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Abstract. We give an overview of our critiques of “proofs” of security and a guide to
our papers on the subject that have appeared over the past decade and a half. We also
provide numerous additional examples and a few updates and errata.
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1. Introduction

What does “provable security” mean? If “proof” is understood in the strict mathe-
matical sense — as in “proof of the Pythagorean Theorem” or “proof of Fermat’s Last
Theorem” — then there’s a simple answer: There is no such thing. “Provable security”
is an oxymoron. As Benjamin Franklin said 230 years ago, “in this world nothing can be
said to be certain, except death and taxes.” About communications security there can be
no certainty.

But it is wrong to reject proofs in cryptography just because in general they do not
measure up to the standards of pure mathematics. To take such an inflexible position
would be, as Jonathan Katz pointed out, “snobbery at its purest” [215]. Proofs can be
useful in several ways. They enforce a kind of discipline on authors so that they strive for
precision, systematic approaches, and completeness. They rule out certain categories of
attacks or attacks on certain parts of the protocol so that testing can focus on other types
of attacks and on the assumptions made in the provable security theorem.

Proofs can also influence protocol design. If an obstacle is encountered in constructing
a security reduction, that could indicate a potential point of attack, in which case a modi-
fication of the protocol might eliminate the vulnerability as well as remove the obstacle to
the proof. On the other hand, modifications of protocols that are made for the purpose of
getting proofs to go through can sometimes introduce new vulnerabilities to side-channel
attacks and other threats that are outside the security model. This commonly happens
when the modifications make the protocol more complicated.

Finally, as noted by Brian Snow [306, 231], security proofs help the adversaries, who
then know better than to use their resources for the types of attacks that have been ruled
out by the theorem.

In [224] we commented on the theorem/proof terminology:
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There are two unfortunate connotations of “proof” that come from math-
ematics and make the word inappropriate in discussions of the security of
cryptographic systems. The first is the notion of 100% certainty. Most peo-
ple not working in a given specialty regard a “theorem” that is “proved”
as something that they should accept without question. The second con-
notation is of an intricate, highly technical sequence of steps. From a
psychological and sociological point of view, a “proof of a theorem” is an
intimidating notion: it is something that no one outside an elite of narrow
specialists is likely to understand in detail or raise doubts about. That is,
a “proof” is something that a non-specialist does not expect to really have
to read and think about.

The word “argument,” which we prefer here, has very different conno-
tations. An “argument” is something that should be broadly accessible.
And even a reasonably convincing argument is not assumed to be 100%
definitive. In contrast to a “proof of a theorem,” an “argument support-
ing a claim” suggests something that any well-educated person can try to
understand and perhaps question.

However, the terms “proof of security” and “provable security” are firmly established in
the research community and are routinely used when discussing proposed protocols with
the broader public. This can result in misunderstandings, since non-specialists might
think that “proof” has the same meaning as in their high school and college math classes.
A claimed proof can engender a false sense of security, and may discourage people from
further study of the security of a protocol — why bother, since it has already been proven
secure? Practitioners might not realize that a security proof was carried out under ide-
alized assumptions and might incorrectly assume that the protocol necessarily retains its
proven security when deployed in practice. In contrast to the mathematical meaning
of “proof,” in cryptography the word has a subtler and less straightforward meaning, a
meaning that is conditional and contingent.

Provable security has four components: protocol description, definitions, assumptions,
and the proof itself:

(1) We must give a precise description of all phases of the protocol, including param-
eter selection, key generation, and any subsidiary verification steps.

(2) We must define the adversary — what its goal is (for example, to determine, in
time t with q queries and with a probability at least 1

2
+ ε of success, which of

two messages has been encrypted), how it interacts with the protocol (perhaps
through queries to honest users or by impersonating honest users), and what its
computational capabilities are.

(3) We need to make explicit assumptions, for example, that factoring integers is hard,
that a certain compression function is collision-resistant, or that a hash function
behaves like an ideal random function.

(4) We finally give a formal proof, which shows that if the adversary succeeds in
achieving its goal, then one of the stated assumptions must be false. We might give
a security reduction that shows that the supposedly hard underlying mathematical
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problem can be solved efficiently by means of calls to the adversary (regarded as
a subroutine or an oracle).

Ideally, there’s also a fifth stage:
(5) We interpret the theorem as a certain type of useful guarantee, in which the

assurance we give the practitioner is an accurate reflection of exactly what the
theorem says.

Things can go badly wrong in many different ways:

(1) The protocol description might implicitly assume that something is of the proper
form, whereas in reality that needs to be verified in order to avoid a certain type
of attack (see §2).

(2) The definitions might not adequately model real-world adversaries. Cryptography
is an unusual area of applied mathematics in that it deals not with natural phe-
nomena but rather with malicious human opponents who are clever, devious, and
powerful. There is a history of formal models of adversarial behavior falling far
short of what real-world attackers are able to do (see §3).

(3) The evidence for the assumptions might be weak, and we might need to assume
that certain components of the protocol behave in an ideal fashion (see §4).

(4) The proof might have a gap or fallacy, in which case the security assurance it pro-
vides completely disappears. Or the proof might be correct only in a non-standard
model of computation that permits non-constructible algorithms, in which case the
meaning of the proof in practice becomes highly problematic. Or the proof might
be correct, but have a large “tightness gap,” resulting in a guarantee that turns
out to be meaningless for practical parameter sizes. (See §5.)

These are some of the questions we studied in our series of “another look” papers,
starting in 2004, when “Another look at ‘provable security’” [224] was posted. The purpose
of this article is to give a road-map to those papers, focusing on some of the most important
examples and controversies. At the same time we wish to update the papers with more
recent examples and perspectives.

2. Deficient Protocol Descriptions

Sometimes a protocol description makes implicit assumptions concerning parameters,
values that are sent, or formatting of messages. If these assumptions are not verified in
the course of the protocol, an attacker might be able to achieve its goal by violating them.
For example, in a key-exchange protocol, if Alice does not verify that the group element
Bob sends her truly belongs to the large prime order subgroup rather than to a small
subgroup or that the point that Bob sends her is really a point on the specified elliptic
curve rather than on a curve having smooth group order, then Bob might be able to learn
her secret key through a small-subgroup attack or an invalid-curve attack.

Moreover, gaps in a protocol description often carry over to the security proof itself. If a
step in the protocol is “Bob sends Alice a group element,” authors might construct security
reductions implicitly assuming that Bob always sends Alice a group element. They might
not notice that unless Alice performs a validation step that’s not part of the protocol, she
cannot know for sure that what Bob sent her is really an element of the group in question.
This oversight could lead to a “provably secure” protocol that is actually insecure.
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For example:

(1) In [108] Chen, Cheng, and Smart showed that the pairing-based key agreement
scheme presented in [109] can be broken if subgroup membership testing is not
performed.

(2) In [22] Bangerter, Camenisch, and Maurer presented a zero-knowledge protocol in
which a user P proves knowledge of a (secret) discrete logarithm in a group of
hidden order (such as the RSA group of order ϕ(n)) to a verifier V . The protocol
and its security proof implicitly assume that the parameters selected by V in
the protocol satisfy certain conditions. However, Kunz-Jacques et al. [236] later
showed that a dishonest V can learn P ’s secret if the parameters selected by V do
not satisfy the conditions. This is a particularly serious flaw because no (efficient)
method is known for verifying that the parameters satisfy the conditions.

(3) In [37] a method for batch verification of a modified version of the Digital Signature
Algorithm (DSA) was proposed. (The purpose of batch verification is to enable a
large number of messages signed with the same key to be verified together more
rapidly than if verified individually.) The paper did not include a proof of security,
but assured the reader that “...we can use the same techniques as before to prove
that the tests are sound. Details omitted due to page limits.” In the signature
scheme the first component of the signature is an element of the order-q subgroup
of the multiplicative group of integers mod p (where p and q are primes with
q | (p − 1)). The batch verification algorithm in [37] does not check that all the
signatures in the batch have this property; and, in fact, it would be expensive to
verify this. This omission was exploited by Boyd and Pavlovski [76] to break the
batch verification of the modified-DSA signatures.

(4) In [85] it is noted that the direct anonymous attestation (DAA) scheme described
in [114] and standardized by the International Organization for Standardization
(ISO) fails to check that an issuer’s credentials are not comprised of identity group
elements. This omission allows any party to create valid DAA signatures on behalf
of a trusted platform module (TPM), thus breaking the unforgeability requirement.

(5) In [176] Gong and Zhao showed that the one-pass authenticated key agreement
protocol from ideal lattices presented in [329] could be easily broken if adversaries
are able to get their maliciously-generated public keys certified by a certification
authority. Indeed, Gong and Zhao argued that this is a plausible attack sce-
nario since it seems difficult to distinguish maliciously-generated public keys from
honestly-generated ones. The protocol description and proof of security in [329]
had not taken account of the need for public key validation.

(6) When modifying a protocol, cryptographers should think twice before omitting
a validation step. As part of his design of a variant of the MQV key agreement
protocol [241] with a proof of security, Krawczyk [235] attempted to gain a perfor-
mance advantage over MQV by omitting a public key validation step that seemed
to be unnecessary for his proof. However, that step had been introduced in MQV
in order to prevent a known attack. It turned out (see [255, 258]) that Krawczyk’s
security proof had some flaws, and certain versions of the HMQV protocol de-
scribed in [235] were insecure because of the same attack that was prevented in
MQV by the validation step.
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2.1. Bluetooth’s “Provable Security”. Bluetooth is an industry standard for short-
range low-power wireless communications; it is used primarily to establish wireless personal
area networks. Typically, an Owner establishes a secure small network incorporating
several devices that she owns. Bluetooth was first released in 1999; the most recent
version v5.1 was released in January 2019. The annual number of product shipments of
Bluetooth is roughly equal to half the world’s population.

We shall discuss security of one of Bluetooth’s main modes of operation in a slightly
simplified form, with the aim of explaining why a supposedly provably secure feature
was successfully attacked. The story of Bluetooth’s “provable security” illustrates why
we believe that generic group style assumptions are much riskier than the random oracle
model [225, 233].

One of Bluetooth’s features, called pairing, is agreement between two devices in the
Owner’s private network on a secret key that can subsequently be used to secure com-
munications within the network. We first describe how this works. The two devices (not
the Owner, who is nameless) are referred to as Alice and Bob. The mode described below
is termed Numeric Comparison for Secure Connections, and it assumes that both devices
have displays for 6-digit decimal numbers and at least one of the two devices has an
OK/Reject button.

Phase 1 of the protocol establishes a shared secret key that is not yet authenticated;
Phase 2 authenticates the key. Phase 1 uses Elliptic Curve Diffie-Hellman. Thus, G is the
subgroup of points on the NIST elliptic curve P-256 of prime order n > 2256, and P is a
basepoint, that is, a generator of G. First, Alice selects a random positive integer a < n,
computes A = aP = (x1, y1), and sends A to Bob. Bob likewise chooses random b < n,
computes B = bP = (x2, y2), and sends B to Alice. The 256-bit shared secret key K is
the x-coordinate of the point abP , which Alice computes as aB and Bob computes as bA.

Phase 2 authenticates the shared key, thereby protecting against active attacks by a
Malicious Intruder-in-The-Middle (MITM). The authentication works as follows:

1. Alice and Bob exchange randomly chosen 128-bit nonces NA and NB.
2. Alice and Bob each compute the verification value (SHA256(x1, x2, NA, NB) mod

232) mod 106 and display this value on their 6-digit displays.
3. The Owner confirms that the two displays are equal and pushes the OK button.

(We have omitted a commitment step that is not relevant for our discussion. The protocol
also has Phases 3 and 4, which do not concern us.)

