
OptiSwap: Fast Optimistic Fair Exchange

Lisa Eckey, Sebastian Faust, and Benjamin Schlosser

TU Darmstadt, Germany
{lisa.eckey, sebastian.faust, benjamin.schlosser}@crisp-da.de

Abstract. Selling digital commodities securely over the Internet is a challenging
task when Seller and Buyer do not trust each other. With the advent of cryptocur-
rencies, one prominent solution for digital exchange is to rely on a smart contract as
a trusted arbiter that fairly resolves disputes when Seller and Buyer disagree. Such
protocols have an optimistic mode, where the digital exchange between the parties can
be completed with only minimal interaction with the smart contract. In this work we
present OptiSwap, a new smart contract based fair exchange protocol that signi�-
cantly improves the optimistic case of smart contract based fair exchange protocols. In
particular, OptiSwap has almost no overhead in communication complexity, and im-
proves on the computational overheads of the parties compared to prior solutions. An
additional feature of OptiSwap is a protection mechanism against so-called grieving
attacks, where an adversary attempts to violate the �nancial fairness of the protocol
by forcing the honest party to pay fees. We analyze OptiSwap's security in the UC
model and provide benchmark results over Ethereum.

1 Introduction

Fair exchange of digital goods for money is a challenging task in the Internet when parties
do not trust each other. Consider a two party protocol between a Seller S and a Buyer B.
On the one hand, S possesses some digital good x, which he is willing to sell for p coins. On
the other hand, B wants to obtain x in exchange for the money. Since the Internet connects
millions of users, it is reasonable to assume that both parties do not trust each other. While
the Seller wants the guarantee that B gets to know x only if he pays p coins, the Buyer
must be assured that he only needs to pay if S delivers the correct witness. It was shown
by Pagnia and Gärtner in 1999 that such a fair exchange is not possible without a trusted
third party (TTP) [24].

A common use case for a fair exchange protocol is the purchase of some digital �le x,
e.g., a movie, music �le or software executable where only the hash h = H(x) is known. The
Buyer only wants to pay if the �le x that he receives satis�es h = H(x). At the same time,
the Seller wants to be sure that if he delivers x which hashes to h, he gets his payment.
The above can be generalized to a predicate function φ, where the Seller wants to sell a
witness x that satis�es φ(x) = 1. For instance, x may be some software, and φ de�nes
test cases that the software has to satisfy. There exist di�erent approaches to realize fair
exchanges. One approach relies on a trusted middleman, which is often called escrow service,
that implements the TTP [23]. A di�erent approach is taken by protocols that rely on a
blockchain to implement the TTP in case of dispute. Examples include the zero-knowledge
contingent payment (ZKCP) protocols [6], and the FairSwap protocol [14]. In these works
the TTP is implemented in a smart contract running on top of the blockchain. At a high-
level these protocols work as follows. The Seller S encrypts the witness and sends it together
with some auxiliary information to the Buyer. The Buyer checks the auxiliary information
and, if accepted, it deposits money to the smart contract. Once the money is locked the
Seller will reveal the secret key to the contract, which allows him to claim the money. Since
the secret key now becomes publicly recorded on the blockchain, the Buyer can use it to
decrypt the encrypted data.

Most relevant for our work is the protocol FairSwap [14]. FairSwap avoids expensive
zero-knowledge proofs, and replaces it with a technique called proof of misbehavior (PoM).

A PoM allows the Buyer to punish the Seller in case the Seller sent an invalid witness x.
This a-posterior approach of punishment has the advantage that FairSwap only needs to
rely on simple hash function evaluations, thereby resulting in a more e�cient protocol for
the users � in particular, it is more e�cient if the witness x is large or the predicate function
φ is complex. On the downside the communication between Seller and Buyer increases with
the size of φ and x. Since the communication overhead occurs regardless of misbehavior, it
is most likely the main bottleneck in practice.

We present an extension to the original FairSwap protocol of Dziembowski et al. [14]
in order to improve the optimistic execution of the protocol, and thereby overcome one of
the main bottlenecks of FairSwap in practice. This is achieved by incorporating an interac-
tive dispute resolution sub-protocol, which removes the message overhead and thereby also
improves the computational complexity of the two honest parties. Because our protocol is
optimized for the optimistic case (which we believe is the standard case in practice, since
parties can be punished when cheating), we call our protocol OptiSwap.

Another shortcoming of [14] is that grieving is not discussed. A corrupt Seller could force
any Buyer to submit a large transaction (including the PoM) to the blockchain. This means
a Seller can grieve the Buyer by forcing him to pay a lot of transaction fees. We will show
how we can protect against grieving without relying on any security deposits when there are
no disputes.

1.1 Contribution

We extend the FairSwap protocol by Dziembowski et al. [14] by making the dispute resolution
interactive. Our contributions are summarized below:

� We present a challenge-response procedure for obtaining information about the evalu-
ation of the predicate function φ. This procedure is only used in case of dispute, and
allows to pinpoint a single step in the evaluation of φ where the Seller cheated. This
approach signi�cantly reduces the overheads of the FairSwap protocol from [14] in the
optimistic case.

� In order to incentivise both parties to act honestly and prevent grieving, we incorporate
fees into the dispute resolution sub-protocol.

� We implemented theOptiSwap protocol and improved it using the technique introduces
by SmartJudge [26] in order to estimate the gas costs. The obtained values are compared
against the original FairSwap protocol.

� Finally, we provide comprehensive security evaluation of OptiSwap in the UC frame-
work and show that it realizes a fair exchange functionality.

1.2 Related Work

It is well-known that fair exchange is impossible without a TTP [24, 27, 17]. In order to limit
the role of a TTP [3, 7] proposed the distinction between the optimistic and pessimistic case
of fair exchange. Since the emerge of blockchain technologies, smart contracts are considered
as TTP, and there are numerous works that use smart contracts to improve on the fairness
properties of cryptographic protocols [2, 5, 21, 22, 20]. Various works use smart contracts
for fair exchange [6, 14, 9]. Below, we discuss related work that utilized interactive dispute
resolution.

Interactive dispute resolution. Recent work incorporated an interactive dispute resolution
handling for the case when two parties run into disagreement. The Arbitrum system was
introduced by Kalodner et al. in 2018 [18]. They proposed a solution for the scalability
issue related to many kinds of blockchain technologies. By performing heavy computation
o�-chain, the complexity of computation that is feasible to carry out backed-up by the
blockchain is increased. Similar to OptiSwap in case of disagreement, Arbitrum runs an

2

interactive dispute resolution protocol. This protocol narrows down the computation under
dispute to a single instruction which is recomputed on-chain in order to resolve the whole
disagreement. While OptiSwap also contains a challenge-response procedure as part of its
dispute resolution protocol, we use a di�erent challenge strategy. Concretely, in Arbitrum,
computation is modeled using Turing machines resulting in a linear sequence of computation
steps. For this type of data structure, a binary search algorithm is very e�cient and, hence, it
is used by Arbitrum. Within the OptiSwap protocol, we model computation using circuits
that may have a far more complex topology than a linear list. Therefore, we make use of
di�erent challenge strategies.

A scalable veri�cation solution for blockchain technologies called TrueBit was proposed
by Teutsch and Reitwieÿner originally in 2017 [25]. It contains a dispute resolution layer
which is executed in case of disagreement about the computation of some task. As in the
Arbitrum system, TrueBit models computation using Turing machines. Hence, for resolving
a dispute, the computation is narrowed down using a binary search procedure. As above
the main di�erence to OptiSwap is that we use a circuit-based approach that allows more
complex challenge strategies.

Optimistic mode. The SmartJudge architecture was proposed by Wagner et al. in 2019 [26].
It provides an abstraction of a two-party protocol that relies on the execution of a smart
contract in case of dispute. Since our OptiSwap protocol is optimized for the optimistic
mode, it is a perfect candidate to be combined with SmartJudge. SmartJudge splits a smart
contract into a mediator and a veri�er. Only the mediator must be executed in the opti-
mistic mode and the veri�er is only called in case of dispute. While SmartJudge provides
an improvement for two-party protocol in the optimistic mode, it does not include a dis-
pute resolution mechanism as this will depend on the actual protocol that instantiates the
SmartJudge approach. We can combine our protocol with SmartJudge to further improve
the optimistic mode and reduce on fee costs.

2 Preliminaries

In this section we introduce the main building blocks and describe the cryptographic prim-
itives we need for designing OptiSwap. We denote integer variables by lower case letters
and tuples by bold lower case letters (i.e., a = (a1, . . . , an)) while sets are signaled by cap-
ital letters. The integer set {1, . . . , n} is denoted by [n]. For a probabilistic algorithm A,
m′ ← A(m) denotes the output m′ of A on input m. The symbol ≈c denotes the computa-
tional indistinguishability between two random variables. s

$←S denotes that s is randomly
sampled from the set S using a uniform distribution. Furthermore, we assume direct se-
cure channels and synchronous communication happening in rounds. By using the notion
of rounds, we abstract from the underlying process of consensus and con�rmation times
required when we interact with a blockchain system. The period of ∆ rounds ensures that
an honest party is able to wait for con�rmation and to send a transaction afterwards.

Circuits. A key ingredient to our protocol will be a circuit which we use to model the
predicate function that validates correctness of a witness. We will consider a witness x to
be correct if the circuit evaluation of it returns 1, i.e. φ(x) = 1. Let X be a set of possible
inputs and Γ an instruction alphabet. Each instruction op : X` → X in Γ takes up to
` input values (fan-in: `) and returns a single output value. A circuit φ over a value set
X and an instruction set Γ is modeled as a directed acyclic graph (DAG) as follows. Its
vertices φ1, . . . φm are called gates and its edges represent the wires of φ and specify the
information �ow through the circuit. Any gate with in-degree 0 is called an input gate. The
circuit contains n input gates, where 1 ≤ n < m, and each input gate φi outputs vi to all
outgoing edges. Every gate in φ with out-degree 0 is called output gate. We require that the
circuit has a single output gate that evaluates to either 1 or 0. Every gate φi is labeled by a

3

tuple φi = (i, opi ∈ Γ, Ii ∈ [m]`), evaluates the instruction opi on the input values given by
the circuit gates speci�ed by the index set Ii, and outputs the result to all outgoing edges.
There exists an ordering over all circuit gates such that for each gate φi the index i is greater
than any index of a gate that provides an input to gate φi.

We note that the evaluation of a circuit is performed layer-by-layer starting from the
input gates. Each gate evaluates its instruction on given inputs and propagates the result
to the gates of the next layer. For simplicity we denote the outcome of the overall circuit as
φ(x) = {0, 1} and the result of the ith gate as φi(x) = outpi, for all i ∈ [m]. The depth δ
of a circuit is the length of the longest path starting from any possible input gate up to its
output gate.

Hash functions. We make use of cryptographic hash function H : {0, 1}∗ → {0, 1}µ, where
µ ∈ N. These functions are used as building blocks for commitment and encryption schemes
as well as Merkle trees. For our construction, we assume H to be a restricted programmable
and observable random oracle. In Appendix B we give a detailed description of how we
realize this primitive in the global random oracle model.

Commitment schemes. A commitment scheme allows to commit to a value m using the
Commit-algorithm, which outputs a commitment c and an open value d. The commitment c
hides m from others while the d can � at a later point � be used to reveal m. We require a
commitment scheme to be binding, meaning that nobody can change a committed value m
after c is known. Additionally, it must be hiding, i.e., nobody should learn the committed
value from the public commitment c. Commitment schemes are formally de�ned in [16].

Symmetric encryption. We make use of a symmetric encryption scheme consisting of three
ppt algorithms (KeyGen,Enc,Dec). The secret encryption key k is generated by the KeyGen-
algorithm. The Enc-algorithm outputs a ciphertext z on input of the key k and a plaintext
m. The Dec-algorithm returns the message m for given ciphertext c using key k. We assume
a symmetric encryption scheme to be indistinguishable under chosen-plaintext attacks (IND-
CPA) secure.

Merkle trees. Merkle trees are generated through the MTHash algorithm by iteratively hash-
ing two hash values until only one hash � the root of the Merkle tree � remains. The root
serves as a commitment on many chunks of data. The algorithm MTProof takes as input
the tree and an index i and produces a logarithmically sized opening statement for the i-th
chunk consisting of the neighbors on the path from the element to the root. The algorithm
MTVerify is used to verify that the opening statement is correct in respect to the root. We
refer to [14] for instantiation of these algorithms.

2.1 FairSwap

We brie�y introduce the FairSwap protocol presented by Dziembowski et al. in 2018 [14] on
a high level. The overall goal of the protocol is a fair exchange of a digital good x against
money. The Seller, who knows x, initiates the protocol by sending an o�er message to the
Buyer. This message contains an encryption z of every step of the witness evaluation φ(x)
under key k. By con�rming this message the Buyer also transfers the payment of p coins
to the judge contract. At this point the contract contains the money from the Buyer and
a concise commitment on both z and φ. The Seller now reveals the key via the contract
which allows the Buyer to decrypt the witness. If this witness is correct, the money will be
transferred to the Seller (eventually). The more interesting case occurs when the witness
that the Buyer received does not satisfy the agreed upon predicate, i.e., φ(x) 6= 1.

In this case, which we call the disagreement or pessimistic case, the Buyer can send
a proof of misbehavior (PoM) to the contract. This proof is small, compared to both the
witness and the predicate, but it is su�cient to indubitably prove that the received witness

4

x = Dec(k, z) does not satisfy the predicate, i.e. φ(x) 6= 1. If this can be shown to the
judge contract, the coins will be refunded to the Buyer. Besides making sure that no coins
can be stolen or locked, the protocol of [14] prevents cheating, namely that the Seller will
get paid for a wrong witness or the Buyer can successfully complain about a correct one.
Additionally, the designed PoM and all data stored inside the contract are kept very small
to reduce the costs of the protocol.

Proof of Misbehavior (PoM). In case of a dispute, Buyer and Seller argue about two di�erent
statements. The Seller wants the payment so he will claim that the transferred witness x
is correct, i.e., φ(x) = 1 while the Buyer claims that it is incorrect φ(x) = 0. In order to
�gure out who is wrong the judge would need to re-evaluate the predicate φ(x). But since
φ and x are potentially large, they should not be sent to the contract. Instead in [14] they
consider a witness x that can be split in many elements x1, . . . , xn and a predicate φ which
can be represented as a circuit with many gates φ1, . . . , φm. Now, instead of arguing about
the evaluation of the overall predicate, it su�ces to prove the dispute about the evaluation
of a single gate φi where Buyer and Seller disagree on the gate output. Since the Buyer
constructs and sends the PoM he has to prove that the Seller either sent the wrong witness
or cheated during his computation of φ(x). This is why the Seller has to send the output
for every evaluation of every gate of φ(x) to the Buyer and commit to all of these values (in
the �rst message). These commitments allow the Buyer to prove that (i) either the output
of φ(x) = 0 or (ii) there exists a gate φi ∈ φ with inputs in1i , . . . , in

`
i where the Seller lied

about the gate evaluation. The judge contract will then re-compute the gate in question
and compare the outcome with the Seller's result, making it impossible to cheat successfully
about the evaluation of φi. If the witness is wrong and the Seller computed the correct
predicate, then the output of the last gate will reveal this fact, i.e. φm(·) = 0. But if the
witness is correct, the Buyer will not be able to �nd a gate which is wrongly computed and
the overall result will be 1, which means the judge will not accept any PoM.

A drawback of the FairSwap protocol is that the PoM is generated by the Buyer only
considering information that the Seller sent in the �rst round. In particular the Seller needs
to compute, store, encrypt and transfer the intermediary result of every single gate in the
predicate evaluation φ(x). For predicate circuits with many gates, this can become a large
overhead for the Seller and also for the Buyer, since in most cases when there is no dispute
these information are not needed. We propose a di�erent protocol, which does not require
this overhead as long as Seller and Buyer agree. Only in case they run into a dispute, they
can execute an interactive protocol which allows them to securely proof whether φ(x) = 1.
Additionally, we will analyze how to fairly estimate transaction fees, which is not considered
in the work of [14] at all.

3 OptiSwap Protocol Description

Similarly to [14] we consider an interactive protocol between a Buyer B who is willing to
pay a Seller S p coins in exchange for a witness x, if x satis�es a predicate function φ (i.e.
φ(x) = 1). They use a smart contract as an adjudicator that stores the payment and either
transfers the coins to S if the exchange is completed successfully or back to B if he does not
receive his witness. The witness x can be split into n elements x1, . . . , xn and the predicate
is represented as a circuit with m gates φ1, . . . , φm, a fan-in `, a depth δ and a width ω as
de�ned in Section 2.

3.1 OptiSwap Properties.

In order to ensure that neither the Buyer nor the Seller can cheat, we require the fair
exchange protocol to have the following security properties:

5

S1 Security against malicious Buyers: Honest Sellers will always receive their payment if
the Buyer learns the witness x (cf. Sender fairness of [14]).

S2 Security against malicious Sellers: Honest Buyers will either learn the correct witness x
or will get their coins back (cf. Receiver fairness of [14]).

S3 Security against grieving: In case of a dispute, the cheating party must always com-
pensate the cheated party for any transaction fees paid during the dispute process (fee
fairness).

Additionally to the security properties, we also need our protocol to be e�cient. Therefore,
we de�ne the three following e�ciency requirements:

E1 Circuit independent communication: The size of all messages sent by Seller and Buyer
in the optimistic case must be O(|x|).

E2 Constant round complexity in the honest case: If the correct witness is transferred with-
out dispute, the protocol must run at most 5 rounds.

E3 Upper bounded round complexity in the pessimistic case: Even in case of dispute, the
protocol terminates after �nitely many rounds where the exact number of rounds is
upper bounded by O(min(δ ∗ `, log(n) ∗ ω)).1

In Section 5 we will argue why our protocol achieves all desired e�ciency and secu-
rity properties. A formal proof in the Universal Composability model can be found in Ap-
pendix E.

3.2 OptiSwap Protocol

At the core of the fair exchange protocol, Buyer and Seller use a smart contract, which has
the authority over the payment and is used as a judge if the two parties disagree. Similarly
to the FairSwap protocol of [14] the smart contract will evaluate a Proof of Misbehavior
(PoM) in this case. This short proof is used to show that the Seller sent a wrong witness
(cf. Section 2.1). In contrast to the FairSwap protocol, the Buyer does not already have the
data to generate a PoM. Instead he needs to interactively challenge it from the Seller.

In the following we describe all steps on the protocol informally. A formal description for
every party as well as a formal model for ledger and contracts can be found in Appendix C
and B, respectively.

Round 1 The Seller starts the protocol by encrypting the witness x element by element,
i.e., ∀i ∈ [n] : zi = Enc(k, xi). Then he commits to both, the encryption (by computing
rz ← MTHash(z1, . . . , zn)) and the used encryption key (c, d)← Commit(k). Now, the judge
contract can be initialized by the Seller. It is parameterized by the addresses of Seller and
Buyer, the price p, public auxiliary information aux of the witness exchange, including fee
and timing parameters (cf. Section 5). Additionally, both commitments rz and c are stored
in the contract, while the encrypted data z is sent to the Buyer directly.

