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Abstract. Elliptic curves play a prominent role in cryptography. For instance, the
hardness of the elliptic curve discrete logarithm problem is a foundational assump-
tion in public key cryptography. Drinfeld modules are positive characteristic func-
tion field analogues of elliptic curves. It is natural to ponder the existence/security
of Drinfeld module analogues of elliptic curve cryptosystems. But the Drinfeld mod-
ule discrete logarithm problem is easy even on a classical computer. Beyond discrete
logarithms, elliptic curve isogeny based cryptosystems have have emerged as candi-
dates for post-quantum cryptography, including supersingular isogeny Diffie-Hellman
(SIDH) and commutative supersingular isogeny Diffie-Hellman (CSIDH) protocols. We
formulate Drinfeld module analogues of these elliptic curve isogeny based cryptosys-
tems and devise classical polynomial time algorithms to break these Drinfeld analogues
catastrophically.

1 Introduction

Elliptic curve cryptosystems reliant on the hardness of the elliptic curve discrete logarithm
problem (ECDLP) are cornerstones of public key cryptography. However Shor’s algorithm
makes ECDLP easy on a quantum computer [29]. As candidates for post-quantum cryptog-
raphy, several cryptosystems reliant on the hardness of computing a large degree isogeny
between two given elliptic curves have emerged.

The first such systems were proposed by Couveignes [7] and rediscovered by Rostovtsev-
Stolbunov [27]. Their setting is a set of isogenous ordinary elliptic curves over a large finite
field. Ideal class groups of certain orders in imaginary quadratic extensions act freely and
transitively on this set. The underlying hard problem is identifying the class group element
mapping one given curve to another. Charles, Lauter and Goren [4] constructed hash func-
tions based on the hardness of computing isogenies. A novelty in their construction is the
reliance on supersingular elliptic curves; renowned for their isogeny graphs being Ramanujan
[25]. DeFeo, Jao and Plût devised a public key cryptosystem based on the hardness of comput-
ing an isogeny between two supersingular elliptic curves. Unlike the ordinary case, isogenies
between supersingular elliptic curves do not necessarily commute. The Diffie-Hellman [10]
formalism for key-exchange therefore does not apply. To overcome this non-commutativity
obstruction and facilitate key exchange, De Feo, Jao and Plût resort to requiring that the en-
tities involved publish the images of certain points under their secret isogenies. Their scheme
is named supersingular isogeny Diffie-Hellman (SIDH) to reflect this. Recently, Castryck,
Lange, Martindale, Panny and Renes [3] designed a Diffie-Hellman style key exchange based
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on supersingular elliptic curves. They accomplish this by restricting to isogenies defined over
the field of definition of the curves; which ensures the isogenies commute. Their scheme is
named commutative supersingular isogeny Diffie-Hellman (CSIDH). The aforementioned class
group action reappears in this context and the underlying hardness is now closely related to
those of Couveignes and Rostovtsev-Stolbunov, coming full circle.

A distinction between SIDH and CSIDH/Couveignes-Rostovtsev-Stolbunov is that quan-
tum sub-exponential algorithms are known to break the later. The reason being that their
underlying hard problem can be phrased as a hidden shift problem amenable to Kuperberg’s
and Regev’s algorithms [18,26,2,5]. There are no known quantum subexponential algorithms
to break SIDH. Yet, the publication of images of points under the secret isogenies in SIDH
is ominous. In CSIDH/Couveignes-Rostovtsev-Stolbunov, the public key is just an elliptic
curve, no points are published. A thorough comparative study of these frameworks in the
post-quantum setting is thus warranted.

Drinfeld introduced the modules bearing his name as analogues of elliptic curve complex
multiplication theory [11,12]. To emphasize this connection, he called them elliptic modules
and proved function field analogues of the Kronecker-Weber theorem, the main conjecture of
Iwasawa theory and the Langlands conjecture for GL2 (over a global field of positive char-
acteristic). Drinfeld modules and their generalisations continue to play a crucial role in the
arithmetic of function fields and in proving global Langlands conjecture over function fields
for GLn. We settle for a concrete simple notion of Drinfeld modules sufficient for our context.

It is natural to ponder if Drinfeld module arithmetic can be cast in place of elliptic curves
in cryptography. Scanlon foresaw the folly and showed that the Drinfeld module versions of
the elliptic curve discrete logarithm problem are easy, even on a classical computer [28]. Our
paper is a tale of caution too. We meticulously formulate Drinfeld module analogues of the
aforementioned elliptic curve isogeny schemes and catastrophically break them on a classical
computer. En route to designing the cryptosystems, we devise certain algorithms that may be
of independent interest in Drinfeld module arithmetic. For instance, we present algorithms for
constructing supersingular Drinfeld modules over finite fields with prescribed order (Euler-
Poincaré characteristic).

We focus primarily on Drinfeld module analogues of CSIDH and SIDH. In describing the
cryptosystems, we restrict to non interactive key exchange protocols. It is straightforward to
extend it to a public key encryption scheme etc. On the cryptanalysis front, the principle
reason for vulnerability is that large degree Drinfeld module isogenies have a natural succinct
representation as elements in a polynomial ring twisted by the Frobenius endomorphism.
Contrast this with the elliptic curve scenario where large degree isogenies are not known to
admit succinct representations, unless their factorization into a composition of small degree
isogenies is known. Aside from the succinct representation, the algorithms for breaking Drin-
feld analogues of CSIDH and SIDH are vastly different. The Drinfeld module SIDH scheme is
broken by exploiting the published images of points under the secret isogenies. These images
allow for the succinct representation of the secret isogenies to be interpolated. The Drinfeld
module CSIDH system is broken by looking directly at the defining commutation relation of
isogenies. The coefficients of the succinct representations of the secret isogenies are iteratively
inferred from the commutation relation. The fact that the isogenies are over the defining
field of the Drinfeld modules (and not over an extension) is critical to our Drinfeld CSIDH
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breaking algorithm. In fact, this algorithm can be adapted in a straightforward manner to
break Drinfeld module versions of Couveignes-Rostovtsev-Stolbunov cryptosystems.

The paper is organized as follows. In § 2, we introduce Drinfeld modules and build notation.
Our exposition is largely self contained and targeted at a typical reader well versed with elliptic
curve cryptography, but unfamiliar with Drinfeld modules. The following section § 3 is devoted
to developing the main objects for our constructions; supersingular Drinfeld modules and
isogenies connecting them. The Drinfeld module analogues of CSIDH and SIDH are devised
in § 4 and broken in § 5.

2 Introduction to Drinfeld Modules

This section is a gentle introduction to Drinfeld modules with an eye towards computation.
We constantly draw on analogies between number fields and function fields; in particular
between integers and polynomials over finite fields and between elliptic curves and rank-2
Drinfeld modules. Alongside Drinfeld original paper [11], Gekeler’s papers [14,15] serve as
excellent quick references for the material in the current and following section.

2.1 Rank-2 Drinfeld modules

We begin by introducing rank-2 Drinfeld modules over rational function fields and over finite
fields. They are respectively analogous to elliptic curves over the rational numbers and over
finite fields. Let Fq denote the finite field with q elements and assume throughout that q is
odd. Let Fq[x] denote the polynomial ring in the indeterminate x and let Fq(x) be its field of
fractions. Let K be a field with a non zero ring homomorphism γ : Fq[x] → K. Necessarily,
K contains Fq as a subfield. Let τ : K −→ K denote the qth power Frobenius endomorphism.
The ring of endomorphisms of the additive group scheme Ga over K can be identified with
the skew polynomial ring K〈τ〉 where τ satisfies the commutation rule

τu = uqτ, ∀u ∈ K.