In 2009, Lindell [245] gave a security proof for this key sharing and authentication
protocol. He wrote: “Our main result is a rigorous proof of security of the numeric
comparison mode in the simple pairing protocol of Bluetooth version 2.1. The importance
of this result is due to the popularity of Bluetooth, and the unfortunate historic fact
that vulnerabilities have often been found in unproven key exchange protocols, sometimes
many years after they were released.”

Nine years later Biham and Neumann [61] presented an attack that was effective on all
Bluetooth implementations. The attack was simple and straightforward. During the key
exchange (Phase 1) an MITM sends A′ = (x1, 0) to Bob and B′ = (x2, 0) to Alice. The
replacement of A by A′ and B by B′ is not detected by the authentication step (Phase
2), because the verification value depends only on x1 and x2 and not on the y-coordinates
of A and B. The point A′ = (x1, 0) is a point of order 2 on the curve E′ obtained from
E by changing the constant term of the Weierstrass equation so that the right-hand side
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vanishes at x1. Then Bob computes the point bA′ on E′ (note that the same addition
formulas apply to both E and E′ since those formulas do not involve the constant term
in the Weierstrass equation). If b is even, this will be the point at infinity, which in many
implementations is represented by (0, 0). Hence Bob obtains K = 0. In the same way
Alice computes K = 0 if her randomly chosen a is even. Thus, with 25% probability Alice
and Bob share the key K = 0, which the adversary also knows.

How was it possible to come up with such a devastating attack on a protocol for which
Lindell had given a “rigorous proof of security”? The answer is that there’s a problem with
Lindell’s proof — a discrepancy between the version of the protocol in the proof and the
version in the real world. Lindell’s proof treated E as an abstract cyclic group and included
the group elements A and B (rather than x1 and x2, which would make no sense for an ab-
stract cyclic group) in the computation of the verification value: (SHA256(A,B,NA, NB)
mod 232) mod 106. The attack would be detected in Lindell’s version of the protocol, be-
cause (SHA256(A′, B,NA, NB) mod 232) mod 106 is not equal to (SHA256(A,B′, NA, NB)
mod 232) mod 106 with probability 0.999999.

The attack of Biham and Neumann demonstrates the danger of simplifying aspects
of a protocol when doing a security proof. In [225] we discussed the common practice
of proving security claims about discrete-log-based cryptosystems with the help of the
generic group model. We cautioned that assumptions that ignore the particularities of the
group structure — such as the two coordinates that make up a group element on an elliptic
curve — have a worse track record than the random oracle model for giving meaningful
security guarantees.

3. Inadequate Definitions

In this section we list several examples of security definitions that are inadequate in
some way. Sometimes the inadequacies are subtle and can take years to uncover. For
example, in [39] (posted on eprint in 2009) Bellare, Hofheinz, and Kiltz noticed several
discrepancies in the well-established security notion of indistinguishability under chosen-
ciphertext attack (IND-CCA) for public-key encryption. They wrote:

Our work shows that subtle foundational issues exist with notions that are
supposedly well-established and unambiguous, and highlights the need to
be careful and precise with regard to “minor” definitional “details.”

3.1. Side channels. A side-channel attack uses physical observation of hardware or anal-
ysis of error messages to infer information about secret bits. The attack might exploit
variations in time, power consumption, or electromagnetic radiation as the device car-
ries out an algorithm; it might measure responses to formatting errors or induced faults;
it might exploit information leaked about access patterns of a CPU’s memory cache; it
might use bugs or peculiarities in the programming; or it might use a combination of
different types of leaked information. For example, in 2001 Manger [252] developed a
successful chosen-ciphertext attack on a certain version of RSA encryption (RSA-OAEP).
The Manger padding attack uses information learned when ciphertexts are rejected, such
as the time it took the decryption to fail or the nature of the error messages that were
returned.

The conventional definition of security for a MAC scheme is existential unforgeability
under chosen-message attacks (where the adversary is given access to a MAC oracle).
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In practice, an adversary might also have access to a tag-checking oracle (which decides
whether a given message-tag pair is valid). Bellare-Goldreich-Mityagin [38] proved that
the tag-checking oracle does not change the adversary’s ability to produce a forgery.

Interestingly, there is a very practical timing attack on MAC schemes [321] that mea-
sures the time it takes to verify the tag of a message. The danger from such a timing
attack would not be considered by the designer of a MAC scheme if the designer was
using a security model that does not allow verification queries.

A particularly bothersome feature of side-channel attacks is that a countermeasure taken
to reduce risk from one type of side-channel leakage might increase vulnerability to other
types of attacks. A common recommendation to avoid timing and power-consumption
attacks is to introduce dummy steps so that operations with a 0-bit of the secret key are
indistinguishable from operations with a 1-bit. However, the use of dummy steps may
enable an induced-fault adversary to detect the location of the 0-bits because an induced
fault during a dummy step will not affect the output, while a fault induced during a
necessary operation will. For details see the survey [145].

Although side-channel attacks have played an important role in cryptography at least
since the 1940s, there were no serious attempts to model such attacks until the 2000s. The
most prominent such model, called leakage resilience, aims to capture all possible side-
channel attacks. In [231] we examined this model and found it to be woefully inadequate.

Leakage resilience theorems typically assume a certain upper bound on the number
of leaked bits, e.g., 50% of the bits of a private key. In the real world, how could one
possibly get an assurance that all attacks will satisfy this bound? The effectiveness of
side-channel attacks depends on many factors that are external to the protocol — the
physical construction of the device, proximity of the adversary, and details of system-level
implementation. A leakage resilience theorem is only likely to give practitioners a false
sense of security. In [231] we suggested that it is hopeless to try to give a formal model
that encompasses side-channel attacks, and that one has no choice but to use ad hoc
countermeasures.

A protocol that’s modified so as to provide leakage resilience — for example, so as
not to lose security if 50% of a private key is leaked — is likely to be much less efficient
and much more complicated than the original protocol. The leakage-resilient protocol has
more attack points, and it becomes more difficult to add practical countermeasures as the
protocol becomes more complex.

3.2. Padding — SSL/TLS. Before encrypting a plaintext (in either symmetric or asym-
metric encryption) one normally appends a prescribed amount of random padding and
formatting. Randomness counteracts dictionary and chosen-plaintext attacks. Format-
ting can reduce the effectiveness of chosen-ciphertext attacks, since the decryption of the
adversary’s ciphertext is likely to violate the formatting, in which case the adversary will
receive an error message rather than plaintext. However, on several occasions the padding
and formatting have been exploited by side-channel attacks that analyze timings or error
messages and thereby recover parts of the plaintext. In §3.5-3.6 of our paper “Another
look at security definitions” [231], we discussed some attacks on widely used symmetric
encryption protocols, focusing mainly on SSH.

In this section we summarize some curious episodes in the history of SSL/TLS protocols
with Cipher Block Chaining (CBC), which have been the standards for encryption over
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the internet. (For an explanation of CBC, see §3.5 of [231].) What we’ll see is a history of
security results being proved for models of SSL/TLS that left out implementation details
that were later exploited in real attacks. Subsequently both the protocol and the model
in the proof were changed to rule out those attacks; and then the cycle repeated.

In 2001, Krawczyk [234] proved that if CBC is used for encryption, then the process
used in TLS 1.0 (1999) of applying a message authentication code (MAC) followed by
encryption is secure as an authenticated encryption scheme. In the abstract of [234] he
assured users that “...the current practical implementations of the [SSL/TLS] protocol
that use the above modes of encryption are safe.” Herley and van Oorschot [187] warn
against giving this kind of guarantee to the public: “Speaking of mathematical guarantees
as if they are properties of real-world systems is a common error.” In fact, Krawczyk’s
proof had made some simplifications — omitting the padding and using a new random
initialization vector (IV) for each packet.

In 2003, Canvel, Hiltgen, Vaudenay, and Vuagnoux [93] (see also Vaudenay [317]) pre-
sented a chosen-ciphertext attack on the TLS authenticated encryption scheme, in which
an adversary can determine some of the plaintext corresponding to a target ciphertext.
The attacker queries altered versions of the target ciphertext and learns (perhaps through
time measurements) whether the recipient rejects the query because of incorrect padding
or because of an incorrect MAC tag (as happens when the padding is correct). This
attack, called a “padding oracle attack,” is similar to Manger’s attack on RSA-OAEP
(see §3.1). As explained by Degabriele, Paterson, and Watson [135], “Krawczyk’s proof is
mathematically correct, but his model doesn’t accurately capture the way SSL/TLS works
in practice.... This means that...it can’t be applied directly to the protocol as specified.”

In 2006, version 1.1 of TLS attempted to address this padding oracle attack by changing
the decryption algorithm so that, if the padding is incorrect, it proceeds to decrypt as if
there’s not supposed to be any padding; then the rejection occurs later, when the MAC
tag fails to verify. Although this removed most of the processing time difference between
correct and incorrect padding, it didn’t remove it entirely, because with the padding
absent there were more message blocks to decipher. However, it was felt that this timing
difference would be too small to exploit in a practical timing attack.

In 2011, Paterson, Ristenpart and Shrimpton [274] introduced the notion of “length-
hiding authenticated encryption security” and proved (under certain assumptions) that
the TLS 1.1 authenticated encryption scheme satisfied this notion. They warned that
their security definition is in the “uniform-error reporting model” (where decryption does
not reveal the cause of any failure) and so their security proofs “don’t necessarily apply
when non-uniform reporting is in effect.”

In 2013, AlFardan and Paterson [10] presented an intricate timing attack on the authen-
ticated encryption scheme in TLS 1.1. They wrote that “our attacks do not contradict
the results of [274], but instead relativize their applicability to practice.” In other words,
the attacks show that the results of [274] don’t apply to practice.

In 2011, Duong and Rizzo [141] presented their BEAST attack (Browser Exploit Against
SSL/TLS) on TLS 1.0 that exploits the fact that the last ciphertext block is used as the
IV for the next encryption. In 2014, Möller, Duong and Kotowicz [261] presented their
POODLE attack (Padding Oracle On Downgrade Legacy Encryption) on the authenti-
cated encryption scheme in SSL 3.0 (where, unlike in TLS 1.0, the content of the padding
bytes was not specified). Their attack exploits the fact that the last padding byte is the
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length of the padding. Finally, after all the trouble with CBC-mode encryption, the most
recent version TLS 1.3 (2018) mandates the use of Galois Counter Mode (GCM) instead.

3.3. Symmetric-key encryption. A symmetric-key encryption scheme is required to
be secure against chosen-plaintext attacks, in which an adversary is allowed to query an
encryption oracle with plaintext messages of the adversary’s choosing. The standard defi-
nitions of security all stipulate that the adversary presents a whole plaintext to the encryp-
tion oracle, which responds with the corresponding ciphertext. However, Joux, Martinet,
and Valette [211] noticed a striking deficiency in these security definitions. Namely, they
observed that in some applications, such as encryption with a smart card, the adversary
might be able to send blocks of a plaintext one at a time to the smart card and immediately
receive the ciphertext block. In this way, the adversary can select the next plaintext block
based on the ciphertext blocks previously received. Joux et al. demonstrated that CBC
encryption is insecure against such “blockwise-adaptive” chosen-plaintext attacks. They
also showed that a provably secure authenticated encryption scheme in [181] is insecure
against blockwise-adaptive chosen-plaintext attacks, and a provably secure hybrid encryp-
tion scheme in [124] is insecure against blockwise-adaptive chosen-ciphertext attacks.