Round 2 In the second round, the Buyer needs to con�rm that he received the �rst message
from the Seller and that he agrees with the parameters in the contract. In particular, he
recomputes the Merkle tree root rz of the ciphertext and checks all contract parameters
including the price and auxiliary information. If he does not agree with any of them, he
aborts the protocol. Otherwise, he sends a transaction to the judge contract which signals
his acceptance and transfers the agreed upon payment to the contract. Note, that the Buyer
cannot decrypt the witness at this point, because he does not know the key k and neither
the encryption z nor the commitment c reveal any information about x or k.

1 There are di�erent dispute resolution procedures which are more or less e�cient depending on
the circuit parameters. The procedures are described in Section 3.4. In particular, the round
complexity for the �le sale application is O(log(n)).

6

Round 3 Now that the coins are locked in the contract, the Seller can reveal the encryption
key. In order to make this action publicly veri�able he stores the key in the smart contract,
which veri�es its correctness (Open(c, k, d) = true).

Round 4 Since the key is stored publicly, the Buyer can now decrypt the witness: ∀zi ∈ z :
Dec(k, zi) = xi. At this point we distinguish two cases. In the optimistic case the witness
was correct, which the Buyer veri�es by running φ(x) = 1. In this case he con�rms the
successful transfer to the contract, which triggers the payment to the Seller. Even when the
Buyer does not send this message, the Seller can collect the coins after some timeout has
passed in the next round. This timeout is necessary for the second case which we call the
dispute or pessimistic case, in which the Buyer �nds that the received witness is incorrect,
i.e., φ(x) = 0. In this case the Buyer will start the interactive dispute protocol, which will
e�ectively freeze the coins in the contract until a malicious party is found.

3.3 Interactive Dispute Handling

The dispute protocol is based on an interactive challenge-response procedure between Seller
S and Buyer B. The goal is to identify a single gate within the circuit in which the evaluations
of both parties di�er. Then the Buyer can use this information to prove that he received a
false witness using a Proof of Misbehavior (PoM). Recall that for evaluating the PoM about
the i-th gate, the judge requires as input the gate φi, its inputs in1i , . . . , in

`
i and the gate

output computed by S: outpi. The Buyer will query these information from S by repeatedly
asking for outputs of circuit gates. All queries and responses will be recorded by the judge
contract.

The Buyer starts by querying the result for the last gate φm, which is the overall output
of the evaluation of φ(x). If the Seller replies with outpm = 0 B can immediately prove that
S misbehaved. If the Seller cheats, he could claim that outpm = 1, which means both parties
have di�erent results on the output of the gate. Now, B challenges the outputs of all input
gates of φm and obtains inm = (in1m, . . . , in

`
m) which he can compare to his own computed

values. Again the Seller can either send the values which correctly evaluated to his alleged
result (φm(inm) = outpm), or he could send mismatched values, such that φm(inm) 6= outpm.
If the second case happens, again the Buyer triggers the PoM evaluation of the contract,
which will verify that the Seller is cheating.

During this dispute resolution, the contract veri�es the alternating participation of Seller
and Buyer. In every repetition j, the Buyer challenges the input gates inj to one or more
of the challenged gate of the previous round outpj ∈ in(j−1). The Seller has to respond by
sending all corresponding output values to the challenged gates. This way the Buyer can
evaluate φi(inj) = outpj . Seller and Buyer repeat this challenge-response procedure until
one of the following cases happens:

(i) The Seller does not respond to the challenge (in time). In this case the Buyer can request
the money back from the contract.

(ii) The Buyer does not send a new challenge or a PoM (in time). In this case the Seller can
request the payment.

(iii) The Seller responds incorrectly to a challenge, i.e., φi(inj) 6= outpj . In this case the Buyer
reveals the instruction of the gate φi and proves with a Merkle tree proof that this gate
is part of the circuit φ. Now the judge contract can verify that the Seller misbehaved
and sends the coins back to the Buyer.

(iv) The Seller sends a wrong witness. This case can happen, when one of the requested
inputs is an element of the witness but the Seller responds with a di�erent element xi
than the Buyer decrypted x′i. In this case the Buyer will send the ciphertext value zi to
the contract and includes a Merkle tree proof that zi is the i-th element of z (using rz).
Again the contract will be able to verify this cheating and reward the coins back to the
Buyer.

7

(v) The last case occurs when the Buyer exhausts allowed challenge limit aφ. This means
the Buyer could not prove cheating of the Seller in time and the contract will send the
payment to the Seller. The challenge limit aφ is �xed for every circuit before the protocol
start and denotes the maximum number of gates that the Buyer needs to challenge in
order to prove cheating.

Challenge limit parameter. As mentioned before, the judge is responsible for limiting the
number of possible challenges. To this end, the judge is initialized with a challenge limit
parameter aφ during the �rst protocol round as part of the auxiliary information aux. This
parameter de�nes the maximal number of challenged circuit gates and it is important that
both parties agree on it. The value must be large enough such that the Buyer is able to
prove misbehavior for any possible gate or input value. At the same time it should be as
small as possible to reduce the runtime and cost of a dispute.

3.4 Extensions and Optimizations

The challenge-response procedure is very expensive to run compared with the optimistic
case execution. We distinguish three di�erent dimensions that in�uence the cost for running
the dispute: (1) The large data storage which consists of all values the Seller submits during
dispute increases the transaction costs drastically. (2) The runtime of the sub-protocol mainly
depends on the number of challenge rounds which increases with the depth of the circuit φ.
(3) Additionally, the complexity of the judge contract also depends on φ. The main factor
here is the size of the instruction set of the circuit, since the judge needs to be able to
evaluate any possible gate. Depending on the circuit and the application, it can be smart to
optimize the dispute procedure.

Reducing contract storage. Storing data in a contract is costly since it becomes part of the
blockchain state and every single miner has to allocate space for this data. Therefore, the
costs of running a contract can be reduced if storage is re-used. In the case of our judge
contract, the storage requirements of the dispute sub-procedure can be optimized. Instead of
storing all challenges and responses, it only stores the latest ones. This means the Seller needs
to commit to all computed values using a Merkle tree root re computed over the intermediate
values of the evaluation φ(x). Now, for every revealed element the Seller includes a Merkle
proof about the item, which is veri�ed and stored by the Buyer. This data allows him to
generate a proof including elements which have been revealed in a previous round but are
no longer stored in the contract.

Reducing round complexity. The worst case round complexity is �xed for every circuit. In
order to reduce the maximal and average number of challenge rounds the parties could agree
to challenge and reveal outputs of multiple gates at the same time. Depending on the circuit
they could also agree on di�erent challenge strategies which can again help to reduce this
parameter. For circuits that are very balanced and have a tree like structure it makes a lot of
sense to start with the last gate and always query one predecessor gate, for which the Seller
provided a divergent output. This basic strategy results in an upper bound for the overall
round complexity in case of dispute of 4 + 2 ∗ ((δ − 1)` + 1) rounds. For very deep circuits
with a low width ω this strategy is not optimal but instead a binary search will be better
suited (cf. Figure 1). This strategy results in an upper bound of 4 + 2 ∗ (dlog2 δe ∗ ω + 1)
rounds. Knowing the circuit-dependent parameters δ, ` and ω, the more e�cient strategy
can be chosen. Both strategies can even be combined for optimal results. Another option is
to combine multiple gates into one by de�ning new combined instructions. This can change
the overall structure of the circuit and lower its challenge costs, creating trade-o� between
round complexity and contract complexity.

8

x1

x2

x3

x4

φ1

φ2

φ3

φ4

φ5

φ6

φ7

φ8 0/1

challenge chain

←

←

←

x1

x2

φ1

φ2 φ3 φ4 φ5

φ6

φ7

φ8 0/1

challenge
chain

←
←

→

Fig. 1. Back-to-front (left) and binary search (right) challenge strategies.

Reducing contract complexity. For complicated circuits with many instructions the logic of
the judge contract can get very complex. Since the majority of its logic is only required for
dispute handling and evaluating the PoM, the contract can be split into two parts. This is
an approach which has been introduced in [26]. It allows to deploy the dispute logic only in
case the Buyer triggers the dispute. This trick drastically reduces the deployment costs and,
hence, lowers the costs of the optimistic case.

To generalize over all improvements made in this section we will abstract from speci�c
challenge strategies and encapsulate this into a function NextChallenge that selects the next
challenge query based on the circuit and the previous response (more on this in Appendix C
and D).

At this point we have presented most features of OptiSwap and can give a full list
of all required auxiliary information aux = (c, rz, re, rφ, aφ, fS , fB, T1, T2). The parameter
rφ denotes a commitment to the veri�cation circuit φ and fS , fB being the fee parameter,
which will be explained in the next section. Moreover, aux contains two timeout parameters
T1 and T2.

4 OptiSwap Evaluation and Transaction Fees

In this section we evaluate the e�ciency of our protocol. We start with a discussion about
the communication complexity in the honest execution, which was the main focus point of
OptiSwap. Then, we analyze the runtime and costs of our protocol. We also discuss how
we incorporated transaction fees into OptiSwap to prevent grieving. In order to illustrate
the evaluation of our protocol, we consider the �le sale application which we describe in the
following.

File sale application. For exact measurements and better comparison we implemented2 the
�le sale application of [14] as a concrete instantiation of circuit φ. In this case the witness is a
�le x consisting of n chunks x1, . . . xn of size λ = 512 Byte and it is identi�ed via its Merkle
hash h = MTHash(x). The veri�cation circuit φ computes the Merkle hash of the input
and compares it with the expected value, i.e., φ(x) = 1 ⇔ MTHash(x) = h. The required
instruction set consists of a Hash function evaluation and one check-if-equal instruction.

4.1 Communication Complexity in the Optimistic Execution

The goal of OptiSwap is to improve the optimistic execution. Assuming both Seller and
Buyer behave honestly, the transferred witness x is correct and there is no necessity to
exchange information about the predicate evaluation φ(x) in order to prove misbehavior by
any party. In the optimistic execution of OptiSwap, most of the protocol messages have a
constant size. Only in the �rst round, the data transferred from Seller to Buyer depends on
the size of the witness x. Compared to previous solutions like FairSwap [14], the size of this

2 github.com/CryBtoS/OptiSwap

9

21 24 27 210 213 216

2

4

6

8

File Chunk Size [Byte]

O
v
er
h
ea
d
|z
|/
|x
|

OptiSwap

FairSwap

Standalone
deploy 2 273 398 gas $ 5.94
optimistic case 101 307 gas $ 0.26
pessimistic case 6 412 569 gas $ 16.77

Split Contract

optimistic deploy 952 939 gas $ 2.49
pessimistic deploy 1 962 992 gas $ 5.13

Fig. 2. Encoding size for di�erent �le chunk size for Fairswap (blue) and Optiswap (red) on the left
and gas cost for the �le sale application on the right.

message is independent of the circuit φ. It follows that OptiSwap completely removes the
overhead of the �rst protocol message, where the overhead is the ratio of the message size |z|
to the size of the witness |x|. On the left side of Figure 2, the overhead of the �rst message
in OptiSwap is compared with the �rst message in FairSwap for the �le sale application.
Depending on the size of a single �le chunk, the size of the veri�cation circuit varies. The
smaller the �le chunks, the large the circuit size and the more data has to be transferred
in the �rst protocol message in FairSwap. The graph in Figure 2 shows the advantage of
OptiSwap increases for smaller �le chunks.

In case of dispute, the Buyer is responsible for creating a PoM. Assuming the Seller sent
an incorrect witness, the PoM might contain a small part of the �le in order to show that its
hash results in a di�erent hash value than computed by the Seller. Since the PoM is sent to
the judge smart contract, the data is on-chain and, hence, publicly visible. This data leakage
increases in the size of the �le chunks. In contrast, the smaller the �le chunk size the less
data needs to be published in the worst case. Using a �le chunk size of 1 Byte, the size of
the encoding in the FairSwap protocol is 33 times the size of the witness. It is easy to see
that this overhead is way too much for large witnesses, e.g. 1 GByte �les, therefore, it is
unreasonable to use small �le chunks in the FairSwap protocol. On the contrary, OptiSwap
does not su�er from the overhead and, hence, the �le chunk size can be chosen considerably
small. It is important to note that a small �le chunk size also results in a higher circuit
depth leading to an increased number of rounds in the dispute resolution. However, halving
the �le chunk size increases the circuit depth by one.

4.2 Runtime and Gas Costs

In Ethereum, transaction fees are paid in gas and every instruction of the Ethereum virtual
machine code has a gas value assigned to it. This gives a deterministic gas amount for every
transaction. The gasprice3 can be set individually for every transaction and describes the
exchange rate between Ether and gas. We assume that the gasprice will be �xed for the
duration of the protocol run.

We compare OptiSwap against the FairSwap protocol implementation of the �le sale of
1 GByte with 512 Byte-sized �le chunks. In this setting, the circuit depth is δ = 21 and the
max fan-in is ` = 2. When we analyze the costs for the OptiSwap protocol we distinguish
between deployment costs and the execution costs in the optimistic and pessimistic case
(cf. right side of Figure 2). A more extensive analysis and comparison of gas costs is given
in Appendix F. We also analyze an optimized version of the contracts which we call split

3 We consider an average gas price of 14.4 GWei and an exchange rate of 181.57 USD per ether.
This data is taken from https://etherscan.io on November 18, 2019.

10

contract. Here we apply the idea from [26], where we create two versions of the judge contract.
The �rst part is responsible for the execution in the optimistic case and the second part only
for the dispute. The key idea is that we only need to deploy the second contract in case the
parties start the dispute. This reduces the costs for the purely optimistic case. In case of
the �le sale application the complex logic for the interactive dispute can be encapsulated
in the dispute contract which makes the optimistic case even slightly cheaper compared to
FairSwap.

Optimistic case execution Without a complaint the protocol runs in either 4 or 5 rounds,
depending on the Buyer. In comparison to FairSwap, the �rst message of OptiSwap does
not contain information about φ(x) and the Seller does not have to compute φ(x) in this
case. This reduces both the message and communication complexity. The biggest part of
transaction fees in this case are the deployment fees (cf. Figure 2) which are paid by the
Seller in the �rst round4. The costs for deployment and protocol fees of the Seller can be taken
into account when de�ning the price for the digital good. But recall, that the optimistic case
can end in two ways; either the Buyer con�rms that he received x and triggers the payout,
or the Seller has to request it after the Buyer did neither con�rm nor complain. Fee security
for the Seller can be achieved by letting the Buyer lock a small security deposit in the second
round. The Seller will receive this deposit on top of the payment unless the Buyer correctly
con�rms the exchange in round 4; in which case he gets this deposit back.

Pessimistic case execution On top of the four rounds of the honest execution, the parties
execute the interactive dispute procedure. This includes at most aφ challenge-response rep-
etitions. We used the basic challenge-response strategy resulting in aφ = ((δ − 1) ∗ l + 1) =
((21 − 1) ∗ 2 + 1) = 41. This also means that the costs for the pessimistic case execution
grow signi�cantly due to the higher transaction load (cf. Figure 2). The Buyer will send
a relatively small challenge query but forces the Seller to respond with a potentially large
transaction. While the maximum number of rounds is �xed, it will be hard in most cases to
predict the costs for the transactions. It would be easy for the Buyer to grieve the Seller �
force him (at a low cost) to pay a lot of transaction fees to show his correct behavior. The
transaction fees are many times higher than the honest execution and could even outweigh
the price p. A rational Seller could be forced this way to waive the payment in order to save
transaction fees.

To prevent grieving attacks, we present a simple security fee mechanism that should
guarantee that an honest party does not carry the costs for the dispute. In particular,
the Seller should be compensated if the Buyer cannot prove misbehavior and the Buyer
should be compensated if the Seller cheated. To ensure this, both parties need to add some
additional coins to each transaction executed in the challenge-response procedure. All coins
will be collected in the contract and paid out together with the payment. This ensures
that the honest party will receive its deposit back and gets the malicious party's deposit as
compensation.

Since the response transactions of the Seller are more expensive and the Buyer might
need to compensate for them, his deposit fB will be higher than the one of the Seller fS . The
parameters depend on the circuit and are contained in the auxiliary information aux. The
value must be large enough to compensate for the worst case transaction size. As a result,
it might happen that one or both parties deposit much higher fees than the actual costs
for the blockchain transactions. However, since the honest party gets his complete money
back, this aspect just increases the temporal deposit costs. In addition, it provides a highly
deterrent e�ect for malicious party and disincentives cheating. We give concrete values for
fB and fS for an exemplary �le sale application in the Appendix F.

We note that the Buyer can still grieve the Seller by forcing him to pay the deployment
fees in the �rst round. The Seller pays the deployment fees with the risk that the Buyer

4 Without loss of generality the deployment costs could also be carried by the Buyer in the second
round, if he gets the auxiliary information from the Seller �rst.

11

aborts and does not send his message in the second round. At this point there is no way to
force the Buyer to compensate the Seller for the invested fees.

5 Security Analysis

We formally prove the security of OptiSwap in the Universal Composability (UC) frame-
work (cf. Appendix A for an introduction to the UC model and Appendix E for the full
proof). We start by informally arguing about the security properties to give the reader a
intuition about the achieved security of the OptiSwap-protocol. Then we de�ne the ideal
behavior of OptiSwap by the ideal functionality FLicfe which captures the overall security of
our construction.

5.1 Informal Security Discussion

In this section we will informally argue why OptiSwap achieves all security and e�ciency
properties. In every step of the OptiSwap protocol the parties only have a limited time to
send an expected transaction. On one hand this limits the maximal round time while on
the other hand it identi�es if a party aborted. If one of the parties aborts, the other party
calls a timeout-function in the contract. This triggers the judge to verify that the timeout
indeed expired and it will terminate after it sent all remaining coins to the opponent. It is
important for the security of honest parties that this timeout is chosen large enough, such
that honest transactions will be included in the blockchain in time.

Security against malicious Buyers (S1). This property guarantees to the honest Seller that he
will get paid if the Buyer learns the witness x. In particular it means that (a) the Buyer learns
nothing about x before k is revealed and (b) he cannot forge a proof of misbehavior if the
Seller behaves honestly. (a) holds because of the CPA-secure encryption, which guarantees
that the ciphertext z does not leak information about the plaintext x and the hiding property
of the commitment which hides k from the Buyer. This makes it impossible for the Buyer
to learn x without breaking any of the two schemes. (b) is guaranteed because the honest
Seller will not cheat with the computation of φ(x) which makes it impossible for the Buyer
to claim this (since he cannot �nd collisions for hash values in the Merkle tree commitment
of z). Additionally, E3 ensures that the Buyer cannot delay the payout forever.