A rank-2 Drinfeld module φ /K over K is (the Fq[x]-module structure on Ga given by) a ring
homomorphism

φ : Fq[x] −→ K〈τ〉

x 7−→ γ(x) + gφ(x)τ +∆φ(x)τ2

for some gφ(x) ∈ K and ∆φ(x) ∈ K×. Such a ring homomorphism fixes Fq and is completely
determined by the image of x. By design, a polynomial f(x) maps to a polynomial in τ with
constant term γ(f(x)),

f(x) 7−→ γ(f(x)) +

2 deg(f)∑
i=1

fφ,iτ
i

︸ ︷︷ ︸
Call φf

for some fφ,i ∈ K. It is convenient to use subscripts to denote images, that is, call φf the
image of f(x) under φ. Here on, we are primarily concerned with rank-2 Drinfeld modules
and unless otherwise noted, a Drinfeld module will mean a rank-2 Drinfeld module. When
explicitly describing a Drineld module, we will at times write φ = (gφ, ∆φ). When the field
of definition K is clear from context, we write φ instead of φ /K .
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Drinfeld modules over rational function fields: To obtain Drinfeld modules over the
rational function field Fq(x), take K to be Fq(x) and set γ to be the inclusion γ : Fq[x] ↪→
Fq(x). A Drinfeld module φ

/
Fq(x) over Fq(x) then takes the form

φ : Fq[x] −→ Fq(x)〈τ〉

x 7−→ x+ gφ(x)τ +∆φ(x)τ2

for some gφ(x) ∈ Fq(x) and ∆φ(x) ∈ Fq(x)×. To better perceive the homomorphism, it is
instructive to compute by hand the images of x2, x3 etc. employing the commutation rule in
Fq(x)〈τ〉.

Drinfeld modules over finite fields: For a monic irreducible p(x) ∈ Fq[x] of degree
deg(p) > 0, denote

Fp := Fq[x]/(p(x)) ∼= Fqdeg(p) .

Drinfeld modules defined over finite fields Fp will feature prominently in our constructions.
To realize them, take K = Fp and set γ : Fq[x] → Fp to be the reduction modulo p map. A
Drinfeld module φ

/
Fp over Fp takes the form

φ : Fq[x] −→ Fp〈τ〉

x 7−→ (x mod p) + gφτ +∆φτ
2

for some gφ ∈ Fp and ∆φ ∈ F×p . Fix an algebraic closure Fp of Fp and let Fp2 denote the

unique quadratic extension of Fp in Fp. We will also frequently encounter Drinfeld modules
over Fp2 , defined by taking K = Fp2 .

2.2 Endowing new Fq[x]-module structure:

In the arithmetic of elliptic curves, abelian groups (that is, Z-modules) are recurring objects,
for instance as the group of rational points or the group of m torsion points for some number
m. In Drinfeld module arithmetic, Fq[x]-modules will take the role of the analogous recurring
object.

Consider an Fq[x]-algebra M (say defined over an algebraic closure of K). One way to make
the Fq[x]-algebra M into an Fq[x]-module is to retain the addition and scalar multiplication
but simply forget the multiplication. A Drinfeld module φ /K endows a new Fq[x]-module
structure to M by twisting the scalar multiplication. For f(x) ∈ Fq[x] and α ∈M , define the
scalar multiplication f(x) ◦α := φf(α). Let φ(M) denote the new Fq[x] module structure thus
endowed to M .

Of particular interest is the module φ(Fp) endowed by a Drinfeld module φ
/
Fp on the

Fq[x]-algebra Fp. This Fq[x]-module φ(Fp) will play the role of the abelian group E(Fp) of
Fp-rational points of an elliptic curve E/Fp over a finite field with p elements. In this case,
the twisted scalar multiplication is; for f(x) ∈ Fq[x] and α ∈ Fp,

f(x) ◦ α := φf(α) = (f(x) mod p) α+

2 deg(f)∑
i=1

fφ,iα
qi

where the arithmetic on the right is performed in Fp. This new Fq[x]-module structure is
richer than merely forgetting the multiplication, as evident by the extra summation term on
the right.
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2.3 Morphisms of Drinfeld Module

Let φ /K and ψ /K be two Drinfeld modules over a field K as before. For a field extension
L/K, an L-morphism ι : φ /K −→ ψ /K defined over the extension L is an ι ∈ L〈τ〉 such
that

ι φf = ψf ι, ∀f ∈ Fq[x].

Since Fq commutes with τ , it is sufficient to check ι φx = ψx ι. Thus ι defines a morphism of
group schemes over K that commutes with the Fq[x]-action.

Isogenies: An L-isogeny is a non-zero L-morphism. An L-isogeny from φ /K to itself is
an L-endomorphism. The L-endomorphism ring denoted by EndL(φ) consists of L-isogenies
from φ /K to φ /K and the zero endomorphism.

Fp-endomorphisms: For first examples of isogenies, we look to the endomorphism ring
EndFp

(φ) of a Drinfeld module φ
/
Fp . Pick a monic non zero b(x) ∈ Fq[x] and consider

φb ∈ Fp〈τ〉. This yields the isogeny φb : φ
/
Fp −→ φ

/
Fp as evident from φbφf = φbf = φfb =

φfφb,∀f ∈ Fq[x]. Hence we have the inclusion Fq[x] ↪→ EndFp
(φ). But EndFp

(φ) is strictly

larger than Fq[x], for it contains the Frobenius element τdeg(p). Since the defining coefficients
gφ and ∆φ are in Fp, φf commutes with the Frobenius element τdeg(p) for every f(x) ∈ Fq[x].
Hence we have the inclusion Fq[x][τdeg(p)] ↪→ EndFp

(φ).

Fp-endomorphisms: For a Drinfeld module φ defined over a finite extension of Fp, the
endomorphism ring EndFp

(φ) over the algebraic closure Fp is a free Fq[x]-module of rank

either 2 or 4. When the rank is 2, φ is called ordinary and EndFp
(φ) is an order in an

imaginary quadratic extension of Fq(x). An imaginary quadratic extension is one where the
place at infinity in Fq(x) is not split. When the rank is 4, φ is called supersingular and
EndFp

(φ) is a maximal order in the unique quaternion algebra over Fq(x) ramifying precisely
at p and the place at infinity.

Isomorphisms and Automorphisms: The absolute j-invariant of a Drinfeld module φ =
(gφ, ∆φ) over a finite extension of Fp is defined as

j(φ) := gq+1
φ /∆φ.

Drinfeld modules φ and ψ over a finite extension of Fp are Fp-isomorphic if and only if
j(φ) = j(ψ). Drinfeld modules φ

/
Fp = (gφ, ∆φ) and ψ

/
Fp = (gψ, ∆ψ) are Fp-isomorphic if

and only if there exists a non zero c ∈ Fp such that gψ = cq−1gφ and ∆ψ = cq
2−1∆φ. This

condition is equivalent to

– j(φ) = j(ψ) and

– if gψ 6= 0 then gφ/gψ ∈ Fq−1p ; else, ∆φ/∆ψ ∈ Fq
2−1

p .

