret computation.

Bob’s shared secret computation. Bob starts from the curve output in
Alice’s public key in (6), taking his new starting curve Ea0

with a0 = 142i+183.
His first step is again to compute a secret generator on Ea0 corresponding to her
secret kA, as

SB = φA(PB) + [kB ]φA(QB)

= (142i+ 183, 119i+ 360) + [2](220i+ 314, 289i+ 10)

= (393i+ 124, 187i+ 380).
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Fig. 10. Bob’s shared secret computation. He starts at the curve from Alice’s public
key with j = 222i+ 118, and uses his secret key to compute the walk to the node with
j = 234, which is the shared secret.

Again, Bob proceeds exactly as he did during key generation, with the ex-
ception of moving Alice’s basis points through the isogeny. His three 3-isogeny
computations are summarised as
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φ0 : Ea0
→ Ea1

, with a1 = 183i+ 177 and j(Ea1
) = 299i+ 315;

φ1 : Ea1
→ Ea2

, with a2 = 31 and j(Ea2
) = 61;

φ2 : Ea2
→ Ea3

, with a3 = 230 and j(Ea3
) = 234.

Figure 10 depicts Bob’s shared secret computation. Referring back to Fig-
ure 9, we see that Alice and Bob have indeed arrived at the same shared value.

6 SIDH in practice

As promised in Section 1, extending one’s understanding from the running toy
example to parameters of cryptographic size is rather straightforward. The four
sets of primes in the SIKE proposal [8] are defined in exactly the same way as
the toy prime p = 2433−1. They are also of the form p = 2eA3eB−1, but instead
have

eA = 216 and eB = 137 in SIKEp434;

eA = 250 and eB = 159 in SIKEp503;

eA = 305 and eB = 192 in SIKEp610;

eA = 372 and eB = 239 in SIKEp751.

(8)

So, in SIKEp434 for example, Alice will be computing 216 steps in the 2-isogeny
graph and Bob will be computing 137 steps in the 3-isogeny graph. The name
SIKEp434 refers to the underlying prime p having 434 bits, and in this case the
number of supersingular j-invariants (or nodes in the corresponding supersingu-
lar isogeny graphs) is between 2429 and 2430.

The remainder of this section aims to highlight the more subtle differences
that arise when ramping up from toy parameters to those of cryptographic size,
and to bring the reader up to speed with the current state-of-the-art in SIDH.

Curse of the toy example. Of the 37 supersingular j-invariants over F4312 ,
21 of them are defined over the ground field F431. This may seem to suggest that
most (or at least a reasonable fraction) of the j-invariants will be defined over Fp

in general, but it is important to stress that, as p grows large, this is not the case.
As we saw in Section 2, the number of supersingular j-invariants in characteristic
p is roughly bp/12c, but it turns out that the number of supersingular j-invariants
defined over Fp is in Õ(

√
p). In other words, for the types of supersingular isogeny

graphs we work with in practice, the probability of a randomly chosen node (i.e.
j-invariant) being defined over Fp is negligibly small. The reason that this is
important is that the underlying problem of finding isogeny paths between two
supersingular curves (more on this in Section 7) becomes much easier when both
curves are defined over Fp. For the problem to be as hard as possible, we need
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at least one of E and E′ to have a j-invariant that is not in Fp2 , and thus we
want the chances of accidentally walking into such a j-invariant to be negligible.

Referring back to Figures 4 and 5, recall that the nodes corresponding to
j ∈ {0, 4, 125, 242} appeared to have unusual edge behaviour in one or both of
the 2- and 3-isogeny graphs. In all of these cases, there is either an edge from
the given node back to itself, there is not the usual number of edges connecting
to this node, or both. These correspond to exceptional cases where either (i)
isogenies degenerate into isomorphisms (e.g. the 2-isogeny with kernel (0, 0) on
E0), or (ii) two or more kernel elements produce the same image j-invariant
(e.g. the 3-isogenies emanating from the curve with j = 4). Again, with 4 out
of 37 nodes being exceptional in our example, it may seem that the number of
exceptional nodes is non-negligible as p grows large. However, the number of
exceptional nodes stays this small as p grows larger, as can be seen by trying to
force these exceptions in the isogeny formulas.

Finally, observe that Alice and Bob both walked to (or through) the node
with j = 344i+190 during key generation. This is another anomaly that occured
because of the size of our example, which will be overwhelmingly unlikely for
large parameter sets. Besides the exceptional j’s mentioned above, the edges in
Figures 4 and 5 appear to be completely unrelated, and indeed this lack of any
meaningful connection between Alice and Bob’s graphs is at the heart of the
security underlying SIDH.