Security against malicious Sellers (S2). This property protects the Buyer and his funds. It
guarantees that � no matter what the Seller does � the Buyer will either receive the correct
witness x or get his money back. If the Seller aborts or reveals a wrong key the contract will
automatically reimburse the Buyer. This follows from the fact that it is cryptographically
hard to break the binding of the commitment c. If the Seller reveals the correct key and the
witness is correct, property S2 is also satis�ed. So the most interesting case for the analysis
is the situation when the Buyer received an incorrect witness x′ 6= x s.t. φ(x′) = 0. In
this case the interactive dispute procedure guarantees that the Buyer will be able to �nd a
statement (PoM) which will make the judge refund the payment to him. Unless the Seller
aborts, this statement will either prove that φ(x′) = 0, that the Seller lied about the result
of some gate φi ∈ φ or that he used a witness x 6= Dec(k, z). This guarantee follows from
the fact that the Buyer has enough rounds in the dispute resolution to challenge the gates
required for creating a PoM and that Seller is forced by the judge to respond to all queries.

Security against grieving (S3). This property protects both parties. As seen in Section 4.2,
OptiSwap protects against grieving attacks by using transaction deposits for every step in
the interactive dispute phase. These deposits will be paid out to the Buyer if he �nds a PoM
and to the Seller if no PoM can be provided. From properties S1 and S2 we know that the
honest party will always receive the coins. This guarantees to honest parties that all paid
dispute fees (and more) will be reimbursed after the dispute has �nished.

12

Communication complexity (E1). The communication complexity in the optimistic case of
OptiSwap is mainly determined by the �rst message of the protocol. All following contract
transactions have a �xed size that are independent of the witness x and the circuit φ. The
�rst message has a size of |z| which is identical to |x| since it is its encryption. Therefore, the
overall communication complexity is O(x) which satis�es property (E1). This is in contrast
to FairSwap [14] where the �rst message depends on both, the witness and the circuit. In the
pessimistic case the message complexity is depended on φ. A challenge consists of a single
integer while a response contains the output value of a gate along with a Merkle tree proof.

The size of a gate output value is at most the size of a witness chunk |x|n . Hence, the size of

a response is at most |x|n +(1+ log(m)). The number of challenges is limited by aφ resulting

in an overall complexity of aφ integers for the Buyer and aφ× (|x|n +(1+ log(m))) values for
the Seller in the worst case. Note that in this case (S3) guarantees that any honest party
forced to engage in this procedure, will get compensated.

Round complexity (E2+E3). In the optimistic case the protocol runs either 4 or 5 rounds
(in case the Buyer doesn't con�rm that he received the witness). This satis�es (E2). In the
pessimistic case (E3) the challenge-response procedure is started in the fourth round, and
will take at most aφ repetitions and �nish with an additional PoM transaction of the Buyer.
In case the Buyer does not send this last message, the Seller has to request his payment in
the next round, leading to 5 + 2aφ rounds in the worst case.

5.2 Ideal Functionality FL
icfe

The functionality FLicfe represents a fair exchange of digital goods within a blockchain-based
setting. It describes an exchange of a digital good x between a Seller S and a Buyer B.
While Seller o�ers the digital good, Buyer must pay for it. The correctness of the witness
x is de�ned by a circuit φ which either outputs 1 for the correct witness or 0 otherwise. It
extends the functionality FLcfe for coin aided fair exchange [14] and also utilizes an idealized
ledger functionality L for the on-chain handling of coins. We do not specify the ledger ideal
functionality L here but refer the reader to Appendix B. The major change in comparison to
FLcfe is the modeling of an interactive challenge-response procedure in case of dispute. This
includes modeling security fees incorporated in our construction.

Ideal Functionality FLicfe

The ideal functionality FLicfe (in session id) for interactive coin aided fair exchange
interacts with Seller S and Buyer B. Moreover, it has access to the global ledger
functionality L and interacts with the ideal adversary Sim.

Initialization

(Round 1) Upon receiving (sell, id,x, φ, p, fS , fB) with p, fS , fB ∈ N and
φ(x) = 1 from S, store witness x, circuit φ with challenge limit prop-
erty aφ, price p, and fee parameters fS , fB and leak (sell, id, φ, p, fS , fB,S)
to Sim.

Upon receiving (sell-fake, id,x, φ, p, fS , fB) with p, fS , fB ∈ N from corrupted
Seller S∗, store witness x, circuit φ with challenge limit property aφ, price
p, and fee parameters fS , fB.

(Round 2) Upon receiving (abort, id) from Seller S, leak (abort, id,S) to Sim,
send (aborted, id) to B, and terminate.

Upon receiving (buy, id, φ) from Buyer B, send (freeze, id,B, p) to L. If L re-
sponds with (frozen, id,B, p), leak (buy, id,B) to Sim and go to Revealing
phase.

If no message is received during round 2, terminate.

13

Revealing

(Round 3) Upon receiving (abort, id) from Buyer B, leak (abort, id,B) to
Sim, send (unfreeze, id,B) to L, (aborted, id) to S, and terminate.

Upon receiving (abort, id) from corrupted Seller S∗ in round 3, send
(unfreeze, id,B) to L in the next round and terminate.

If no message is received in round 3, send (revealed, id,x) to B, set s =
challenge, wait one round, and go to Interaction phase.

Interaction

Upon receiving (freeze, id,B, ar) with aφ ≥ ar from Sim when s = challenge,
send (freeze, id,B, ar ∗fB) to L. If L responds with (frozen, id,B, ar ∗fB),
store ar, set aφ = aφ − ar, s = response, and wait one round.

Upon receiving (freeze, id,S, as) with as = ar from Sim when s = response,
send (freeze, id,S, as ∗fS) to L. If L responds with (frozen, id,S, as ∗fS),
set s = challenge and wait one round.

Upon receiving (abort, id,∆) from corrupted Buyer B∗, where ∆ ∈ {0, 1},
when s = challenge, wait ∆ rounds. Then send (unfreeze, id,S) to L and
(sold, id) to S and terminate.

Upon receiving (abort, id,∆) from corrupted Seller S∗, where ∆ ∈ {0, 1},
when s = response, wait ∆ rounds. Then send (unfreeze, id,B) to L and
(not bought, id,x) to B and terminate.

If no message is received, execute Payout phase.

Payout

If φ(x) = 1, send messages (unfreeze, id,S) to L, (sold, id) to S, and
(bought, id,x) to B. Otherwise, if φ(x) 6= 1, send messages (unfreeze, id,B)
to L, (not sold, id) to S, and (not bought, id,x) to B. Terminate the exe-
cution after the payout.

We describe the ideal functionality in the following. We �rst assume two honest parties
and describe additional opportunities for malicious parties afterwards.
The ideal functionality FLicfe starts in the initialization phase during which both parties
provide their initial input. In the �rst round, Seller starts the execution by sending the
witness x, the veri�cation circuit φ, a price p, and fee parameters fS , fB to FLicfe. For an
honest Seller it must hold that φ(x) = 1 in the initialization. In the second round, Seller
may abort the execution or he waits for Buyer to accept the o�er. By accepting the o�er,
the ideal functionality instructs the ledger functionality to lock p coins from Buyer B. If
locking p coins from B is not successful due to insu�cient funds, the functionality ends the
interactive fair exchange protocol.

In the revealing phase in round 3, Buyer may abort the protocol execution and receives
his coins back or he waits to learn the witness x. After the witness is revealed, the interaction
phase is started. Assuming both parties are honest, Seller sent the correct witness and Buyer
has no intention to challenge Seller. Therefore, the payout phase is executed during which
Seller gets the money and the fair exchange is completed.

Next, considering the case that Seller is malicious. He can send an incorrect witness
x such that φ(x) 6= 1 to FLicfe in the initialization phase. Since a malicious Seller has not
to follow the protocol, he may abort in round 3 by not sending the required message. If
he aborts in round 3 before the witness is revealed to Buyer FLicfe instructs the ledger

14

functionality L to unfreeze the locked money in Buyer± favor. In case Seller does not abort,
FLicfe reveals the incorrect witness to honest Buyer. Since an honest Buyer is not willing to
pay for an incorrect witness, he starts the dispute resolution sub-protocol by challenging
Seller. This challenge-response interaction is simulated by the ideal adversary Sim within
the interaction phase. Each challenge or response message costs some fees which are locked
by FLicfe by instructing L to freeze these fees. At each round during the interaction phase in
which Seller must provide a response to a challenge query a malicious Seller may abort. In
this case, Buyer gets all the money that is locked by the ledger functionality. After several
interactions, which is limited by the challenge limit property aφ of the circuit φ, Buyer is
able to generate a valid proof of misbehavior within the protocol. The ideal functionality
executes the payout phase and sends all the money to B, since malicious Seller o�ered an
incorrect witness at the start of the execution.

In addition to the already explained actions, a malicious Buyer may challenge Seller even
tough he provided the correct witness during the initialization phase. These challenges are
simulated by the ideal adversary in the interaction phase. Again, the number of possible
challenges is limited by the challenge limit property aφ of the circuit φ. As explained above,
a malicious Seller may abort within the interaction phase and a malicious Buyer may do this
as well. In this case, all the locked money gets unfrozen by the ledger functionality in favor
of the Seller. If Seller has sent the correct witness in the initialization phase, a malicious
Buyer will not be able to generate a valid proof of misbehavior and Seller is able to respond
to every challenge posed by Buyer. This ends in the execution of the payout phase during
which the ideal functionality FLicfe instructs L to unfreeze all the money in favor of S.

In order to consider delayed messages during a protocol execution, the ideal adversary
Sim is able to delay the execution of FLicfe. Whenever Sim obtains the instruction from
the environment to delay the message of any corrupted party by δ rounds, the simulator
instructs the ideal functionality to delay the execution by δ rounds. For sake of clarity, this
description is omitted in the de�nition.

6 Conclusion and Future Work

We presented OptiSwap, a smart contract based two-party protocol for realizing a fair ex-
change for digital commodity against money. In comparison to already existing fair exchange
protocols, we signi�cantly improved the execution of the optimistic case in which both par-
ties behave honestly. We integrated an interactive dispute handling in OptiSwap that is
only run in the pessimistic case. This allows us to have almost no overhead in computational
complexity in the optimistic case.

Furthermore, OptiSwap contains a protection mechanism against so-called grieving at-
tacks, where the attacker tries to harm the honest party by forcing him to pay fees. The
protection is based on transaction fees paid by both parties such that the honest party is re-
imbursed at the end of the protocol execution. We provide a reference implementation of our
judge smart contract for
Ethereum. Based on that, we estimated gas costs for the optimistic and pessimistic case.

The execution costs in the optimistic mode strongly depend on the deployment costs of
the judge smart contract. By allowing repeated exchanges over one contract, the costs for
a single execution might be signi�cantly reduced. An interesting research question is the
analysis of minimal bounds on communication and computation complexity. Results can
show how far further our construction might be improved.

15

References

1. Ethereum average gas price chart. https://etherscan.io/chart/gasprice. (Accessed on
09/19/2019).

2. Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek. Secure
multiparty computations on bitcoin. In 2014 IEEE Symposium on Security and Privacy, pages
443�458. IEEE Computer Society Press, May 2014.

3. N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair exchange of digital signatures
(extended abstract). In Kaisa Nyberg, editor, EUROCRYPT'98, volume 1403 of LNCS, pages
591�606. Springer, Heidelberg, May / June 1998.

4. Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as a transaction
ledger: A composable treatment. LNCS, pages 324�356. Springer, Heidelberg, 2017.

5. Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols. In Juan A.
Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages
421�439. Springer, Heidelberg, August 2014.

6. Bitcoin Wiki. Zero knowledge contingent payment. https://en.bitcoin.it/wiki/. (Accessed on
09/19/2019).

7. Christian Cachin and Jan Camenisch. Optimistic fair secure computation. In Mihir Bellare,
editor, CRYPTO 2000, volume 1880 of LNCS, pages 93�111. Springer, Heidelberg, August 2000.

8. Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gregory Neven.
The wonderful world of global random oracles. LNCS, pages 280�312. Springer, Heidelberg,
2018.

9. Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca Nizzardo. Zero-knowledge
contingent payments revisited: Attacks and payments for services. In ACM CCS 17, pages
229�243. ACM Press, 2017.

10. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In 42nd FOCS, pages 136�145. IEEE Computer Society Press, October 2001.

11. Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Wal�sh. Universally composable security
with global setup. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 61�85.
Springer, Heidelberg, February 2007.

12. Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 19�40. Springer, Heidelberg, August 2001.

13. Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security with a global
random oracle. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 14, pages
597�608. ACM Press, November 2014.

14. Stefan Dziembowski, Lisa Eckey, and Sebastian Faust. FairSwap: How to fairly exchange digital
goods. In ACM CCS 18, pages 967�984. ACM Press, 2018.

15. Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. PERUN: Virtual
payment channels over cryptographic currencies. Cryptology ePrint Archive, Report 2017/635,
2017. http://eprint.iacr.org/2017/635.

16. Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge Uni-
versity Press, Cambridge, UK, 2004.

17. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A com-
pleteness theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC,
pages 218�229. ACM Press, May 1987.

18. Harry A. Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew Weinberg, and Edward W.
Felten. Arbitrum: Scalable, private smart contracts. pages 1353�1370, 2018.

19. Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally composable
synchronous computation. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages
477�498. Springer, Heidelberg, March 2013.

20. Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party compu-
tation using a global transaction ledger. In Marc Fischlin and Jean-Sébastien Coron, editors,
EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 705�734. Springer, Heidelberg, May
2016.

21. Ranjit Kumaresan and Iddo Bentov. Amortizing secure computation with penalties. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors,
ACM CCS 16, pages 418�429. ACM Press, October 2016.

16

22. Ranjit Kumaresan, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan. Improvements
to secure computation with penalties. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 16, pages 406�417. ACM Press,
October 2016.

23. Alptekin Küpçü and Anna Lysyanskaya. Usable optimistic fair exchange. In Josef Pieprzyk,
editor, CT-RSA 2010, volume 5985 of LNCS, pages 252�267. Springer, Heidelberg, March 2010.

24. Henning Pagnia and Felix C Gärtner. On the impossibility of fair exchange without a trusted
third party. Technical report, Technical Report TUD-BS-1999-02, Darmstadt University of
Technology, 1999.

25. Jason Teutsch and Christian Reitwieÿner. A scalable veri�cation solution for blockchains. arXiv
preprint arXiv:1908.04756, 2019.

26. Eric Wagner, Achim Völker, Frederik Fuhrmann, Roman Matzutt, and Klaus Wehrle. Dispute
resolution for smart contract-based two-party protocols. 2019.

27. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th

FOCS, pages 162�167. IEEE Computer Society Press, October 1986.

17

A Universal Composability Framework

The universal composability (UC) framework, introduced by Canetti [10], allows to repre-
sent any arbitrary cryptographic protocol and to analyze its security. It aims at providing a
systematic way to describe protocols and an intuitive way to create de�nitions of security. In
order to simplify the security analysis, the UC framework allows analyzing the security of a
protocol in isolation and preserves the security under composition by means of a special com-
position operation. This operation is called the universal composition operation. It follows
that the security of a protocol can be considered in isolation while the security properties
still hold in any arbitrary context. Hence, the UC framework o�ers a way to model crypto-
graphic protocols in complex environments like modern communication networks. Moreover,
the universal composition operation allows to build complex protocols out of cryptographic
building blocks and proves its security based on the security of the building blocks.

Protocols. A protocol consists of several computer programs that are executed by commu-
nicating computational entities called parties. Along with the parties, the model of protocol
execution comprises an environment and an adversary that can control a subset of the par-
ties as well as the communication network. The environment freely chooses inputs for the
protocol parties as well as for the adversary and obtains all outputs. The output of a protocol
execution consists of all the outputs obtained from the parties as well as the output of the
adversary.

A protocol is said to evaluate an arbitrary function f . An ideal functionality for f is a
computing element that receives all inputs from the parties, computes f , and returns the
outputs to each party. It can be considered as an incorruptible trusted party that evaluates f .
The adversary is restricted in communicating with the ideal functionality via the corrupted
parties and the speci�ed interface of the ideal functionality.

A protocol π is said to UC-realize an ideal functionality for a function f if for any adver-
sary A there exists an �ideal adversary� Sim such that no environment Z can distinguish
with non-negligible probability whether it is interacting with π and A or with Sim and the
ideal functionality for f .

Composition. As soon as it is shown that a protocol π UC-realizes an ideal functionality F ,
this protocol can be used within more complex protocols. Therefore, lets consider a protocol
ρ that makes subroutine calls to multiple instances of an ideal functionality F . In this case,
ρ is called a F-hybrid protocol and F is called an hybrid functionality. The protocol ρF→π

speci�es the protocol ρ where each call to an instance of the ideal functionality F is replaced
by a call to an instance of the protocol π and each output of an instance of π is treated as
an output of an instance of F . Depending on the fact that π UC-realizes F and assuming
the protocol ρ UC-realizes an ideal functionality F ′, the universal composition theorem can
be used to prove that the protocol ρF→π also UC-realizes F ′.

Two major implications of the composition theorem are modularity and stronger security.
The composition theorem allows to split a complex task into small protocols. The security
of these protocols can be shown in isolation and the protocols can be composed together
later on. Moreover, a protocol that UC-realizes an ideal functionality F can be inserted into
any context that makes calls to this ideal functionality. This way, the protocol can be used
in any arbitrary context not known during the design process of the protocol.

Ideal and real world execution. The security of a protocol is de�ned by comparing the
protocol execution with an execution of an ideal protocol. The ideal protocol consists of
an ideal functionality and so-called dummy parties. The dummy parties replace the main
parties of the real protocol within the ideal protocol by simply forwarding inputs to the
ideal functionality and outputs from the ideal functionality. The ideal protocol for an ideal
functionality F is denoted by IDEALF . In contrast, the real protocol is denoted by REALF .

18

On the one hand, the execution of the real protocol is done within the so-called real
world. It consists of the real protocol REALF with its participating parties, an adversary
A, and an environment Z. The adversary can corrupt parties and hence all internal states
and actions are controlled by A. On the other hand, the execution of the ideal protocol
IDEALF is done within the ideal world. It consists of IDEALF along with the dummy
parties, an ideal world adversary Sim, which is called simulator, and an environment Z.
Within the ideal world, the simulator may interact with the ideal functionality via the
interface of the ideal functionality. In both worlds, the environment provides inputs to the
parties and the adversary. It collects outputs from the parties and the adversary with the
goal to distinguish between the interaction with the real protocol and the ideal protocol.
Hence, the environment acts as a distinguishing entity with the goal to tell apart whether
or not it is interacting with the real protocol.

In both worlds, it is possible to include hybrid functionalities. We provide several of them
for the modeling of our construction in Appendix B.

