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Abstract. Generating secret shares of a shuffled dataset - such that nei-
ther party knows the order in which it is permuted - is a fundamental
building block in many protocols, such as secure collaborative filtering,
oblivious sorting, and secure function evaluation on set intersection. Tra-
ditional approaches to this problem either involve expensive public-key
based crypto or using symmetric crypto on permutation networks. While
public-key based solutions are bandwidth efficient, they are computation-
bound. On the other hand, permutation network based constructions are
communication-bound, especially when the elements are long, for exam-
ple feature vectors in an ML context.
We design a new 2-party protocol for this task of computing secret shares
of shuffled data, which we refer to as secret-shared shuffle. Our protocol
is secure against static semi-honest adversary.
At the heart of our approach is a new method of obtaining two sets of
pseudorandom shares which are “correlated via the permutation”, which
can be implemented with low communication using GGM puncturable
PRFs. This gives a new protocol for secure shuffle which is concretely
more efficient than the existing techniques in the literature. In particu-
lar, we are three orders of magnitude faster than public key based ap-
proach and one order of magnitude faster compared to the best known
symmetric-key cryptography approach based on permutation network
when the elements are moderately large.
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1 Introduction
Machine Learning algorithms are data-hungry: more data leads to better under-
standing of accuracy of models. On the other hand, privacy of data is becoming
exceedingly important, for social, business reasons and policy compliance such
as GDPR. There has been decades of groundbreaking work in the academic
literature that developed cryptographic technology for developing collaborative
computation. But it still has some significant bottlenecks in terms of wide-scale
adoption. Although theoretical results demonstrate the possibility of generic se-
cure computation, they are not efficient enough to be adopted, both in terms of
computation and communication size. For instance, Google cited network cost as
a major hindrance is adopting cryptographic secure computation solution [11].
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Secret-shared shuffle. In this work, we focus on computation and communication
efficiency of a fundamental building block used in a wide range of secure compu-
tation protocols, which we call “secret-shared shuffle”. Secret-shared shuffle is a
protocol which allows two parties to jointly shuffle data and obtain secret shares
of the result - without any party learning the permutation corresponding to the
shuffle.

Motivation. To see the importance of this primitive, consider the task of securely
evaluating some function on an intersection of sets belonging to two parties; in
particular, the intersection itself should also remain secret. Ideally we would use
a private set intersection protocol which outputs an intersection in some “en-
crypted” form - e.g. by encrypting or secret sharing elements in the intersection.
However, currently known efficient private set intersection protocols do not out-
put “encrypted” intersection: instead they output an encrypted vector of bits
indicating if each element is in the intersection or not [3]. The difference is that
in the former case one would directly run secure function evaluation (SFE) on
the encrypted intersection, whereas in the latter case SFE has to be run on the
whole database. Needless to say, this incurs unnecessary overhead, especially in
cases where the intersection is relatively small compared to the initial sets.

In other words, ideally we would want to get rid of non-intersection elements
before running SFE. A natural way to do this without compromising security
is to shuffle the elements together with the indicator vector and give parties
secret-shared result. Then parties can reveal the indicator vector and discard
elements which are not in the intersection. Note that it is crucial that neither
party learns how exactly the elements were permuted; otherwise this party could
learn whether some of its elements are in the intersection or not. Also note that
the requirement on the secrecy of the permutation implies that the result of the
shuffle has to be in some encrypted or secret-shared form, in order to prevent
linking original and shuffled elements.

Known techniques and their limitations. It is instructive to look at “a half” of a
secret-shared shuffle, which we call Permute+Share : in this protocol P0 holds a
permutation π and P1 holds the database x, and they would like to learn secret
shares of permuted database1. While this problem can be solved by any generic
SFE, to the best of our knowledge, there are two specialized solutions for this
problem, which differ in how exactly the permuting happens. One approach is
to give P0’s shares of x to P1 in some encrypted form, let P1 permute them
according to π under the encryption, rerandomize them, and return them to
P0. This is a folklore solution that uses rerandomizable additively homomorphic
public-key encryption. This approach is compute heavy. We elaborately describe
this solution in Section 6.1. The other approach is to start with secret-shared x
and jointly compute atomic swaps, until all elements arrive to their target loca-
tion. To prevent linking, each atomic swap should also rerandomize the shares.

1 Note that one can get secret-shared shuffle by combining two instance of Per-
mute+Share .
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This approach is taken by [21, 14], who let parties jointly apply a permutation
network to the shares, where each atomic swap is implemented using OT in [21]
and garbled circuit in [14]. The downside of this approach is its communication
complexity which is proportional to N logN · `, where N is the number of el-
ements in the database and ` is the size of each element. This overhead seems
to be inherent in approaches based on joint computation of atomic swaps, since
each element has to be fully fed into at least logN swaps.

Our Contribution We design a protocol for Permute+Share (and therefore secret-
shared shuffle) which follows a novel approach. At a very high level, we show
how parties can use puncturable PRFs to generate two sets of pseudorandom
values - one per party - with a special permutation-related dependency between
them; then each party uses its set to compute shares of permuted database.
Importantly, we show how these sets can be generated with communication only
proportional to N logN · λ (in addition to N · ` which is inherent), where λ is
security parameter. Note that the size ` of the element could be very long (e.g.
each element could be a feature vector in ML algorithm), and thus it could be
a significant improvement in communication over permutation network-based
approach.

It should be noted that in our protocol the permuting itself happens within
the generation of the two mentioned sets. In particular, in our protocol parties
do not permute encrypted shares and thus do not require public-key operations
(except in base OTs), nor do we perform atomic swaps, which enables saving on
the communication.

Our protocol uses lightweight crypto primitives (XORs and PRGs) which is
optimal for large data elements (or data elements with long associated data).
Our protocol is secure in the semi-honest model. We measure the concrete cost of
our protocol and simulate its performance over a typical WAN. We see a a three
orders of magnitude improvement over the best known public key based approach
and an order of magnitude improvement over the best known symmetric key
approach. The details of our experiment are in Section 6.