Efficient isogeny computations. The isogeny computation routines we walked
through in Section 5 give the general picture of how we compute `e-isogenies for
` ∈ {2, 3}. Namely, we start with a secret generator P of order `e, compute the
point [`e−1]P of order ` by a scalar multiplication, and then use this point as
the kernel of our first `-isogeny φ0 : E0 → E1. We then move the original point
P through φ0 to compute φ0(P ) as the point of order `e−1 on E1, and start iter-
ating this process by beginning with another scalar multiplication [`e−2]φ0(P ).
This was the method used in the original Jao and De Feo paper [9], but in the
extended De Feo-Jao-Plût paper [5] it was shown that it is possible to do much
better.

To sketch the idea, note that during the first scalar multiplication P 7→
[`e−1]P , we can store an intermediate multiple of P , say Q = [`d]P for 1 ≤ d ≤
e−2. Then, rather than moving P through φ0(P ) and computing the scalar mul-
tiplication φ0(P ) 7→ [`e−2]φ0(P ), we can move Q through, and use it to compute
the scalar multiplication φ0(Q) 7→ [`e−d−2]φ0(Q) instead. The larger we choose
d, the more we save on this second scalar multiplication. However, the larger we
choose d, the fewer the number of iterations the point Q = [`d]P is of use; each
time we compute an isogeny, the orders of its successive images decrease by a
factor of `, until it is eventually moved to the point at infinity and is of no use
thereafter. One fix that may spring to mind is to store all of the intermediate
multiples of P for 1 ≤ d ≤ e−2, which is certainly plausible, but this then means
we would have to pull all e − 3 of these points through the first isogeny, e − 4
through the second isogeny, and so on, which becomes cumbersome. Determin-
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ing exactly which multiples to store in the first step, and every consecutive step
thereafter, becomes a rather complicated looking combinatorial problem whose
optimisation factors in the value of e, and the cost ratios of scalar multiplica-
tion and isogeny operations. Fortunately, De Feo, Jao and Plût provide a fully
optimised solution to this problem [5, §4.2.2] that becomes relatively simple to
implement in practice. Interested readers can consult the SIKE specification [8]
and the source codes that accompany it for further details.

Note that, while the explicit formulas for point and isogeny operations in
this tutorial have been presented in affine space, i.e. with inversions, all of them
have projective analogues that avoid inversions entirely. Just like in old school
ECC, every secret operation in SIDH can be performed projectively and avoid
all but the final inversion, which is used to normalise the result into its unique
affine representation.

Compressed public keys. For ease of exposition, in Section 5 we conformed
to the original specification of public keys, where Alice and Bob both produce
public keys of the form

PK =
(
φ(E), φ(P ), φ(Q)

)
, (9)

with φ being their secret isogeny, E is the starting curve, and with P and Q being
the basis points of the other party. We wrote the curve E using one element of
Fp2 (the Montgomery a parameter), and the points P and Q using two elements
of Fp2 each. In practice, however, we actually specify the public keys inside the
x-only Montgomery framework as PK = [x(φ(P )), x(φ(Q)), x(φ(Q− P )), where
x(φ(P )) is the x-coordinate of φ(P ), etc, and where these three elements can be
used to recover the Montgomery a coordinate in a handful of field operations [8,
§1.1]. This requires only 3 elements of Fp2 , is preferable to what we used in
Section 5, and this is the state-of-the-art for “uncompressed” SIDH public keys.

It turns out that we can actually compress the public keys much further [2]
by focussing on the second and third components of the public key in (9). The
high level idea is that the Fp2 elements used to transmit the points φ(P ) and
φ(Q) are rather large compared to the size of the integer coefficients that are
needed to represent them with respect to a given basis. We will return to our
toy example to illustrate, recalling Alice’s public key from (6) as

PKA = (φA(Ea0
), φA(PB), φA(QB))

= (423i+ 179, (142i+ 183, 119i+ 360), (220i+ 314, 289i+ 10)),

where she had moved to the curve E : y2 = x3 + (423i + 179)x2 + x, on which
the points φA(PB) and φA(QB) have order 33. For any basis of the 33-torsion on
E, say the points R and S with E[33] = 〈R,S〉, we can write the points φA(PB)
and φA(QB) as