Generalized universal composability framework. The basic UC framework does not allow the
setup of a component that may be accessed by multiple protocol instances. Within the UC
framework, each protocol instance has its own hybrid functionality instances with which the
protocol may interact. When considering hash functions as objects that should be captured
by the model, this situation seems to be not realistic. One concrete hash function, e.g.,
keccak256, is used by multiple parties in multiple di�erent protocol instances. Therefore,
Canetti et al. [11] introduced the generalized UC (GUC) framework. It allows to model
shared ideal functionalities, also called global functionalities, which can be accessed by all
protocol instances.

Security notion. Informally, a protocol is said to be at least as secure as an ideal functionality
if there exists no environment that can tell apart whether it is interacting with the real world
or with the ideal world.
Considering a protocol Π which has access to one or more hybrid functionalities G1, . . . ,Gn.
The output of the environment Z after the interaction with protocol Π and an adversary A
on input 1κ and x ∈ {0, 1}∗ is denoted by

REALG1,...,GnΠ,A,Z (κ, x).

In the ideal world the protocol is replaced by an ideal protocol consisting of an ideal func-
tionality F and dummy parties. In addition, the ideal protocol may have access to one or
more hybrid functionalities G1, . . . ,Gn. The output of the environment Z after interacting
with the ideal protocol and simulator Sim on input 1κ and x ∈ {0, 1}∗ is denoted by

IDEALF,G1,...,GnSim,Z (κ, x).

Using these two random variables, the security of a protocol Π is de�ned as follows:

De�nition 1 (GUC security of protocol Π). Let κ ∈ N be a security parameter and
Π be a protocol in a hybrid world with hybrid functionalities G1, . . . ,Gn. Π is said to GUC-
realize an ideal functionality F in the hybrid world if for every probabilistic polynomial time
(ppt) adversary A attacking Π there exists a ppt algorithm Sim such that the following holds
for all ppt environments Z and for all x ∈ {0, 1}∗:

IDEALF,G1,...,GnSim,Z (κ, x) ≈c REALG1,...,GnΠ,A,Z (κ, x).

B Model Components

To analyze the security of a protocol, an underlying model must be de�ned. This section
presents the model components. Moreover, our construction is based on these model com-
ponents. A formal description of OptiSwap is given in Appendix C.

19

To simplify the presentation and reading of the model and the protocol, the explicit
mention of session identi�ers and sub-session identi�ers, which are typically denoted by
sid and ssid, is omitted. Instead, the contract identi�er id is used to distinguish di�erent
sessions. In reality, each protocol instance uses its own smart contract instance lying on the
blockchain and hence the smart contract address may be used to identify a protocol session.

Synchronous Communication. A common and often used abstraction of the communi-
cation model within networks is that of synchronous communication. Formally, this can be
modeled using the ideal functionality FSYN given in [10] or using a global clock functional-
ity [19, 20, 4]. We abstract the communication by a synchronous communication model using
the following assumptions. The protocol is executed in rounds where all parties are aware of
the current round. In each round each party receives all messages that were sent to them in
the previous round. The communication itself is instantaneous such that messages are sent
within one round and received within the next round.

Global Random Oracle. Random oracles are widely used in cryptographic security proofs
to model idealized hash functions. A random oracle provides on a query value q a completely
random response value r unless the value q was queried before. In this case, the random oracle
returns the same value. Despite it is not proven that there exists a practical hash function
that has the same properties, many security proofs are based on this random oracle model.

Since one instantiation of a hash function like keccak is used by multiple protocols
and multiple users concurrently, random oracles are often modeled as global functionalities.
There are already several variants of global random oracles presented in the literature. The
most intuitive de�nition presented by Canetti et al. [13] is the so-called strict global random
oracle. It simply o�ers an interface to query values and nothing more. While this is a natural
model for cryptographic hash functions, this model is not appropriate to prove security of
some cryptographic building blocks. Canetti and Fischlin showed that a protocol that realizes
UC commitments needs a setup that gives the simulator an advantage over the environment
[12]. An overview over di�erent variants of global random oracles and more details are given
in [8].

We use a global random oracle with restricted programming and observability denoted
by H to model hash functions. We state the de�nition in the following and refer the reader
to [8] for a detailed description.

Using a global random oracle with restricted programming and observability, the simu-
lator Sim has control over the random oracle by programming hashes to speci�c responses
and the ability to observe all queries made by the environment Z. This results in an advan-
tage over Z such that the restricted programmable and observable global random oracle is
a practical tool for simulation within a GUC proof.

Global Random Oracle H
The functionality H is the global random oracle with restricted programming and
observability. Internally, it stores a set Q of all legitimate queries, a set P of all
programmed inputs, and sets Qid for all sessions id of all illegitimate queries. All sets
are initially set to ∅. The functionality accepts queries of the following types:

20

Query

Upon receiving message (query, id, q) from a party of session id′, proceed as
follows:

� If (id, q, r) ∈ Q, respond with (query, q, r).
� If (id, q, r) 6∈ Q, sample r ∈ {0, 1}µ, store (id, q, r) in Q, and respond with

(query, q, r).
� If the query is made from a wrong session (id 6= id′), store (q, r) in Qid.

Program

Upon receiving message (program, id, q, r) by the adversary A, check if
(id, q, r′) is de�ned in Q. If this is the case, abort. Otherwise, if r ∈ {0, 1}µ,
store (id, q, r) in Q and (id, q) in P .
Upon receiving message (isProgrammed, q) from a party of session id, check if
(id, q) ∈ P . If this is the case, respond with (isProgrammed, 1), else respond
with (isProgrammed, 0).

Observe

Upon receiving message (observe) from the adversary of session id, respond
with (observe, Qid).

Ledger Functionality. Within our interactive fair exchange protocol, two parties transfer
money to a smart contract which locks the coins until the end of the protocol execution. In
order to model the basic functionality of transferring and locking coins, a ledger function-
ality is needed. Since the ledger can be used by multiple protocols in parallel and can be
accessed over multiple protocol executions, it should be modeled as a global functionality
[13, 8]. Our ledger functionality L is a slightly modi�ed version of the global ledger function-
ality introduced in [15] and used by [14]. The di�erences are emphasized in the following
description.

Global Ledger Functionality L

Functionality L, running with a set of parties P1, . . . ,Pn stores the balance pi ∈ N
for every party Pi, i ∈ [n] and a partial function L for frozen cash. It accepts queries
of the following types:

Update

Upon receiving message (update,Pi, p) with p ≥ 0 from Z, set pi = p and
send (updated,Pi, p) to every entity.

Freeze

Upon receiving message (freeze, id,Pi, p) from an ideal functionality of
session id, check if pi > p. If this is not the case, reply with (nofunds,Pi, p).
Otherwise, set pi = pi − p and check if (id, p′) ∈ L. If this check holds, update
(id, p′) to (id, p′ + p). Otherwise, store (id, p) in L. Finally, send
(frozen, id,Pi, p) to every entity.

21

Unfreeze

Upon receiving message (unfreeze, id,Pj) from an ideal functionality of
session id, check if (id, p) ∈ L. If this check holds and no message (block, id)
from corrupted party P∗j is received in the same round or beforehand, delete
(id, p) from L, set pj = pj + p, and send (unfrozen, id,Pj , p) to every entity.

The internal state and as well as the update- and freeze-methods are the same as described
in [14]. We modi�ed the unfreeze-operation regarding two aspects.

First, it sends all coins locked within the smart contract to party Pj . This means the
message contains no parameter to unfreeze only part of the frozen coins. Since our construc-
tion makes no use of unfreezing only parts of the frozen coins, the model is simpli�ed by
this adaption.
Second, corrupted parties have the ability to refuse an unfreezing in their favor by sending
a block -message in the same round or already before. The ledger functionality allows the
refusing of an unfreezing to model an abort of a corrupted party.
The more intuitive way would be to require an honest party to actively start an unfreez-
ing. However, this would lead to a lot of overhead in the protocol description of the honest
case. Therefore, the explained approach is taken to simplify the model and the protocol
description. In case no block -message was received from the corrupted party P∗j , the un-
freeze-operation deletes the entry (id, p) from L and increases the balance pj of party Pj by
p.
To signal that an ideal functionality F has access to the global ledger functionality, it is
denoted by FL.

C Formal Protocol Description

In this section, we give a formal de�nition of the judge smart contract and the two protocol
parties named Seller and Buyer. The protocol is based on components speci�ed in Appendix
B. We formally prove the security of our construction within the universal composability
framework in Appendix E.

In order to shorten the formal description of the judge smart contract and the protocol
parties, parts of the computations are extracted to small algorithms. See Appendix D for a
description of them.

We start the formal protocol description with the de�nition of the judge given below.
It models a smart contract that interacts with both protocol parties, S and B, as well as
the global ledger L and a global random oracle H. We present details about L and H in
Section B. In comparison to the judge functionality used by FairSwap, GL,Hjc as de�ned
below additionally contains functions for handling the challenge-response procedure as well
as timeout. Moreover, it supports a fourth way to �nalize the protocol.

During the challenge-response procedure, the judge smart contract acts as storage for
the most recent challenge query as well as the most recent response. Each time Buyer B
sends a challenge and each time Seller S answers a response, GL,Hjc locks a security fee from
the Seller of the message.

Upon receiving a challenge- or respond -message, the judge starts a timeout. As soon
as a timeout is passed, the party that is no longer engaging in the protocol is considered
malicious. Therefore, the party that sent the last message may �nalize the exchange and
claim all the locked money.

We like to stress that GL,Hjc does not validate each response received from S. Instead,
B is responsible for validating them and only in case he received an invalidate response,

22

he may complain about it. When receiving such a complain, GL,Hjc validates the most re-
cent response and resolves the dispute this way. Since the most recent challenge query and
response are stored within the contract, the judge is easily feasible to validate them. By
shifting the responsibility for validation to Buyer B, the judge must perform at most one
response validation.

Judge hybrid functionality GL,Hjc

The judge stores two addresses pkS and pkB, a commitment c, a decryption key k,
Merkle tree root hashes rz, re, and rφ, the maximum number of challenged gates
aφ ∈ N, a price p ∈ N, and the fee parameters fS , fB ∈ N. Moreover, it contains
a state s which is initially set to s = start and it stores the most recent challenge
query Qr and the most recent response Rr. Additionally, GL,Hjc contains two timeout
parameters T1, T2 ∈ N and corresponding variables t1, t2 ∈ N, respectively.
All stored values depend on the session identi�er id corresponding to one protocol
execution. Hence, the values are functions evaluating on the session identi�er, e.g.,
the state s on input id is initially set to s(id) = start. For the sake of simplicity, the
input parameter id is omitted in the following description.

Initialization

On receiving (initialize, id, c, rz, re, rφ, aφ, p, fS , fB) from S when
s = start, store pkS , c, rz, re, rφ, aφ, p, fS , and fB. Output
(active, id, c, rz, re, rφ, aφ, p, fS , fB) and set s = active.

On receiving (accept, id) from B when s = active, store pkB and send
(freeze, id,B, p) to L. If the response is (frozen, id,B, p), set s =
initialized and output (initialized, id).

Abort

On receiving (abort, id) from S when s = active, set s = finalized, and
output (aborted, id).

On receiving (abort, id) from B when s = initialized, send (unfreeze, id,B)
to L, set s = finalized, and output (aborted, id).

Revealing

On receiving (reveal, id, k, d) from S when s = initialized and Open(c, k, d) =
true, output (revealed, id, k, d), set t1 = now, and s = revealed.

Challenge-Response

On receiving (challenge, id,Q) from B when s = revealed or s = responded,
|Q| ≤ aφ, and ∀i ∈ Q : 1 ≤ i ≤ m send (freeze, id,B, fB ∗ |Q|) to L. If it
responds with (frozen, id,B, fB∗|Q|), set Qr = Q, aφ = aφ−|Q|, t2 = now,
output (challenged, id,Q) and set s = challenged.

On receiving (respond, id,Rq) from B when s = challenged, send
(freeze, id,S, fS ∗ |Qr|) to L. If it responds with (frozen, id,S, fS ∗ |Qr|),
set Rr = Rq, t2 = now, output (responded, id,Rq) and set s = responded.

23

Timeouts

On receiving (challenge timeout, id) from S when s = responded and t2+T2 ≤
now, set s = finalized, send (unfreeze, id,S) to L, and send (sold, id) to
S.

On receiving (response timeout, id) from S when s = challenged and t2+T2 ≤
now, set s = finalized, send (unfreeze, id,B) to L, and send (cancelled, id)
to B.

Finalizing

On receiving (complain, id) from B when s = responded, set s = finalized
and do one of the following:
� If ValidateResponse(Qr, Rr, re) = false send (unfreeze, id,B) to L, send

(valid, id) to B and (not sold, id) to S.
� Otherwise, send (unfreeze, id,S) to L, send (invalid, id) to B and

(sold, id) to S.
On receiving (prove, id, π) from B when s = responded, set s = finalized

and do one of the following:
� If Judge(k, rz, re, rφ, π) = 1 send (unfreeze, id,B) to L, send (valid, id)

to B and (not sold, id) to S.
� Otherwise, send (unfreeze, id,S) to L, send (invalid, id) to B and

(sold, id) to S.
On receiving (finalize, id) from B when s = revealed, send (unfreeze, id,S)

to L, set s = finalized and send (sold, id) to S.
On receiving (finalize, id) from B when s = revealed and t1 + T1 ≤ now,

send (unfreeze, id,S) to L, set s = finalized, and send (sold, id) to S.

We continue with the de�nition of an honest Seller and Buyer in the interactive FairSwap
protocol. Both protocol parties are formally de�ned below.

Again, the description is simpli�ed by incorporating algorithms for more complex com-
putations. These can be found in Appendix D.

Honest Seller and Buyer Description

The protocol description comprises a de�nition of the behavior of the honest Seller S
and Buyer B. Within the protocol, two timeouts T1, T2 ∈ N are used. These timeouts
are de�ned and handled by the judge smart contract functionality GL,Hjc .

24

Initialization

S: On receiving (sell, id,x, φ, p, fS , fB), where x = (x1, . . . , xn) ∈ ({0, 1}λ)n, φ
being a circuit with challenge limit property aφ, φ(x) = 1, and p, fS , fB ∈ N,
S samples a key k ← Gen(1κ), computes a commitment (c, d)← Commit(k),
and executes the presetup algorithm (z, rz, re, rφ) ← Presetup(φ,x, k). He

sends (initialize, id, c, rz, re, rφ, aφ, p, fS , fB) to GL,Hjc and (sell, id, z, φ) to
B. He continues in the Revealing-phase.

B: On receiving (buy, id, φ), where φ being a circuit with challenge limit prop-
erty aφ, B checks if he received a message (sell, id, z, φ) from S beforehand.
Then, he computes rz = MTHash(z) and rφ = MTHashMtree(φ). Upon

receiving (active, id, c, rz, re, rφ, aφ, p, fS , fB) from GL,Hjc , B responds with

(accept, id) to GL,Hjc and continues in the Revealing-phase.

Revealing

S: On receiving (initialized, id) from GL,Hjc , S reveals his key generated in the

Initialization-phase by sending (reveal, id, k, d) to GL,Hjc . He continues in
the Finish-phase.
On receiving (abort, id), S sends (abort, id) to GL,Hjc and continues in the
Finish-phase.

B: On receiving (revealed, id, k, d) from GL,Hjc , B decrypts the witness x′ =
Dec(k, z), outputs (revealed, id,x′), and evaluates φ(x′). If the output is 1,

he sends a (finalize, id) message to GL,Hjc , outputs (bought, id,x′), and ter-
minates the protocol. Otherwise, he sets the set of obtained responses R :=
∅, creates a challenge query by executing (Q,H ′)← NextChallenge(φ,R,H),
updates the most recent query Qr = Q, and sends (challenge, id,Q) to

GL,Hjc . B continues in the Challenge-Response-phase.

On receiving (abort, id), B sends (abort, id) to GL,Hjc and continues in the
Finish-phase.

Challenge-Response

B: On receiving (responded, id,Rq) from GL,Hjc , B computes check =
ValidateResponse(Qr, Rq, re). If check = false, he sends (complain, id)

to GL,Hjc and continues in the Finish-Phase. Otherwise, B adds the re-
ceived responses to the set of all responses R = R ∪ Rq and computes

π = GenerateProof(k, φ,R). If π 6= false, he sends (prove, id, π) to GL,Hjc and
continues in the Finish-phase. Otherwise if π = false, B generates the next
challenge (Q,H ′)← NextChallenge(φ,R,H) and sends (challenge, id,Q) to

GL,Hjc .
If no (responded, id, ·) message was received after timeout T2, B sends a

(response timeout, id) message to GL,Hjc and continues in the Finish-phase.

S: On receiving a (challenged, id,Q) message from GL,Hjc , he generates the
corresponding response by computing Rq ← GenerateResponse(φ,x, k,Q)

and sends (respond, id,Rq) to GL,Hjc .
If no (challenged, id, ·) message was received after timeout T2, S sends a

(challenge timeout, id) message to GL,Hjc and continues in the Finish-phase.

25

Finish

S: On receiving (sold, id), (not sold, id), or (aborted, id) from GL,Hjc , S outputs
this message and terminates the protocol.
On receiving a (challenged, id,Q) message from GL,Hjc , he generates the cor-
responding response by computing Rq ← GenerateResponse(φ,x, k,Q) and

sends (respond, id,Rq) to GL,Hjc . He continues in the Challenge-Response-
phase.
If no (sold, id) message and no (challenged, id, ·) message from GL,Hjc was

received after timeout T1, he sends a (finalize, id) message to GL,Hjc .

B: On receiving (invalid, id) from GL,Hjc , B outputs (bought, id,x′) and termi-
nates the protocol.
On receiving (valid, id) or (cancelled, id) from GL,Hjc , B outputs
(not bought, id,x′) and terminates the protocol.
On receiving (aborted, id), B outputs this message and terminates the pro-
tocol.

D Algorithms

In this section, we present algorithms used by our OptiSwap protocol. The usage of al-
gorithms make our construction more modular and ease the description of it. A formal
description of OptiSwap is given in Appendix C.

D.1 Initialization

We start with the algorithm used by the Seller at the start of the protocol execution. Before
sending the selling o�er to the Buyer and initializing the judge smart contract, he executes
the Presetup-algorithm. On input the circuit φ, the witness x, and the encryption key k, the
algorithm outputs the encrypted witness z along with some auxiliary data. This includes
commitments rz to z, rφ to circuit φ, and re to the intermediary values of the evaluation
φ(x). See Algorithm 1 for a formal de�nition.