1.1 Applications

Collaborative Filtering One immediate application of our shuffle protocol is to
allow two parties who hold shares of a set of elements to filter out elements
that satisfy a certain criterion. This could include removing poorly formed or
outlier elements. Or it could be used after e.g. a PSI protocol [23, 24, 3] or in
database join [20] to remove elements that were not matched. If we are willing
to reveal the number of elements meeting this criterion, we can use a shuffle to
securely remove these elements so that subsequent operations can be evaluated
only on the resulting smaller set, which is particularly valuable if the subsequent
computation is expensive (e.g. a machine learning task [19]). To do this, we
first shuffle the set, then apply a 2PC to each element to evaluate the criterion,
revealing the result bit in the clear, and finally remove those items whose result
is 1.
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Sorting under MPC Our secret shared shuffle protocol can also be used to build
efficient protocols for other fundamental operations. For example to sort a list of
secret shared elements and output resulting secret shares we can use the shuffle-
and-reveal approach proposed by [13]. The idea is to first shuffle the data, and
then run a sorting algorithm. At this point we can use MPC to evaluate com-
parisons and reveal the results of each comparison in the clear. This yields more
efficient results than the standard oblivious sorting protocol based on sorting
networks; those protocols either have huge constants [1] or require O(N log2N)
running time (using Bitonic Sorting network), where N is the number of ele-
ments in the database. Note that in many cases we want to sort not just a set
of elements, but also some associated data for each element.

Sort, in addition to being a fundamental operation, can be used to find the
top k results in a list, to evaluate the median or quantiles, to find outliers, etc.

Secure Computation for RAM programs There has been a line of work starting
with [10, 8, 17, 16, 18, 27, 25, 7] that looks at secure computation for RAM pro-
grams (as opposed to circuits). The primary building block in these constructions
is oblvious RAM (ORAM), which is a technique for transforming a RAM pro-
gram to be oblivious in that the memory accesses do not reveal anything about
the computation (in particular they don’t reveal which RAM entries are being
accessed). When used in secure computation, generally each party holds a share
of the transformed memory, and the two parties jointly convert logical RAM
access into a series of random looking memory accesses, which they each per-
form locally to retrieve the corresponding share. One challenge in these schemes
is to initialize the ORAM to store the parties’ inputs. A naive solution simply
performs an ORAM write operation for each input item, but the concrete costs
on this are very high. [16, 27] show that this can be made much more efficient
using a shuffle: the parties simply permute their entries using a random secret
shared permutation, and then they can direclty store them as the ORAM mem-
ory. [27] achieve significant improvements by using garbled circuits to implement
a permutation network; as we will see in section 6 our solution far outperforms
this approach, so we should get significant performance improvements for this
application. Note that in ORAM it is often beneficial to have somewhat large
block size (the cost of retrieving a block is generally O(logN) and the cost of
shuffling is O(N logN), where N is the number of blocks, although once a block
is retrieved the 2PC will have to scan linearly over the block to find the partic-
ular entry desired. We leave it to future work to find the optimal point in this
trade-off, but note that our more efficient shuffle makes it more advantageous to
use larger blocks.

1.2 Technical overview.

Notation. By bold letters x,a, b, r,∆ we denote vectors of N elements, and by
x[j] we denote the j-th element of x. By π(x), where π is a permutation, we
denote the permuted vector (x[π(1)], . . . ,x[π(N)]).
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Secret-Shared Shuffle. Recall that the goal of the secret-shared shuffle is to let
parties learn secret shares of a shuffled data. More concretely, consider parties
P0, P1, where P1 owns database x. Our goal is to build a protocol which allows P0

to learn r and P1 to learn r⊕π(x), but nothing more; here r is a random vector
of the same size as the database, and π is a random permutation of appropriate
size. Our protocol also works for the case when x was secret shared between P0

and P1 to begin with (instead of being an input of one party).
Secret-shared shuffle can be easily built given its variant where one of the

parties chooses the permutation; we call this protocol Permute+Share . That
is, in this protocol P0 holds π and P1 holds x, and as before, they would like
to learn r and r ⊕ π(x), respectively. Indeed, secret-shared shuffle can be ob-
tained by executing Permute+Share twice, where first P0 and then P1 chooses
the permutation (note that in the second execution the database is itself al-
ready secret shared). Thus, in the rest of the introduction we describe how to
build Permute+Share . The details of how to obtain secret-shared shuffle from
Permute+ Share are in Section 5.4.

Our construction proceeds in three steps: first we explain how to build Per-
mute+Share using another protocol called Share Translation protocol, then we
build the latter using Oblivious Punctured Vector protocol, and finally we ex-
plain how to design OPV protocol with low communication using Oblivious
Transfer and Pseudorandom Functions.

Note that we are going to describe our protocols using ⊕ operation for sim-
plicity, however, in the main body we instead use a more general syntax with
addition and subtraction, to allow our protocols to work in different groups.

Building simplified Permute+Share from Share Translation protocol. We first de-
scribe a simplified and inefficient version of Permute+Share protocol; the running
time of this protocol is proportional to the square of the size of the database.
Later in the introduction we explain how we exploit the structure of Benes per-
mutation network [2] to achieve our final protocol.

As a starting point, consider the following idea: P1 chooses random masks
a = (a[1], . . . ,a[N ]) and sends its masked data x ⊕ a to P0. Now P0 and P1

together hold a secret-shared x, albeit not permuted. Note that P0 knows the
permutation π and could easily locally rearrange its shares in order of π(x⊕a).
However, P1 doesn’t know π and thus cannot rearrange a into π(a). Further,
any protocol which allows P1 to learn π(a) would immediately reveal π to P1,
since P1 also knows a.