The number of Drinfeld modules φ
/
Fp = (gφ, ∆φ) over Fp is qdeg(p)

(
qdeg(p) − 1

)
since

gφ ∈ Fp and ∆φ ∈ F×p . The number of Fp-isomorphism classes is(
qdeg(p) − 1

)
(q − 1) +

∣∣∣F×p /F×(q2−1)p

∣∣∣
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where
∣∣∣F×p /F×(q2−1)p

∣∣∣ evaluates to q2−1 if deg(p) is odd and q−1 else. The count has a cleaner

form when the isomorphism classes are inversely weighted with the size of the automorphism
group AutFp

(φ) ∼= F×p , ∑
φ
/
Fp

1

|AutFp
(φ)|

= |Fp| = qdeg p,

where the summation is over Fp-isomorphism classes. This is analogous to the weighted count
for elliptic curves E/Fp modulo a prime p over isomorphism classes∑

E/Fp

1

|AutFp(E)|
= |Fp| = p.

2.4 Characteristic Polynomial of Frobenius

Let φ be a Drinfeld module over a finite extension K of Fp. From the structure of EndFp
(φ),

the Frobenius element τdeg p satisfies a polynomial equation over Fq[x]. Denote its mini-
mal polynomial by Mφ(X) ∈ Fq[X]. Gekeler [14] showed that the characteristic polynomial
Pφ(X) ∈ Fq[X] of the Frobenius element τdeg p (in the representations of EndFp

(φ) at the
`-adic Tate modules c.f [13]) is of the form

Pφ(X) = X2 − Trφ(x)X + εφp(x)

where εφ := (−1)deg(p)/NormK/Fq (∆φ) ∈ F×q is the sign of the norm of the Frobenius and
Trφ(x) ∈ Fq[x] is the trace of the Frobenius. Further, Pφ equals Mφ implying

Pφ(τdeg p) = τ2 deg p − Trφ(x)τdeg p + εφp(x) = 0.

Isogenies and Characteristic Polynomials: Two Drinfeld modules φ
/
Fp and ψ

/
Fp are

Fp-isogenous if there is an Fp-isogeny ι : φ
/
Fp −→ ψ

/
Fp . Although not apparent, being

Fp-isogenous is an equivalence relation for there is a corresponding dual isogeny ι̂ : ψ
/
Fp −→

φ
/
Fp . Two Drinfeld modules are Fp-isogenous if and only if they have the same characteristic

polynomial. This is analogous to the theorem of Tate that two elliptic curves over a finite
field are isogenous if and only if they have the same characteristic polynomial.

Euler-Poincaré Characteristic: The group of Fp-rational points on an elliptic curve E/Fp

has cardinality constrained by the Hasse bound. To discuss Drinfeld module analogues, we first
require a cardinality measure for finite Fq[x]-modules. Cardinality is an integer valued measure
of the size of a finite abelian group (equivalently, a finite Z-module). A convoluted definition
is to assign as the cardinality of a cyclic group of prime order the corresponding prime: and
for cardinality of finite abelian groups that sit in an exact sequence to be multiplicative.
The Euler-Poincaré characteristic χ is an Fq[x]-valued cardinality measure of a finite Fq[x]
module defined completely analogously. For a finite Fq[x]-module A, χ(A) ∈ Fq[x] is the monic
polynomial s.t.

– If A ∼= Fq[x]/(s(x)) for a monic irreducible p(x), then χ(A) = s(x).
– If 0→ A1 → A→ A2 → 0 is exact, then χ(A) = χ(A1)χ(A2).

For the Fq[x]-module φ(Fp), the Euler-Poincaré characteristic χ(φ(Fp)) has a simple linear
algebraic interpretation: the characteristic polynomial of the Fq-linear map φx on Fp. In
particular, it is a degree deg p polynomial in Fq[x].
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Riemann Hypothesis: For an elliptic curve E/Fp, the pth power frobenius element satisfies
the characteristic polynomial

X2 − TrEX + p

where TrE ∈ Z is the trace of the pth-power Frobenius. The Fp-rational points E(Fp) famously
form a finite abelian group with cardinality p+ 1 up to an error determined by the Frobenius
trace TrE . The Hasse bound, considered the Riemann hypothesis for elliptic curves over finite
fields asserts

|TrE | ≤ 2
√
p⇒ |E(Fp)| = p+ 1− TrE︸︷︷︸

−2√p≤ ≤2√p

.

Gekeler [15] established the Drinfeld module analogue of the Hasse bound for φ
/
Fp ;

deg (Trφ(x)) ≤ deg(p)/2.

Consequently, the Euler-Poincaré characteristic of the Fq[x]-module φ(Fp) is

χ (φ (Fp)) = εφp(x) + 1− Trφ(x)︸ ︷︷ ︸
≤deg(p)/2

.

The analogy with the Hasse bound is striking. To describe the error in each case takes
(roughly) at most half the number of bits as the estimate.

3 Supersingular Drinfeld Modules

Recall that a Drinfeld module φ
/
Fp over Fp is supersingular if EndFp

(φ) is a maximal order in

the unique quaternion algebra over Fq(x) ramifying precisely at p and the place at infinity. We
will be concerned with a more general notion of supersingularity. Namely, Drinfeld modules
φ /L defined over a finite extension L of Fp such that EndFp

(φ) is not commutative. We

call these supersingular Drinfeld module of characteristic p. There are only finitely many Fp-
isomorphism classes of Drinfeld modules of characteristic p. In fact, every Drinfeld module of
characteristic p is in fact defined either over Fp or Fp2 (upto Fp-isomorphism) [14][Prop. 4.2].
Hence with the unique quadratic extensionFp2 of Fp as the field of definition, we can account
for all the supersingular Drinfeld modules of relevance to our constructions.

Hasse Invariant: An alternate characterization of supersingularity is given by the Hasse
invariant. The Hasse invariant hφ ∈ Fp of φ

/
Fp2 is the coefficient of τdeg(p) in the expansion

φp =

2 deg(p)∑
i=0

hiτ
i ∈ Fp2〈τ〉.

A Drinfeld module φ
/
Fp2 is supersingular if and only if hφ = 0 [13]. In fact, for supersingular

φ
/
Fp2 [14][Prop. 4.1],

φp = NormFp2/Fq (∆φ)τ2 deg(p). (1)

Remark 1. The constant coefficient NormFp/Fq (∆φ) is a notational inconvenience to our con-

structions. Thankfully, there is always an Fp-isomorphic Drinfeld module defined over Fp2

with NormFp2/Fq (∆φ) = 1 (see for instance the proof of Prop. 4.1 in [14]). Consequently,
while working with Fp2 as the field of definition, without loss of generality, we may assume
εφ = 1.
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Trace of Frobenius: Yet another characterization of a supersingular Drinfeld module of
characteristic p is that the trace of the Frobenius τdeg(p) vanishes.

3.1 Torsion Submodules

For a monic m(x) ∈ Fq[x] with deg(m) ≥ 1, the m-torsion points (that is, the kernel of the
isogeny φm) of a Drinfeld module φ (defined over Fp or Fp2)

Λφ[m] :=
{
α ∈ Fp | φm(α) = 0

}
form an Fq[x]-module with the structure

Λφ[m] ∼= Fq[x]
/

(m(x)) ⊕ Fq[x]
/

(m(x)) .

Lemma 1. Let φ be a supersingular Drinfeld module defined over Fp or Fp2 . If m(x) ∈ Fq[x]
divides the Euler-Poincaré characteristic χ(φ(Fp)), then Λφ[m] ⊆ Fp2 and there exists λ1 ∈
φ(Fp) and λ−1 ∈ φ(Fp2) such that as Fq[x]-modules

Λφ[m] = 〈λ1〉 ⊕ 〈λ−1〉.

Proof. Since φ is supersingular, the Frobenius τdeg(p) has trace Trφ zero and its characteristic
polynomial is

Pφ(X) = X2 + εφp(x).