Algorithm 1 Presetup(φ,x, k)

Require: Veri�cation circuit φ, witness x ∈ ({0, 1}λ)n, and encryption key k
Ensure: (z, rz, re, rφ), where z is the encrypted witness, rz, re, and rφ are commitments based on

Merkle trees
1: for i = 1 to n do

2: zi = Enc(k, xi)
3: ei = zi
4: end for

5: rz = MTHash(z)
6: for i = n+ 1 to m do

7: parse φi = (i, opi, Ii)
8: outi = opi(outIi[1], . . . , outIi[l])
9: ei = Enc(k, outi)
10: end for

11: re = MTHash(e)
12: rφ = MTHash(φ)
13: return (z, rz, re, rφ)

26

D.2 Challenge-Response Procedure

The challenge-response procedure is part of the dispute resolution protocol. The Seller and
Buyer alternately create challenge queries and responses, respectively. To this end, the parties
execute the NextChallenge- and the GenerateResponse-algorithm.

Algorithm 2 de�nes the NextChallenge-algorithm which is called by the Buyer. It demands
a circuit φ, the set of all received responses so far R, and some helper data H as input. The
helper data contains a circuit gate in focus φi, the shared encryption key k, and the tuple
of all circuit gate output values computed by Buyer himself o′ = (o′1, . . . o

′
m). The algorithm

creates a new challenge query Q and update the helper data. It returns the tuple (Q,H ′),
where H ′ denotes the updated helper data.

Algorithm 2 NextChallenge(φ,R,H)

Require: Circuit φ, set of responses R, and helper data H = (φi, k,o
′), where φi is the circuit gate

put in focus, k is a shared symmetric encryption key, and o′ = (o′1, . . . , o
′
m) denotes the tuple

of all circuit gate output values computed by the challenger himself.
Ensure: (Q,H ′), where Q is a challenge query denoting the circuit gates to be challenged and H ′

being the updated helper data.
1: if R = ∅ then
2: return ({m}, (φm, k,o′))
3: else
4: parse φi = (i, opi, Ii)
5: set Ri = {j ∈ Ii : (j, ej , ·) ∈ R}
6: if Ri 6= Ii then
7: return (Ii \Ri, (φi, k,o′))
8: else

9: for j ∈ Ri do
10: oj = Dec(k, ej)
11: end for

12: choose j ∈ Ii : oj 6= o′j
13: parse φj = (j, opj , Ij)
14: return (Ij , (φj , k,o

′))
15: end if

16: end if

Upon receiving a challenge query, the Seller is responsible for answering it. Therefore, he
calls the GenerateResponse-algorithm which outputs a response Rq. Seller provides circuit φ,
witness x, encryption key k, and the most recent challenge query Q as input.

Algorithm 3 GenerateResponse(φ,x, k,q)

Require: (φ,x, k,Q), where φ is the veri�cation circuit, x is the witness, k is the encryption key
used within the Presetup-algorithm, and Q is the challenge query containing the indices of all
challenged gates

Ensure: Rq, where Rq is a set of all encrypted output values along with their Merkle proofs
challenged by the given query

1: for i = 1 to n do

2: outi = xi
3: ei = Enc(k, xi)
4: end for

5: for i = n+ 1 to m do

6: parse φi = (i, opi, Ii)
7: outi = opi(outIi[1], . . . , outIi[l])
8: ei = Enc(k, outi)
9: end for

27

10: e = (e1, . . . , em)
11: Me = MTHash(e)
12: Rq = ∅
13: for i ∈ Q do

14: Rq = Rq ∪ {(i, ei,MTProof(Me, i))}
15: end for

16: return r

A third algorithm exists for the challenge-response procedure. This one is called the
ValidateResponse-algorithm. In order to decrease the computational burden on the judge
smart contract, the validation of a response is not done for each one by the contract. Instead,
the Buyer is responsible for validating a received response. This includes checking if for each
challenge circuit gate a corresponding output value is provided and if all Merkle proofs
verify. As soon as one of these criteria does not hold, the response is invalid. To perform
these checks, Buyer executes the ValidateResponse-algorithm given by Algorithm 4. The
same algorithm is used by the judge smart contract to check the validity of the most recent
response after Buyer complained about it. The algorithm requires as in put a challenge query
Q, the corresponding response R, and the Merkle Tree root re for the intermediate values
of the evaluation φ(x).

Algorithm 4 ValidateResponse(Q,R, re)

Require: (Q,R, re), where Q is a challenge query, R is the corresponding response, and re is the
Merkle root for the encrypted intermediate computation values

Ensure: valid, where valid = true if the response is valid or false otherwise
1: for i ∈ Q do

2: if 6 ∃(i, ei, πi) ∈ R then

3: return false
4: else if MTVerify(πi, i, re) = 0 then
5: return false
6: end if

7: end for

8: return true

D.3 Dispute Resolution

After the challenge-response procedure, the dispute has to be resolved eventually. Assum-
ing a cheating Seller, Buyer needs to create proof of misbehavior (PoM). This concise
proof technique was introduced in [14] and outlined in Section 2.1. Algorithm 5 states the
GenerateProof-algorithm executed by Buyer.

Finally, the judge smart contract needs to adjudicate on the correctness of the fair ex-
change. To this end, he executes the Judge-algorithm. It checks all Merkle proofs contained in
the PoM and recomputes the speci�ed circuit gate. In case the computed value di�ers to the
value provided in the PoM, the proof is considered valid, otherwise it is invalid. Algorithm
6 gives a formal de�nition of the Judge-algorithm including all required inputs.

E Security Proof

We present a security proof within the generalized universal composability (GUC) frame-
work. This way, we prove that our OptiSwap protocol Π GUC-realizes the ideal function-
ality FLicfe within the (GL,Hjc ,L,H)-hybrid world. A brief introduction into the (generalized)

28

Algorithm 5 GenerateProof(k, φ,R)

Require: (k, φ,R), where k is the decryption key, φ is the veri�cation circuit, and R is the set of
all responses received so far

Ensure: π, where π is either a proof of misbehavior or false
1: for (i, ei, πi) ∈ R do

2: set s = searching
3: outi = Dec(k, ei)
4: parse φi = (i, opi, Ii)
5: for j = 1 to l do
6: if (Ii[j], eIi[j], πIi[j]) 6∈ R then

7: s = failed
8: break

9: else

10: outIi[j] = Dec(k, eIi[j])
11: end if

12: end for

13: if s 6= failed then
14: out′i = opi(outIi[1], . . . , outIi[l])
15: if outi 6= out′i then
16: πφ = MTProof(MTHash(φ), i)
17: π = (πφ, πi, πIi[1], . . . , πIi[l])
18: return π
19: end if

20: end if

21: end for

22: return false

universal composability framework is given in Appendix A. The protocol Π is based on the
assumptions of an IND-CPA-secure symmetric encryption scheme and a hash function that
is modeled as a global programmable random oracle H. The security model is presented in
Appendix B and a formal description of the protocol parties as well as the judge functionality
is given in Appendix C.

Assumptions and Simpli�cations. We assume static corruption, which means that the
protocol parties may be corrupted by the adversary only at the beginning of the execution.
In the following, the four di�erent cases of corruption are considered in isolation. For each
scenario, a formal description of a simulator and a detailed argumentation why the sim-
ulator can be used to achieve indistinguishability is given. In addition, the setup of each
scenario is depicted to support the understanding of connections between the parties within
an execution.

The protocol parties of the hybrid world execution are denoted by S and B, while the
dummy parties of the ideal world are denoted by S̃ and B̃. Malicious parties are delineated
by ∗, e.g., a corrupted Seller in the hybrid world is denoted by S∗ and in the ideal world it
is denoted by S̃∗.
In the following simulations, the ideal adversary internally runs the judge smart contract
GL,Hjc . Running GL,Hjc on input m and obtaining the output m′ by the simulator is denoted

by m′ ← GL,Hjc (m). This implies that the messages m and m′ are sent to the environment Z
and to the parties according to the behavior of GL,Hjc . Note, since GL,Hjc is only run internally
by the simulator, no coins are frozen or unfrozen by L.

The environment has the power to delay message sent to FLicfe and G
L,H
jc via the adversary.

To simplify the simulation, it is assumed that whenever a message is delayed by time δ, the
ideal adversary uses the in�uence port of the ideal functionality FLicfe in order to delay the
execution in the ideal world by the exact same amount of time δ. This ensures that the
environment cannot distinguish the execution of the hybrid world and the execution of the

29

Algorithm 6 Judge(k, rz, re, rφ, π)

Require: (k, rz, re, rφ, π), where k is a decryption key, rz, re, rφ are Merkle tree roots for the
encrypted witness, the encrypted intermediate computation values, and the circuit, respectively,
and π is the proof of misbehavior generated by the GenerateProof-algorithm (cf. Algorithm 5)

Ensure: 1 if proof of misbehavior is valid, otherwise 0
1: parse π = (πφ, πout, πIi[1], . . . , πIi[l])

2: parse πφ = (φi, l
φ
1 , . . . , l

φ
log2(n)

)

3: parse φi = (i, opi, Ii)
4: parse πout = (ei, l

o
1, . . . , l

o
log2(n)

)
5: outi = Dec(k, ei)
6: if MTVerify(πφ, i, rφ) = 0 then
7: return 0
8: end if

9: if MTVerify(πout, i, re) = 0 then
10: return 0
11: end if

12: if i = m and outi 6= 1 then
13: return 1
14: end if

15: for j ∈ [l] do
16: if MTVerify(πIi[j], Ii[j], re) = 0 then
17: return 0
18: end if

19: parse πIi[j] = (eIi[j], l
Ii[j]
1 , . . . , l

Ii[j]

log2(n)
)

20: outIi[i] = Dec(k, eIi[j])
21: end for

22: out′i = opi(outIi[1], . . . , outIi[l])
23: if out′i = outi then
24: return 0
25: end if

26: return 1

ideal world based on the delay within an execution. In the following simulations, the e�ect
of delayed messages is not further considered based on this argumentation.

In order to show indistinguishability between the real world execution and the ideal world
execution, some proofs are based on a sequence of games Game0, . . . ,
Gamen. This common proof technique allows to show indistinguishability between Game0
andGamen by showing indistinguishability betweenGamei andGamei+1 for each i ∈ [n−1].
Since the goal is to show indistinguishability between the real world execution and the ideal
world execution, Game0 is set to be the real world execution and Gamen is the simulation
in the ideal world. Each intermediate game is a hybrid simulation which simpli�es the full
UC simulation. Such a hybrid simulation can include a simulator that controls inputs and
outputs of honest parties.

Since there exist di�erent types of indistinguishability, we like to note that whenever
indistinguishability is mentioned in the following security proof, the computational variant
is considered.

Simulation with Two Honest Parties

In the honest execution case, the environment Z provides input values to honest Seller S
and honest Buyer B. After and during the execution of the protocol Π, both honest parties
forward their output values back to the environment. The adversary A provides additional
leakage information to Z and can in�uence the execution of the hybrid functionalities GL,Hjc

and H as speci�ed by their interfaces. Since it is su�cient to consider a dummy adversary, A

30

simply forwards all messages received from Z to the speci�ed recipient and leaks all messages
obtained from the hybrid functionalities.

In the ideal world, the simulator needs to provide the same information to the environ-
ment as the adversary A in the hybrid world execution. Therefore, Sim needs to create
a transcript of the whole protocol execution and to send the created messages to Z. This
includes the message sent from Seller to Buyer in the �rst round of the protocol as well as
all transactions sent to the judge smart contract GL,Hjc and all interactions with H.

It is assumed that there exists a secure channel between S and B. This way, the envi-
ronment Z learns that a message was sent, but the content of the message remains secret.
This assumption is important to enable the simulation of the honest case. Suppose there
exists no secure channel, the simulator has to simulate an encrypted witness z∗ without the
knowledge of the correct witness x. Moreover, the decryption of z∗ using a key k has to
equal x.

On the one hand, in the scenario of a corrupted Buyer the programming feature of the
global random oracleH is exploited to ensure the correct decryption. But, since the simulator
never gets to know x during the case of two honest parties, there is no way to exploit the
programming feature to ensure the correct decryption. On the other hand, in the scenario of
a corrupted Seller, the observability feature of H is used to learn the encryption key at the
beginning of the protocol execution. The knowledge of the key and the encrypted witness
z, provided by the corrupted Seller, is su�cient for the simulator to reconstruct the correct
witness x and to achieve a correct simulation. The knowledge of the encryption key would
also help in the honest scenario, but the observability feature can only be used to obtain all
queries executed from outside of the protocol session. In particular, honest parties always
belong to the protocol session and hence queries from these parties cannot be obtained.
Therefore, a secure channel must be assumed.

Claim. There exists an e�cient algorithm Sim such that for all ppt environments Z that do
not corrupt any party it holds that the execution of Π in the (GL,Hjc ,L,H)-hybrid world in
presence of adversary A is computationally indistinguishable from the ideal world execution
of FLicfe with the ideal adversary Sim.

Proof. We de�ne a simulator Sim, which internally runs GL,Hjc and has access to the restricted
programmable oracle H.

1. If S̃ starts the execution with FLicfe in the �rst round, simulator Sim learns
id, φ, p, fS , fB from FLicfe. Sim samples a key k∗ ← Gen(1κ) and sets x∗ = 1n×λ. He
computes (c∗, d∗) ← Commit(k∗) and (z∗, r∗z , r

∗
e , rφ) ← Presetup(φ,x∗, k∗). Sim

simulates the execution of Π by running (active, id, c∗, r∗z , r
∗
e , rφ, aφ, p, fS , fB)←

GL,Hjc (initialize, id, c∗, r∗z , r
∗
e , rφ, aφ, p, fS , fB). In addition, he provides the infor-

mation to Z that S̃ sent a message to B̃ over the secure channel.
2. If S̃ aborts the execution in the second round, FLicfe leaks (abort, id, S̃) to Sim.

The simulator then runs (aborted, id)← GL,Hjc (abort, id) and terminates the sim-
ulation.
If Sim receives (buy, id, B̃) from FLicfe in the second round, he simulates the ac-

ceptance of B̃ by running (initialized, id)← GL,Hjc (accept, id).

3. If B̃ aborts the execution in the third round, FLicfe leaks (abort, id, B̃) to Sim.

Then Sim simulates the abort by executing (aborted, id)← GL,Hjc (abort, id) and
terminating the simulation.
If no message is leaked by FLicfe in the third round, Sim simulates the revealing

of the encryption key by running (revealed, id, k∗, d∗)← GL,Hjc (reveal, id, k∗, d∗).
4. In round four, the simulator simulates the �nalization of the fair exchange by

running (sold, id)← GL,Hjc (finalize, id).

31

In the following, it is shown that the transcript produced by the Sim is indistinguishable
from the transcript produced by the execution of Π in the hybrid world.
When receiving an incorrect witness x∗ from the environment such that φ(x∗) 6= 1, honest
Seller does not start the protocol execution in the hybrid world. The same behavior is de�ned
by FLicfe in the ideal world, since the ideal functionality assumes a correct witness from an
honest Seller. Hence, only an execution with a correct witness x such that φ(x) = 1 is
considered. This is a di�erence to the protocol presented in [14] in which an honest Seller
may also send an incorrect witness.

In round 1, the environment learns the information that Seller sent a message to the
Buyer. Since the message is sent over a secure channel, Z cannot extract any further infor-
mation. The same information is given by Sim in round one. Moreover, the environment
obtains the initialize- and active-message when the honest Seller interacts with GL,Hjc . The

simulator internally runs GL,Hjc to obtain the same messages. The values rφ, aφ, p, fS , fB are
identical in both executions, since they directly depend on the input values provided by Z.
The commitment values c∗, r∗z , r

∗
e depend on a randomly sampled encryption key. If Z can

obtain the value z∗ and decrypt it to x∗ 6= x, it can distinguish the executions. Since the
underlying commitment scheme used to generate c∗ ful�lls the hiding property, Z cannot
retrieve z∗ from these commitment values. Thus, Z cannot distinguish the two executions
based on these commitment values.

In the second round, honest Seller may abort the protocol execution. In this case, FLicfe
leaks (abort, id,S) to Sim, which internally runs (aborted, id) ← GL,Hjc (abort, id). In the
hybrid world and in the ideal world, the abort- and aborted -messages are identical and hence
indistinguishable. Furthermore, honest Buyer B outputs the message (aborted, id) towards
Z, which equals the message (aborted, id) sent from FLicfe to Z through B̃ in case of the
abort.
Instead of Seller's abort, Buyer may accept the exchange o�er. By providing a (buy, id, φ)-
message to B, Z initiates the acceptance. Honest Buyer sends a (accept, id)-message to

GL,Hjc in the hybrid world and GL,Hjc outputs (initilized, id). The exact same messages are

generated by Sim in the ideal world by running (initialized, id)← GL,Hjc (accept, id). Hence,
Z cannot distinguish the executions in the second round.

Honest Buyer may abort the protocol execution in the third round. The result in the
protocol execution Π is S outputting (aborted, id) and terminating. Sim simulates the same

messages exchanged with GL,Hjc after FLicfe leaks (abort, id,B) and terminates the simulation.

Again, the ideal functionality FLicfe sends (aborted, id) to Z through S̃, which guarantees the
same output behavior.
If Buyer does not abort the execution in the third round, honest Seller reveals his encryption
key. He sends (reveal, id, k, d) to GL,Hjc , where Open(c, d, k) = 1. Sim simulates the key reveal-
ing by running (revealed, id, k∗, d∗) ←
GL,Hjc (reveal, id, k∗, d∗), where Open(c∗, d∗, k∗) = 1. Since both keys k and k∗ are sampled
randomly using the Gen-algorithm, Z cannot distinguish between the two keys. It might be
possible to use the commitment values r∗z , r

∗
e from the initialization-phase to extract further

information. Since the opening values for these two Merkle tree commitments are not re-
vealed by honest Seller, it requires to break the hiding property of the commitment scheme
in order to gain additional information.
Honest Buyer also outputs the obtained witness x in the third round of the protocol exe-
cution. The ideal functionality FLicfe sends the value set by Z at the beginning of the ideal
world execution to the dummy Buyer, which forwards the value. In both cases, Z receives
the value set as input to S and S̃, respectively.

In round 4, honest Buyer sends a (finalize, id)-message to GL,Hjc and outputs (bought, id,x).

Honest Seller receives a message from GL,Hjc and outputs (sold, id). Both output messages

are sent by FLicfe in the ideal world and Sim simulates the judge smart contract. Hence, the

32

identical messages are sent within this round. After these messages, the hybrid world and
the ideal world terminate the execution.

It remains to show that the money is locked and unlocked in the same rounds. In the
protocol Π, p coins are locked from Buyer B in the second round if B accepts the fair
exchange o�er. The acceptance is signaled by the (buy, id, φ)-message and is successfully
executed only if B has enough funds. In the ideal world, the ideal functionality FLicfe freezes p
coins in the second round after it received a (buy, id, φ)-message from B. Again, the money
is only locked if B controls enough money. If honest Buyer aborts in round 3 before the
encryption key is revealed, the money is transferred back to B by GL,Hjc in the hybrid world

and by FLicfe in the ideal world. After the encryption key is revealed, the money can only be
unlocked in favor of honest Seller, since he provided a correct witness. In the hybrid world,
GL,Hjc sends the money to S in round 4 after it received the (finalize, id)-message from B.
In the ideal world, FLicfe unlocks the money in favor of S in round 4.