φA(PB) = [α]R+ [β]S and φA(QB) = [γ]R+ [δ]S, (10)
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for some α, β, γ, δ ∈ {0, 1, 2, . . . , 26}. If Alice can send (α, β, γ, δ) instead of
φA(PB) and φA(QB), or even instead of x(φA(PB)) and x(φA(QB)), this will be
a significant decrease in bandwidth; 4 elements of Z27 is much smaller than the
4 elements of F431 that would be needed to send x(φA(PB)) and x(φA(QB)).
This whole idea hinges on Alice being able to indeed send (α, β, γ, δ) to Bob
without sending the basis points. This is achieved by Alice computing a basis
{R,S} deterministically from the curve φA(Ea0

), in such a way that Bob will be
able to start with her compressed public key(

φA(Ea0
), (α, β, γ, δ)

)
,

use φA(Ea0
) to recover the same basis points R and S, and then recover φA(PB)

and φA(QB) exactly as in (10). Fortunately, it is relatively easy to devise methods
to derive bases deterministically – see [8]. All that then remains is to show
how Alice can decompose her points φA(PB) and φA(QB) into (α, β, γ, δ) with
respect to this basis. This requires that Alice can solve two-dimensional discrete
logarithm problems of the form in (10), which turns out to be possible in practice
due to all of our supersingular elliptic curves having very smooth group orders5,
i.e. group orders whose largest prime factors are 3.

In general, both Alice and Bob can compress their public keys to be of the
form

(
φA(Ea0

), (α, β, γ, δ)
)

and
(
φB(Ea0

), (α′, β′, γ′, δ′)
)
, improving from three

elements in Fp2 to one element of Fp2 and 4 elements of either Z2eA or Z3eB .
Furthermore, one of the integer components can be neglected in both cases by
performing a normalisation across the bases. Assuming that 2eA ≈ 3eB ≈ p1/2,
this shrinks both public keys to around 60% of their original size – see [8] for
further details.

7 Security and cryptanalysis

We conclude the tutorial with a brief discussion on the security of SIDH. The
first order of business is to address the difference between SIDH and SIKE.

SIDH versus SIKE. The computational problems related to the SIDH proto-
col are usually stated by listing a tuple corresponding to all of the information
that a passive adversary would see, and then asking the attacker to either find
the underlying secret isogeny (the search problem – see [7, Definition 2]), or to
decide whether or not the tuple is indeed a well-formed instance of the SIDH
problem (the decisional problem – see [7, Definition 3]). Given the four basis
points in the public parameters, and their image points that are included in the
public keys, these tuples contain substantially more information than just the
preimage and image curves of the secret isogeny. One of the main assumptions
made in the SIDH landscape is that all of these preimage and image points do

5We remind the reader that the security of SIDH/SIKE is unrelated to discrete
logarithm problems!
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not help a passive adversary in solving the more general problem which is to
compute the degree-`e isogeny

φ : E → E′, (11)

that connects the curves E and E′ in the supersingular isogeny graph. This as-
sumption has remained valid to date, and there have been no known passive
attacks that can make use of the auxiliary image points for the types of SIDH
parameters used in practice.

However, the need to transmit these image points becomes a significant draw-
back when considering the combination of active adversaries and the use of static
keys. Galbraith, Petit, Shani and Ti [6] showed that, if Alice or Bob is reusing
a secret key for many protocol instances, a malicious party can actively learn
their entire secret by performing as many interactions as the bitlength of their
key.

We will return to our running example in Section 5 to illustrate the basic
idea. Recall from (6) that Alice’s public key was

PKA = (φA(Ea0
), φA(PB), φA(QB))

= (423i+ 179, (142i+ 183, 119i+ 360), (220i+ 314, 289i+ 10)),

which corresponded to her secret kA = 11, and recall that Bob’s public key was

PKB = (φB(Ea0
), φB(PA), φB(QA))

= (273i+ 76, (187i+ 226, 43i+ 360), (325i+ 415, 322i+ 254)),

which corresponded to his secret kB = 2. Furthemore, recall that the first step
in Alice’s shared secret computation was to use Bob’s public key and her secret
to compute the new kernel as

SA = φB(PA) + [kA]φB(QA)

= (187i+ 226, 43i+ 360) + [11](325i+ 415, 322i+ 254)

= (125i+ 357, 415i+ 249).