Since m divides the Euler-Poincaré characteristic χ(φ(Fp)) = Pφ(1) = 1 + εφp(x), the charac-
teristic polynomial factors modulo m as

Pφ(X) mod m(x) = (X − 1)(X − εφp(x)) mod m(x)

= (X − 1)(X + 1) mod m(x)

Thus the Frobenius τdeg(p) acting on Λφ[m] has a 1-eigenspace and a complement−1-eigenspace.
Take a generator λ1 for the 1-eigenspace. So τdeg(p)λ1 = λ1 and λ1 ∈ φ(Fp). Likewise pick a
generator λ−1 for the −1-eigenspace. So τ2 deg(p)λ−1 = λ−1 and λ−1 ∈ φ(Fp2). �

We sketch an alternate proof using Hasse invariants that may be instructive. Since φ
/
Fp

is supersingular, the Frobenius element has trace Trφ zero and its characteristic polynomial is
Pφ(X) = X2+εφp(x). By remark 1, we assume εφ = 1 without loss of generality. Consequently,
the Euler-Poincaré characteristic is χ(φ(Fp)) = Pφ(1) = 1 + p(x). For λ ∈ Λφ[m],

0 = φχ(φ(Fp))(λ) = φ1+p(λ) = (1 + φp)(λ) = (1− τ2 deg(p))(λ).

where the first equality follows since m divides χ(φ(Fp)) and the last equality is a consequence
of equation 1. Thus λ is fixed by τ2 deg(p) and the lemma follows.

Computing `-torsion: We first compute a generator λ1 for the 1-eigenspace. One way is
to pick β ∈ φ(Fp) at random and take λ1 to be φ(1+εφp)/`(β), after testing to ensure the later
is non zero. Computing a generator λ−1 is similar. Take a random β ∈ φ(Fp2) at random and
take µ−1 to be φ(1+εφp)2/`(β), after testing to ensure the later is not in φ(Fp). By diagonalizing
the basis {λ1, µ−1}, we can extract λ−1. The diagonalization is easy since Drinfeld module
discrete logarithms are easy [28].
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3.2 Explicit `-power-Isogeny

Define the degree of an L-isogeny ι : φ /L → ψ /L (for a finite extension L/Fp) as

deg(ι) := χ(φ(ker(ι)),

closely following the notion of isogeny norm in Gekeler [14]. For example, the isogeny φf :
φ
/
Fp → φ

/
Fp for some monic f ∈ Fq[x] has degree deg(φf) = f(x)2. An isogeny ι with degree

deg(ι) = f ∈ Fq[x] will be called an f-isogeny. Let degτ (ι) denote the degree of an isogeny ι
as a polynomial in τ . An f-isogeny ι thus has degτ (ι) = deg(f).

Let φ be a supersingular Drinfeld module of characteristic p, which we assume without
loss of generality to be defined over Fp2 . Let a monic irreducible `(x) ∈ Fq[x] divide the
Euler-Poincaré characteristic χ(φ(Fp)). We construct explicit `-isogenies that are factors of
the `2-isogeny φ`.

`-isogenies: Recall from lemma 1 that the characteristic polynomial of the Frobenius τdeg(p)

factors modulo ` as

Pφ(X) = (X − 1)(X + 1) mod `(x)

and there exists λ1 ∈ φ(Fp) and λ−1 ∈ φ(Fp2) such that as Fq[x]-modules

Λφ[`] = 〈λ1〉 ⊕ 〈λ−1〉.

The (necessarily cyclic) Fq[x]-submodules of Λp[`] with Euler-Poincaré characteristic ` are
of the form 〈λ〉 for λ ∈ Λφ[`]. There are qdeg(`) + 1 such submodules, enumerated without
repetition as 〈λ−1〉 and {〈λ1+φf(λ−1)〉} (where f ∈ Fq[x] runs through a set of representatives
of F`). In total, there are qdeg(`) + 1. For each such submodule Λ, there is a unique `-isogeny

ιΛ : φ
/
Fp2 −→ φΛ

/
Fp2

with kernel Λ. We next explicitly construct the isogeny ιΛ ∈ Fp2〈τ〉 that will also yield the

coefficients of Drinfeld module φΛ
/
Fp2 we implicitly defined. Our constructions only need

the special case deg(`) = 1, where the construction is particularly simple. Assume deg(`) = 1
for the remainder of this subsection.

Consider Λ = 〈λ〉 for some λ ∈ Λφ[`]. Seen as elements of Fp2 , 〈λ〉 forms the one di-
mensional Fq-space {cλ, c ∈ Fq}. Thus there is a monic degree one (in τ) element in Fp[τ ]
that kills 〈λ〉, namely τ − λq−1, evidently independent of the chosen generator for 〈λ〉.
The ring Fp2〈τ〉 has a right division algorithm [16][Prop. 1.6.2]. Thus there exists unique
u(τ), v(τ) ∈ Fp2〈τ〉 (with v(τ) of τ -degree zero) such that φ` = u(τ)(τ − λq−1) + v(τ). Since
φ`(λ) = (τ −λq−1)(λ) = 0, we infer v(τ) = 0 and τ −λq−1 right divides φ`. There thus exists
a aτ + b ∈ Fp2〈τ〉 such that

φ` = (aτ + b)(τ − λq−1)

⇒ (τ − λq−1)φ` = (τ − λq−1)(aτ + b)(τ − λq−1).

Define ιΛ := τ − λq−1 and define φ〈λ1〉 /Fp by setting

φΛ` := (τ − λq−1)(aτ + b).

9



Since deg(`) = 1, φ〈λ1〉 /Fp is completely determined by the image φΛ` of `. By construction,

ιΛ φ` = φΛ` ιΛ,

which along with ` being of degree 1 implies

ιΛ φf = φΛf ιΛ, ∀f ∈ Fq[x]

and we indeed obtain the isogeny

ιΛ : φ
/
Fp2 −→ φΛ

/
Fp2 .

Fp-isogeny: For a supersingular Drinfeld module φ
/
Fp and a degree one monic ` dividing

χ(φ(Fp)), define the operation

` ? φ
/
Fp := φ〈λ1〉 /Fp

through the Fp-isogeny (with the 1-eigenspace 〈λ1〉 as the kernel)

ι〈λ1〉 : φ
/
Fp −→ φ〈λ1〉 /Fp .

Extend the operation to accommodate powers `a of ` recursively;

`a ? φ
/
Fp := ` ? (`a−1 ? φ

/
Fp ).

This is well defined since being Fp-isogenous, φ
/
Fp and `a−1?φ

/
Fp have the same character-

istic polynomial, ensuring ` divides the Euler-Poincaré characteristic χ
(
(`a−1 ? φ

/
Fp )(Fp)

)
.

More generally, for a set L of monic degree one polynomials dividing χ(φ(Fp)), L-smooth
polynomials act on Fp through the ? operator.

`-power Isogeny: For a supersingular Drinfeld module φ
/
Fp2 and a degree one ` di-

viding χ(φ(Fp)), an `-power isogeny is obtained by composing a sequence of `-isogenies.
Since `-isogenies do not necessarily commute, their ordering in the sequence matters. Con-
versely, every `-power isogeny factors as a composition of `-isogenies. An exception to the
non-commutativity occurs (as we will see shortly) in the special case when φ

/
Fp is defined

over Fp and only Fp-isogenies are considered.

The algorithmic details for the computation of `-power isogenies and more generally
smooth degree isogenies is discussed at the end of §4.2.

3.3 Fp-restricted Isogeny graph:

Let φ
/
Fp be a supersingular Drinfeld module. The Fp-endomorphism ring EndFp

(φ) is an or-

der in the imaginary quadratic extension Fq(x)(
√
Dφ) where Dφ is the discriminant −4εφp of

the characteristic polynomial Pφ(X) = X2 + εφp(x). In particular, EndFp
(φ) is commutative.