Therefore, instead of choosing a single set of masks, P1 should choose two
different and independent sets of masks, a and b, where a, as before, is used to
hide x from P0, and b will become the final P1’s share of π(x). However, now
P0 has a problem: since P1’s share is b, P0’s share should be π(x)⊕ b; however,
P0 only receives x⊕a from P1, and has no way of “translating” it into π(x)⊕ b.
Thus we additionally let parties execute a Share Translation protocol to allow
P0 obtain a “translation function” ∆ = π(a) ⊕ b, as we explain next in more
detail:
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Share Translation protocol takes as input permutation π from P0 and outputs
vectors ∆ to P0 and a, b to P1, such that ∆ = π(a)⊕ b, and, roughly speaking,
a, b look random2. Permute+Share can be obtained from Share Translation as
follows:

1. P0 and P1 execute a Share Translation protocol, where P0 holds input π,
receives output ∆, and P1 receives output a, b.

2. P1 sends x⊕ a to P0 and sets its final share to b.
3. P0 sets its share to π(x⊕ a)⊕∆. Note that this is equal to π(x)⊕ π(a)⊕
π(a) ⊕ b = π(x) ⊕ b, and therefore the parties indeed obtain secret-shared
π(x).

In other words, share translation function ∆ allows P0 to translate “shares
of x under a” into “shares of permuted x under b”; hence the name.

Note that the Share Translation protocol can be viewed as a variant of Per-
mute+Share protocol, with a difference that the “data” which is being permuted
and shared is pseudorandom and out of parties’ control (i.e. it is chosen by the
protocol): indeed, in Share Translation protocol P1 receives the “pseudorandom
data” a, and in addition P0 and P1 receive ∆ = π(a) ⊕ b and b, respectively,
which can be thought of as shares of π(a) using mask b. In other words, we
reduced the problem of permuting the fixed data x to the problem of permut-
ing some pseudorandom, out-of-control data a. In the following paragraphs we
explain how we can exploit pseudorandomness of a and b to build Share Trans-
lation protocol with reduced communication complexity.

Building Share Translation from Oblivious Punctured Vector. We start with
defining Oblivious Punctured Vector protocol (OPV): this protocol, on input
j ∈ [N ] from P0, allows parties to jointly generate vector v with random-looking
elements such that:

– P0 learns all vector elements except for its j-th element v[j];
– P1 learns the whole vector v (but doesn’t learn index j)3.

This protocol can be used to build Share Translation protocol as follows: the
parties are going to run N executions of OPV protocol to generate N vectors
v1, . . . ,vN , where P0’s input in execution i is π(i). Consider an N ×N matrix
{vi[j]}i,j∈N2 . By the properties of OPV protocol, P1 learns the whole matrix,
and P0 learns the matrix except for elements corresponding to the permutation,
i.e. it learns nothing about v1[π(1)], . . . ,vN [π(N)] (see fig. 1).

2 More precisely, P1 shouldn’t learn anything about π, and P0 shouldn’t learn a, b,
except for what is revealed by π and ∆ (note that it still learns, e.g., aπ(1) ⊕ b1).

3 Note that this is very similar to 1-out of-N OT - except that j specifies which
element P0 doesn’t learn - and in fact is almost the same as N − 1-out of-N OT.
The difference is that in our primitive vector v is pseudorandom and given by the
protocol to the parties (rather than chosen by the sender as in standard OT). We
use this fact to save on communication.
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b[j] is set as XOR of row j → 

a[i] is set as XOR of column i 

→
 

𝜟[i] is set as XOR of elements 
of row i and column 𝛑(i).  

→
 

→ 

Fig. 1. (left) P0 receives a “punctured” matrix, which is missing elements at positions
(i, π(i)). Note that the missing elements are not needed to compute ∆. (right) P1

receives the full matrix and uses it to compute masks a, b.

Then P1 sets elements of a, b to be column- and row-wise sums of the ma-
trix elements, i.e. for all i ∈ N it sets a[i] ←

⊕
j

vj [i], and for all j ∈ N it

sets b[j] ←
⊕
i

vj [i]. P0 computes ∆[i] by taking the the sum of column π(i)

(except the element vi[π(i)] which it doesn’t know) and adding the sum of
row i (again, except the element vi[π(i)] which it doesn’t know), i.e. it sets

∆[i]←

(⊕
j 6=i
vj [π(i)]

)
⊕

( ⊕
j 6=π(i)

vi[j]

)
.

Correctness of this protocol can be immediately verified: indeed, each∆[i] =
a[π(i)]⊕b[i], since the missing value vi[π(i)] participates in the sum a[π(i)]⊕b[i]
twice and therefore doesn’t influence the result. For security, note that P0 doesn’t
learn anything about a, b (except for ∆), since it is missing exactly one element
from each row and column of the matrix; the missing element acts as a one-
time pad and hides each a[i], b[j] from P0. P1 doesn’t learn anything about the
permutation π due to index hiding of the OPV protocol.

Note that this protocol has running time proportional to N2.

Building Oblivious Punctured Vector from OT and PRFs. While OPV could be
readily implemented using N −1-out of-N OT, we will make use of the fact that
the vector v is pseudorandom to reduce communication complexity to logN
1-out of-2 OTs.

In the beginning of the protocol P1 computes v by choosing key for
GGM PRF at random, denoted seedε, and setting each v[i] ← PRF (seedε; i),
i ∈ [N ]. Recall that in GGM construction the key is treated as a prg seed,
which implicitly defines a binary tree with leaves containing PRF evaluations
F (1), F (2), . . . , F (N). In other words, we set vector v to contain values at the
leaves of the tree.

Let P0’s input in the OPV protocol be j. This means that P0 should learn
leaves F (i), i 6= j, as a result of the protocol. This can be done as follows. Let
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us denote internal seeds in the tree by {seedγ}, where γ is a string describing
the position of the note in the tree (in particular, at the root γ = ε, an empty
string). Let’s assume for concreteness that the first bit of j is 1. The parties are
going to run 1-out of-2 OT protocol, where P0’s input is the complement of the
first bit of j, i.e. 0, and P1’s inputs are seed0, seed1. This allows P0 to recover
seed0 and therefore to locally compute the left half of the tree, i.e. all values
F (1), . . . , F (N/2), and corresponding intermediate seeds.