Finally, it is easy to see that the simulator Sim de�ned before runs in polynomial time.
After all, when considering an environment Z that does not corrupt any party, it is shown
that there exists an e�cient simulator such that no environment can distinguish between the
execution of the hybrid world and the execution of the ideal world. It is shown that the money
is locked and unlocked in the same rounds and the environment Z cannot distinguish the
transcripts of both executions unless it breaks the hiding property of the used commitment
schemes.

Simulation with Corrupted Seller

When considering a corrupted Seller, its internal state and program code is fully under the
control of the environment Z. Especially, corrupted Seller S∗ may deviate from the protocol
at any point in time during the protocol execution. In the ideal world, the simulator SimS

becomes more complex. In addition to simulate the execution of protocol Π and generating a
transcript of this execution, he needs to create all outputs of the corrupted Seller S̃∗ towards
the environment Z and towards the ideal functionality FLicfe. In particular, each input sent

from Z to the corrupted dummy party S̃∗ is forwarded by S̃∗ to SimS . When receiving an
input from Z through S̃∗, the simulator needs to create the input to FLicfe.

In the following, a detailed simulator SimS is given and it is argued why this simulator
achieves indistinguishability. Since a corrupted Seller is also able to follow the protocol
throughout the whole execution, it is not argued that the simulation works in this case,
which is identical to the honest case. This means, the di�erences between the honest case as
described beforehand and the case of a corrupted Seller are emphasized. The proof makes
use of the observability features of the global random oracle H. The same trick is used in
the proof in [14].

Claim. There exists an e�cient algorithm SimS such that for all ppt environments Z that
only corrupt the Seller it holds that the execution of Π in the (GL,Hjc ,L,H)-hybrid world in
presence of adversary A is computationally indistinguishable from the ideal world execution
of FLicfe with the ideal adversary SimS .

Proof. To show indistinguishability a sequence of games is used as explained at the be-
ginning of this section. Before presenting Game2, which equals the ideal world execution,
Game1 is given, which represents a hybrid simulation with the usage of SimS1 . In addition
to controlling the inputs and outputs of the corrupted Seller, SimS1 also controls inputs and
outputs of the honest Buyer. This simpli�cation is eliminated in Game2, which makes use
of the full simulator SimS .
The construction of simulator SimS1 is given in the following. This simulator is used in
Game1. Furthermore, it is shown that no ppt environment Z can distinguish between the real
world execution and the hybrid simulation using SimS1 , i.e., Game0 ≈ Game1. Afterwards,
the full simulator SimS is stated to constructGame2, which equals the ideal world execution.

33

Again, indistinguishability between Game1 and Game2 is shown, i.e., Game1 ≈ Game2. At
the end, the two results can be merged to show that the real world execution is indistin-
guishable from the ideal world execution.
The structure of this proof is strongly related to the proof of the malicious Seller scenario
in [14] and is deliberately chosen to simplify the comparison and readability of the following
proof. The di�erences are highlighted explicitly.

Simulator SimS1 for hybrid simulation with corrupted Seller.

1. Upon receiving (sell, id, z, φ) through S̃∗ in the �rst round, SimS1 sam-
ples x∗ ← {0, 1}n×λ. If message (initialize, id, c, rz, re, rφ, aφ, p, fS , fB)

is also received in round 1 through S̃∗, SimS1 sends
(sell-fake, id,x∗, φ, p, fS , fB) to FLicfe. Furthermore, SimS1 simulates
the execution of Π by running (active, id, c, rz, re, rφ, aφ, p, fS , fB) ←
GL,Hjc (initialize, id, c, rz, re, rφ, aφ, p, fS , fB).

If not both messages sell and initialize are received through S̃∗ in round one,
the SimS1 terminates the simulation.

2. Upon receiving (abort, id) through S̃∗ in the second round, SimS1 sends (abort, id)

to FLicfe. Furthermore, he simulates Π by running (aborted, id)← GL,Hjc (abort, id)
and terminating the simulation.
If SimS1 receives (buy, id, B̃) from FLicfe in the second round, he simulates the

acceptance of B̃ by running (initialized, id)← GL,Hjc (accept, id).

3. If B̃ aborts the execution in the third round, FLicfe leaks (abort, id, B̃) to SimS1 .
Then, SimS1 simulates the abort by executing (aborted, id) ← GL,Hjc (abort, id)
and terminating the simulation.
Upon receiving (reveal, id, k, d) from S̃∗ in round 3 such that Open(c, d, k) =
1, SimS1 simulates the revealing of the encryption key. Therefore, he runs

(revealed, id, k, d) ← GL,Hjc (reveal, id, k, d). In the same round, FLicfe sends

(revealed, id,x∗) to B̃. Since SimS1 controls the inputs and outputs of B̃, he re-
places the message (revealed, id,x∗) with (revealed, id,x), where x = Dec(k, z).
If no message (reveal, id, k, d) from S̃∗ is received in round 3 such that
Open(c, d, k) = 1, SimS1 sends (abort, id) to FLicfe in the name of S̃∗ and waits

one round. Then, he simulates the refund to B̃ by running (aborted, id) ←
GL,Hjc (abort, id) and terminating the simulation.

4. If φ(x) = 1, SimS1 simulates the �nalization of the fair exchange executed by

honest Buyer within the real world by running (sold, id) ← GL,Hjc (finalize, id),

sending (abort, id, 0) in the name of B̃ to FLicfe, and terminating. Otherwise, if
φ(x) 6= 1, SimS1 needs to simulate the dispute resolution sub-protocol. Therefore,
he sets R = ∅ and executes the following steps alternately starting with (a):

(a) SimS1 checks whether or not honest Buyer is able to generate a valid proof
of misbehavior by computing π ← GenerateProof(k, φ,R). If π 6= false, SimS1
simulates a valid proof of misbehavior by running GL,Hjc (prove, id, π), send-

ing (abort, id, 0) in the name of S̃∗ to FLicfe, outputting (not sold, id) through

S̃∗, and terminating the simulation. Otherwise, if π = false, SimS1 com-
putes Q ← NextChallenge(φ,R) and simulates a challenge query by running

(challenged, id,Q)← GL,Hjc (challenge, id,Q). He sends (freeze, id, B̃, |Q|) to
FLicfe, sets Qr = Q, and continues with step (b) in the next round.

(b) Upon receiving (respond, id,Rq) from S̃∗, SimS1 runs (responded, id,Rq) ←
GL,Hjc (respond, id,Rq), sends (freeze, id, S̃∗, |Rq|) to FLicfe, and waits one

round. If ValidateResponse(Qr, Rq, re) = true, SimS1 continues immediately

34

with step (a). Otherwise, if ValidateResponse(Qr, Rq, re) = false, he simulates

a complain-message by running GL,Hjc (complain, id). Furthermore, SimS1 un-

locks the coins in favor of B̃ by sending (abort, id, 0) in the name of corrupted
Seller S̃∗ to FLicfe. Then, he outputs (not sold, id) through S̃∗ and terminates
the simulation.
If no (respond, id,Rq) message is received from S̃∗, SimS sends (abort, id, 1)

in the name of S̃∗ to FLicfe and waits one round. Then, he runs

GL,Hjc (respond timeout, id), outputs (not sold, id) through S̃∗, and terminates
the simulation.

By internally running the hybrid functionality GL,Hjc on either inputs given from Z or
honest Buyer B, the generated transcript and outputs are identical in both executions.

In round 1, SimS1 forwards the sell -message received from S̃∗ to Buyerand uses the

initialize-message to run GL,Hjc . Moreover, he creates a sell-fake-message which is sent to

FLicfe. The value x∗ sent within this message does not necessarily have to be the decryption
of z, since the (revealed, id,x∗)-message in round 3 is replaced by (revealed, id,x), where
x = Dec(k, z). This means, the witness received by the honest Buyer is set by the simulator
after Seller revealed his key in round 3. Therefore, the environment Z only sees the correct
witness x and cannot distinguish the protocol execution and the ideal world using this
in�uence.
This is possible, since it is assumed that the simulator controls inputs and outputs of honest
Buyer. The same assumption is placed in the �rst game of the proof presented in [14].
If not both messages, the sell -message and the initialize-message, are received from S̃∗ in
round 1, the simulation terminates, since both messages are needed to start the protocol Π.

In the revealing phase of Π, Seller has to send his encryption key and the correct opening
value to GL,Hjc . Hence, on receiving a valid reveal -message from S̃∗, SimS1 simulates the

revealing by running GL,Hjc (reveal, id, k, d). As described before, the revealed value x∗ is
replaced with the correct witness, which was encrypted by Z in round 1, i.e., x. In this step,
the witness x is obtained by computing x = Dec(k, z), which is also done by the Buyer in
the execution of Π. Hence, the obtained witnesses are identical.

Suppose the witness x is correct, i.e., φ(x) = 1, the simulator must ensure that the money
is transferred to Seller. In the protocol execution, honest Buyer B sends a �nalize-message in
order to instruct GL,Hjc to unlock the money in favor of S∗. Since the witness x∗ within FLicfe
is not necessarily equal to the correct witness x, the simulator must ensure that the money
is transferred to Seller. Without interaction from the simulator, the ideal functionality FLicfe
would check φ(x∗) and as long as x∗ is not the correct witness, it would send the money to
Buyer. In order to send the money to Seller instead, SimS1 must send an abort-message in
the name of B̃ to FLicfe. This way, SimS1 instructs FLicfe to unfreeze the money in favor of S̃∗.
The delay-parameter of the abort-message is set to 0 in order to transfer the money in this
round and hence to guarantee that the money is transferred in the same round as in the
hybrid world execution.

In case the witness x is not correct, honest Buyer starts to engage in the dispute resolution
sub-protocol. The simulation of the dispute resolution is the main di�erence compared to
the honest simulation and compared to the simulation of the FairSwap protocol given in [14].
The sub-protocol is simulated by SimS1 in the steps (4a) and (4b). An honest Buyer tries
to create a valid proof of misbehavior as soon as possible. Therefore, SimS1 checks whether
Buyer is able to create such a proof. If this is possible, he simulates a prove-message and
sends an abort-message to FLicfe on behalf of S̃∗. This message triggers FLicfe to send the

money back to B̃ and a not bought-message to B̃. The delay-parameter of 0 guarantees that
the money and the message are sent immediately and hence in the same round as in the
protocol execution. In addition SimS1 creates a not sold -message as output for S̃∗.

35

If B̃ cannot create a valid proof of misbehavior, he sends a challenge-message to GL,Hjc .

SimS1 creates a challenge-message the same way as honest Buyer does and hence the tran-

script is identical. Since a challenge-message instructs GL,Hjc to lock some fee from Buyer,

SimS1 sends a (freeze, id, B̃, |Q|)-message to FLicfe. By sending this freeze-message, FLicfe is
instructed to lock the same amount of money as in the protocol execution.
After honest Buyer challenged Seller, a respond -message must be generated by Seller. SimS1
simulates protocol Π by running GL,Hjc upon receiving a

(respond, id,Rq)-message. In addition he instructs FLicfe to lock fees from S̃∗. As soon as
a respond -message is received by honest Buyer B, he checks on the validity of this response.
In case the response is not valid, SimS1 needs to simulate a complain-message and to termi-
nate the simulation by sending an abort-message to FLicfe in the name of S̃∗. This way, the
money is unlocked in favor of B. Again, the delay-parameter of the abort-message is set to 0
in order to perform the actions immediately and hence in the same round as in the protocol
execution.
If the malicious Seller S̃∗ does not send a respond -message, SimS1 aborts the simulation
in the name of S̃∗ and simulates a respond timeout-message. By doing this, the money is
transferred to honest Buyer. This time, the abort-message contains a delay-parameter of 1.
This is necessary, since honest Buyer is only able to detect the abort in the next round and
therefore can only trigger the payo� with a respond timeout-message in the next round.

The timing of the simulation simulates all messages in the same round as in the protocol
execution. Since the simulator has the same knowledge as honest Buyer B, which is the set
R, the key k, and the circuit φ, the generated challenge-messages are identical. Moreover,
the complete transcript of the dispute resolution sub-protocol is identical to the protocol
execution and SimS1 ensures that money is locked and unlocked in the same rounds. Hence,
the hybrid world execution and the hybrid simulation using simulator SimS1 are indistin-
guishable for any ppt environment Z.

Next, it is necessary to remove the power to control the inputs and outputs of honest
Buyer from the simulator. In particular, the abort-message in round 4 of SimS1 and the
replacement of x∗ with x after FLicfe revealed the witness have to be removed. This can be
achieved by inputting the correct witness x to the ideal functionality FLicfe. To this end, the
same approach as in [14] is taken. The observability feature of the global random oracle
H is used. By querying H for all already executed queries from outside the session, the
simulator is able to obtain the encryption key. Using the key, the simulator is able to extract
the witness x from z at the start of the simulation. Simulator SimS is presented in the
following. By showing the indistinguishability between the hybrid simulation using SimS1
and the ideal world execution using SimS , Claim E is shown.

Simulator SimS for simulation with corrupted Seller.

1. Upon receiving (sell, id, z, φ) and (initialize, id, c, rz, re, rφ, aφ, p, fS , fB)

through S̃∗ in the �rst round, SimS obtains Qid by querying H(observe).
If (k||d, c) ∈ Qid, he computes x = Dec(k, z). Otherwise, if no such
query exists, SimS sets x = 1n×λ. Then, he computes φ(x). If φ(x) = 1,
he sends (sell, id,x, φ, p, fS , fB) to FLicfe. Otherwise, if φ(x) 6= 1, he
sends (sell-fake, id,x, φ, p, fS , fB) to FLicfe. In addition, SimS simulates
the execution of Π by running (active, id, c, rz, re, rφ, aφ, p, fS , fB) ←
GL,Hjc (initialize, id, c, rz, re, rφ, aφ, p, fS , fB).

If only (initialize, id, c, rz, re, rφ, aφ, p, fS , fB) is received through S̃∗
in the �rst round, SimS runs (active, id, c, rz, re, rφ, aφ, p, fS , fB) ←
GL,Hjc (initialize, id, c, rz, re, rφ, aφ, p, fS , fB).

If not both messages sell and initialize are received through S̃∗ in round one,
SimS terminates the simulation.

36

2. Upon receiving (abort, id) through S̃∗ in the second round, SimS sends (abort, id)
to FLicfe. Furthermore, he simulates Π by running (aborted, id)← GL,Hjc (abort, id)
and terminates the simulation.
If SimS receives (buy, id, B̃) from FLicfe in the second round, he simulates the

acceptance of B̃ by running (initialized, id)← GL,Hjc (accept, id).

3. If B̃ aborts the execution in the third round, FLicfe leaks (abort, id, B̃) to SimS .
Then, SimS simulates the abort by executing (aborted, id) ← GL,Hjc (abort, id)
and terminates the simulation.
Upon receiving (reveal, id, k, d) from S̃∗ in round 3 such that Open(c, d, k) =
1, SimS simulates the revealing of the encryption key. Therefore, he runs
(revealed, id, k, d)← GL,Hjc (reveal, id, k, d).

If no message (reveal, id, k, d) from S̃∗ is received in round 3 such that
Open(c, d, k) = 1, SimS sends (abort, id) to FLicfe in the name of S̃∗ and ter-
minates the simulation.

4. If φ(x) = 1, SimS simulates the �nalization of the fair exchange executed by

honest Buyer within the real world by running (sold, id) ← GL,Hjc (finalize, id)

and he terminates. Otherwise, if φ(x) 6= 1, SimS needs to simulate the dispute
resolution sub-protocol. Therefore, he sets R = ∅ and executes the following steps
alternately:
(a) SimS checks whether or not honest Buyer is able to generate a valid proof

of misbehavior by computing π ← GenerateProof(k, φ,R). If π 6= false,

SimS simulates a valid proof of misbehavior by running GL,Hjc (prove, id, π)

and terminating the simulation. Otherwise, if π = false, SimS computes
Q ← NextChallenge(φ,R) and simulates a challenge query by running

(challenged, id,Q)← GL,Hjc (challenge, id,Q). He sends (freeze, id, B̃, |Q|) to
FLicfe, sets Qr = Q, and continues with step (b) in the next round.

(b) Upon receiving (respond, id,Rq) from S̃∗, Sim∗ runs (responded, id,Rq) ←
GL,Hjc (respond, id,Rq), sends (freeze, id, S̃∗, |Rq|) to FLicfe, and waits one

round. If ValidateResponse(Qr, Rq, re) = true, SimS continues immediately
with step (a). Otherwise, if ValidateResponse(Qr, Rq, re) = false, he simulates

a complain-message by running GL,Hjc (complain, id). Furthermore, SimS un-

locks the coins in favor of B̃ by sending (abort, id, 0) in the name of corrupted
Seller S̃∗ to FLicfe. Then, he outputs (not sold, id) to S̃∗ and terminates the
simulation.
If no (respond, id,Rq) message is received from S̃∗, SimS sends (abort, id, 1)

in the name of S̃∗ to FLicfe and waits one round. Then, he runs

GL,Hjc (respond timeout, id), outputs (not sold, id) through S̃∗, and terminates
the simulation.

The di�erences to the previous simulator SimS1 are highlighted in the following. SimS

must provide the correct witness x to FLicfe in round 1. To this end, he makes use of the
observability property of the global random oracle H. The same argumentation as in [14]
is used to show the indistinguishability. By querying H(observe), SimS obtains a list of all
queries executed by the environment beforehand. The goal of the simulator is to �nd out
the encryption key used by Z to create z.
The initialize-message received from Z through S∗ in the �rst round contains a commitment
value c to the used encryption key. Two cases can be distinguished. Either the environment
Z created the commitment correctly or the value c is not a valid commitment.

37

In case the environment created the commitment using the Commit(k)-
algorithm, it posed a query to H beforehand. Therefore, the set Qid queried by H(observe)
contains a tuple (k||d, c). SimS uses the Dec-algorithm to extract the correct witness x the
same way as honest Buyer does after the encryption key is revealed in the protocol execution.
Honest Buyer uses the revealed key in round 3 to decrypt z. Hence, it is only possible for Z
to distinguish these two executions if Z �nds a collision of the hash function, i.e., it �nds
two distinct tuples (k, d) and (k′, d′) such that Open(c, d, k) = Open(c, d′, k′) = 1. Based on
the binding property of the commitment scheme, this is not possible except with negligi-
ble probability. Hence, if the commitment was created correctly, the environment Z cannot
distinguish between the hybrid and the ideal world execution as long as the commitment
scheme is binding.