3.4. Encrypted databases. Encrypted databases employ specialized encryption schemes
to allow a database server to perform useful operations on encrypted data. Grubbs et al.
[179] showed that the security definition in [285] for multi-key searchable encryption is
inadequate for passive as well as active attacks, and presented an attack on the Mylar
encrypted database that employs multi-key searchable encryption. Grubbs, Ristenpart,
and Shmatikov [180] argue that the notion of a “snapshot attacker,” who can only obtain a
snapshot of a database at a given point in time, is inadequate for modeling security for en-
crypted databases, and hence provable security claims like the one in [282] are meaningless.
The paper [180] highlights the difficulty of employing provably-secure property-revealing
encryption schemes such as deterministic encryption [30] and order-preserving encryption
[67] in fully functional encrypted database management systems. The authors of [180]
conclude that members of systems conference program committees who review papers
on encrypted databases should be “very skeptical of claims of ‘provable confidentiality,’
especially if not supported by a thorough security evaluation....”

3.5. Signatures. Sometimes an accepted model for security of a type of protocol turns
out many years later to be inadequate for applications that were never anticipated in the
era when the security definition was devised. What is still considered the standard security
definition for a signature scheme — unforgeability under adaptive chosen-message attack
— was proposed in 1984 by Goldwasser, Micali, and Rivest (GMR) [174]. As explained
in [231], in the pre-internet days no one foresaw such applications as online auctions,
lotteries, and cryptocurrencies. People thought of digital signatures simply as improved
versions of written signatures that would be used for the same purposes. In particular,
there was no need to worry about adversaries claiming someone else’s signature as their
own — with traditional signatures, no one would have a motive to do that.

However, consider an online lottery where users digitally sign their chosen lottery num-
ber; then Alice claims her winnings by producing her certified public key that is then
used to verify that the winning number is hers. Suppose that, between the time when the
winning number is announced and Alice shows up to claim the money, Bob is able to select



CRITICAL PERSPECTIVES ON PROVABLE SECURITY 11

and certify a key pair such that the same lottery number has the same signature under his
key as under Alice’s. If he can do that, he can claim Alice’s winnings before Alice does.
This is called a Duplicate Signature Key Selection (DSKS) attack [62, 257, 231]. It turns
out that some (but not all) signature schemes secure in the Goldwasser-Micali-Rivest sense
can fall victim to the DSKS attack. Interestingly, RSA with variable encryption exponent
e is vulnerable, whereas RSA with fixed e is not. Although conventional wisdom says that
randomness in parameter selection increases security — in which case RSA with e ran-
domly generated for each user would be more secure than system-wide e = 3 or e = 65537
— the opposite is true if one needs protection from DSKS. Allowing more variability in
key selection plays to the advantage of the DSKS adversary.

3.6. Key agreement. The widely accepted definition of security of a key agreement
protocol is due to Canetti and Krawczyk [89, 90, 91]. It is powerful because it allows
for various forms of corruption and ill-intentioned queries by the adversary. However,
as explained in [255], it does not consider key-compromise impersonation (KCI) attacks.
Suppose that an adversary Chris wants to obtain secret information from Alice that Alice
is only willing to share with a second user Bob. Chris succeeds in capturing Alice’s secret
key (but not Bob’s). His task then is to make use of Alice’s secret key to impersonate
Bob to Alice. Some (but not all) key agreement protocols that are secure in the Canetti-
Krawczyk sense are not secure against a KCI adversary.

3.7. Single-user assumption. In practice, cryptography is almost always deployed in
an environment with many users. An adversary may choose to broadcast a simultaneous
attack against a large number n of them. Even if its probability of success with a given
user is only ε, it often happens that with roughly the same expenditure of resources the
adversary’s chance of compromising at least one of its targets is nε. From the perspective
of a single user Alice, ε might be an acceptable level of risk, but from the standpoint of
the system as a whole the nε probability of a successful attack might not be.

Curiously, the classic definitions of security for symmetric-key encryption, symmetric-
key message authentication, public-key encryption, and signatures were all in the single-
user setting. A security reduction in that setting can usually be carried over to the
multi-user setting. However, in many cases this results in a large “tightness gap” that can
cause the practical assurance provided by the reduction to have little value. We will give
several examples of this in §5.4.2.

3.8. Password authentication. In [183] Halevi and Krawczyk proposed a challenge-
response password authentication protocol, in which a user demonstrates knowledge of a
secret password to a server. They prove that the protocol is secure (and, in fact, that it
has optimal resistance to off-line password guessing attacks) under the assumption that
the underlying public-key encryption scheme satisfies a weak notion of chosen-ciphertext
security, namely resistance to “one-ciphertext verification” attacks. The security proof is
in the single-user setting.

Soon after, Boyarsky [74] showed that the Halevi-Krawczyk protocol is sometimes in-
secure if the adversary poses as a second user. Boyarsky designed a public-key encryption
scheme — a slightly simplified version of a public key encryption scheme of Dolev-Dwork-
Naor [138] — that resists one-ciphertext verification attacks. In [74] it was shown that an
adversary who observes an execution of the password authentication protocol between an
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honest user Alice and the server can then learn Alice’s password by posing as a second
user Bob and interacting with the server. Such attacks were not considered in the Halevi-
Krawczyk security model for password authentication, in which the adversary is allowed
to interact with the server only if it poses as Alice.

3.9. Safety margins. Sometimes certain features of a protocol are not known to be
absolutely necessary, but rather function as a safety margin. In §5 of [231] we commented:

One reason for including “extra” validation steps in a protocol is that
they might help in the event of attacks that are not anticipated by the
security model. For example, suppose that the digital signature standards
had mandated that the sender include his public key in the message and
the recipient verify that it’s there. It was shown in [257] that this would
have thwarted the standard Duplicate Signature Key Selection attacks.
Or, alternatively, suppose that all signatures had to be timestamped, all
certificates issued by a CA also had to be timestamped, and verification
of a signature included checking that the certificate’s timestamp precedes
the one on the signature. Such a requirement — which might be an unrea-
sonable imposition in some settings because a reliable clock is not always
available — also would have prevented DSKS attacks. But neither inclu-
sion of the public key in the message nor timestamping is required by the
GMR security model; nor is either required by any of the commonly-used
digital signature standards.

Moreover, as we saw in §2, omitting a public key validation step can easily result in a
fallacious proof and an insecure protocol.

Other examples of safety margins include requiring that an encryption scheme satisfy
the standard notion of chosen-ciphertext security rather than one-ciphertext security in
the Halevi-Krawczyk password authentication scheme (see §3.8), and including public keys
in the hash in Schnorr signatures (see §5.4.2).

3.10. More problems with deficient definitions. Security proofs for many types of
protocols have run into problems because of inadequate definitions. Below we list various
types of protocols followed first by a reference to a paper or papers claiming provable
security results and next by a reference to the paper or papers that found fault with these
claims because of problems with the security model.

(1) Lightweight identification protocol [212] [169].
(2) Direct anonymous attestation (DAA) [79, 80, 104] [51, 86].
(3) Group key establishment [78, 77] [65].
(4) Multi-factor authenticated key exchange [284] [185].
(5) Universally composable signatures [92] [17].
(6) Blind signatures [283] [296].
(7) Designated confirmer signatures [87, 175, 167] [319].
(8) Public-key encryption with keyword search (PEKS) [71] [1].
(9) Multi-recipient encryption [31] [281].
(10) Revocable identity-based encryption [69] [298].
(11) Robust encryption [2] [146].
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(12) Symmetric-key encryption schemes that are resistant to mass surveillance [44]
[134].

4. Bodacious Assumptions

In [227, 228] we described an increasing tendency to base protocols on problems for
which there is little evidence of hardness. In many cases these assumptions are contrived
and unnatural, are not of interest except in studying a certain specific protocol, and have
never before been studied. In some cases the intractability assumption is nothing but a
thinly disguised version of the adversary’s task, so that the security reduction becomes
little more than a trivial tautology. According to Goldwasser and Kalai [173],

We believe that the lack of standards in what is accepted as a reasonable
cryptographic assumption is harmful to our field. Whereas in the past, a
break to a provably secure scheme would lead to a mathematical break-
through, there is a danger that in the future the proclaimed guarantee of
provable security will lose its meaning. We may reach an absurdum, where
the underlying assumption is that the scheme itself is secure, which will
eventually endanger the mere existence of our field.

In [226] we pointed out that there is not much incentive to devote effort to studying
an unnatural problem if its assumed hardness only implies — and is not equivalent to —
security of the protocol:

From the standpoint of someone who’s thinking about studying a nonstan-
dard problem such as the various interactive versions of the DLP [Discrete
Log Problem], there is a disincentive to do so if the reduction goes only
one way, that is, if the “hard” problem might be strictly easier than a suc-
cessful attack on the protocol.... [S]uppose that a cryptanalyst works hard
to develop a faster-than-expected algorithm for a non-standard DLP-type
problem used in a security proof, and that this does not break the protocol,
but only calls into question the assurance given by one particular proof.
The danger (from the point of view of the analyst) is that the promoters
of the protocol will point out that their protocol has not been broken, and
then quickly give a new “proof of security” based on a slightly different
problem — in which case the researcher’s algorithm no longer has any rel-
evance. If the non-standard problem was of little interest except for its
appearance in the earlier “proof of security” (now superceded), then the
cryptanalyst might justifiably feel resentment about having wasted time
developing an attack on the problem. So if one wants to encourage inten-
sive research on an underlying “hard” problem, it’s best if the problem is
equivalent to a successful attack.

4.1. A history of broken assumptions. Despite the lack of incentive to try to find fast
algorithms for unnatural problems, there have been several cases where researchers did
study those problems and found them to be significantly easier to solve than had been
thought.

(1) In [178] Groth showed how a tighter security reduction for certain signature schemes
could be obtained by assuming hardness of the problem of finding roots of elements
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in subgroups of Z∗

n of hidden order. For a subgroup of order 22t, his assessment
was that the fastest attack takes time 2t. However, Coron et al. [126] found attacks

that take time 2t/2.
(2) In [277] an anonymous credential system is presented whose unlinkability is based

on the following assumption: given an RSA modulus n, the prime factors p, q of
n, and randomly selected elements x, y of Z∗

n, it is infeasible to determine whether
x ∈ 〈y〉. Yang et al. [324] showed that this assumption is false in the case where
n is a product of two safe primes, and devised practical attacks that broke the
unlinkability property.

(3) In [194] the authors gave a security reduction for their public-key encryption
scheme based on the problem of finding roots of a family of multivariate quadratic
equations over a finite field, where the coefficients of the equations are selected
according to a certain distribution. In [7] Albrecht et al. found practical attacks
on the new problem. For two parameter sets that were proposed in [194] and were
claimed to provide at least 80 bits of security, the attacks in [7] recovered the
private key in 5 minutes and 30 minutes.

(4) In [117] the authors introduced the co-approximate common divisor problem (co-
ACD) in connection with their proposal for an efficient additive homomorphic
public-key encryption scheme. In [149] Fouque et al. described lattice attacks on
co-ACD that resulted in key recovery in a few seconds for parameters that were
intended to provide 128 bits of security.

(5) In [68] the authors supported the security of their pairing-based sequential aggre-
gate signature scheme by giving an exponential lower bound in the generic group
model for a certain “Modified Lysyanskaya-Rivest-Sahai-Wolf” (M-LRSW) prob-
lem. In [199] Hwang et al. showed that the proof of the lower bound was wrong and
both the problem and the signature scheme can be easily broken. (More details
are given in our papers [227, 228].)

(6) In [189] a ring variant of the learning parity with noise problem (Ring-LPN) was
proposed, and was used as the basis for an authentication protocol suitable for
resource-constrained devices such as RFID tags. Shortly after, Bernstein and
Lange [57] devised an attack on Ring-LPN that violated the security claims in
[189]. It is not clear whether Ring-LPN based protocols have any advantages at
all over conventional AES-based ones.