Next, assume the second bit of j is 0. Note that the parties could run 1-out
of-4 OT to let P0 learn seed11 and therefore locally compute the right quarter of
the tree F (3N/4), . . . , F (N), then run 1-out of-8 OT and so on. However, this
approach would require eventually sending 1-out of N OT, which defeats our
initial purpose of having logN 1-out of-2 OTs only.

Instead, we let P0 learn seed11 in a different way: we let P1 send only two
values, via 1-out of 2-OT: the first value is the sum of seeds which are left
children, i.e. seed00 ⊕ seed10, and the second value is the sum of seeds which
are right children, i.e. seed01 ⊕ seed11. Since P0 already knows the whole left
subtree and in particular seed00 and seed01, it can receive seed01 ⊕ seed11 from
the OT protocol and add seed01 to it to obtain seed11. We note that this idea of
sending the sums of left and right children was inspired by a similar technique
by Doerner and Shelat [4] in the context of optimizing function secret sharing.

More generally, the parties execute logN 1-out of-2 OTs - one for each level
of the tree - where at each level k the first input to OT is the sum of all odd
seeds at that level, and the second input to OT is the sum of all even seeds at
that level. It can be seen that each sum contains exactly one term which P0

doesn’t know yet, and therefore it can receive the appropriate sum (depending
on the k-th bit of j) and subtract other seeds from it to learn the next seed of
the subtree. Note that these OT’s can be executed in parallel.

Note that the running time of the parties is proportional to the vector size,
but their communication size only depends on its logarithm.

Achieving simulation-based definition. We note that the protocols we described
so far only achieve indistinguishability-based definition, but not simulation-based
definition. To see where the problem lies, assume our Permute+Share protocol is
used as a subroutine in a larger protocol, and let’s try to simulate this execution.
Suppose the simulator of the larger protocol came up with simulated shares y, z,
and now we need to simulate the internal state of parties in Permute+Share
, given y, z as the output of the protocol. This task however is problematic:
indeed, recall that each element z[i] is a sum of pseudorandom values, which
are the leaves of the GGM PRF tree. Since P1 knows the whole tree, including
its root, this means that the simulator, given some element z[i], has to come
up with a root of the GGM tree such that its leaves sum up to z[i], in order to
simulate P1’s state. However, finding such a root is hard by security of the PRF,
even if it exists.

To achieve simulation-based definition, we slightly modify the original Per-
mute+Share protocol as follows: we additionally instruct P1 to sample random
string w of the size of the database and send it to P0, together with x⊕a. Then
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P0 should set its share to be π(x⊕ a)⊕∆⊕w, and P1 should set its share to
be b⊕w. In other words, P1 should additionally secret-share its vector b using
random w. Such a protocol can be simulated by a simulator who executes Share
Translation protocol honestly (obtaining some a′, b′,∆′) and then sets simulated
w to be z ⊕ b′ (where z is the output of Permute+Share protocol simulated by
an external simulator)

Our final protocol. Recall that, while communication complexity in our proto-
col is low, computation complexity is proportional to the size of the database
squared, and thus can be prohibitively high for large database size. To deal with
this issue, we consider a “merge” of previously described Permute+Share protocol
and permutation-network based approach. The idea is to split the permutation π
into a composition of multiple permutations π1◦. . .◦πd, such that each πi is itself
a composition of several disjoint permutations, each acting on T elements, for
some parameter T . Such a decomposition can be found using a special structure
of Bene’s permutation network. For instance, for T = 4 and 8-element network,
note that in the first layer x000 and x100 may get swapped, as well as x010 and
x110, and that in the second layer x000 and x010 may get swapped, as well as
x100 and x110; this means that in the first two layers a 4-element permutation is
applied to elements x000, x010, x100, x110 (fig. 1.2). Note that, this is an illustra-
tive example that is instructive to build the intuition, the actual decomposition
is shown in Section 5.3.

B

C

D

BA

BA

x000

x001
x010
x011
x100

x101
x110
x111

Fig. 2. The initial part of the Benes permu-
tation network for 8 elements. Note that the
first two layers could be replaced by two 4-
elements disjoint permutations: one acting
on white elements and the other acting on
black elements.

With such a decomposition in
place, parties can run parallel exe-
cutions of Share Translation proto-
cols, each acting on domain of size
T . Note that, since the running time
of a single Share Translation is pro-
portional to the domain size squared,
it is better to run N/T protocols of
size T each, rather than a single pro-
tocol on domain size N . Concretely,
our experiments show that the best
efficiency is achieved for T =

√
N .

Note that setting T = N corresponds
to our simplified Permute+Share pro-
tocol described before, and setting
T = 2 results in essentially computing
the permutation network, where each
swap is implemented in a somewhat-
complicated way, using Share Trans-
lation protocol. Thus, this scheme can
be thought of as a golden middle be-
tween the two approaches.

It remains to note that parties can
run all executions of Share Transla-
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tion protocol in parallel (as opposed to taking multiple rounds, following the
layered structure of the permutation network). To achieve this, in all execution
except for the first ones, P1 instead of sending initial masked data x⊕a should
send correction vector anew ⊕ bold, which can be added to the shares of P0 in
order to obtain x⊕ anew. We refer the reader to Section 5.3 for more details.

2 Notations
We denote the security parameter as λ. the bit length of each element in the input
set is `, ` = poly(λ). We denote and upper bound on the size of the database as
N . Ideal functionality is denoted as F . We will denote vectors with bold fonts
and individual elements with indices. For example, v is a vector of N elements
where each individual element is denoted at vi. ←$ denotes selected uniformly
at random from a domain. By SN we denote the group of all permutations on
N elements.

We also make use of the following notation:

Exec: Let Π be a two-party protocol. By (output0, output1) ←
execΠ(λ;x0, x1; r0, r1) we denote the concatenated outputs of all par-
ties after the execution of the protocol Π with security parameter λ on
inputs x0, x1 using randomness r0, r1.

View: Let Π be a two-party protocol. By viewΠb (λ;x0, x1; r0, r1) we denote the
view of party b when parties P0 and P1 run the protocol Π with security
parameter λ on inputs x0, x1 using randomness r0, r1. The view of each party
includes its inputs, random coins, all messages it receives, and its outputs.
When the context is clear, we also write viewb for short.