Drinfeld modules Fp-isogenous to φ
/
Fp are precisely those with the same characteristic poly-

nomial. Let π be a root of Pφ(X). The number of Fp-isomorphism classes of Drinfeld modules
isogenous to φ

/
Fp is related to the Gauss class number h(Fq[x][π]) of Fq[x][π] [15][Prop.

6.8][30]; ∑
ψ
/
Fp

1

|AutFp
(ψ)|

= h(Fq[x][
√
Dφ]).
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Counting without weighing by 1/|AutFp
(ψ)|, the formula has to distinguish the parity of the

degree of p. The number of Fp-isomorphism classes of Drinfeld modules isogenous to φ
/
Fp is{

h(Fq(x)(
√
cp)) if deg(p) is even

h(Fq(x)(
√
cp)) + h(Fq(x)(

√
p)) if deg(p) is odd

where c ∈ Fq is a non square and h() denotes the divisor class number of the enclosed field.
Either way, from analytic class number formula (c.f. [15],[8][Lem.4.2]), the count is roughly√
|Fp|.

Let ` ∈ Fq[x] be a monic degree one irreducible dividing the Euler-Poincaré character-
istic χ(φ(Fp)). Consider the graph Gφ,` with Fp-isomorphism classes of Drinfeld modules
Fp-isogenous to φ

/
Fp as vertices and Fp-isogenies of degree ` as edges. Since Dφ is square-

free, Gφ,` consists of a single connected component and is cyclic. We can traverse this cycle
by consecutive powers of ` acting through the ? operation.

Example 1. Take q = 3, p(x) = x3 − x + 1 ∈ F3[x] and `(x) = x ∈ F3[x]. Denote x mod p
by w for ease of notation. Start with the supersingular Drinfeld module φ

/
Fp with defining

equation φx = τ2 +w, duly noting that ` = x does indeed divide χ(φ(Fp)) = x3−x. Traverse
the graph Gφ,` as illustrated below, in a clockwise cycle through the ? action corresponding
to ` = x. A vertex corresponding to a Drinfeld module ψ is labelled by its defining image ψx.

τ2 + w

τ2 + w22τ + w

τ2 + w14τ + w

τ2 + w3τ + wτ2 − w3τ + w

τ2 − w14τ + w

τ2 − w22τ + w

`

Schreier Graphs: Now take a set L of `(x) ∈ Fq[x] that are monic degree one polynomi-
als dividing the Euler-Poincaré characteristic χ(φ(Fp)). Consider the graph Gφ,L with Fp-
isomorphism classes of Drinfeld modules Fp-isogenous to φ

/
Fp as vertices and Fp-isogenies

of degree ` for ` ∈ L as edges. That is, the set of edges in Gφ,L is the union of the set of edges
of Gφ,` as ` runs through L. Since EndFp

(φ) is commutative, the `-isogenies corresponding
to distinct ` commute. This structure is evident from the following representative example.

Example 2. Set q = 3, p(x) = x3 − x + 1 ∈ F3[x] and L = {x, x + 1, x + 2} ⊂ F3[x].
Starting with the supersingular Drinfeld module φ

/
Fp with defining equation φx = τ2 + (x

mod p), traverse the graph Gφ,L as illustrated below. The Drinfeld modules are arranged in
a clockwise cycle through the ? action corresponding to `0 = x. The graph in black is exactly
as in example 1 above. Blue edges correspond to the `1 = x + 1 action and red edges to the
`2 = x+ 2 action.

11



φ

`0 ? φ

`20 ? φ

`30 ? φ`40 ? φ

`50 ? φ

`60 ? φ

`0

`1 `2

3.4 Full Fp-isogeny graphs:

For a degree one monic ` relative prime to p, the supersingular `-isogeny graph, denoted
by Gssp,`, consists of Fp-isomorphism classes of supersingular Drinfeld modules over Fp2 as
vertices. The absolute j-invariants of the Drinfeld modules thus make for convenient vertex
indices. There is an edge between every pair of vertices connected by a ` degree Fp2-isogeny.
Since being Fp2 -isogenous is an equivalence relation, the edges are well defined and undirected.
The degree of each vertex is the number of `-isogenies starting from it; which is q + 1 since
` is degree 1. The number of vertices is roughly |Fp| = qdeg(p). This estimate is obtained by
relating the number of Fp-isomorphism classes of supersingular Drinfeld modules over Fp2 to
the class number of the unique quaternion algebra over Fq(x) ramifying precisely at p and
the place at infinity [14][Thm. 4.3].

Recall that two Drinfeld modules over Fp2 are Fp-isogenous if and only if they have the

same characteristic polynomial. Further, we can choose a representative φΛ
/
Fp2 for each

Fp-isomorphism class of supersingular Drinfeld module of characteristic p such that εφ,p = 1.
Thus, for an irreducible ` dividing 1+p, the supersingular `-isogeny graph Gssp,` is a connected

`+ 1 regular graph with roughly qdeg(p) vertices. We will see shortly that these are the best
possible expander graphs (in the spectral gap sense).

Ramanujan Graphs: Expander graphs are informally highly connected sparse graphs.
There are different yet closely related notions of connectivity/expansion, ranging from vertex
expansion, edge expansion to spectral expansion. Of particular interest to us will be families
of connected d-regular graphs with an increasing number of vertices. For such graphs, the
Laplacian has d as an eigenvalue and if in addition bipartite, has −d as an eigenvalue. These

12



are deemed as trivial eigenvalues. The spectral condition for a d-regular graph to be an
expander asks for a spectral gap, that is, for the non trivial eigenvalues λ of the Laplcian
to be bounded λ << d away from d. A lower bound of Alon and Bopanna shows that
|λ| ≤ 2

√
d− 1 is asymptotically the best possible [1,23,19]. A Ramanujan graph is one meeting

the bound |λ| ≤ 2
√
d− 1. Margulis and Lubotzky-Sarnak-Philips were the first to construct

explicit infinite families of Ramanujan graphs as Cayley graphs of the projective special linear
groups PSL2(Fp) modulo primes p. Their constructions yield families for every prime plus one
degree. The proof of the spectral bound relies on Deligne’s proof of the Ramanujan-Peterson
conjecture, hence the name Ramanujan graph. Morgenstern extended their construction to
account for prime power plus one degrees by looking instead to Cayley graphs of the projective
special linear groups PSL2(Fpc) modulo prime powers pc [21]. One remarkable feature in
Morgenstern’s construction is that it does not require constructing large prime numbers, but
only large prime powers. It is a long standing open problem to find a deterministic algorithm to
construct a large prime number, whereas constructing a large prime powers is trivial. Marcus,
Spielman and Srivastava [20] constructed explicit infinite families of bipartite Ramanujan
graphs for every degree greater than 2.

Supersingular Isogeny Ramanujan Graphs: Ramanujan graphs arising as isogeny
graphs of supersingular elliptic curves are the setting of the De Feo-Jao-Plût post-quantum
cryptosystem [17,9]. For prime numbers p, ` with ` dividing 1 + p, the supersingular elliptic
curve isogeny graph consists of isomorphism classes (over the algebraic closure Fp) of su-
persingular elliptic curves over Fp with degree ` isogenies as edges. Pizer showed that these
graphs are `+ 1 regular Ramanujan graphs. Papikian proved the Drinfeld analogue [24][Thm
4.1](see also [22][Thm 2.1]): For monic irreducibles p, ` with ` dividing 1+p, the supersingular
`-isogeny graph Gssp,` is a q+ 1-regular Ramanujan graph. These graphs will form the basis of
our Drinfeld module analogue of SIDH.