(7) In 2013, Garg, Gentry, and Halevi [161] gave the first construction of an (approxi-
mate) multilinear map. This led to a flurry of activity. Multilinear maps were used
to design protocols for many cryptographic tasks, including one-round multi-party
Diffie-Hellman key exchange and indistinguishability obfuscation. However, the
underlying security assumptions on the multilinear maps were new and not well
studied. Indeed, the four variants of the so-called Graded Decisional Diffie-Hellman
(GDDH) assumption for multilinear maps that were proposed as a basis for secu-
rity claims in [161, 128, 165, 129] were found to be false in [193, 116, 127, 115],
respectively. The attacks on the GDDH problem also led to attacks on several
schemes for indistinguishability obfuscation; see [316] for a summary.

(8) In 2014, Jao and Soukharev [206] presented a quantum-resistant isogeny-based
undeniable signature scheme. Their security proof for the signature scheme relied
on the hardness of a “one-sided modification” of the better-studied supersingular
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computational Diffie-Hellman problem [133]. In 2019, Merz, Minko and Petit
[259] observed that the modified problem can be easily solved, thus invalidating
the security proof in [206].

(9) The papers [41, 43, 66] used the “one more discrete log problem” (1MDL) and
“one more Diffie-Hellman problem” (1MDH) to prove the security of blind signa-
ture schemes and Schnorr’s identification scheme. Here the 1MDL problem is the
problem of finding ℓ + 1 discrete logs using a discrete-log oracle that answers ℓ
queries, and similarly for the 1MDH problem. In [228] we commented:

At first it might seem that these problems should be equivalent in diffi-
culty to the problem of finding the discrete log of a single random element
or finding the Diffie-Hellman element Z for fixed X and a single random
Y . However, it turns out that this depends very much on what groups
are used. In [226] we studied these problems and several others in the
setting of the jacobian group of a genus-g curve. Assuming that one uses
current state-of-the-art algorithms, we found that 1MDL is harder than
1MDH for g = 1, 2, whereas Granger [177] recently observed that the
two problems are of roughly equal difficulty for g ≥ 3; and it is only for
non-hyperelliptic curves of genus 3 that the two problems are no easier
than the DL and DH problems. Note that reductions are not known from
1MDH to 1MDL or from 1MDL to 1MDH. Our conclusion was that it
is often unclear how to gauge the true level of difficulty of an interactive
problem or one with complicated input.

(More details are given in §7 of [228].)

4.2. Idealized models. It sometimes happens that, in order to get a security reduction
for a protocol, researchers have to adopt an idealized model for one of its basic components.
That is, one assumes that a certain ingredient in the protocol functions in such a way as
to reveal absolutely no information other than what’s necessary in order to do its job
— everything else looks purely random to an adversary. Since no actual implementation
functions this way, Bernstein [52] has suggested that it’s best to think of this not as
“modeling” a component of the protocol, but rather as stipulating that an attack will not
exploit any features of that part of the protocol.

The use of an idealized model by itself does not necessarily lead to a security result
that has poor applicability to real-world cryptography. On the contrary, in the case of one
of the most important idealized models — random oracles — we have argued that their
use in security proofs is relatively innocuous. Moreover, it is generally not a good idea
to replace a simple protocol by a more complicated one for the sole purpose of avoiding
random oracles in a security reduction argument.

4.2.1. Random oracles. The random oracle model (ROM) is a powerful tool introduced by
Bellare and Rogaway in [46] in order to make it possible to prove security for certain basic
cryptographic protocols, such as Full Domain Hash signatures [46] and OAEP encryption
[47].

Typically it is a hash function that is modeled by a random oracle. Informally speak-
ing, this means that one regards the hash function h as a black box that responds to a
query for the hash value of a bitstring m by giving a random value. For each query the
oracle makes an independent random choice, except that it keeps a record of its responses
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and repeats the same response if m is queried again. The random oracle assumption is
much stronger than collision-resistance, preimage resistance, the pseudorandom function
property, and other properties that are commonly assumed to hold for hash functions in
various applications. Some, such as Canetti, Goldreich, and Halevi [88], have argued that
it is too strong, and have supported this viewpoint by devising protocols that are provably
secure in the random oracle model but insecure in any concrete instantiation.

Starting in [224], we have argued that there is no convincing evidence of failure of the
random oracle model. Despite researchers’ best efforts, the only examples of failure have
been contrived protocols that have no relation to practice because they violate obvious
cryptographic principles. In a more recent article [233] we returned to this topic and
concluded that in more than two decades of study no strong reason has emerged to believe
that security reductions using random oracles are more unreliable than security reductions
that use “standard” assumptions. We also believe that the use of the word “standard” for
assumptions that avoid random oracles is misleading, since many of those assumptions are
complicated, unnatural, little studied, and specially designed for a small set of protocols.
We prefer the neutral terms “ROM protocol” and “non-ROM protocol,” respectively, for
protocols whose only known security reductions require the random oracle model and for
protocols whose security can be proved without using that model.

Many papers have been devoted to constructing new or modified protocols that have
security reductions without random oracles; as of the end of 2018 Google Scholar listed
300 articles having “without random oracles” in the title. However, in some cases the
non-ROM protocols constructed to avoid what is basically a theoretical issue are more
complicated than the earlier ROM protocols and are more vulnerable to attacks that are
outside the security model.

For example, in [231] we noted that while RSA signatures with fixed encryption expo-
nent e are not susceptible to the Duplicate Signature Key Selection attack (DSKS, see §3.5
above), the variant developed by Gennaro-Halevi-Rabin [164] in order to avoid random
oracles is totally susceptible. The GHR scheme works as follows. Suppose that Bob wants
to sign a message m. His public key consists of an RSA modulus n and a random integer
t; here n = pq is chosen so that (p− 1)/2 and (q − 1)/2 are prime. Let h(m) be the hash

value, which we assume to be odd. Bob now computes h̃ such that h̃h ≡ 1 (mod p−1) and

(mod q− 1). His signature s is th̃ (mod n). Alice verifies Bob’s signature by computing h
and then sh mod n, which should equal t.

But an adversary who wants to steal Bob’s lottery winnings by claiming s as his own
signature on m need only find (n′, t′) such that sh ≡ t′ modulo n′. This is trivial, since n′

can be chosen arbitrarily and then t′ can be set equal to sh modulo n′.
Another example of trouble with non-ROM protocols relates to side-channel attacks

(see §3.1 above) on pairing-based protocols. It is a remarkable fact (see [101] and §5 of
[231]) that essentially the only such protocols that are known to be directly vulnerable to
induced-fault attacks on pairing computations are those that were constructed specifically
as non-ROM alternatives to earlier ROM-protocols. This is no accident, since the very
same feature of the protocol makes possible both the non-ROM proof and the susceptibility
to induced fault attacks. After a great deal of effort was devoted to developing a way
around what seems to have been only a theoretical problem, we find that the modified
protocols have increased vulnerability to certain types of realistic side-channel attacks.
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4.2.2. Generic groups. Let G be a cyclic group of prime order q, and let g be a generator.
The map i 7→ gi gives a one-to-one correspondence between integers mod q and group
elements; the discrete log problem is the problem of inverting this map. Shoup [301]
introduced a “generic” model for such a group, so that he could prove that discrete logs
could not be found in fewer than O(

√
q) steps using generic algorithms.

In the generic group model we have no information related to where the group “comes
from” (e.g., points on a particular elliptic curve). Rather, we have an oracle that for
any i gives us an “encoding” σ(i) of the corresponding group element. In addition, if we
have two encodings σ(i) and σ(j) (but we do not necessarily know i or j) and integers
0 ≤ r, s < q , we can ask the oracle for the encoding σ(ri+sj). The oracle’s encodings are
randomly selected elements from some set of bitstrings. The only condition on the oracle’s
responses is that if the same group element is queried a second time, it must respond with
the same encoding.

In [225] we commented that the generic group model is farther removed from reality
than the random oracle model. A well-designed hash function has no perceptible structural
feature that could ever be exploited by an adversary. In contrast, the groups used in
cryptography all have structural elements that could possibly be of use in some kind
of attack. For example, the group in DSA is a subgroup of the nonzero residues mod
p. Elliptic curve groups over a binary field have subsets of points whose x-coordinate is
represented by a low-degree polynomial. The generic group assumption in such cases is
very strong, since it says that no adversary will ever find a way to use these features.
(It should be noted that confidence in the security of cryptosystems based on a suitably
chosen elliptic curve defined over a prime field rests not on the generic group assumption,
but rather on three decades of work analyzing possible concrete attacks.)

For this reason a protocol should not be advertised as secure under “standard” assump-
tions — that is, secure without random oracles — if confidence in its security requires
the generic group assumption. In [225] we questioned whether the Boneh-Boyen construc-
tion in [70] of a non-ROM scheme with short signatures was really a step forward. The
whole point of the construction was that the scheme has a security proof without ran-
dom oracles. However, the mathematical problem m-SDH (Strong Diffie-Hellman) whose
hardness is assumed in the proof is a somewhat exotic and unnatural variant of the Diffie-
Hellman assumption; and the evidence of its hardness given in [70] requires the generic
group assumption, which is arguably a much stronger assumption than the random oracle
assumption that the protocol was designed to avoid.

Similarly, the papers [155, 154] present efficient blind signature schemes which, the pa-
pers’ titles promise, are proven secure in the “standard model.” However, both blind sig-
nature schemes employ the “structure-preserving signature scheme on equivalence classes”
from [156]. The only known security proof for the latter scheme is in the generic group
model. Thus, the use of the word “standard” to describe the security assumptions in
[155, 154] is misleading.

4.2.3. Ideal ciphers. The ideal cipher model does for symmetric encryption what the ran-
dom oracle model does for hash functions. That is, it makes it possible to prove security of
hybrid schemes under the assumption that the symmetric encryption component cannot
be exploited by the adversary.
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This model consists of an encryption oracle and a decryption oracle. Both oracles keep
records of their own queries and responses, as well as those of the companion oracle. The
input to the encryption oracle is a key k and a message block m, and the output is a
random ciphertext block c that is the same as an earlier response to a query with the
same key if and only if the message part of that query was also the same; and c is equal
to the ciphertext part of an earlier decryption query with the same key if and only if the
response to that query was the m in the encryption query. The decryption oracle takes
input of the form (k, c) and outputs a random plaintext block m that is the same as an
earlier response to a query with the same key if and only if the ciphertext part of that
query was also the same; and m is equal to the message part of an earlier encryption query
with the same key if and only if the response to that query was the c in the decryption
query. In other words, the only requirement is that encryption and decryption must be
inverse processes.

In 2005, Coron et al. [123] showed that an ideal cipher can be used to construct a hash
function that is “indifferentiable” from a random oracle. Roughly speaking, this means
that any cryptographic protocol that is secure in the random oracle model remains secure
when the random oracle model is replaced by the hash function that is constructed from
an ideal cipher.

In 2008, Coron, Patarin, and Seurin [131] showed that a random oracle can be used
to construct a block cipher that is indifferentiable from an ideal cipher. The cipher is
constructed by means of 6 Feistel rounds (also known as Luby-Rackoff rounds). In [131]
they say:

Our result shows that the random oracle model and the ideal cipher model
are actually equivalent assumptions. It seems that up to now, many cryp-
tographers have been reluctant to use the Ideal Cipher Model and have
endeavoured to work in the Random Oracle Model, arguing that the ICM
is richer and carries much more structure that the ROM. Our result shows
that it is in fact not the case and that designers may use the ICM when
they need it without making a stronger assumption than when working in
the random oracle model. However, our security reduction is quite loose,
which implies that in practice large security parameters should be used in
order to replace an ideal cipher by a 6-round Luby-Rackoff. (p. 3)

In [192] (see also [125]), the authors show that the proof in [131] is incorrect. Instead
they give a 14-round Feistel construction of a block cipher from a random oracle that
is indifferentiable from an ideal cipher. However, their security reduction has a large
tightness gap (see §5.4).