Now suppose that Bob wants to learn Alice’s static secret. Following [6, §3.1],
rather than sending his second image point φB(QA) = (325i+ 415, 322i+ 254),
he will add it to a point of order 2 on E273i+76, say T2 = (245i + 27, 0), to get
(325i + 415, 322i + 254) + (245i + 27, 0) = (76i + 247, 114i + 208), and instead
send the malicious public key

PK′B = (φB(Ea0), φB(PA), φB(QA) + T2)

= (273i+ 76, (187i+ 226, 43i+ 360), (76i+ 247, 114i+ 208)),

where the first two components remain unchanged. Bob will proceed as usual,
taking Alice’s static key and his secret kB = 2 to arrive at the shared secret
jB = 234 as in Figure 10. However, Alice will now compute

S′A = φB(PA) + [kA](φB(QA) + T2)

= (187i+ 226, 43i+ 360) + [11](90i+ 354, 21i+ 317)

= (353i+ 23, 152i+ 277),
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which is a point of order 16 that is different from SA. Moreover, 〈S′A〉 6= 〈SA〉, so
the two isogenies generated by these two kernels will be different. Indeed, Alice
computes the 16-isogeny from E273i+76 with kernel 〈S′A〉 and arrives at the node
with jA = 242.

The SIDH protocol will fail because jB 6= jA, at which point Bob immediately
knows the final bit of Alice’s secret; if Alice’s secret were even, then it is easy to
see that Bob’s adding the point T2 to φB(QA) would have produced S′A = SA,
and the protocol would have gone through smoothly. Thus, whether or not the
protocol succeeds, Bob learns a bit of Alice’s secret. In [6, §3.2] the attack is
continued bit by bit until Bob reconstructs all but the last two bits of Alice’s
secret, which can be brute forced with no further interaction – see [6, Algorithm
1].

Unfortunately there is currently no known way for Alice to check that Bob’s
public key is well-formed and non-malicious, and this is the reason that SIDH
must either (i) insist that both parties use purely ephemeral secret keys, i.e.
use each secret key once, or (ii) use a generic passive-to-active transformation
(see [8]) to allow one of the two parties to reuse a long-term secret.

SIKE stands for supersingular isogeny key encapsulation, which applies such
a generic transformation to SIDH in order to allow Alice to safely use a long-term
static secret. The basic idea is that Bob must use Alice’s fixed public key and his
secret key to compute the true shared secret j before sending any information
to Alice. Moreover, the secret key kB he uses is computed as the output of a
cryptographic hash function whose input is Alice’s public key and a randomly
chosen value m, i.e. he uses kB = H(PKA,m). Along with his usual public key,
he encapsulates the random value m by XOR-ing it with a hash of the shared
secret, H ′(j), and sends

(PKB , H
′(j)⊕m)

to Alice, where PKB is as usual. She can now use PKB and her secret key to
compute j and then H ′(j), and this allows her to recover Bob’s initial random
value m. Alice can then recompute Bob’s secret kB = H(PKA,m) and then check
that PKB is exactly as it should be, i.e. that Bob has not acted maliciously. If
this check passes, Alice can carry on as usual, but if not, she can presume Bob is
acting maliciously and can output garbage. This way, Bob will always get back
garbage if he tampers with the protocol, and he will learn nothing about Alice’s
secret through doing so.

Basic properties of supersingular isogeny graphs. In discussing the se-
curity landscape of SIDH, it is important to understand some basic facts about
supersingular isogeny graphs; these can be seen for our toy example by eyeballing
Figures 4 and 5, but they hold true in general. Supersingular `-isogeny graphs
are both connected, meaning there is always a path between any two nodes, and
(`+ 1)-regular, meaning every vertex has precisely `+ 1 connected neighbouring
vertices6. They are also instances of expander graphs which are said to have rapid

6Edges can have multiplicities greater than 1, which takes care of the tiny handful
of anomalies we discussed in Section 6.
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mixing. Very roughly speaking, this means that when starting at any node in the
graph, only a relatively small number of steps (i.e. logarithmic in the number
of nodes) is needed for a random walk to converge to a uniform distribution. In
other words, we can pick any node in the graph, and so long as our walks are of
a requisite (but relatively small) length, they can take us to any other node in
the graph. Another way to state this is in terms of the graph’s diameter, which
is the maximum number of steps needed to connect any two nodes in the graph;
an expander graph with N nodes has a diameter in O(logN). Astute readers
should consult [5, §2] and the references therein for more precise statements7.

The van Oorschot-Wiener collision finding algorithm. We now turn to
describing the current state-of-the-art in cryptanalysis against SIDH. Assuming
that both Alice and Bob use one-time ephemeral SIDH keys, or that SIKE is
used to protect one side’s static keys, we are now back in the situation where
the best known attacks do not use any of the basis points, and where we are
trying to solve the problem in (11): given two `e-isogenous curves E and E′ in
the supersingular isogeny graph, compute the corresponding isogeny.