Honest-but-curious security for a 2PC: Honest-but-curious security for a 2PC
protocol Π evaluating function F is defined in terms of the following two exper-
iments:

IDEALFsim,b(λ, x0, x1) evaluates F(x0, x1) to obtain output (y0, y1) runs the
stateful simulator sim(1λ, b, xb, yb) which produces a simulated view viewb
for party Pb. The output of the experiment is (viewb, y1−b).

REALΠb (λ, x0, x1) runs the protocol with security parameter λ between honest
parties P0 with input x0 and P1 with input x1 who obtain outputs y0, y1
respectively. It outputs (viewb, y1−b).

Definition 1. Protocol Π realizes F in the honest-but-curious setting if there
exists a simulator sim such that for all inputs x0, x1, and corrupt parties b ∈
{0, 1} the two experiments are indistinguishable.

Pseudo Random Generator Let G : {0, 1}m → {0, 1}l, l ≥ m be a PRG. The
security definition of a PRG is the following. G is a PRG if the following distri-
butions are computationally indistinguishable:

D1 = {s← {0, 1}m : G(s)},D2 = {x← {0, 1}l : x}
When l = 2m, we call this a length doubling PRG.
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Oblivious Transfer (OT) OT is a secure 2-party protocol that realizes the func-
tionality FOT : ((str0, str1), b) = (⊥, strb) where str0, str1 ∈ {0, 1}k, b ∈ {0, 1}.

3 Oblivious Punctured Vector (OPV)

3.1 Definition and Security Properties

An Oblivious Punctured Vector (OPV) for domain D is an interactive protocol
between two parties, P0 and P1, where parties’ inputs are ((1λ, n), (1λ, n, i)) and
their outputs are (v0,v1), respectively. Here λ is the security parameter that
determines the running time of the protocol, vb, b ∈ {0, 1} are vectors of length
n, i ∈ [n] and vb ∈ [D]n.

This protocol lets the two parties jointly generate vector v with random-
looking elements such that: 1) P0 learns the whole vector v but doesn’t learn
index i. 2) P1 learns all vector elements except for its i-th element v[i]. So we
define the protocol to be correct if v1[j] = v0[j] ∀j 6= i.

To capture the first property, we want to say that an adversarial P0, who is
given two distinct indies i, i′ ∈ [n], i 6= i′ and participates in two executions of
the protocol, one where party P1 holds i, and the other, where P1 holds i′, cannot
tell the two executions apart. We call this property Position hiding. To capture
the second property, we want to say that an adversarial P1, who, in addition to
its view in the protocol execution, receives the vector v0, cannot differentiate
between the two cases: when v0 is generated according to exec and when v0
is generated according to exec, then v0[i] is replaced a random string from the
domain. We call this security property Value hiding. We define the properties
formally below.

Correctness For any sufficiently large security parameter λ ∈ N, for any n ∈
N, i ∈ [n], if (v0,v1) ← execOPV((λn), (λ, n, i)) and vb ∈ [D]n, b ∈ {0, 1}, then
v1[j] = v0[j] ∀j 6= i.

Position hiding For any any sufficiently large security parameter λ ∈ N, n ∈
N, i, i′ ∈ [n], the following distributions are computationally indistinguishable:

D1 = {(v0,v1)← execOPV((1λ, n), (1λ, n, i)) : (1λ, n, i, i′, view0)}
D2 = {(v0,v1)← execOPV((1λ, n), (1λ, n, i′)) : (1λ, n, i, i′, view0)}

Value hiding For any any sufficiently large security parameter λ ∈ N, for any
n ∈ N, i ∈ [n], the following distributions are computationally indistinguishable:

D1 = {(v0,v1)← execOPV((1λ, n), (1λ, n, i)) : (1λ, n, i,v0, view1)}
D2 = {((v0,v1)← execOPV((1λ, n), (1λ, n, i)),v0[i] := r where r ←$ D :

(1λ, n, i,v0, view1)}}
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3.2 Construction

To implement a OPV protocol for a domain D, we first define two algorithms as
follows.

Setup(1λ, n, i)→ (s0, s1): Setup is a PPT algorithm, that, given a security pa-
rameter λ, a vector length n and an index i ∈ [n], outputs a pair of seeds
(s0, s1), where s0, s1 ∈ {0, 1}poly(λ) and s1 includes i.

Expand(b, sb)→ (vb): Expand is a polynomial time algorithm that, given a party
index b ∈ {0, 1} and a seed sb, outputs a vector vb of length n, vb ∈ [D]n.

We implement the algorithms as follows. First we give a 2 party protocol
OblivSetup that realizes the functionality F[D]((λ, n), (λ, n, i)) = Setup(1λ, n, i).
We fix our domain D to strings of length λ, i.e., {0, 1}λ. Then we give the
construction for Expand which P0 and P1 run non-interactively.

Given an OPV for D of strings of length λ, we can build an OPV for domain D′,
where D′ is strings of length l ≥ λ, in a blackbox way. We give this construction
in Section 3.3.

G Length doubling PRG
i = σ1σ2 . . . σlog n binary representation of input index i
l = k1k2, . . . kj j-bit binary representation of l

xj,l lth node from the left at level j in the tree, where l ∈ [0, 2j − 1], j ∈ [1, log n]
Table 1. Notations

Setup:

– Pick seedε ← {0, 1}m. Let seed0 ◦ seed1 ← G(seedε).
– For l = 1, . . . , log n− 1 : seedσ1...σl0 ◦ seedσ1...σl1 ← G(seedσ1...σl).
– Set s0 := (n, seedε), s1 := (n, i, seedσ1

, seedσ1σ2
, . . . , seedσ1σ2...σlog n

) and
output (s0, s1).