4 Drinfeld module isogeny based Cryptosystems

In this section, we devise Drinfeld module analogues of CSIDH and SIDH protocols. We
restrict our attention to the key exchange protocols. It is straightforward to extend our con-
structions to yield Drinfeld module isogeny based encryption, signature protocols etc. We
refrain from optimizing the implementations for all these protocols will be broken in the
subsequent section.

4.1 Drinfeld module analogue of CSIDH

Public Parameter Selection: The Fp-restricted isogeny graphs Gφ,L will be the setting
for the Drinfeld analogue of the CSIDH post quantum cryptosystem [3]. To set the stage, we
first construct

– a monic irreducible polynomial p ∈ Fq[x] of degree d > 1,
– a set L ⊆ Fq[x] of monic degree one polynomials,
– a supersingular Drinfeld module φ

/
Fp such that ∀` ∈ L, ` divides the Euler-Poincaré

characteristic χ(φ(Fp)).

The resulting Schreier graphGφ,L has about qd/2 vertices, which is exponential in the degree d.
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Our recipe to polynomial selection is to choose a set of monic degree one polynomials L,
pick a small degree monic cofactor b ∈ Fq[x] at random and set p(x) to b(x)

∏
`∈L `(x) − 1,

if it is irreducible. It then suffices to choose a Drinfeld module φ
/
Fp with Euler-Poincaré

characteristic χ(φ(Fp)) = 1 + p. The later is accomplished by choosing a Drinfeld module
with carefully chosen degenerate absolute j-invariant (either zero or xq−x, depending on the
parity of d).

For concreteness, choose a target small prime set size L and consider an odd target degree
d. It is necessary that d ≥ |L|. Take the difference d−|L| as the degree of the random cofactor
b. Heuristically, a polynomial of the form 1 + b

∏
`∈L ` is likely to be irreducible with proba-

bility roughly Θ(1/d) (for large enough q). A sample space of size qd−|L| >> d should suffice
to hit an irreducible. To this end, we choose d− |L| >> logq(d). The heuristic argument can
be made completely rigorous.

The reason we restricted ourselves to odd degree d is that for an odd degree irreducible p,
a Drinfeld module with zero absolute j-invariant is supersingular. This is implicit in [13,6],
but we prove it below for clarity.

Lemma 2. The Drinfeld module φ
/
Fp with defining equation φx := τ2 + (x mod p) is

supersingular if and only if deg(p) is odd.

Proof. Recursively define a sequence (rφ,k)k∈N in FN
p as rφ,0 := 1, rφ,1 := gφ and for k > 1,

rφ,k := gq
k−1

φ rφ,k−1 − (xq
k−1

− x)∆qk−2

φ rφ,k−2.

Gekeler [15, Eq 3.6, Prop 3.7] showed that rφ,k is the value of the normalized Eisenstein
series of weight qk− 1 on φ and established Deligne’s congruence for Drinfeld modules, which
ascertains that the Hasse invariant

hφ = rφ,deg(p).

Substituting gφ = 0 and ∆φ = 1 in the recurrence, we get

hφ = rφ,deg(p) =

{
0 if deg(p) is odd∏deg(p)/2
i=1

(
xq

2i−1 − x
)

if deg(p) is even

Since no even degree irreducible polynomials divide xq
m −x for odd m, it follows that hφ = 0

if and only if deg(p) is odd. �

In summary, for odd degree p, we may explicitly choose such a supersingular Drinfeld module
φ
/
Fp with Euler-Poincaré characteristic χ(φ(Fp)) = 1 + p through the defining equation

φx := τ2 + (x mod p).

Artin-Schreier Extensions: When q is an odd prime, we propose a particularly clean
polynomial selection recipe using Artin-Schreier extensions. Take L to be the set of all monic
degree one polynomials in Fq[x] and set

p(x) := 1 +
∏
`∈L

`(x) = xq − x+ 1.
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By Artin-Schreier theory, p is irreducible. By construction, p is of odd degree q. Hence, the
Drinfeld module φ

/
Fp with defining equation φx := τ2 + (x mod p) is supersingular with

with Euler-Poincaré characteristic χ(φ(Fp)) = 1 + p. The size of the graph Gφ,L in this case
is roughly qq/2.

Key Generation: As public parameters, we have an odd degree d irreducible p, a set L of
monic degree one polynomials and a supersingular Drinfeld module φ

/
Fp such that ∀` ∈ L,

` divides the Euler-Poincaré characteristic χ(φ(Fp)).

Alice chooses a string of integers (a`, ` ∈ L) drawn at random from an interval [−m,m]|L|

and sets sa :=
∏
`∈L `

a` as her private key. She publishes the (absolute j-invariant of the)
Drinfeld module

φa
/
Fp := sa ? φ

/
Fp

as her public key. Likewise, Bob chooses a string of integers (b`, ` ∈ L) drawn at random from
an interval [−m,m]|L| and sets sb :=

∏
`∈L `

b` as his private key. He publishes the (absolute

j-invariant of the) Drinfeld module φa
/
Fp := sb ? φ

/
Fp as his public key.

Key Exchange: On receiving Bob’s public key sb ? φ
/
Fp , Alice uses her secret key sa

to compute sa ? (sb ? φ
/
Fp ). Likewise, On receiving Alice’s public key sa ? φ

/
Fp , Bob uses

his secret key sb to compute sb ? (sa ? φ
/
Fp ). They both share as the secret, the absolute

j-invariant of the Drinfeld module

sa ? (sb ? φ
/
Fp ) = sb ? (sa ? φ

/
Fp ) = (sasb) ? φ

/
Fp .

4.2 Drinfeld module analogue of SIDH

We propose a Drinfeld module analogue of the non-interactive key exchange protocol of DeFeo-
Jao-Plut [17,9]. To set the stage, we first construct

– a monic irreducible polynomial p ∈ Fq[x] of degree d > 1,
– a set L ⊆ Fq[x] of monic degree one polynomials and two L-smooth products cA :=∏

`∈L `
a` and cB :=

∏
`∈L `

b` with disjoint support,

– a starting supersingular Drinfeld module φ
/
Fp2 such that cAcB divides the Euler-Poincaré

characteristic χ(φ(Fp2)),
– two bases Λφ[cA] = 〈λA1 〉 ⊕ 〈λA−1〉 and Λφ[cB ] = 〈λB1 〉 ⊕ 〈λB−1〉 respectively for the cA and

cB-torsion.

The resulting full Fp-isogeny graphs Gssp,`, ` ∈ L, each with the same set of roughly qdeg(p)

vertices will be the setting for our cryptosystem.

If one desires strict analogy with the SIDH, we may take L = {`A, `B} to consists of two
irreducible, say for instance `A = x and `B = x+ 1. Then set cA = `rA, cB = `rB and select a p
such that p = `rA`

r
Bf±1 for some small degree cofactor f and set the starting Drinfeld module

to be φx := τ2 + (x mod p). Such a parameter selection can be accomplished through the
procedure outlined in § 4.1.

There is much greater freedom in selecting cA and cB in our Drinfeld setting compared to
the elliptic curves. One natural choice is set L to be the set of all monic polynomials and take

15



cA = x
q−1
2 −1 and cB = x

q+1
2 +x. The relation between the Drinfeld module analogues of the

CSIDH and SIDH are much more apparent in this case. The formula for parameter selection
are particularly nice when q is an odd prime. Then by Artin-Schreier theory p(x) = xq−x+1
is irreducible and by lemma 2, the starting supersingular Drinfeld module may be chosen as
φx = τ2 + (x mod p).