For concreteness, consider the smallest set of SIKE parameters with p =
22163137 − 1, for which there are more than 2429 nodes in the corresponding
supersingular isogeny graph, and suppose we are trying to find Alice’s secret
isogeny

φA : E → EA

of degree 2216.
Since the degree of our isogeny is fixed and known, this problem is a rather

special instance of the general isogeny problem, which asks to find an isogeny
connecting any two nodes in the graph. Our job is a lot easier than solving
this general problem among the ≈ 2429 nodes, since the 216 steps taken by
Alice falls significantly short of the diameter of the graph. To see this, we can
count the number of possible destination nodes for Alice’s 2216 by counting the
number of distinct order-2216 subgroups on E; the number of order-`e subgroups
is `e−1(`+ 1) in general, so in our case there are exactly 2216 + 2215 possibilities
for EA. We depict this property for our toy example in Figure 11, but emphasise
that as p grows large the destination (green) nodes become exponentially sparse
among all nodes; the graphs have O(p) nodes and only O(

√
p) of them are

possible destination nodes.
It is for this reason that random walk algorithms for solving the general

isogeny problem are not the best known algorithms against SIDH. The 216 steps
is much smaller than the average number of steps connecting two given nodes
(across all pairs of nodes), so it is overwhelmingly likely that the walk Alice
took from E to EA is the shortest walk between those two nodes. Thus, the
best algorithms for computing φA are meet-in-the-middle algorithms, whereby

7An even less formal but more visual interpretation of this property (with respect
to Figures 4 and 5) would be to say that there is no way to position the nodes so that
drawing the edges makes the pictures appreciably less messy.
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Fig. 11. Alice’s possible destination nodes (in green) when starting at E with j(E) =
87i + 190, and computing 24-isogenies to the curves Ek = E/〈PA + [k]QA〉 with k ∈
{0, 1, . . . , 15}.

we perform walks of 108 steps from both E and EA until two of these walks reach
the middle node; it is then overwhelmingly likely that these two walks connect
to be exactly the walk that Alice took, and the problem is solved.

The generic version of meet in the middle builds a table of all of the curves
that are 2108-isogenous to EA (of which there are 2108+2107), and then computes
each 2108-isogeny from E, one at a time, until a match is found in the table.
Since 2108 ≈ p1/4, this gives an attack that runs in O(p1/4) time and requires
O(p1/4) memory (so long as SIDH instances are constructed with 2eA ≈ 3eB ,
then these complexities remain the same when targeting either party’s secret
isogeny). Indeed, these were the asymptotic complexities originally stated by
Jao and De Feo [9], and those that were used to analyse SIKE’s security in the
Round 1 submission.

A 2018 paper by Adj, Cervantes-Vázquez, Chi-Domı́nguez, Menezes and
Rodŕıguez-Henŕıquez [1] analysed the security of SIDH and SIKE more con-
cretely, and showed that the generic version of meet-in-the-middle is, overall,
not the best algorithm for solving the underlying isogeny problems. More specif-
ically, they argued that the exponential storage requirements (of more than 2108

bits in the smallest case of SIKEp434) essentially makes generic meet-in-the-
middle irrelevant, particularly when comparing its runtime to the runtimes of
attacks against other cryptographic primitives (as is required when positioning
the security against NIST’s target levels – see [15]). Adj et al. proposed that the
correct way to analyse security is to fix an upper bound on the possible memory
(they specified w = 280 as a possible yet still presently infeasible such bound),
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and to analyse the runtimes of the best known algorithms subject to this stor-
age capacity. Their conclusion is that the van Oorschot-Wiener (vOW) parallel
collision finding algorithm [17] is then the superior algorithm for finding φ.

We will briefly sketch the intuition behind the vOW algorithm in our context.
Since all of the curves that are 2108-isogenous to EA can no longer fit in our table
(of, say, size w = 280), we instead fill the table with curves from both sides, i.e.
image curves that are either 2108-isogenous to E or curves that are 2108-isogenous
to EA. As before, we are still hoping for a collision in the table, when a walk from
E produces the same image curve as a walk from EA. However, given the storage
capacity, even when we come across this middle curve from one side, the chances
that it is already in the table are very small, and we have no way of knowing
that this is the middle curve until we have run into it from the other side. Thus,
we can either discard that image curve, or use it to replace an existing memory
element. Either way, we could be discarding one side of the solution we seek, or
the other side could have previously been overwritten.