5. Problematic Proofs

5.1. Fallacious proofs. The central role of “proofs” of security is a relatively recent
phenomenon in the history of cryptographic practice, dating roughly to the late 1990s
(although security reductions can be found in the literature much earlier). According to
Katz and Lindell [216] and Goldreich [170], it is rigorous proof methodology that has been
transforming cryptography “from an art to a science.” A rigorous proof, they maintain, is
the only way to get an ironclad guarantee; anything short of a proof is merely “heuristic”
or “ad hoc.” Because this viewpoint has been dominant at the most prestigious crypto
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conferences for many years, anyone who proposes a new protocol should expect sharp
criticism and rejection if it is not accompanied by a proof of security.

For those who view a reductionist security proof as the gold standard for confidence in a
protocol it logically must follow that a fallacious proof is a serious matter. In mathematics,
a fallacy in a proof means that you have no proof at all. The ironclad guarantee simply
evaporates. One of the central appeals we make in our “another look” papers is to please
not try to have it both ways. You can’t say that formal proofs are very important, and
then say that fallacies in proofs are not important. Bernstein [54] has lamented “the
security impact of a continuing series of errors” in security proofs, and has commented in
reference to a flawed proof that “this avalanche of errors raises a much larger question:
what protection does the cryptographic standardization process have against errors in
provable-security claims?”

When confronted with an error in a security reduction we must try to determine what
it signifies. There are several possibilities:

(1) The error can be patched and the original proof restored; or a different proof with
no flaw can be given of exactly the same result. Perhaps a (hopefully minor)
modification can be made in the protocol that enables the proof to be fixed.

(2) Another proof can be given of a weaker result, perhaps with stronger assumptions
or a larger “tightness gap” (see §5.4). If we’re lucky, the weakening of the result will
be mainly of theoretical interest and will not cause security concerns for practical
implementations.

(3) No satisfactory reductionist proof can be found, but there’s a really convincing
heuristic argument that in practice seems to rule out the same attacks as the
earlier claimed result.

(4) The flaw in the proof is an essential one from a practical standpoint, because there
is a realistic attack that shows that the claimed theorem is false.

Until we determine otherwise, we should assume the worst — the last possibility in this
list — and should not try to minimize the importance of the flaw.

It is largely the disciplinary culture of our community (see [219, 220]) that explains the
embarrassing fact that proofs — even proofs by eminent researchers for protocols that
have practical importance — are often fallacious. Researchers, especially in academia,
feel tremendous pressure to generate large numbers of publications so as to consolidate
their own reputation and help their collaborating graduate students and post-docs get
good jobs. These publications usually appear in conference proceedings, which have strict
submission and reviewing deadlines, so authors are rushed when writing their papers, and
reviewers are rushed when evaluating them. As a result, reviewers are rarely meticulous in
reading and reporting on the papers. Moreover, the security proofs themselves are usually
relegated to the appendix, which reviewers are not expected to read. Journal editors as
well are finding it increasingly hard to find referees of cryptography articles who are willing
to spend the time to write a detailed report and evaluation. Of course, program committee
members and referees themselves are also under publish-or-perish pressure. Recognition
and prestige go to the authors of papers, not to their reviewers. So it is no surprise that
most would rather work on their own papers than spend time wading through someone
else’s long, turgid, notation-laden security reductions.
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Table 1. Major provable security claims found to have fallacies in the proofs.

Type of protocol Paper with purported
proof

Paper explaining fallacy

1) Public key encryption
padding (OAEP)

Bellare-Rogaway
Eurocrypt 1994 [47]

Shoup 2002 [303]

2) Signature schemes Coron
Eurocrypt 2002 [122]

Kakvi-Kiltz 2012 [213]

3) Identity-based encryption Boneh-Franklin
SIAM J. Comp. 2003 [72]

Galindo 2005 [159]

4) Authenticated encryption
(GCM)

McGrew-Viega
Indocrypt 2004 [254]

Iwata-Ohashi-Minematsu
2012 [204]

5) Key agreement (HMQV) Krawczyk
Crypto 2005 [235]

Menezes 2007 [255]

6) Message authentication
codes (CBC-MAC and
EMAC)

Bellare-Pietrzak-
Rogaway
Crypto 2005 [45] and
Pietrzak
ICALP 2006 [279]

Jha-Nandi 2016 [208]

7) Triple encryption Bellare-Rogaway
Eurocrypt 2006 [48]

Gaži-Maurer 2009 [163]

8) Symmetric encryption
(XLS)

Ristenpart-Rogaway
FSE 2007 [287]

Nandi 2014 [265]

9) Tweakable encryption McGrew-Fluhrer
SAC 2007 [253]

Chakraborty–Hernández-
Jiménez–Sarkar 2015 [94]

10) Random oracles and
Ideal ciphers

Coron-Patarin-Seurin
Crypto 2008 [131]

Holenstein-Künzler-
Tessaro 2011 [192]

Nor is it surprising that often a long time elapses between the publication of a security
proof for a protocol and the discovery of an attack on the protocol that invalidates the
security guarantees. For example, in 2018 practical attacks (see [201]) were discovered
on the authenticated encryption scheme OCB2 that was published in 2004 [288] and
standardized by ISO in 2009 [203].

In Table 1 we list some of the most notable security proofs that later were found to
be flawed. They concern protocols that are or have been of practical importance, and
seven of the ten fallacious proofs were published in the prestigious Crypto and Eurocrypt
conference proceedings.

The first major example of an erroneous proof for an important protocol — the error
in the OAEP security proof that went unnoticed for seven years — prompted some soul-
searching by researchers. In [310], Stern, Pointcheval, Malone-Lee, and Smart commented:

Methods from provable security, developed over the last twenty years, have
been recently extensively used to support emerging standards. However,
the fact that proofs also need time to be validated through public discus-
sion was somehow overlooked. This became clear when Shoup found that
there was a gap in the widely believed security proof of OAEP against
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adaptive chosen-ciphertext attacks.... the use of provable security is more
subtle than it appears, and flaws in security proofs themselves might have
a devastating effect on the trustworthiness of cryptography.

According to Bellare and Rogaway [48], “In our opinion, many proofs in cryptography
have become essentially unverifiable. Our field may be approaching a crisis of rigor.”
Halevi [182] said that “some of the reasons for this problem are social (e.g., we mostly
publish in conferences rather than journals).”

Since the early 2000s when these remarks were made, quality control has not notably
improved. In 2002, papers were being posted on eprint.iacr.org at the rate of fewer than
four per week; in 2018 the average rate was 24 per week — a total of 1251 for the year!
Some of this increase can be attributed to the increase in the number of researchers
around the world who have entered the profession, some to a broadening of the field of
cryptography, and some perhaps to an increase in the popularity of eprint. However, it
is apparent that the number of papers has increased out of all proportion to the amount
of high-quality research. Could anything be done to reduce the pressure on people to
churn out papers at such a ferocious rate? For example, could academic employers and
personnel committees be persuaded to put less emphasis on the sheer quantity of research
publications? That seems to be an intractable task.

5.1.1. RSA signature screening. The flaw in the security proof in [36] for an RSA signature
scheme was an essential one, since there was a simple attack. That proof implicitly
assumed that all of the signed messages are distinct, although the security definition did
not require that. Without that assumption, it is possible to insert an arbitrary additional
(unsigned) message. Recall that a set of message-signature pairs (Mi, si) from a signer
with RSA public key (n, e) is screened by verifying that (

∏
si)

e ≡ ∏
h(Mi) (mod n),

where h is the hash function. Suppose e = 3 and we replace one of the pairs (M, s) by
(M,h(M ′)s) and insert three copies of (M ′, 1). The new set of pairs will still verify.

Although the proof in [36] is valid under a restricted definition that requires the mes-
sages to be distinct, Bellare, Nanprempre, and Neven [40] have argued (in the context
of aggregate signatures) that “these restrictions preclude interesting applications, make
usage of the schemes error-prone and are generally undesirable in practice.”

5.1.2. More flaws. Fallacies have been found in proofs of security claims for a broad range
of protocols. Below we list various protocols or types of protocols followed first by a
reference to a paper or papers claiming provable security results and next by a reference
to the paper or papers that exposed the flaws.

(1) Rabin-Williams signature scheme [237] [53].
(2) ESIGN signature scheme [268] [310].
(3) Schnorr signature scheme [271] [83].
(4) Several Diffie-Hellman key establishment protocols [75, 205, 320, 34] [118].
(5) Variant of the HMQV key establishment protocol [293] [247].
(6) Fair blind signatures [5, 4] [197].
(7) Signcryption [243, 325, 244, 250] [312, 313, 314, 315].
(8) Property preserving symmetric-key encryption [272] [99].
(9) Authenticated encryption [260] [73] and [328] [297].
(10) Public-key encryption [308] [19].
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(11) Public-key encryption with conjunctive keyword search [273] [200].
(12) Polly cracker public-key encryption scheme [6] [188].
(13) Unidirectional proxy re-encryption [300] [119].
(14) Sender-equivocable encryption [147] [195].
(15) Identity-based encryption based on DHIES [107] [8].
(16) Identity-based encryption based on quadratic residuosity [210] [144].
(17) Identity-based signatures [160] [100].
(18) Lattice-based signature scheme [21, 11] [12].
(19) Structure preserving signature scheme [186] [153].
(20) Group signature scheme [157] [202].
(21) Undeniable signature scheme [269] [267].
(22) Transitive signature scheme [299] [42].
(23) Two-round multi-signature schemes [20, 251] [139].
(24) Lightweight identification protocol [82] [152].
(25) Key encapsulation mechanisms (KEMs) [190, 191] [58].
(26) Pseudorandom functions that resist related-key attacks [35] [3].
(27) Direct anonymous attestation (DAA) [79, 112, 111, 81, 104] [113, 110, 322, 85].
(28) Adaptive/non-adaptive switching lemma [278] [207].
(29) Oblivious RAM [171, 280] [238].
(30) Garbled RAM programs [248] [166].

The large number of flaws pointed out in DAA security proofs is particularly noteworthy,
since, as remarked in [85], “DAA is widely used in the area of trusted computing. Over
500 million TPMs have been sold, making DAA probably the most complex cryptographic
scheme that is widely implemented.”

5.1.3. Flaw-spotter extraordinaire. If the IACR some day decides to give a special award
to the most prolific flaw-spotter, our nomination for this honor would be Mridul Nandi
of the Indian Statistical Institute. Nandi and coauthors have found fallacies in security
proofs for several types of protocols. We list some of them, followed by references first to
the paper containing the original proof and then to the paper reporting on the flaw:

(1) The MAC schemes CBC-MAC and EMAC (see item (6) in Table 1), LightMAC+
[263] [242], and PMAC TBC1k [262] [246].

(2) The symmetric encryption scheme POEx [150] [209].
(3) The authenticated encryption schemes COBRA [16] [264] and PAE [292] [95].
(4) The cipher-lengthening scheme XLS (see item (8) in Table 1).
(5) Hash functions [137] [98].
(6) Signcryption [15] [266].