Key Generation: As her secret key, Alice chooses two uniformly random elements mA, nA ∈
Fq[x] of degree at most deg(cA) (after testing to ensure no ` dividing cA divides both mA, nA).
She then constructs the unique isogeny

ιA : φ
/
Fp2 −→ φA

/
Fp2

with kernel

ker(ιA) = 〈φmA(λA1 ) + φnA(λA−1)〉.

She sends Bob the Drinfeld module φA
/
Fp2 arrived at. Further, she also sends Bob the images

ιA(λB1 ), ιA(λB−1) of Bob’s basis under her isogeny. Likewise, as his secret key, Bob chooses two
uniformly random elements mB , nB ∈ Fq[x] of degree at most deg(cB) (after testing to ensure
no ` dividing cB divides both mB , nB). He then constructs the unique isogeny

ιB : φ
/
Fp2 −→ φB

/
Fp2

with kernel

ker(ιB) = 〈φmB (λB1 ) + φnB (λB−1)〉.

He sends Alice the Drinfeld module φB
/
Fp2 arrived at along with the images ιB(λA1 ), ιB(λA−1)

of Alice’s basis under his isogeny.

Key Exchange: On receiving φB
/
Fp2 , ιB(λA1 ), ιB(λA−1) from Bob, Alice constructs the

unique isogeny

ι̂A : φB
/
Fp2 −→ φA◦B

/
Fp2

with kernel

ker(ι̂A) = 〈φBmAιB(λA1 ) + φBnAιB(λA−1)〉.

She is able to construct the kernel and consequently the isogeny from her secret mA, nA and
the information received from Bob. Likewise, using the information φA

/
Fp2 , ιA(λB1 ), ιA(λB−1)

from Alice, Bob constructs the unique isogeny

ι̂B : φA
/
Fp2 −→ φB◦A

/
Fp2

with kernel

ker(ι̂B) = 〈φAmB ιA(λB1 ) + φAnB ιA(λB−1)〉.

Shared Secret: Ultimately, Alice arrives at φA◦B
/
Fp2 and Bob arrives at φB◦A

/
Fp2 .

We next argue that φA◦B
/
Fp2 and φB◦A

/
Fp2 are Fp-isomorphic. Hence, their absolute j-

invariant is a shared secret.
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The kernel of the isogeny ι̂A ◦ιB : φ
/
Fp2 −→ φA◦B

/
Fp2 contains the kernel of ιB , namely

φmB (λB1 ) + φnB (λB−1). To determine ker(ι̂A ◦ ιB) in its entirety, we first employ the defining
commutation property of isogenies to rephrase ker(ι̂A) as

ker(ι̂A) = 〈φBmAιB(λA1 ) + φBnAιB(λA−1)〉 = 〈ιBφmA(λA1 ) + ιBφnA(λA−1)〉.

It is now apparent that the image of 〈φmA(λA1 ) + φnA(λA−1)〉 under ιB is killed by ι̂A. By
construction and degree considerations, we can conclude that

ker(ι̂A ◦ ιB) = 〈〈φmA(λA1 ) + φnA(λA−1)〉, φmB (λB1 ) + φnB (λB−1)〉.

By symmetry,

ker(ι̂B ◦ ιA) = 〈〈φmA(λA1 ) + φnA(λA−1)〉, φmB (λB1 ) + φnB (λB−1)〉.

Hence φA◦B
/
Fp2 and φB◦A

/
Fp2 are Fp-isomorphic and we may denote them as φAB

/
Fp2

in the following augmented commutative diagram summarizing the key exchange. The solid
lines represent isogenies (and computation) labelled with their kernels and dotted lines denote
communication. Red lines correspond to computation or communication done by Alice and
blue lines to Bob.

φA
/
Fp2

φ
/
Fp2 φAB

/
Fp2

φB
/
Fp2

φ
A
,ι
A
(λ
B 1
),
ι A

(λ
B −
1
)

ker=〈φ A
m
B ιA (λ B

1 )+φ A
n
B ιA (λ B

−
1 )〉ke

r=
〈φmA

(λ
A
1
)+
φnA

(λ
A
−1
)〉

ker=〈φ
m
B (λ B

1 )+φ
n
B (λ B

−
1 )〉

φ
B
,ι
B
(λ
A 1
),
ι B

(λ
A −
1
)

ke
r=
〈φ
B
mA

ιB
(λ
A
1
)+
φ
B
nA

ιB
(λ
A
−1
)〉

Computation of Isogenies: For ease of notation, denote the generator of Alice’s secret as
µA := φmA(λA1 ) + φnA(λA−1). During the key generation phase, Alice is faced with computing
the unique isogeny

ιA : φ
/
Fp2 −→ φA

/
Fp2

with kernel 〈µA〉. This is accomplished through composing a sequence of isogenies

φ φ1 . . . φi φi+1 . . . φa−2 φa−1

µA µ1 . . . µi µi+1 . . . µa−2 µa−1.

ι0 ι1 ιi ιi+1 ιa−1
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The first isogeny ι0 is built by choosing some prime `0 dividing cA and taking ι to have
kernel φcA/`0(µA). Then set cA,1 := cA/`0 and µ1 = ι(µA). At the ith-iteration, pick a prime
`i dividing cA,i and take ιi to be the unique `i-isogeny with kernel 〈φicA,i/`i(µi)〉. At the end of

the iteration, if a := deg(cA) is the number of prime ` dividing cA counted with multiplicity,
φa−1 is the Drinfeld module φA

/
Fp2 that we seek, up to Fp-isomorphism.

During key exchange, on receiving φB
/
Fp2 , ιB(λA1 ), ιB(λA−1) from Bob, Alice has to com-

pute the isogeny

ι〈ιB(µA)〉 : φB
/
Fp2 −→ φAB

/
Fp2

with kernel 〈ιB(µA)〉. Using her secret mA, nA, Alice first computes

ιB(µA) = ιB(φmAλ
A
1 ) + ιB(φnAλ

A
−1) = φBmAιB(λA1 ) + φBnAιB(λA−1).

Then she composes the following of isogeny sequence with b := deg(cB)

φB φB,1 . . . φB,i φB,i+1 . . . φB,b−1

ιB(µA) ν1 . . . νi νi+1 . . . νb−1.

ξ0 ξ1 ξi ξi+1 ξb−1

The procedure is virtually identical to her previous computation. The first isogeny ξ0 is built
by choosing some prime `0 dividing cB and taking ξ0 to have kernel φcB/`0(ιB(µA)); and so

on until arriving at φB,b−1 ∼= φAB .

5 Cryptanalysis of Drinfeld isogeny based Cryptosystems

5.1 Cryptanalysis of the Drinfeld analogue of SIDH

Keep the notation as in § 4.2. We begin the cryptanalysis by first describing the underlying
hardness assumptions, targeting Alice’s secrets/computation.

Drinfeld supersingular Isogeny Problem: The Drinfeld analogue of the computational
supersingular isogeny problem is given φA

/
Fp2 , ιA(λB1 ), ιA(λB−1) to compute Alice’s secret

submodule 〈µA〉. The decision version is to tell if there is indeed an cA-isogeny from φ to
φA
/
Fp2 .

Drinfeld supersingular Isogeny Diffie-Hellman: The computational Diffie-Hellmann
problem asks to compute φAB

/
Fp2 given φA

/
Fp2 , φ

B /Fp2 , ιA(λB1 ), ιA(λB−1), ιB(λA1 ), ιB(λA−1)
and the public parameters. It is at least as easy as the aforementioned computational Drinfeld
supersingular isogeny problem; Alice’s secret allows one to compute ιA : φB −→ φAB as Alice
would do.