Henceforth we will stop using the term (image) curves and instead refer to
the elements of a set S, which we define to be the set of all j-invariants that are
2108-isogenous to E or 2108-isogenous to EA. A better way to use the 280 memory
is to instead define a deterministic but pseudo-random walk on S, and to define
a property that distinguishes certain elements of S; these elements are the only
ones that we send to memory. In this case we have roughly 2109 elements in S,
so we could define a property that distinguishes around 1 in every 230 elements
in order to fit all (if not close to all) of the distinguished elements in memory.
Our pseudo-random function

f : S → S

will take a j-invariant, feed it into a cryptographic hash function to produce
a new string, use one bit of this string to decide whether we are to compute
an isogeny from E or EA, and then use the rest of the string to choose a sub-
group/isogeny, which in turn produces a new j-invariant. To produce pseudo-
random walks on S, we start with an initial element x0 ∈ S and use the function
f : xi 7→ xi+1 to iterate until we come across an element, xn, that is distin-
guished8. When this happens, we store the distinguished element (together with
the initial value x0) in memory, otherwise we keep walking. We pick starting
points at random, and perform many of these walks to collect pairs of initial
and distinguished elements in memory; moreover, these walks are independent
of each other so the process parallelises perfectly.

Let x ∈ S and y ∈ S be such that x 6= y, f(x) = f(y) = z, x gets mapped
(via f) through a subgroup on E, and y gets mapped through a subgroup on EA.
It follows that z is the middle j-invariant that solves our problem. Now, it is very
unlikely that z will be a distinguished element, but so long as we have a walk
that finds x and another walk that finds y, f being deterministic guarantees that
they will then walk on the same elements and thus into the same distinguished

8This distinguishing property can essentially be anything, so long as it yields the
right fraction of elements; in our example, a good choice would be to hash the element
and check for 30 leading zeros.
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element. When the second of these two walks sends its distinguished element to
memory, we will find that this distinguished element has already been found,
and we will then be able to redo both walks and recover x and y.

Using such a function f and a distinguished element criterion solves our
problem of not being able to store all of the elements corresponding to EA in
memory, but in doing so it introduces several new problems. Many of these are
closely related to f behaving like a random function. For example, while we know
that there is a unique subgroup on E and a unique subgroup on EA that solves
the problem, our particular choice of f (recall that it involves a cryptographic
hash function) might be such that there is no x and/or y that pass through these
subgroups under f , so that we will never terminate with the solution. Or, even if
there are values of x and y that solve the problem under f , it could be that x and
y themselves have no preimages under f . In this case our only chance of solving
the problem is in the overwhelmingly unlikely case that we happen to pick both
of them as starting points of our random walks. Furthermore, the solution we
seek is no longer the only x 6= y with f(x) = f(y); in fact, we have introduced
many, many more such collisions by virtue of f behaving like a random function.

What we would ultimately hope for is that we use a function f for which
both x and y exist (ideally, several such x and y would exist), and for which
there are many random walks that lead to x and y under f . The problem is,
we have no way of knowing how good or bad a given random function f is
for our particular problem instance. Thus, as is discussed by van Oorschot and
Wiener [17], after filling and refilling/overwriting our entire memory under a
given function f , the optimisation of this entire process forces us to abandon
all of the prior computations and switch to an entirely new function, essentially
restarting the attack.

Both the implementation and the concrete runtime analysis [17, §4.2] of this
algorithm are non-trivial. In summary, a line of recent works studying and imple-
menting the attack [1,10,3] all essentially confirm the original runtime analysis
of van Oorshot and Wiener in the context of SIDH: if the available memory
can hold w elements from the set of size S, and with m processors working in
parallel, the runtime, T , of the algorithm is

T =

(
2.5

m

√
|S|3
w

)
· t,

where t is the time taken to compute one function iteration, which boils down
to one `e/2-isogeny computation. In SIDH we have |S| ≈ p1/4, so (with w = 280)
we can see that the runtime of vOW becomes worse than the runtime of generic
meet-in-the-middle for all of the SIKE parameters, and this gap widens as p
grows larger. Nevertheless, this remains the best known concrete algorithm for
solving the specialised isogeny problems underlying SIDH.

Finally, we remark that the vOW algorithm is entirely classical. An excellent
recent paper by Jaques and Schanck [10] investigated a range of quantum attacks
against SIDH, but ultimately showed that the concrete improvement across all
relevant avenues of quantum attack is rather minimal, if at all.
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