In some cases — EMAC, PMAC TBC1k, and the signcryption and hash function papers
— the proof could be fixed or replaced by a correct proof of the claim. In the case of
CBC-MAC the proof was fixed but with looser bounds [208]. In the case of POEx the
authors later fixed the proof by defining a new and stronger notion of hash functions, but
they did not give any practical instantiation of such hash functions. In some cases —
LightMAC+ and COBRA — the claimed security bound was incorrect, as demonstrated
by new attacks. PAE and the XLS cipher-lengthening scheme turned out to be completely
insecure. PAE was later modified [96], whereas XLS was withdrawn.
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5.2. Will a high-tech fix solve this problem? Given the small probability of success
in attacking the sociological, cultural, and psychological causes of the quality control
problem, it is natural to look for a high-tech fix. After all, computers have so often come
to rescue us from the consequences of warped incentives and human laziness, carelessness,
and incompetence. We’ve seen how computers have reversed the decline of K-12 education
in America, online instruction has turned undergraduates into hard-working and creative
learners, the information superhighway has reduced inequality between the rich and poor
and between the Global North and Global South, smart appliances will solve the energy
problem and bring global warming to a halt, and social media and the internet have
strengthened American democracy and prevented the election of demagogues, liars, and
bigots. By the same token it stands to reason that computer-generated proofs will remove
human error from provable security papers. At least that’s how it looked twelve years
ago when the first author wrote the first of two papers [221, 222] critiquing automated
theorem-proving.

The idea that parts of mathematics can and should be mechanized goes back at least to
Leibniz [311], whose most lasting contribution was to develop an approach to calculus that
allows derivatives and many integrals to be computed by rote without thinking, and in
our day makes it easy to code those techniques into calculators. However, in mathematics
proper the role of computers in proving theorems has been very modest.

5.2.1. Full Domain Hash (FDH). The paper [221] analyzed in detail the claim at Crypto
2006 [63] that an automated theorem-prover had reconstructed essentially the security
reduction of Bellare-Rogaway [46] for the FDH signature scheme. This seemed to be a
striking achievement. The original proof of Bellare-Rogaway appeared in their seminal
paper on random oracles, and FDH is arguably the simplest and most basic public key
signature scheme there is. The claim in [63] seemed to give reason to hope for rapid
progress in replacing tedious human work on provable security with flawless computer-
generated security reductions.

Let f : S −→ S be a trapdoor one-way permutation, and let h be a hash function whose
values range uniformly over S; in [46] h is modeled by a random oracle. A signer Alice
possesses a secret key that allows her to calculate f−1; her signature on a message m is
s = f−1(h(m)). Bob can verify Alice’s signature by checking that f(s) = h(m). It’s as
simple as that.

The security reduction in [46] showed that an adversary who makes up to qh hash
queries and qs signature queries and takes time t to forge a signature for a message of the
adversary’s choice can then be used to invert f (that is, find x such that f(x) = y for
given y ∈ S) in time of order tqh. In the case of FDH-RSA, Coron [121] reduced this time
to tqs.

Although the paper [63] gives the impression that it is essentially automating the proof
in [46], a careful comparison [221] revealed that the computer-generated proof in [63] is
far less satisfactory than the human proof in [46] for several reasons:

(1) The computer-generated “proof” does not give a reduction at all, but rather just
formalizes an intuitive argument of the sort that most theoreticians regard as
merely “heuristic.” Interaction is not simulated.
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(2) The factor qh in the adversary’s probability of success comes not from the inter-
action but rather from the possibility that f−1 is not uniformly hard to compute
over S.

(3) In the case of FDH-RSA it is unclear whether the theorem-prover can be modified
to give Coron’s improvement.

(4) The probability space used in the proof is not the appropriate one in a situation
where there is a non-negligible subset of weak keys.

(5) The theorem-prover used 14800 lines of Ocaml code.

5.2.2. Recent work. Since the publication of [221] and [222], a significant amount of work
has been done on automatic proof verification and automatic proof generation for crypto-
graphic protocols; for representative examples, see [13, 14, 23, 24]. It remains to be seen
whether these techniques yield proofs that require less human effort and are more reliable
than well-written human-generated proofs, and whether automated theorem proving tools
will be widely adopted by cryptographers.

Work by Bhargavan et al. on the provable security of TLS 1.2 [60] and TLS 1.3 [59]
has received much attention. The paper [60] reports on a reference implementation of
TLS 1.2 comprising approximately 5,000 lines of code in the F♯ programming language
that is machine verified using the ‘F7 typechecker.’ This work is notable since TLS is a
complicated protocol with many versions, options, and important implementation details
that are usually neglected in human-generated security proofs (as we saw in §3.2). As men-
tioned in [60], the security proofs obtained have some limitations — they do not account
for timing attacks, the reference code is not optimized for performance, some algorithms
and ciphersuites are not supported, and concrete security bounds are not derived.

The paper [59] reports on the first (semi-automated) machine-checked cryptographic
proof for TLS 1.3, which was done using the verification tool CryptoVerif. The security
proof has some limitations; for example, it does not consider downgrade attacks. However,
it does claim security for the “pre-shared key” (PSK) option in TLS 1.3, wherein the client
and server use a shared secret key in the handshake protocol that was either generated
using an earlier handshake or was distributed out-of-band. In addition to the analysis in
[59], automated symbolic analysis of the PSK option in TLS 1.3 was presented in [132],
and hand-generated proofs for the PSK handshake protocol were given in [148]. It thus
came as a surprise when in March 2019 Drucker and Gueron [140] discovered a ‘reflection
attack’ on the PSK handshake protocol in TLS 1.3. This is a type of intruder-in-the-
middle attack in which a client is led to false beliefs about the identity of the party it’s
communicating with. Drucker and Gueron explain the gaps in the TLS 1.3 analysis in
[132] and [148] and remark:

Proofs that are produced by automatic tools may be incorrect or incom-
plete if the underlying model does not capture all the assumptions or if its
details are not fed correctly.

5.3. Non-constructible algorithms. A non-uniform algorithm differs from Turing’s
notion of an algorithm in that for each input length k it’s permitted to have an “advice
string” of length bounded by a polynomial in k that might help solve the problem. Because
the term “non-uniform” is sometimes used in the cryptographic literature in a broader
sense that’s inconsistent with its technical meaning — for example, when the advice
strings do not depend only on the input length — in this section we shall often use



CRITICAL PERSPECTIVES ON PROVABLE SECURITY 25

the informal term “non-constructible” rather than “non-uniform.” A non-constructible
algorithm typically makes use of an advice string that exists mathematically but in practice
is infeasible to find.

There is a widespread opinion among cryptographic researchers — a viewpoint that
we devoted much of [230] to refuting — that the non-uniform model of complexity is the
appropriate one for security proofs. In an email [27] to the first author responding to our
critique of [26], Bellare wrote:

My paper uses a concrete complexity framework. Such a framework is
inherently non-uniform. This has been understood since such frameworks
started.... [W]hen complexity is concrete, we have non-uniformity.... I had
no idea my paper would be read by anyone not familiar with the fact that
concrete security is non-uniform.

According to Coretti, Dodis, Guo, and Steinberger [120],

Hence, by and large it is believed by the theoretical community that non-
uniformity is the right cryptographic modeling of attackers, despite being
overly conservative and including potentially unrealistic attackers. (em-
phasis in original)

This belief in the superiority of non-uniform complexity for cryptography is often ex-
plained by saying that a theorem proved in the non-uniform model of complexity is stronger
than if it were proved in the standard uniform model. In their lecture notes for a course
at MIT [172], Bellare and Goldwasser state:

Clearly, the non-uniform adversary is stronger than the uniform one. Thus,
to prove that “something” is “secure” even in presence of a non-uniform
adversary is a better result than only proving it is secure in presence of a
uniform adversary. (p. 254)

Suppose that a provable security reduction takes the form P −→ Q, or, equivalently,
not-Q −→not-P, where P is an efficient algorithm for the adversary’s task and Q is
an efficient algorithm to solve a problem that is believed to be hard. If the proof is
in the non-uniform model, then the conclusion not-P is stronger than in the uniform
model: even a non-uniform adversary is unable to break the protocol. The fallacy in the
viewpoint expressed above is that the hypothesis of the theorem — that is, not-Q — is
also stronger, because it says that the problem cannot be efficiently solved even by a non-
uniform algorithm. If both the hypothesis and the conclusion of a non-uniform theorem
are stronger than those of a uniform theorem, then the two theorems are not comparable
— neither is stronger than the other.

Cryptographers who claim that non-uniform theorems are stronger because their con-
clusions are stronger are forgetting that the hypotheses also become stronger, that is, they
cannot point to the underlying problem’s resistance to uniform algorithms as evidence for
the hypothesis. It’s usually unclear how to test the hypothesis of a non-uniform theorem.
Real-world algorithms do not have advice strings that are exponentially difficult to find.
If the hypothesis is essentially untestable, then the theorem is not of much value.

For example, in [162] Garg and Gupta presented a blind signature scheme and proved
its blindness property under the assumption that a variant of the discrete logarithm prob-
lem is intractable even against non-uniform attacks. However, when selecting concrete
parameters for the blind signature scheme, the authors only accounted for the known
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uniform attacks on the discrete logarithm problem. In [309] Soundararajan described
a non-uniform attack on the discrete logarithm problem and investigated its effect on
concrete parameters for the scheme in [162].

We next recall the most important case when a leading cryptographer was led astray by
ignoring the need to test the hypothesis against non-uniform algorithms. This occurred
at Crypto 2006 [26] (see also [28]).

5.3.1. The HMAC message authentication code. HMAC [32, 33] is a popular hash-function-
based message authentication code (MAC). The main result in [26] concerns NMAC, a
closely related MAC. We shall summarize the security theorem and the flawed interpre-
tation in [26] in a slightly simplified form; for more details, see [229, 232] and §§4-5 of
[102].

By a compression function we mean a function z = f(x, y), where y ∈ {0, 1}b and
x, z ∈ {0, 1}c; typically b = 512 and c is equal to either 128 (for MD5), 160 (for SHA1), or
256 (for SHA256). Given a compression function f , to construct an iterated hash function
h one starts with an initialization vector IV, which is a publicly known bitstring of length
c that is fixed once and for all. Suppose that m = (m1, ...,mr) is a message consisting of
r blocks. We set x0 = IV, and for i = 1, ..., r we recursively set xi = f(xi−1,mi); finally,
we set h(m) = hIV(m) = xr, which is the c-bit hash value of m.

Suppose that Alice shares two secret c-bit keys k1 and k2 with Bob, and wants to create
an NMAC-tag of a message m so that Bob can verify that the message came from Alice.
She first uses k1 as the IV and computes hk1(m). She pads this with b− c zeros (denoted
by a 0-superscript) and sets her tag t(m) equal to hk2(hk1(m)0).

The purpose of finding a security reduction for NMAC is to show that if one has
confidence that the compression function f enjoys a certain security property, then one
can be sure that NMAC has the same property. Two decades ago HMAC was first proposed
by Bellare, Canetti, and Krawczyk [32, 33]. In [32] they proved (assuming weak collision-
resistance of h) that if f has the secure-MAC property (a type of unforgeability), then so
does NMAC. The proof in [32] was tight, short, and easy to read.

In 2006 Bellare [26] published a different security reduction for NMAC. First, he dis-
pensed with the collision-resistance assumption on h, which is a relatively strong as-
sumption that has turned out to be incorrect for some real-world iterated hash functions.
Second, he replaced the secure-MAC property with the stronger pseudorandom-function
(PRF) property, that is, he showed that if f(x, y) (with x serving as the hidden key) has
the PRF property, then so does NMAC. The PRF property says that the function with
hidden key is essentially indistinguishable from a random function. This was important
in order to justify the use of HMAC for purposes other than message authentication —
in applications where the PRF property is desired, such as key-derivation protocols and
password systems.