OblivSetup: Let us assume both parties hold an implicit full binary tree
and the levels of the tree are numbered as follows: root is at level 0 and leaves
are at level log n. The protocol proceeds as follows:

1. Party P0 picks seedε ← {0, 1}λ.
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2. For j = 1, . . . , log n: do the following:

{xj,2l ◦ xj,2l+1}l∈[0,2j−1−1] ← {G(xj−1,l)}l∈[0,2j−1−1]

strj,0 ←−
⊕

l∈[0,2j−1−1]

xj,2l, strj,1 ←−
⊕

l∈[1,2j−1−1]

xj,2l+1

Note that xj,l = seedk1k2,...kj .
3. For j = 1, . . . , log n: P0 and P1 run OT : ((strj,0, strj,1), σj) = (⊥, strj,σj ).
4. At the end of the OT phase P1 locally expands the strings it received

through OT to compute seedσ1
, seedσ1σ2

, . . . , seedσ1σ2...σlog n
. The expan-

sion works as follow. For j = 1, . . . , log n: P1 has received, through the
OT, strj,σj . Note that strj,σj contains seedσ1σ2...σlog j

and P1 can take
off the extra terms by expanding the 2j−1 − 1 seeds from the previous
levels. More concretely,

seedσ1σ2...σj ← strj,σj⊕
k1,k2,...,kj−1∈{0,1},kj=σj∧k1k2...kj−1 6=σ1σ2...σj−1

seedk1k2...kj

5. At the end of this step, P1 outputs s0 := (n, seedε) and P1 outputs
s1 := (n, i, seedσ1

, seedσ1σ2
, . . . , seedσ1σ2...σlog n

).

Expand: For party b, construct vb as follows.

b = 0: Parse s0 as (n, seedε). Compute seed0 ◦ seed1 ← G(seedε).
For j = 1, . . . , log n: do the following: seedk1k2...kj−1kj◦seedk1k2...kj−1kj

←
G(seedk1k2...kj−1) for k1, . . . , kj ∈ {0, 1}.
For t ∈ [1, n], set v0[t] := seedk1k2...klog n

where t = k1k2 . . . klog n, i.e., the
binary representation of t.

b = 1: Parse s1 as (n, i = σ1 . . . σlog n, seedσ1
, seedσ1σ2

, . . . , seedσ1σ2...σlog n
).

For j = 2 . . . , log n, expand each of the seeds as follows:
seedk1k2...kj−1kj ◦ seedk1k2...kj−1kj

← G(seedk1k2...kj−1) for k1, . . . , kj ∈
{0, 1} ∧ k1k2 . . . kj−1 6= σ1σ2 . . . σj−1.
For t ∈ [1, n] ∧ t 6= i, set v1[t] := seedk1k2...klog n

where t = k1k2 . . . klog n,
i.e., the binary representation of t. Set v1[i] = ⊥.

Security Proof Correctness OPV according to Def 3.1 follows from the correctness
of OT protocols. Now we will prove that our construction satisfies both position
and value hiding. In order to prove that, we first prove some helper theorems.
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Theorem 1. OblivSetup securely realizes the ideal functionality
F[D]((n), (n, i)) = Setup(1λ, n, i) = (s0, s1) as per Definition 1.

Proof. We first construct a simulator that works as follows:
If b = 0 (i.e. P0 is corrupt): sim(1λ, 0, n, s0) will parse s0 as n, seedε. Then

it will run the protocol steps to generate strj,0, strj,1 for j = 1, . . . , log n and
simulate the view from the OTs with simOT(1λ, 0, (strj,0, strj,1),⊥).

If b = 1 (i.e. P1 is corrupt): sim(1λ, 1, (n, i), s1) will parse i as i = σ1σ2 . . . σlog n

and s1 as (n, i, seedσ1
, seedσ1σ2

, . . . , seedσ1σ2...σlog n
). It will simulate the view from

the OTs with simOT(1λ, 1, σj , str
j,σj ), where it generates strj,σj as follows:

seedk1k2...kj−1kj ◦ seedk1k2...kj−1kj
← G(seedk1k2...kj−1

)

for k1, . . . , kj ∈ {0, 1} ∧ k1k2 . . . kj−1 6= σ1σ2 . . . σj−1.

strj,σj ← seedσ1σ2...σj

⊕
k1,k2,...,kj−1∈{0,1},kj=σj∧k1k2...kj−1 6=σ1σ2...σj−1

seedk1k2...kj

We show that this simulator produces an ideal experiment that is indistin-
guishable from the real experiment. We start with the case where b = 0 and
show this through a series of games:

We define Game k as the following: In Game k, run the OT simulator
simOT(1λ, 0, (strj,0, strj,1),⊥) for j = 0, . . . , k and for j = k + 1, . . . , log n, run
the OT protocol. Notice that Game 0 is identical to the real experiment and
Game log n is identical to the ideal experiment. Now, Games k and k + 1 are
computationally indistinguishable by the security of the OT protocol. Therefore
for b = 0 the simulator produces an ideal experiment that is computationally
indistinguishable from the real experiment.

Now we look at the case where b = 1 and proceed though a series of games as
before. In Game k, run the OT simulator simOT(1λ, 1, σj , str

j,σj ) for j = 0, . . . , k
and for j = k+1, . . . , log n, run the OT protocol. Notice that Game 0 is identical
to the real experiment and Game log n is identical to the ideal experiment. Games
k and k + 1 are computationally indistinguishable by the security of the OT
protocol. Therefore for b = 1 the simulator produces an ideal experiment that is
computationally indistinguishable from the real experiment.

Theorem 2. Our scheme satisfies the following property: for any n ∈ N, i, i′ ∈
[n], the following distributions are computationally indistinguishable:

D1 = {(s0, s1)← Setup(1λ, n, i) : (1λ, n, i, i′, s0)}
D2 = {(s0, s1)← Setup(1λ, n, i′) : (1λ, n, i, i′, s0)}
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Proof. Since the seed s0 = (n, seedε ←$ {0, 1}λ), it does not depend on i. Hence
the two distributions are identical.