Now, considering the case that the environment computed the commitment value c incor-
rectly. In this case, Z has to guess a key k and an opening value d such that Open(c, d, k) = 1.
The Open-algorithm only returns 1, if H returns c on input (k||d). Since the random oracle
H samples the query response randomly over {0, 1}µ, the probability to correctly guess k
and d is 1

2µ , which is negligible for large µ. Suppose Z is not able to guess k and d correctly,

GL,Hjc does not accept the reveal -message from S∗ in the hybrid world and honest Buyer

can abort the protocol execution in order to get his money back. In the ideal world, SimS

simulates the exact same behavior. If he does not receive a reveal -message from Z through
S̃∗ in round 3 such that the Open-algorithm outputs 1, he sends an abort-message to FLicfe
in the name of S̃∗. This message instructs the ideal functionality to unfreeze the money in
favor of B.

Since the witness provided as input to FLicfe in the �rst round equals the witness x,
SimS gets rid of the abort-message in (4a) after the honest Buyer created a valid proof
of misbehavior. Without the abort-message, the Payout-phase of FLicfe is triggered which
checks φ(x). Based on the fact that honest Buyer is only able to create a valid proof if the
output of the evaluation is 0, FLicfe sends the money to B̃ in the Payout-phase. This way,
the Payout-phase simulates the exact same behavior as the protocol execution in the hybrid
world.

To conclude, any environment Z that only corrupts Seller cannot distinguish the hybrid
and the ideal world execution except with negligible probability as long as the underlying
commitment scheme is binding.

Lastly, it is worth mentioning that the simulator SimS runs in polynomial time. This is
not trivial, since the simulation of the dispute resolution sub-protocol consists of repetitive
actions. Nevertheless, the number of challenged circuit gates is limited by the parameter aφ
which is set in step 1. Hence, the total number of challenge queries is upper bounded by
this parameter. Since an honest Buyer tries to create a valid proof of misbehavior as soon
as possible, the whole simulation terminates after at most aφ challenge queries.

Simulation with Corrupted Buyer

Next, the case of a corrupted Buyer is considered. It is symmetric to the setup in case of a
corrupted Seller. In detail, the internal state and the program code of corrupted Buyer B∗
is under full control of the environment Z. Thus, B∗ may deviate from the protocol at any
point in time. The ideal world comprises the ideal functionality FLicfe, the dummy parties S̃
and B̃∗, and the simulator SimB. SimB needs to generate a transcript of the execution of
Π as well as he needs to de�ne all inputs and outputs of corrupted Buyer. This includes
the generation of all outputs from B̃∗ towards the environment and towards FLicfe. Hence, on
messages from Z through B̃∗, SimB needs to generate inputs to the ideal functionality FLicfe.
Again, the proof of Claim E focuses on the di�erences between the simulation with an honest
Buyer and with a corrupted Buyer.

Claim. There exists an e�cient algorithm SimB such that for all ppt environments Z that
only corrupt Buyer it holds that the execution of Π in the (GL,Hjc ,L,H)-hybrid world in

38

presence of adversary A is indistinguishable from the ideal world execution of FLicfe with the
ideal adversary SimB.

Proof. The di�culty of the simulation with a corrupted Buyer is to create an encrypted
witness z in the �rst round and to present an encryption key k in the third round such that
the decryption of z using k equals the correct witness x, which is known to the simulator only
after round 3. The values zi, for i ∈ [n], are also contained in the vector e of intermediate
values of the computation of φ(x). Since the witness x is not known in round one, the
simulator must ensure that as soon as x is revealed, the decryption of each ei equals the
output of the circuit gate φi on evaluating φ(x).
Moreover, a commitment c to the encryption key k must be created in the �rst round. When
revealing the key k in the third round, an opening value d has to be provided such that d
opens the commitment c to k.

We use again a sequence of games in order to show indistinguishability between the
hybrid world and the ideal world execution. The same approach is taken in [14], but the
following proof is shortened to two games. In Game1, simulator Sim

B
1 has the additional

power to control all inputs and outputs of honest parties, i.e., of honest Seller. Hence, he
learns the correct witness x at the start of the execution which he would not have known
otherwise. Using x, SimB1 samples a key k and creates an encrypted witness z and the
intermediate values e using the Presetup-algorithm.

In contrast to the proof in [14], the presented simulator needs to simulate the dispute
resolution sub-protocol. SimB1 is given as follows.

Simulator SimB1 for hybrid simulation with corrupted Buyer.

1. The simulation starts when S̃ sends (sell, id,x, φ, p, fS , fB) to FLicfe, where φ(x) =
1. SimB1 learns the witness x during this step. He samples a key k ← Gen(1κ),
computes (c, d) ← Commit(k) and (z, rz, re, rφ) ← Presetup(φ,x, k). Then, he
simulates the execution of Π by running (active, id, c, rz, re, rφ, aφ, p, fS , fB) ←
GL,Hjc (initialize, id, c, rz, re, rφ, aφ, p, fS , fB). In addition, he sends the message

(sell, id, z, φ) to B̃∗.
2. Upon receiving (abort, id, S̃) from FLicfe in the second round, SimB1 simulates the

abort by running (aborted, id)← GL,Hjc (abort, id) and terminating the simulation.

Upon receiving (accept, id) from B̃∗ in the second round, SimB1 sends (buy, id, φ)
to FLicfe and simulates the acceptance of B̃∗ by running (initialized, id) ←
GL,Hjc (accept, id).

3. If SimB1 receives (abort, id) from B̃∗ in the third round, he sends (abort, id) to

FLicfe, runs (aborted, id)← G
L,H
jc (abort, id), and terminates the simulation.

Otherwise, SimB1 simulates the encryption key revealing by running

(revealed, id, k, d)← GL,Hjc (reveal, id, k, d). Moreover, FLicfe sends (revealed, id,x)
to B̃∗ in the third round if B̃∗ did not abort.

4. If SimB1 receives (finalize, id) from B̃∗ in the fourth round, he simulates the

�nalization of the protocol Π by running (sold, id) ← GL,Hjc (finalize, id) and
terminating.

If B̃∗ sends a (challenge, id,Q message, SimB1 needs to simulate the dispute
resolution sub-protocol. Therefore, he executes the following steps alternately:
(a) Upon receiving (challenge, id,Q) from B̃∗ when |Q| ≤ aφ, Sim

B
1 runs

(challenged, id,Q) ← GL,Hjc (challenge, id,Q), sets aφ = aφ − |Q|, sends

(freeze, id, B̃∗, |Q|) to FLicfe, waits one round, and proceeds with step (b).

Upon receiving (prove, id, π) from B̃∗, SimB1 needs to simulate an invalid
proof of misbehavior. Therefore, he sends no message to FLicfe in order to trig-

39

ger the Payout-phase of it and runs GL,Hjc (prove, id, π). Then, he terminates
the simulation.
Upon receiving (complain, id) from B̃∗, SimB1 needs to simulate an invalid
complain-message. To this end, he sends no message to FLicfe in order to trigger
the Payout-phase, runs GL,Hjc (complain, id), and terminates the simulation.

If no message is received from B̃∗ during the challenge-response-phase, SimB1
sends (abort, id, 1) to FLicfe in the name of B̃∗ and waits one round. Then,

he runs (sold, id) ← GL,Hjc (challenge timeout, id), to simulate the timeout-

message sent by honest Seller, and outputs (bought, id,x) to B̃∗.
(b) After Buyer challenged Seller, SimB1 needs to simulate a valid response.

To this end, he computes Rq ← GenerateResponse(φ,x, k,Q) and sends

(freeze, id, S̃, |Rq|) to FLicfe. He simulatesΠ by running (responded, id,Rq)←
GL,Hjc (respond, id,Rq). Then, he waits one round, and proceeds with step (a).

If no message is received from B̃∗ in round 4, SimB1 sends (abort, id, 1) to
FLicfe in the name of B̃∗ and waits one round. Then, he runs (sold, id) ←
GL,Hjc (finalize, id), to simulate the �nalization executed by honest Seller, and

outputs (bought, id,x) to B̃∗.

Based on the extra power of the simulator SimB1 , he learns the witness x in the �rst
round before it is sent to the ideal functionality FLicfe. Since Seller is honest, the witness
x is correct in the sense that φ(x) = 1, otherwise the ideal functionality won't accept the
sell -message.
SimB1 can execute the initialization steps in the same way as honest Seller can, because he
knows the witness. Hence, after the initialization, it is guaranteed that the encrypted witness
z can be decrypted to x using the key k which is sampled by SimB1 .
Also the computation φ(x) can be executed before the commitment re has to be generated
and thus the decryption of any value ei, which is veri�able with a Merkle proof and the
commitment re, equals the correct output of circuit gate φi, for each i ∈ [m].

The simulation of round 2 and 3 is straightforward and similar to the honest case with the
addition that the simulator must generate the input to FLicfe from B̃∗. In round 4, corrupted
Buyer can either send a �nalize-message, abort the execution, or start the dispute resolution
sub-protocol. Again, the simulation of the dispute resolution sub-protocol is a main di�erence
in comparison to the proof of the FairSwap protocol presented in [14].

In case of a �nalize-message received from B̃∗, SimB1 simulates the �nalization of Π
and terminates the simulation. Since no message is sent to FLicfe in this round, the ideal

functionality executes the Payout-phase and transfers the money to honest Seller. If B̃∗
aborts the execution, SimB1 sends a (abort, id, 1)-message to FLicfe. The delay-parameter is
set to 1 in order to delay the unlocking of the coins by one round. This results in the unlocking
of the coins in favor of S̃ in the next round, which corresponds to the �nalize-message sent
by honest Seller in the protocol Π. This message is simulated by the internal execution of
GL,Hjc after SimB1 waited one round.

Even if an honest Seller always provides a correct witness x, a corrupted Buyer may en-
gage in the dispute resolution sub-protocol. Therefore, when receiving a challenge-message
from B̃∗, SimB1 simulates the execution of GL,Hjc internally. The simulator keeps track of
the upper bound of possible challenged gates using the parameter aφ. This guarantees that

corrupted Buyer may not pose more challenges than allowed which is controlled by GL,Hjc in

the hybrid world execution. In addition, SimB1 sends a freeze-message to FLicfe in order to
lock the right amount of fees.
After B̃∗ sent a challenge-message, an honest Seller is always able to create valid responses.
This is simulated by SimB1 in step (4b) by using the generateResponse-algorithm and inter-

40

nally running GL,Hjc . Again, the simulator sends a freeze-message to FLicfe to lock the same

money from S̃ as in the hybrid world execution.

Corrupted Buyer may also send a complain-message or a prove-message after S̃ answered
a challenge-query. However, these messages are invalid, since honest Seller provided the
correct witness and answers always with correct responses. Thus, SimB1 internally runs

GL,Hjc and sends no message to FLicfe. The absence of a message results in the execution of

the Payout-phase of FLicfe. Since the provided witness is correct, the money is transferred to
honest Seller, which corresponds to the same behavior as in the protocol execution.

Finally, corrupted Buyer may also abort at any point in time during the challenge-
response-phase. In this case, SimB1 sends an abort-message to FLicfe and waits one round.

The wait is necessary, since the challenge timeout-message from S̃ appears in the next
round after B̃∗ aborted. The abort-message with delay-parameter 1 instructs FLicfe to send

the money to S̃ in the next round. Hence, the money is sent in the identical round as in the
protocol execution.

SimB1 is used in the hybrid simulation in Game1. Game1 is indistinguishable from the
hybrid world execution but the simulator has extra power. Game2 removes this extra power
from the simulator to give a full UC simulation. In order to achieve indistinguishability of
Game1 and Game2, the programming feature of the global random oracle H is used. The
following argumentation about the indistinguishability is similar to the once given in [14].

Instead of learning the witness x in the �rst round, SimB only gets to know the witness
after the ideal functionality FLicfe reveals it in round three. Since, the encrypted witness z∗

must be given to B̃∗ in the �rst round, z∗ is sampled randomly. In addition, the whole vector
of intermediate values e∗ is sampled randomly to create a commitment r∗e to it.
In contrast to the simulation in [14], the commitment c to the encryption key k is not
sampled randomly. Instead, SimB samples a key and creates the commitment c using the
Commit-algorithm. The simulation in [14] has to use the programming feature of H since
the commitment c is de�ned by the environment Z and hence cannot be chosen by the
simulator. However, the absence of the commitment c in the messages from Z to Seller does
not a�ect the security of the protocol but it simpli�es the simulation.
Based on the IND-CPA-security of the underlying encryption scheme, the environment Z
cannot distinguish between z computed as the encryption of the correct witness x and a
randomly selected z∗. When the correct witness x is revealed in round 3, the simulator
has to ensure that the decryption of z∗ equals x and the decryption of each ei equals
the output of φi of the evaluation on x for each i ∈ [m]. To this end, the programming
feature of the global random oracle H is used. To give an example, for i ∈ [n] the message
(program, id, (k||i), oi ⊕ z∗i) is sent to H, where oi = xi. This results in the situation, that
the global random oracle H returns ri = oi ⊕ z∗i on input H(k||i) such that the encryption
algorithm Enc(k, z∗i) = z∗i ⊕H(k||i) = oi will decrypt z

∗
i to oi = xi.

Since SimB programs the output of several queries, it might seem possible for Z to detect
the programming and distinguish the two execution this way. However, the isProgrammed-
queries are executed either through corrupted Buyer B̃∗ or through the ideal adversary. In
both cases, SimB controls the responses and is able to lie by answering each query with
(isProgrammed, 0). Hence, the programming can only be detected by Z if it sends the exact
same queries that are programmed by SimB in round 3 beforehand.
Since the query values are randomly and Z can only execute polynomial many queries, the
probability to detect a programming this way is negligible.

The full simulator SimB is given below. By achieving indistinguishability between Game1
and Game2, it is shown that the hybrid world execution is indistinguishable from the ideal
world execution.

41

Simulator SimB for simulation with corrupted Buyer.

1. Upon receiving (sell, id, φ, p, fS , fB, S̃) from FLicfe in the �rst round, SimB

randomly samples z∗i ← {0, 1}λ for i ∈ [n], e∗j ← {0, 1}µ for j ∈
{n + 1, . . . ,m}, and k∗ ← Gen(1κ). He sets z∗ = (z∗1 , . . . , z

∗
n) and

e∗ = (z∗1 , . . . , z
∗
n, e
∗
n+1 . . . , e

∗
m). Then, he computes (c∗, d∗) ← Commit(k∗),

r∗z = MTHash(z∗), r∗e = MTHash(e∗), and rφ = MTHash(φ). SimB simu-
lates the execution of Π by running (active, id, c∗, r∗z , r

∗
e , rφ, aφ, p, fS , fB) ←

GL,Hjc (initialize, id, c∗, r∗z , r
∗
e , rφ, aφ, p, fS , fB), where aφ is the challenge limit

property of φ, and generating the message (sell, id, z∗, φ) from S̃ to B̃∗.
2. Upon receiving (abort, id, S̃) from FLicfe in the second round, SimB simulates the

abort by running (aborted, id)← GL,Hjc (abort, id) and terminating the simulation.

Upon receiving (accept, id) from B̃∗ in the second round, SimB sends (buy, id, φ)
to FLicfe and simulates the acceptance of B̃∗ by running (initialized, id) ←
GL,Hjc (accept, id).

3. If SimB receives (abort, id) from B̃∗ in the third round, he sends (abort, id) to

FLicfe, runs (aborted, id)← G
L,H
jc (abort, id), and terminates the simulation.

Otherwise, SimB simulates the key revealing executed by honest Seller by running
(revealed, id, k∗, d∗) ← GL,Hjc (reveal, id, k∗, d∗). In the same round, SimB learns

x from the message (revealed, id,x), which is sent from FLicfe to B̃∗. Then, SimB
needs to map the randomly selected values in the �rst round to the correct witness
by performing the following steps.
� For all i ∈ [n] set oi = xi and for all i ∈ {n+ 1, . . . ,m} and φi := (i, opi, Ii)

compute oi := opi(oIi[1], . . . , oIi[l]).
� Then, program the random oracle H in such a way that the decryption of
z∗ and e∗ equals the correct witness and the intermediate outputs of φ(x),
respectively. Therefore, send the message (program, id, (k||i), oi ⊕ z∗i) for all
i ∈ [n] and (program, id, (k||i), oi ⊕ e∗i) for all i ∈ {n+ 1, . . . ,m}.

4. If SimB receives (finalize, id) from B̃∗ in the fourth round, he simulates the

�nalization of the protocol Π by running (sold, id) ← GL,Hjc (finalize, id) and
terminating.

If B̃∗ sends a (challenge, id,Q) message, SimB needs to simulate the dispute
resolution sub-protocol. Therefore, he executes the following steps alternately:
(a) Upon receiving (challenge, id,Q) from B̃∗ when |Q| ≤ aφ, Sim

B runs

(challenged, id,Q) ← GL,Hjc (challenge, id,Q), sets aφ = aφ − |Q|, sends

(freeze, id, B̃∗, |Q|) to FLicfe, waits one round, and proceeds with step (b).

Upon receiving (prove, id, π) from B̃∗, SimB needs to simulate an invalid
proof of misbehavior. Therefore, he sends no message to FLicfe in order to trig-

ger the Payout-phase of it and runs GL,Hjc (prove, id, π). Then, he terminates
the simulation.
Upon receiving (complain, id) from B̃∗, SimB needs to simulate an invalid
complain-message. To this end, he sends no message to FLicfe in order to trigger
the Payout-phase, runs GL,Hjc (complain, id), and terminates the simulation.

If no message is received from B̃∗ during the challenge-response-phase, SimB
sends (abort, id, 1) to FLicfe in the name of B̃∗ and waits one round. Then,

he runs (sold, id) ← GL,Hjc (challenge timeout, id), to simulate the timeout-

message sent by honest Seller, and outputs (bought, id,x) to B̃∗.
(b) After Buyer challenged honest Seller, SimB needs to simulate a valid

response. To this end, he computes Rq ← GenerateResponse(φ,x, k∗, Q)

42

and sends (freeze, id, S̃, |Rq|) to FLicfe. He simulates Π by running

(responded, id,Rq)← GL,Hjc (respond, id,Rq). Then, he waits one round, and
proceeds with step (a).

If no message is received from B̃∗ in round 4, SimB sends (abort, id, 1) to
FLicfe in the name of B̃∗ and waits one round. Then, he runs (sold, id) ←
GL,Hjc (finalize, id), to simulate the �nalization executed by honest Seller, and

outputs (bought, id,x) to B̃∗.

Simulation with Two Corrupted Parties

The case of two corrupted parties, i.e., a corrupted Seller and a corrupted Buyer is a com-
bination of the two previous cases in which only one party is corrupted. Since both parties
are corrupted, the environment Z has full control over S∗ and B∗ in the hybrid world exe-
cution. The ideal world consists of the two corrupted dummy parties S̃∗ and B̃∗, the ideal
functionality FLicfe, and the ideal adversary SimSR. SimSR is responsible for all inputs and
outputs of the dummy parties towards the ideal functionality. Hence, on receiving a message
through a dummy party from the environment Z, SimSR needs to generate the appropriate
inputs to FLicfe and to simulate the execution of Π. In addition, the outputs of FLicfe must be
converted into outputs to Z through the dummy parties.