However, in 2012 we found a flaw in [26]. For Bellare, who along with Rogaway pop-
ularized the concept of “practice-oriented provable security” [25], it was important to
determine in real-world terms what guarantee his theorem provided. To do this, Bellare’s
approach was to take the fastest known generic attack on the PRF property of a compres-
sion function, and evaluate what his theorem then implied for the security of NMAC. In
his analysis he took the key-guessing attack as the best generic attack on f , and concluded
that NMAC is secure “up to roughly 2c/2/r queries.” For instance, for r ≤ 220 Bellare
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was claiming that NMAC-MD5 is secure up to 244 queries and NMAC-SHA1 up to 260

queries. (In 2006, MD5 and SHA1 were common choices for hash functions.)
Bellare failed to account for the fact that his security reduction was carried out by means

of a non-constructible algorithm — namely, it used an advice string consisting of a pair of
messages that maximized a certain probability. Because of this, he was logically required
to examine security of f against non-constructible algorithms, not just uniform attacks.
There are simple generic non-constructible algorithms that attack the PRF property and
have a much higher success probability than the key-guessing attack. For example, let y0
be an element of {0, 1}b for which the 5th bit of f(x, y) has the highest probability, taken
over all x ∈ {0, 1}c, of being 1. Given a function that is either a random function R(y)
or f(x, y) with a random hidden key x, one can get a significant advantage in guessing
whether it’s R(.) or f(x, .) by asking for its value at y0 and guessing the former if the 5th
bit of output is 0 and the latter if it’s 1. This is a non-constructible algorithm because
one uses the advice string y0, which would be infeasible to compute if it weren’t given to
you.

If one repeats Bellare’s analysis using this type of non-uniform attack, one finds that
NMAC’s security is guaranteed only up to at most 2c/4/

√
r queries, that is, 222 for NMAC-

MD5 and 230 for NMAC-SHA1. That level of security is of little value in practice. There
might well be much faster non-uniform attacks on the prf property for the compression
function of a particular hash function. So even the 222 and 230 guarantees for NMAC-MD5
and NMAC-SHA1 are very optimistic.

5.4. Tightness. A security reduction for a protocol typically has the following form: A
certain mathematical task Q reduces to the task P of successfully mounting a certain
type of attack on the protocol — that is, of being a successful adversary in a certain
security model. More precisely, the security reduction is an algorithm R for solving the
mathematical problem Q that has access to a hypothetical oracle for P. If the oracle takes
time at most T and is successful with probability at least ε (here T and ε are functions of
the security parameter k), then R solves Q in time at most T ′ with probability at least
ε′ (these are again functions of k). The tightness gap is the ratio T ′ε/Tε′. We say that
R is a tight reduction if this gap is small. But if the tightness gap is 240, then one is
guaranteed only that the adversary’s task is at least 2−40 times as hard as solving the
supposedly hard problem Q.

How should we interpret a large tightness gap? What does it mean for the real-world
security of the protocol? The possibilities are essentially the same as for flaws in a proof
(see §5.1), namely:

(1) A different proof with a much smaller tightness gap (or none at all) can be found.
Perhaps a small modification in the original protocol can be made that makes it
possible to give a tight proof.

(2) A tight proof can be given if we make stronger assumptions. If we’re lucky, the
need for stronger assumptions will be mainly of theoretical interest and will not
cause security concerns for practical implementations.

(3) No tight reductionist proof can be found, but there’s a really convincing heuristic
argument that in practice seems to imply that we needn’t increase parameter sizes
to account for the tightness gap.
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(4) The non-tightness reflects the real-world security of the protocol. That is, there is
an attack that shows that the protocol is insecure if parameter sizes are used that
would have given a secure protocol had the proof been tight.

As in the case of fallacious proofs, the last possibility is a “nightmare scenario” [256].
Until it is ruled out — for example, by finding a different security reduction that is tight
— a large tightness gap in a proof should never be dismissed as a minor issue.

5.4.1. Pseudorandom bits and stream ciphers. An asymptotic big-O estimate can easily
hide a large tightness gap that renders the estimate useless in the practical range of
parameters. In [223] we looked at both asymptotic and concrete security estimates for the
factorization-based Blum-Blum-Shub pseudorandom bit generator [64]. The asymptotic
estimate in [318, 9] showed that one can securely extract O(log log n) bits from each
squaring mod n. This was interpreted (see [142, 326]) as meaning that if we have a
768-bit RSA modulus n, then we can securely extract 9 bits in each iteration, since 9 <
log2 log2(n).

However, if one uses the best available concrete results, which were obtained in [305, 9],
one finds that with a 768-bit modulus the extraction of 9 bits in each iteration is secure
against an adversary whose time is bounded by a huge negative number in the case of
[305] and by 2 to a large negative power in the case of [9]!

In [49] (see also [50]) a stream cipher QUAD was proposed. It was supported by a
non-tight reductionist security proof, based on the NP-hard problem MQ of solving a
system of multivariate quadratic polynomial equations over a finite field. In [323] Yang
et al. demonstrated attacks on three QUAD parameter sets for which timings had been
given at the Eurocrypt 2006 talk that accompanied [49]. The stream cipher was broken
for one parameter set; the underlying MQ problem was broken for the second parameter
set; and the security proof was shown to provide no guarantees for the third parameter
set. These attacks highlight the dangers in relying on non-tight reductionist proofs based
on problems whose concrete hardness is not well understood.

5.4.2. The multi-user setting. As remarked in §3.7, just because a system enjoys an ac-
ceptable level of security in the single-user setting it does not follow that the same is true
when it is deployed in practice in the multi-user setting, where an adversary’s goal might
be to compromise any one of n users.

In [103] the authors demonstrate attacks on some encryption schemes in the multi-user
setting that are n times faster than the fastest known attacks in the single-user setting,
where n is the number of users. Among these schemes are the Synthetic Initialization
Vector (SIV) deterministic authenticated encryption scheme [290], the Offset Codebook
(OCB) mode authenticated encryption scheme [289], and the ECB-mask-ECB (EME)
disk encryption scheme [184]. These schemes all have proofs of security in the single-
user setting, and the attacks show that extending the proofs to the multi-user setting
inevitably results in a tightness gap of n. In [102] the authors highlight multi-user attacks
by Zaverucha [327] on some standardized hybrid encryption schemes (such as [304]).

In [103] a natural reduction was described from the problem of breaking a message
authentication code (MAC) in the single-user setting to the problem of breaking the
scheme in the multi-user setting. The tightness gap in the reduction is n, the number of
users. An attack on the MAC scheme in the multi-user setting was presented that was n
times faster than the fastest generic attack on the MAC scheme in the single-user setting.
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Similar attacks were also mounted on some other protocols with non-tight reductionist
security proofs in the multi-user setting, including a network authentication protocol [89],
an aggregate MAC scheme [217], a hierarchical in-network data aggregation scheme [97],
and a history-free aggregate MAC scheme [143].

Considerable work has been done in recent years on designing cryptographic protocols
that have reductionist security proofs in the multi-user setting whose tightness gaps do
not (significantly) depend on the number of users. Examples include MAC schemes [29],
signature schemes [218], aggregate signature schemes [239], Galois counter mode (GCM)
in authenticated encryption [249], hybrid encryption [168], and key agreement [18].

If one wants to base confidence in a protocol on a non-tight security reduction, one
cannot use parameters that would give the desired level of security had the reduction
been tight. But in general standards bodies do not take into account tightness gaps
when recommending parameter sizes, as we saw in §5.4.1 in the case of Blum-Blum-Shub
pseudorandom bits. An apparent exception to this was an Internet Engineering Task
Force (IETF) debate over whether or not to require that the public key be included in
the input to the hash function in its standard for Schnorr signatures [294]. The issue was
whether or not security for such signatures is equivalent in the single-user and multi-user
settings — a question that has had a somewhat confusing history. In [158] Galbraith,
Malone-Lee, and Smart gave a tight reduction from an adversary in the single-user setting
to an adversary in the multi-user setting, with no need to include public keys in the hash.
Thirteen years later, Bernstein [54] found a flaw in their proof, and also proved that a
tight security reduction could be restored if the public key is included in the hash function.
In response to Bernstein’s results, the IETF decided to mandate inclusion of the public
key. Later Kiltz, Masny, and Pan [218] gave a tight security reduction without needing
to include the public key in the hash function; however, their assumptions are stronger
than in [158]. What is peculiar about all this is that the known security reductions for
Schnorr signatures in the single-user setting are highly non-tight1. Even if the tightness
gap remains between single-user and multi-user settings, this is only a small part of the
tightness problem for Schnorr signatures.

5.4.3. Existential vs universal private key recovery. In the multi-user setting the difference
between existential and universal key recovery is that in the former case the adversary is
deemed successful if she captures any user’s private key, whereas in the latter case she
needs to be able to attack an arbitrary user that’s given to her in advance. If provable
security is a priority, then we will want to be able to give a tight proof of equivalence
between existential and universal adversaries. In §5.3 of [223] we discussed the questionable
conclusion this leads to concerning parameter selection for ECC encryption. If each user
selects a different elliptic curve, then no tight reduction from universal to existential key
recovery is known; but if all users work with a fixed curve, then it is not hard to give such
a reduction. Yet it defies common sense to think that real-world security of private keys
is greater when a system-wide elliptic curve is fixed than when the choice of curve varies.
In [223] we comment, “On the contrary, what this example shows is that it is sometimes

1An exception is the tight proof of Schnorr-Jakobsson [295], which, however, requires both the random
oracle and generic group assumptions, both of which are very strong. The use of the generic group model,
in particular, is regarded as leading to weak assurances; see §4.2.2.
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foolish to use the existence or absence of a tight reductionist security argument as a guide
to determine which version of a cryptosystem is preferable.”

5.4.4. WOTS-PRF. In [84], a variant of the Winternitz one-time signature (WOTS) scheme
that uses a pseudorandom function (PRF) f : {0, 1}n × {0, 1}n → {0, 1}n was proposed.
The tightness gap of the security proof in [84] has a factor κw−1, where w is the “Win-
ternitz parameter” (e.g., w = 64), and κ is the size of the largest subset K of {0, 1}n for
which there exist x, y ∈ {0, 1}n with f(k, x) = y for all k ∈ K.

In [84] it was claimed that if f has the PRF property, then κ ≤ 2. However, it was
observed in [240] that the argument given for this claim is non-constructible. Namely, if
κ > 2 then there must exist x, y ∈ {0, 1}n for which f(k, x) = y for κ keys k ∈ {0, 1}n,
and in [84] it is shown that such a pair (x, y) can be used to construct an algorithm that
supposedly violates the PRF property of f . Now, since no efficient method is known for
finding the pair (x, y), what is described in [84] is actually a non-constructible attack on
the PRF property of f . But in the argument the authors use an assessment of the security
of f based on the known constructible attacks on the PRF property. Thus, the argument
fails to support the claim that κ ≤ 2.

In fact, it is shown in [240] that the opposite is true: for a random function the expecta-
tion is that κ ≥ ln(2n)/ ln ln(2n). This means that if the claim in [84] were true, a random
function would fail the PRF property, which is absurd. If we perform a concrete analysis
of probabilities in the case n = 256, we find that the expected value of κ is 98, and so with
w = 64 the tightness gap in the security proof in [84] has a factor κw−1 approximately
equal to 2416, which is much larger than the factor 263 claimed in [84]. Thus, the security
proof in [84] provides little or no security guarantee for the WOTS-PRF signature scheme.