Without loss of generality, assume Bob’s isogeny degree deg(cB) is at least as big as Alice’s
isogeny degree deg(cA). We show that Bob can reconstruct Alice’s secret key mA, nA from
Alice’s communication φA

/
Fp2 , ιA(λB1 ), ιA(λB−1) sent during the key exchange.
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Succinct Representation of Large Degree Isogenies: We first show that Bob can find
a succinct representation of Alice’s isogeny ιA and compute images under it. This completely
breaks the system by solving the computational Drinfeld supersingular isogeny problem. The
succinct representation springs right out of the definition. Recall that ιA is of the form

ιA =

a∑
i=0

αiτ
i ∈ Fp2〈τ〉

where a = deg(cA). In particular, a ≤ deg(p) since deg(cA) ≤ deg(p). The coefficients αi
are in Fp2 and not a higher degree extension because φ is defined over Fp2 and so is the
torsion Λφ[cA]. In summary, the size of the representation of ιA as

∑a
i=0 αiτ

i is polynomial
in the security parameter. Contrast this with the analogous case for elliptic curves, where it
is not clear how to represent large degree isogenies succinctly, unless their factorization into
a composition of small degree isogenies is known.

Isogeny Interpolation: The cB-torsion module Λφ[cB ] seen as an Fq-linear subspace of
Fp2 has dimension b = deg(cB). By assumption b ≥ a. Since Alice’s and Bob’s exponents cA
and cB are coprime, the images Alice sent generate the full cB-torsion group as

ΛφA [cB ] = 〈ιA(λB1 )〉 ⊕ 〈ιA(λB−1)〉.

Let (`i, 0 ≤ i ≤ b), be a sequence of (not necessarily distinct) monic degree one irreducibles
dividing L such that

∏
i `i = cB . Compute the sequence of isogenies corresponding to action

of the chosen sequence of primes under φA and consider the images of ιA(λB1 ), ιA(λB−1) sent
by Alice;

φA φA . . . φA . . . φA

ιA(λB1 ) φA`0ιA(λB1 ) . . . φA`0`1...`iιA(λB1 ) . . . 0

ιA(λB−1) φA`0ιA(λB−1) . . . φA`0`1...`iιA(λB−1) . . . 0.

φA`0
φA`1

φA`i
φA`b−1

Rephrasing the images by the commutation relations of isogenies, we get

φA φA . . . φA . . . φA

ιA(λB1 ) ιAφ`0(λB1 ) . . . ιAφ`0`1...`i(λ
B
1 ) . . . 0

ιA(λB−1) ιAφ`0(λB−1) . . . ιAφ`0`1...`i(λ
B
−1) . . . 0.

φA`0 φA`1
φA`i

φA`b−1

The images of ιA at 2b elements in φ(Fp2) constitutes an Fp2 -linear system;

ιA(δ) =

a∑
i=0

αiδ
qi = 0, δ ∈ E,
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E :=
{
ιA
(
φ`0`1...`i(λ

B
1 )
)
, 0 ≤ i < b

}⋃{
ιA
(
φ`0`1...`i(λ

B
−1)
)
, 0 ≤ i < b

}
⊆ Λφ[cB ]

with the coefficients αi as variables. By construction, since deg(cB) ≥ deg(cA), the linear
system determines ιA. By computing a basis for the roots of

∑
i αiτ

i, we find Alice’s secret.
Since Alice’s secret is revealed, it is easy to solve the computational Drinfeld supersingular
isogeny Diffie-Hellman problem by following Alice’s key exchange procedure.

Isogeny Factorization: There may be applications where an explicit path in the isogeny
graph from φ

/
Fp2 to φA

/
Fp2 is sought. To this end, we look for some τ − β ∈ Fp2〈τ〉 right

dividing
∑
i αiτ

i resulting in a factorization ιA = ι̂A(τ − β). If such a τ − β happens to be

an `-isogeny from some ψ
/
Fp2 to φA

/
Fp2 , our problem reduces to finding an isogeny path

from φ
/
Fp2 to φA

/
Fp2 given ι̂A. Since the number q + 1 of `-isogenies arriving at φA

/
Fp2

is small, we can exhaustively search for such a factorization ιA = ι̂A(τ − β) using the right
division algorithm in Fp2〈τ〉 [16][chap.1.6]

5.2 Cryptanalysis of the Drinfeld analogue of CSIDH

Keep the notation as in § 5.2. We begin the cryptanalysis by first mentioning the underlying
problems, targeting Alice’s secrets/computation. Given Alice’s public key sa?φ

/
Fp , compute

her secret key sa. The computational Diffie-Hellman version is to compute sab ? φ
/
Fp given

sa ? φ
/
Fp and sb ? φ

/
Fp .

Testing existence of isogenies of prescribed τ -degree: We first devise a procedure to
decide (and recover) if there is an L-smooth degree Fp-isogeny ι :=

∑a
i=0 αiτ

i ∈ Fp〈τ〉 of a
prescribed τ -degree a from φ

/
Fp to ψ

/
Fp . To this end, we look to the commuting relation

ι φx = ψx ι. For the φ, ψ arising in this context, we may assume ∆φ = ∆ψ = 1. Denote w := x
mod p. Recall that d = deg(p) is odd. We have(

a∑
i=0

αiτ
i

)
(τ2 + gφτ + w) = (τ2 + gψτ + w)

(
a∑
i=0

αiτ
i

)
.

We will determine αi iteratively starting with αa. Since Fq commutes with τ , if there is an
isogeny of the form we seek with αi = βi+γi for some γi ∈ Fq, then there is one with αi = βi.
Therefore, at each stage it suffices to keep track of one solution for each αi.

Comparing leading coefficients, we get αq
2

a − αa = 0. A further constraint αq
d

a − αa = 0
appears since the coefficients are in Fp. The τ -degree constraint implies αa 6= 0. Since d is
odd, we conclude αa ∈ Fq \ {0} as the set of solutions satisfying these constraints. Without
loss of generality, we may set αa = 1. Comparing coefficients of τ i+2,

αq
2

i − αi = gψα
q
i+1 − gq

i

φ αi+1 + (xq
i

− x)αi+2.

As an induction hypothesis, assume solution spaces for αi+1, αi+2 are already computed as
αi+1 = βi+1 + Fq and αi+2 = βi+2 + Fq for some βi+1, βi+2 ∈ Fp.

Xq2 −X = gψβ
q
i+1 − gq

i

φ βi+1 + (xq
i

− x)βi+2

has a root βi ∈ Fp if and only if the right hand side has trace (from Fp to Fq) zero. Such a
solution can be found since root finding over finite fields is in randomized polynomial time. If
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βi ∈ Fp is a solution then so are βi+Fq2 . Since we look for solutions in Fp, we take αi = βi+Fq
as our solution space. If the iterative procedure runs to completion, we have computed the
isogeny we seek, else we declare failure.

Recovery of the secret: Let ι : φ
/
Fp −→ sa ? φ

/
Fp be an isogeny of smallest τ -degree,

found using the aforementioned procedure. For ` dividing L with Fp-isogeny ξ` : ` ? ψ
/
Fp =

sa ?φ
/
Fp , we can test using the right division algorithm in Fp2 [16] if ξ`x right divides ι. If so,

we obtain a factorization ι = ι̂ ξ`x. This reduces the problem of factoring ι into a composition
of L-smooth Fp-isogenies to that of factoring ι̂. Such a factorization of ι reveals the secret sa.
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