Theorem 3. Our construction satisfies the following property: for any n ∈
N, i ∈ [n], the following distributions are computationally indistinguishable:

D1 = {(s0, s1)← Setup(1λ, n, i),v0 ← Expand(0, s0) : (1
λ, n, i,v0, s1)}

D2 = {(s0, s1)← Setup(1λ, n, i),v1 ← Expand(1, s1),

v0[j] := v1[j] ∀j 6= i,v0[i] := r where r ←$ D : (1λ, n, i,v0, s1)}

Proof. We show that the two distributions are computationally indistinguishable
through a series of distributions defined as follows:

H0: D1 = {(s0, s1)← Setup(1λ, n, i),v0 ← Expand(0, s0) : (1
λ, n, i,v0, s1)}

H1: Identical to the previous distribution except the following: In Setup, instead
of generating seedε, set seedσ1 , seedσ1 ←$ {0, 1}λ. Run the rest of the protocol
steps to generate all the leaves, set v0 and s1.

Hk: Identical to the previous distribution except the following: In setup, set
seedσ1...σk , seedσ1...σk ←$ {0, 1}λ for k = 2, . . . , log n. Run the rest of the
protocol steps to generate all the leaves, set v0 and s1.

H ′log n: Identical to Hlog n except the following. Instead of generating v0, run
Expand(1, s1) to generate v1, set v0[i]←$ {0, 1}λ.

By the security of PRG, distributions Hk, Hk+1 are identical for k =
1, . . . , log n. Finally, distributions Hlog n and H ′log n are identical.

Now we define another series of hybrid distributions as follows:

Glog n: This distribution is identical to H ′log n except the following: compute
seedσ1...σlog n−1

←$ {0, 1}λ

seedσ1...σlog n
◦ seedσ1...log n ← G(seedσ1...σlog n−1

)

. Then replace seedσ1...σlog n
←$ {0, 1}λ.

Gk: This distribution is identical to the previous, except the following: For k =
log n− 1, . . . , 1: Instead of setting seedσ1...σk , seedσ1...k

←$ {0, 1}λ, compute
seedσ1...σk−1

←$ {0, 1}λ

seedσ1...σk ◦ seedσ1...k
← G(seedσ1...σk−1

)

G0: This distribution is identical to the previous, except the following: Instead of
generating seedσ1

, seedσ1
←$ {0, 1}λ, generate seedε ←$ {0, 1}λ and set

seedσ1
◦ seedσ1

← G(seedε)

This distribution is identical to D2.
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For k = 0, . . . , log n, distributions Gk and Gk+1 are computationally indis-
tinguishable from the security of PRG. It remains to show that H ′log n and Glog n

are computationally indistinguishable as well.
To show this, we show that if there is a PPT distinguisher D that distin-

guishes H ′log n and Glog n with non-negligible probability, then we can use D to
build a PPT distinguisher A that breaks PRG security with same advantage.
A does the following: on input w1 ◦ w2 ∈ {0, 1}2λ, chooses w′1 ←$ {0, 1}λ and
runs D with w′1 ◦ w2. If w1 ◦ w2 ←$ {0, 1}2λ, then D exactly simulates game
H ′log n, otherwise it simulates game Glog n. Now if D can distinguish H ′log n and
Glog n, then A can distinguish whether w1 ◦w2 is the output of a PRG or a truly
random string immediately with the same advantage as D. Hence, H ′log n and
Glog n are computationally indistinguishable.

Now we are ready to prove the main theorem.

Theorem 4. Our construction satisfies position and value hiding as defined in
Definition 3.1.

Proof. Since our protocol satisfies Theorem 1 and Theorem 2, it implies that
our construction satisfies position hiding. Since our protocol satisfies Theorem 1
and Theorem 3, it implies that our construction satisfies value hiding.

3.3 OPV construction for longer strings

Let OPVD denote the interactive protocol between two parties, P0 and P1, where
parties’ inputs are ((1λ, n), (1λ, n, i)) and their outputs are (v0,v1), where vb ∈
[D]n and D is strings of length λ. We construct OPVD′ where D′ is strings of
length l ≥ λ using OPVD and a PRG G : {0, 1}λ → {0, 1}l as follows.
– Run (v0,v1)← execOPVD((1λ, n), (1λ, n, i)
– Party Pb, b ∈ {0, 1} does the following: for each vb[j], j ∈ [1, n], expand it to

a l-bit string using G(vb[j]), i.e., v′b[j]← G(vb[j]). Pb’s output is v′b.

Theorem 5. If OPVD satisfies correctness, position and value hiding as defined
in Definition 3.1, and G is a secure PRG, then our construction for OPV′D sat-
isfies correctness, position and value hiding as well.

Proof. Correctness: By the correctness of OPVD, v0[j] = v1[j], ∀j 6= i. There-
fore, by our construction, v′0[j] = v′1[j], ∀j 6= i.

Position hiding: For the sake of contradiction, suppose not. Then, there exists
a distinguisher D that breaks the position hiding property of OPVD′ . We
use D to build a distinguisher A that breaks the position hiding property of
OPVD as follows. A receives (1λ, n, i, i′, viewOPVD

0 ) as input, where viewOPVD
0

contains v0. For every v0[j], j ∈ [1, n], A computes v′0[j] = G(v0[j]). Then it
constructs view

OPVD′
0 , which is viewOPVD

0 , augmented with v′0[j]. A forwards
(1λ, n, i, i′, view

OPVD′
0 ) to D. Thus, A directly inherits the success probability D.
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Value hiding: Recall that we are trying to prove the following two distributions
are computationally indistinguishable.

D1 = {(v′0,v′1)← execOPVD′ ((1λ, n), (1λ, n, i)) : (1λ, n, i,v′0, view
OPVD′
1 )}

D2 = {((v′0,v′1)← execOPVD′ ((1λ, n), (1λ, n, i)),v′0[i] := r where r ←$ D′ :

(1λ, n, i,v′0, view
OPVD′
1 )}

The proof will proceed through a series of hybrid steps, as in the proof of
Theorem 3. We define a series of distributions as follows.
H0: D1 = {(v′0,v′1)← execOPVD′ ((1λ, n), (1λ, n, i)) : (1λ, n, i,v′0, view

OPVD′
1 )}

H1: Identical to the previous distribution except the following: generate
(v0,v1) ← execOPVD((1λ, n), (1λ, n, i)), then set v0[i] := r where r ←$ D
and set v′0[i]← G(v′0[i]). By the value-hiding property of OPVD, H0, H1 are
identical.