5.4.5. XMSS-T. In [198] Hülsing, Rijnveld, and Song proposed a hash-based signature
scheme XMSS-T with a tight security proof. Peikert [276] observed that their security
proof makes an assumption that is almost certainly false in practice, namely, that a pseu-
dorandom function f : {0, 1}n × {0, 1}n → {0, 1}n satisfies the following property: for
each k ∈ {0, 1}n, there is no y ∈ {0, 1}n that has exactly one preimage under the func-
tion gk : {0, 1}n → {0, 1}n defined by gk(x) = f(k, x). (The authors of [198] wrote,
“Please note that this requirement meets the expectation for a random function.”) A
simple probabilistic argument shows that for a random function from {0, 1}n to {0, 1}n
the expectation is that 1/e ≈ 37% of the elements of {0, 1}n have exactly one preimage,
and thus there is negligible probability that the function f satisfies the property assumed
in [198]. (Note the similarity with the error in [84] discussed in §5.4.4 above.) Peikert also
observed that the security proof in [198] can be easily patched, but at the expense of a
significant increase (e.g., 260) in the reduction’s tightness gap.

What is troubling about the flawed security reduction in [198] is that XMSS-T is used
in the SPHINCS+ signature scheme [55], which is a proposed quantum-safe protocol cur-
rently being considered by NIST. As a result, the security theorem for SPHINCS+ (The-
orem 9.1 in [55]) also understates the tightness gap2. This is an example of how a flaw
in a security proof can propagate to other papers whose authors use the result without
being aware of the problem with the proof.

2This shortcoming has been addressed in [56].
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5.4.6. Lattice-based cryptography. Among the various proposals for quantum-safe public
key cryptosystems, the lattice-based schemes are promoted as having a unique security
feature that the competitors lack, namely, a rigorous proof giving a reduction to the
average case of the underlying mathematical problem from the hardest case of a (different)
problem that is believed to be hard. This claim was examined in [102] and was found to
be problematic for several reasons. Here we give only a brief summary; for details see §6
and Appendix A of [102].

The underlying mathematical problem is Learning With Errors (LWE), which is a linear
algebra problem in which the vector on the right is given with a certain error according to a
specified distribution. A theorem of Regev [286] relates the average case of Decision LWE
to the hardest case of the γ-approximate Shortest Independent Vector Problem (SIVPγ).
Let L be an n-dimensional lattice defined by some basis of integer vectors. Then SIVPγ is
the problem of finding a basis whose longest vector is within a factor of γ of being optimal
(that is, its length is no greater than γ times the length of the longest vector in a basis
where this length is minimal). For small γ, SIVPγ is known to be NP-hard.

First of all, Regev’s theorem and essentially all work on average-case/hardest-case re-
ductions of lattice problems are asymptotic and lack any practice-oriented analysis in
terms of concrete parameter values. In [102] the authors give a concrete analysis for cer-
tain reasonable parameter values and find a tightness gap of 2504 in that case. That is, “if
average-case DLWE can be solved in time T , then [Regev’s] Theorem 1 shows that SIVPγ

can be solved by a quantum algorithm in time 2504T .”
In the second place, the hardness of SIVPγ for the relevant values of γ has not been

seriously studied. It is known only that for much smaller γ the problem is hard and
for much larger γ it is easy. In the third place, there are additional tightness gaps in the
reductions that relate the adversary’s task in attacking the protocols to the LWE problem.

In [275] Peikert describes asymptotic analyses of the security of lattice-based systems,
and concludes:

...worst-case reductions give a hard-and-fast guarantee that the cryptosys-
tem is at least as hard to break as the hardest instances of some underlying
problem. This gives a true lower bound on security, and prevents the kind
of unexpected weaknesses that have so often been exposed in schemes that
lack such reductions.

In [102] we comment:

This would be true in a meaningful sense if the reductions were tight and
if the underlying problem were SIVPγ for a small γ (small enough so that
SIVPγ is NP-hard or so that there is reason to have confidence that there
are no efficient algorithms for SIVPγ). However, neither is the case. When
discussing asymptotic results and writing for a broad readership interested
in practical cryptography, the use of such terms as “hard-and-fast guar-
antee” and “true lower bound on security” is inappropriate and mislead-
ing, because in real-world cryptography the normal interpretation of these
terms is that one has concrete practical security assurances.

5.4.7. MQDSS. In [105], Chen et al. presented MQDSS, the first signature scheme whose
security can be proven based on the MQ problem of solving a multivariate system of
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quadratic equations. The authors gave an asymptotic security reduction, about which
they wrote:

While this does not suffice to make any statement about the security of a
specific parameter choice, it provides evidence that the general approach
leads [to] a secure scheme.

The authors used a concrete analysis of the fastest known attacks on the MQ problem
to specify concrete parameters for the signature scheme. One set of parameters, chosen
to achieve the 128-bit security level, was included in a Round 2 submission to NIST’s
Post-Quantum Cryptography project [106].

In August 2019, Kales and Zaverucha [214] presented an attack which can forge an
MQDSS signature in 295 operations, even though the claimed security for the aforemen-
tioned parameters is 128 bits. The attack takes exponential time and does not contradict
the asymptotic security reduction. It serves as a reminder of the possibility of a “nightmare
scenario” when one ignores large tightness gaps in security reductions.

6. Errata

1. In a historical digression in [224] we discussed the absence of a security reduction
for the discrete-log-based Digital Signature Algorithm (DSA) that the NSA proposed and
that was strenuously opposed by supporters of RSA signatures. We wrote:

It is also surprising that apparently none of the NSA cryptographers no-
ticed this possible objection to DSA [i.e., absence of a security proof]; if
they had, they could have easily fixed it (without any significant loss of
efficiency) by having the signer evaluate the hash function at (m, r) rather
than just at m.

This is incorrect. In order to make a Schnorr-type proof go through one would need
to include r = (gk mod p) in the signature rather than r = ((gk mod p) mod q). Here p
and q are primes such that q | (p− 1) and the bitlength of p is several times the bitlength
of q, g is a generator of the order-q subgroup of Z∗

p, and k is a random exponent. Thus,
to get a proof DSA would have had to have been modified so as to have much longer
signatures. It’s no surprise that this wasn’t done: when DSA was proposed more than a
quarter century ago, inefficiency was a deal-breaker, but absence of a reductionist security
proof was not.

2. In [227] and [228], in discussing a protocol proposed in [68], we confused two differ-
ent constructions from that paper — ordered multi-signatures (OMS) and identity-based
sequential aggregate signatures (IBSAS). We should have referred to the paper’s IBSAS
construction rather than to the OMS construction. A sequential aggregate signature is
a single compact signature produced by several people acting sequentially. It has fixed
length independent of the number of signers, and the signers may be signing different
messages. The main application discussed in [68] is to secure routing of messages through
a network.

3. Some readers have pointed out that part of the conclusion of [221] was poorly written,
in the sense that the purpose of the paragraph was obscure. Especially troubling is the
possibility that a reader might not catch the sarcasm:
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One of the great insights of post-modernism [307] is that there is no such
thing as scientific progress, and one should not speak of one approach be-
ing better or worse than a different one. Science, like other areas of human
endeavor, is subjective and culturally determined, according to those who
view the history of science as a more or less arbitrary sequence of shifts
from one paradigm to another. Thus, if we want to adhere to the tenets
of post-modern cryptography (a term that Oded Goldreich [170] obligingly
introduced into common use), we should embrace all possible approaches to
“proving” security of cryptographic protocols and should resist the temp-
tation to call game-hopping and automated theorem-proving a step back-
ward.

For the record, we are not post-modernists, we are not opposed to scientific progress, and
we do not believe that scientific progress does not exist. Goldreich’s claim to the contrary
in [170] is incorrect.

7. Conclusion

Norbert Wiener once said (quoted in [136]):

One of the chief duties of the mathematician in acting as an advisor to sci-
entists...is to discourage them from expecting too much from mathematics.

The “another look” series of papers can all be found at http://anotherlook.ca. The
“Overview” page of that site summarizes our viewpoint as follows:

We wish to emphasize that we are not opposed to proofs in cryptogra-
phy. Mathematical proofs have their place. What we are opposed to is the
misleading hype that often accompanies them. We believe that designers
of protocols would be on more solid ground if they (1) deleted the terms
“proof of security” and “provable security” from the cryptographic lexi-
con, and (2) showed some humility and realism when presenting security
assurances to the public.

Above all, our work highlights the important role that old-fashioned
cryptanalysis and sound engineering practices continue to play in establish-
ing and maintaining confidence in the security of a cryptographic system.

Two decades ago Victor Shoup [302] expressed a bold confidence, widely held at the
time, in reductionist security proofs:

If we can prove security in this way, then we essentially rule out all possible
shortcuts, even ones we have not yet even imagined. The only way to attack
the cryptosystem is a full-frontal attack on the underlying hard problem.
Period. (p. 15; emphasis in original)

History has proved him wrong — again and again.
In their article surveying the “science of security,” Herley and van Oorschot [187] dispute

the notion that formal security reductions should be favored over empirical analysis:

...while it is correct to note that empirical evidence can never demonstrate
the infeasibility of attacks, we must also note that the same is true of
formal reasoning. The conclusion that formal approaches enjoy an inherent
superiority in this respect is unsound. A proof can deliver guarantees only
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about a mathematical system, not a real-world one. Since it is real-world
systems that we ultimately use, the choice is not between one approach
which offers immunity to attack and another which does not. Rather, the
question is to what degree properties proven about a mathematical system
can be translated into useful properties of a real-world one. Speaking of
mathematical and real-world systems in the same argument and suggesting
that the properties proved of one are naturally enjoyed by the other is a
recurring error.

In the same vein, in their overview of the provable security field [135], Degabriele, Paterson,
and Watson explain the reason for skepticism among practitioners:

Provable security has become an important research area in modern cryp-
tography but is still met with skepticism by many in the practical com-
munity. This is understandable considering the types of attack that we
outline here. Practitioners might think provable security results provide
an absolute statement of security, especially if they’re presented in such a
manner. When they later discover that a scheme is insecure because of an
attack outside the security model, this might damage their confidence in
the whole enterprise of provable security.

* * *

There can be dangers as well as benefits when mathematical methods become dominant
in the study of questions that have a large human component. In the middle of the last
century Darrell Huff [196] wrote entertainingly of the myriad ways that commercial and
political advertisers use statistics to mislead the public. In our time David Freedman [151]
has written about the unreliability of quantitative studies in medicine; Felix Salmon [291]
has described how David Li’s mathematical model for collateralized debt obligations was
seized upon by Wall Street as a justification for irresponsible investment practices that
precipitated the financial crisis of 2008; and Cathy O’Neil [270] has explained many of
the ways that data science has been used to undermine democratic values — for example,
by reinstituting a type of racial discrimination in lending (called “redlining”) that had
supposedly been outlawed in the U.S. fifty years ago.

As we discussed in [219], cryptography exists in a very different realm from mathematics;
its development depends on historical, political, cultural, and economic contingencies. If
we ever meet an advanced extraterrestrial species, they will undoubtedly know about
perfect circles, right triangles, modular curves, and differential equations — the Platonic
Ideals of mathematics, in the terminology of the ancient Greeks. But they will not be
using AES, SHA256, or ECDSA.

It is in part the element of human interaction, of “spy vs spy” that makes cryptography
an exciting field of study. The history of cryptography, including its most recent history,
is dramatic precisely because it is so often unpredictable, with the best-laid plans of
“scientific” cryptographers failing miserably when real-world implementations confront
real-world adversaries. This is nothing to be ashamed of. We should not envy pure
mathematicians because their perfect circles or modular curves do not bite them back or
because their theorems are 100% unconditionally valid and ours are not. Cryptography is
as much an art as a science, and it’s time to make peace with that fact.
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[296] D. Schröder and D. Unruh, Security of blind signatures revisited, J. Cryptology, 30 (2017), pp. 470-

494.
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