It is important to note that the protocol does not provide any guarantees if none of the
parties behaves honestly. Especially, the protocol may never terminate and coins may be
locked beyond the protocol execution. This is easy to see when considering a protocol exe-
cution in which neither of the two parties sends a �nalize-message or any other message in
round 4. The protocol waits for the next message and hence does not terminate. Moreover,
the p coins are locked forever.
This example shows that considering a protocol execution with two corrupted parties is not
reasonable in the given two-party protocol for a fair exchange. However, to allow compos-
ability of Π and other protocols, the indistinguishability in this corruption setup has to be
shown. The proof of Claim E makes use of techniques already used within the single corrup-
tion setups. Therefore, the proof focuses on the most challenging aspect of the simulation
and is based on the argumentation already stated in the single corruption scenarios.

Claim. There exists an e�cient algorithm SimSB such that for all ppt environments Z that
corrupt both, Seller and Buyer, it holds that the execution of Π in the (GL,Hjc ,L,H)-hybrid
world in presence of adversary A is indistinguishable from the ideal world execution of FLicfe
with the ideal adversary SimSB.

Proof. In the scenario of two corrupted parties, i.e., a corrupted Seller S̃∗ and a corrupted
Buyer B̃∗, the simulator SimSB controls all outputs of these parties towards the environment
Z and he needs to provide inputs to the ideal functionality FLicfe on behalf of the corrupted
parties. SimSB is a combination of the simulators in the single corruption cases presented
previously.

Simulator SimSB for simulation with corrupted Seller and corrupted Buyer.

1. Upon receiving (initialize, id, c, rz, re, rφ, aφ, p, fS , fB) from

S̃∗ in the �rst round, SimSR simulates the execution
of Π by running (active, id, c, rz, re, rφ, aφ, p, fS , fB) ←
GL,Hjc (initialize, id, c, rz, re, rφ, aφ, p, fS , fB). If Sim

SR also receives (sell, id, z, φ)

in round 1 through S̃∗, he sets x∗ = 1n×λ and sends (sell-fake, id,x∗, φ, p, fS , fB)
to FLicfe.

43

If not both messages, sell and initialize, are received through S̃∗ in round one,
SimSR terminates the simulation.

2. Upon receiving (abort, id) through S̃∗ in the second round, SimSR sends
(abort, id) to FLicfe. Furthermore, he simulates Π by running (aborted, id) ←
GL,Hjc (abort, id) and terminating the simulation.

Upon receiving (accept, id) through B̃∗ in the second round, SimSR

sends (buy, id, φ) to FLicfe and simulates the acceptance of B̃∗ by running

(initialized, id)← GL,Hjc (accept, id).

If no message was received in round 2, SimSR terminates the simulation.
3. If SimSR receives (abort, id) from B̃∗ in the third round, he sends (abort, id) to

FLicfe, runs (aborted, id)← G
L,H
jc (abort, id), and terminates the simulation.

Upon receiving (reveal, id, k, d) through S̃∗ in round 3 such that Open(c, d, k) =
1, SimSR simulates the revealing of the encryption key, Therefore, he runs
(revealed, id, k, d) ← GL,Hjc (reveal, id, k, d). In addition, he computes x =

Dec(k, z) and replaces the message (revealed, id,x∗) from FLicfe to B̃∗ with
(revealed, id,x).
If no message is received in round 3, SimSR simulates the abort of both parties
by sending (abort, id) in the name of S̃∗ to FLicfe and sending a (block, id) message

in the name of B̃∗ to L. Then, he terminates the simulation.
4. If SimSR receives (finalize, id) from B̃∗ in the fourth round, he simulates the

�nalization of the protocol Π by running (sold, id)← GL,Hjc (finalize, id). Then,

he sends (abort, id, 0) in the name of B̃∗ to FLicfe, outputs (bought, id,x) through
B̃∗, and terminates.
If B̃∗ sends a (challenge, id,Q) message, SimSR needs to simulate the dispute
resolution sub-protocol. Therefore, he executes the following steps alternately
starting with (a):
(a) Upon receiving (challenge, id,Q) from B̃∗ when |Q| ≤ aφ, Sim

SB runs

(challenged, id,Q)← GL,Hjc (challenge, id,Q), sets aφ = aφ−|Q| and Qr = Q,

sends (freeze, id, B̃∗, |Q|) to FLicfe, waits one round, and proceeds with step
(b).
Upon receiving (prove, id, π) from B̃∗, SimSB needs to simulate a judgment

on the given proof of misbehavior. Therefore, he runs GL,Hjc (prove, id, π) and

computes Judge(k, rz, re, rφ, π). If the result is 1, SimSB sends (abort, id, 0)

to FLicfe on behalf of S̃∗ in order to trigger the payo� in favor of Buyer. Ad-

ditionally, he outputs (not sold, id) through S̃∗ and terminates. Otherwise,
if the result is 0, SimSB sends (abort, id, 0) to FLicfe on behalf of B̃∗, outputs
(bought, id,x) through B̃∗, and terminates.
Upon receiving (complain, id) from B̃∗, SimSB needs to simulate a
judgment on the given complain-message. To this end, he computes
ValidateResponse(Qr, Rr, re). If the output is false, Sim

SB sends (abort, id, 0)
in the name of S̃∗ to FLicfe and outputs (not sold, id) through S̃∗. Otherwise,
if the output is true, he sends (abort, id, 0) in the name of B̃∗ to FLicfe and

outputs (bought, id) through B̃∗. In both cases, he runs GL,Hjc (complain, id),
and terminates the simulation.
If no message is received from B̃∗ in this round, SimSB sends (abort, id, 1)
to FLicfe in the name of B̃∗ and waits one round. Then, if he re-

ceives a (challenge timeout, id) from S̃∗, he simulates Π by running

GL,Hjc (challenge timeout, id). Otherwise, if no message is received from S̃∗,

44

SimSB needs to refuse the unfreezing by sending a (block, id) message in the
name of S̃∗ to L. Afterwards, he terminates the simulation.

(b) Upon receiving (respond, id,Rq) from S̃∗, SimSB runs (responded, id,Rq)←
GL,Hjc (respond, id,Rq), sets Rr = Rq, sends (freeze, id, S̃, |Rq|) to FLicfe, waits
one round, and continues with step (a).
If no message is received from S̃∗ in this round, SimSB sends (abort, id, 1)
to FLicfe in the name of S̃∗ and waits one round. Then, if he re-

ceives a (response timeout, id) from B̃∗, he simulate Π by running

GL,Hjc (respond timeout, id). Otherwise, if no message is received from B̃∗,
SimSB needs to refuse the unfreezing by sending a (block, id) message in the
name of B̃∗ to L. Afterwards, he terminates the simulation.

If no message is received from B̃∗ in round 4, SimSB sends (abort, id, 1) to FLicfe
in the name of B̃∗ and waits one round. Then, if he receives (finalize, id) from

S̃∗, he runs (sold, id)← GL,Hjc (finalize, id), to simulate the �nalization executed

by the Seller, and outputs (bought, id,x) to B̃∗. Otherwise, if no (finalize, id)
message is received from S̃∗, SimSB needs to refuse the unfreezing by sending
a (block, id) message in the name of S̃∗ to L. Afterwards, he terminates the
simulation.

The simulation is straightforward with some exceptions. First, it is noteworthy that the
simulator provides a wrong witness x∗ as input to FLicfe in the �rst round. Since SimSB con-
trols all outputs of the corrupted parties towards Z, he can replace the message (revealed, id,x∗)
in round 3 from FLicfe to B̃∗ with the message (revealed, id,x), where x = Dec(k, z) is com-
puted in round 3 after the Seller revealed the encryption key. This way, the revealed -message
in the ideal world execution carries the same witness x as in the hybrid world execution.

Another important aspect in the simulation with two corrupted parties is the blocking
of money. Lets consider the following situation. Buyer accepts the exchange o�er from S̃∗
by locking p coins in the smart contract. After this step, Seller has to reveal his key. Since
S̃∗ is malicious, he may abort and never reveal his key. B̃∗ may send an abort-message to
get his money back. However, since Buyer is also malicious, he may also abort and refrain
from getting this money back. This sounds not reasonable, but it must be shown that the
environment cannot distinguish the hybrid and the ideal world in this scenario.
In the hybrid world, the money becomes locked forever, since GL,Hjc is not triggered to unlock
the coins. To simulate the same behavior in the ideal world, the simulator makes use of the
blocking feature of L. If no message is received in round 3, i.e., no reveal -message from S̃∗
and no abort-message from B̃∗, SimSB sends a (abort, id)-message in the name of S̃∗ to
FLicfe. This message triggers FLicfe to instruct L to unlock coins in favor of B̃∗. However, by
sending a (block, id)-message on behalf of the corrupted party B̃∗ to L, SimSB prevents
the unlocking of the coins in favor of B̃∗. Hence, the same behavior is achieved by the
simulator. This procedure is executed each time both parties abort in the same round to
achieve termination of the execution without unlocking the coins.

Next, it is important to take a look at the simulation of the dispute resolution sub-
protocol. In step (4a), the simulator awaits a message from the corrupted Buyer B̃. This
can be either a challenge-message, a prove-message, or a complain-message. In case of a
prove- or a complain-message, the simulator has to judge on the validity of this message.
Since Seller can also act maliciously, SimSB does not know in advance whether or not
the received message is valid. Therefore, he evaluates the Judge- or the ValidateResponse-
algorithm, respectively. This carries out the same operation as the hybrid functionality GL,Hjc

and hence the simulated behavior matches the execution in the hybrid world.

By showing that the environment cannot take advantage of this in�uence and based on
the argumentation already stated in the proofs of the scenarios with single corruption, it

45

concludes that the execution of the hybrid world and the execution of the ideal world are
indistinguishable for any ppt environment Z.

F Evaluation and Results

The performance of FairSwap [14] depends on the circuit used for witness veri�cation. The
authors claimed that circuits with a small instruction set and a small fan-in are promising
candidates. The small instruction set imply that the judge smart contract does not need
to be able to recompute many di�erent instructions. Hence, the contract implementation
may be more e�cient. We recall that the fan-in denotes the maximal number of inputs to a
single circuit gate. Therefore, a small fan-in results in a small proof of misbehavior. Finally,
Dziembowski et al. note that not only the number of instructions in�uences the e�ciency
but also the actual instructions. This observation is based on the fact that some instructions
can be executed at low cost while other ones are very costly.

While all these parameters in�uence the e�ciency of the judge implementation, they do
not e�ect the message complexity of the �rst protocol message. This only depends on the size
of the veri�cation circuit. All in all, Dziembowski et al. considered the �le sale application
during their evaluation. Indeed, the FairSwap protocol is an e�cient candidate for this use
case.

For evaluating the e�ciency of OptiSwap, we need to additionally consider the dispute
resolution protocol. Its e�ciency can be indicated by the number of rounds required in worst
case. This value depends on the characteristics of the veri�cation circuit like size, depth, and
max fan-in.

In the following, we consider the �le sale application to compare the e�ciency of Op-
tiSwap with FairSwap and a protocol built on the SmartJudge architecture [26]. We start
with a brief description of the �le sale application, outline a smart contract implementation
for Ethereum, and present the evaluation results afterwards.

F.1 File Sale Application

For the �le sale application, we consider objects that are identi�able via their Merkle hash,
e.g., movies and software executables. Seller S o�ers a �le x = (x1, . . . , xn), where each
element xi is of size λ for i ∈ [n]. The Merkle hash of x is given by h = MTHash(x).
The veri�cation circuit φ computes the Merkle hash of the input and compares it with the
expected value h, i.e., φ(x) = 1⇔ MTHash(x) = h.

In this scenario, the instruction set of φ consists of two instructions. A hash function
H : {0, 1}∗ ×{0, 1}∗ → {0, 1}µ that hashes two input elements and a function eq : {0, 1}µ ×
{0, 1}µ → {0, 1} to compare two values on equality. Figure 3 depicts the veri�cation circuit
for a �le of n = 8 elements.

F.2 Implementation

Dziembowski et al. provided an implementation for the �le sale application based on their
FairSwap protocol on GubitHub5. We took their implementation and extend it by incorpo-
rating methods for the challenge-response procedure. This adaptation contains functions for
challenging and responding as well as complaining about a passed timeout. Additionally, a
function for validating the most recent response is added. The full smart contract code can
be found on GitHub6.

5 The source code of the �le sale application based on the FairSwap protocol can be found at
https://github.com/lEthDev/FairSwap.

6 The source code of the OptiSwap protocol can be found on
https://github.com/CryBtoS/OptiSwap.

46

x1

x2

x3

x4

x5

x6

x7

x8

H1(·, ·)

H1(·, ·)

H1(·, ·)

H1(·, ·)

H2(·, ·)

H2(·, ·)

H2(·, ·) eq(·, h)

λ

λ

λ

λ

λ

λ

λ

λ

µ

µ

µ

µ

µ

µ

µ 1

Fig. 3. Example of a circuit for the �le sale application.

F.3 Results Comparison

In the following we compare our construction with FairSwap [14] and SmartJudge [26] re-
garding the message complexity and the gas costs.

Message Complexity. The major drawback of FairSwap is the overhead of the �rst pro-
tocol message. This overhead results from the information needed to create a valid proof of
misbehavior. Although a proof of misbehavior needs to be created only in case of dispute,
the data must be transferred anyway. The actual size of the message does not only depend
on the size of the witness but also on the size of the veri�cation circuit. The higher the
circuit size, the bigger is the resulting message.
Dziembowski et al. stated that for the �le sale application the message size may by at most
twice as large as the �le itself. Considering other circuits, the overhead might become even
worse.
In contrast to FairSwap, our construction shrinks the message size to just the size of the
witness itself. Hence, the overhead is completely removed. As a trade-o�, the number of
rounds can increase. But, complementary to FairSwap, this e�ciency reduction happens
only in case of dispute where at least one party behaves maliciously. The honest execution
has the same round complexity and improved message complexity.

Gas Costs. Based on the smart contract implementation, we provide estimates about the
gas costs of our protocol execution. We used the Remix Solidity IDE7 to determine gas costs
of the deployment and execution of the smart contract.
In order to enable comparability with FairSwap [14] and SmartJudge [26], we present the gas
costs in two price models. The �rst one, called the average model A, has a �xed ether price of
500 USD and a gas price of 3 GWei. These exchange rates are the same as in the evaluation
of [14] and [26] and hence allow a comparison. The second model, called the current model
C, uses an ether price of 181.57 USD and a gas price of 14.4 GWei as of November 18, 2019
[1].

Optimistic execution. In case both parties behave honestly, the gas costs of the protocol
execution include the deployment costs as well as the costs for exchanging the encryption
key against the money. After at most 5 rounds, the honest execution terminates. Table 1
summarizes the gas costs in the optimistic execution. In this table it is assumed that the
Buyer sends a �nalize-message in order to �nish the protocol execution. Table 2 compares

7 Remix Solidity IDE: https://remix.ethereum.org

47

Table 1. Gas costs of all functions executed in the optimistic execution.

Function Caller
Costs

Gas Costs A [USD] C [USD]
Deployment Seller 2 273 398 3.41 5.94
accept Buyer 32 394 0.05 0.08
revealKey Seller 55 051 0.08 0.14
noComplain Buyer 13 862 0.02 0.04

the gas costs with FairSwap [14] and SmartJudge [26]. Since the smart contract code contains
additional methods for the dispute resolution, it is reasonable that the deployment costs are
higher for OptiSwap. In Section 3.4 we propose a solution to reduce the deployment cost
for the optimistic execution. The costs for calling the smart contract functions are nearly
the same. This is due to the fact that the honest execution does not di�er in both protocols.
The small di�erence may result from slightly di�erent costs for the function call dispatcher
of the Ethereum Virtual Machine.

Table 2. Gas cost comparison between OptiSwap, FairSwap [14] and SmartJudge [26]. The gas
costs for the deployment and the honest execution (without deployment) are stated. The values for
FairSwap and SmartJudge are taken as claimed in the respective work.

Function Gas Costs

Interactive Protocol FairSwap SmartJudge

Deployment 2 273 398 1 050 000 1 947 000
Honest Execution 101 307 103 333 8 143 000

Dispute resolution. In case at least one party behaves maliciously, the dispute resolution
must be executed. This protocol phase includes many costly blockchain transactions. How-
ever, our dispute resolution is constructed in a way that an honest party is reimbursed at
the end. This is based on the incorporated fee system. For the sake of completeness and as
a guidance for the determination of fee parameters, we computed gas cost estimates for a
dispute resolution.
Based on the �le sale application with a �le size of 1 GByte and a �le chunk size of 512
Bytes, Table 3 contains the gas costs for the whole dispute resolution. This comprises the
gas costs for all challenge queries, all response messages, and the complaint.

Table 3. Aggregated gas costs for the challenge-response procedure for a �le sale based on Op-

tiSwap.

Function Caller
Costs

Gas Costs A [USD] C [USD]
challenge Buyer 962 623 1.44 2.52
response Seller 5 255 878 7.88 13.74
complainAboutLeaf Buyer 194 068 0.29 0.51

Total: 6 412 569 9.62 16.77

8 The value is derived form the costs of 1.73 USD claimed in [14] for the honest protocol execution
and an ether price of 500 USD and a gas price of 3 GWei. In addition the deployment costs are
subtracted.

48

Fee Parameters. The fee mechanism is incorporated into the dispute resolution in order
to reimburse honest parties. As shown in Table 3, participating in the challenge-response
procedure is very costly.
We designed the fee mechanism in such a way that the reimbursement is ensured no matter
after how many rounds the challenge-response procedure ends. It may end either by a suc-
cessful dispute resolution or by the abort of a malicious party.
Comparing the costs for creating a challenge query and generating a response message, we
observed that the Buyer has to pay higher fees. We investigated the costs for each challenge
query and each response transaction during the dispute resolution of the �le sale application
to �nd out how much gas is required for the most expensive challenge and response, respec-
tively. It turned out that the �rst challenge query is the most expensive one for the Buyer
with gas costs of 79 426. We further observed that the second response has the highest gas
costs of 645 331 out of all response transactions.
Based on these two gas costs, we are able to determine static fee parameters. Considering
the average price model A, a Seller fee of 238 278 GWei per response and a Buyer fee of
1 935 993 GWei is an appropriate choice. These parameters guarantee a reimbursement no
matter when the dispute resolution terminates.
Since the parameters represent an upper bound of gas costs paid during the dispute reso-
lution, the overall amount of fees may be higher than the actual costs for the transactions.
This may increase the �nancial burden for both parties but at the same time includes a
deterrent e�ect for malicious parties.

49