H2: Identical to the previous distribution except the following: instead of com-
puting v′0[i] ← G(v′0[i]), set v′0[i] := r′ where r′ ←$ D′. By the security
property of PRG, H1, H2 are identical. Note that distribution H2 is identi-
cal to D2. So this concludes the proof of value hiding. ut

4 Share Translation Protocol
4.1 Definition

Share Translation (ST) protocol with parameters (N, `) is an interactive proto-
col between two parties, P0 and P1, where parties’ inputs are (π,⊥) and their
outputs are (∆, (a, b)), respectively. Here π is a permutation on N elements,
and ∆,a, b are all vectors of N elements, where each element has size `. The
protocol should satisfy the following correctness and security guarantees:

Correctness: For each sufficiently large security parameter λ, for each π ∈ SN ,
and for each r0, r1 of appropriate length, let (∆, (a, b))← execST(λ;π,⊥; r0, r1).
Then it should hold that ∆ = b− π(a).

This definition can be modified in a straightforward way for statistical or
computational correctness.

Permutation hiding: For all sufficiently large λ it should hold that for all π, π′ ∈
SN ,

viewST
1 (λ;π,⊥; r0, r1) ≈ viewST

1 (λ;π′,⊥; r0, r1),

where indistinguishability holds over uniformly chosen r0, r1.

Share hiding: For all sufficiently large λ it should hold that for any π ∈ SN ,

(a, b, viewST
0 (λ;π,⊥; r0, r1)) ≈ (a′, b′, viewST

0 (λ;π,⊥; r0, r1)),

where (∆,a, b) = execST(λ;π,⊥; r0, r1), a′ ←$ [2`]N , b′ = ∆ + π(a′), and
indistinguishability holds over uniformly chosen r0, r1.
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4.2 Construction

We build Share Translation protocol out of Oblivious Punctured Vector (OPV)
protocol. Let π be P0’s input in Share Translation protocol. The protocol pro-
ceeds as follows:

1. P0 and P1 run N executions of OPV protocol in parallel, where P0 uses π(i)
as its input in execution i, for i ∈ [N ]. Denote v′i,vi to be the outputs of the
OPV protocol in execution i, for parties P0 and P1, respectively, and denote
v′i[j],vi[j] to be j-th elements of these vectors.

2. For each i ∈ [N ] P0 sets ∆[i] ←
∑

j 6=π(i)
v′i[j] −

∑
j 6=i
v′j [π(i)]. It sets its output

to be ∆ = (∆[1], . . . ,∆[N ]).
3. For each i ∈ [N ] P1 sets bi ←

∑
j

vi[j], ai ←
∑
j

vj [i]. It sets (a, b) as its

output, where a = (a[1], . . . ,a[N ]), b = (b[1], . . . , b[N ]).

Theorem 6. The construction described above satisfies correctness, permuta-
tion hiding and share hiding, assuming underlying OPV protocol satisfies cor-
rectness, value hiding and position hiding.

Correctness. For any i ∈ [N ] we have

∆i =
∑
j 6=π(i)

v′i[j]−
∑
j 6=i

v′j [π(i)]
(1)
=

∑
j 6=π(i)

vi[j]−
∑
j 6=i

vj [π(i)]
(2)
=

(2)
=
∑
j∈[N ]

vi[j]−
∑
j∈[N ]

vj [π(i)] = bi − aπ(i).

Here (1) follows from correctness of the OPV protocol, and (2) holds since
we add and subtract the same value vi[π(i)]. Note that computationally (resp.,
statistically, perfectly) correct OPV protocol results in computationally (resp.,
statistically, perfectly) correct ST protocol.

Permutation hiding. Recall that we need to show that for all π1, π2 ∈ SN ,

viewST
1 (λ;π,⊥; r0, r1) ≈ viewST

1 (λ;π′,⊥; r0, r1).

We show this indistinguishability in a sequence of hybrids H0, H1, . . . ,HN ,
where:

– H0 = viewST
1 (λ;π,⊥; r0, r1), for uniformly chosen r0, r1,

– HN = viewST
1 (λ;π′,⊥; r0, r1), for uniformly chosen r0, r1,

– For 1 ≤ i < N , Hi = view
(i)
1 (λ; (π, π′),⊥; r0, r1), where

view
(i)
1 (λ; (π, π′),⊥; r0, r1) is a view of P1 in the modified Share Translation

protocol where party P0 uses π′(j) as its input in OPV executions 1 ≤ j ≤ i
and π(j) as its input in OPV executions i < j ≤ N . r0, r1 are uniformly
chosen.
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We argue that for each 1 ≤ i ≤ N Hi ≈ Hi−1 due to position-hiding property
of the OPV protocol, and therefore H0 ≈ HN .

Indeed, note that the only difference between Hi and Hi−1 is that in i-
th execution of OPV party P0 uses input π′(i) instead of π(i). Therefore if
some PPT adversary distinguishes between Hi and Hi−1, then we break position
hiding of OPV as follows. Given the challenge in the OPV position hiding game
(π(i), π′(i), viewOPV

1 (λ;x,⊥; rOPV
0 , rOPV

1 )), where rOPV
0 , rOPV

1 are uniformly chosen
randomness of P0 and P1 in the OPV protocol, and viewOPV

1 is a view of P1

in OPV protocol (which uses randomness rOPV
0 , rOPV

1 and P0’s input x which is
either π(i) or π′(i)), we execute the rest N − 1 OPV protocols honestly using
uniform randomness for each party and setting P0’s input to π′(j) (for executions
j < i) and π(j) (for executions j > i). Let vj , j = 1, . . . , N , be the output of P1

in j-th execution of OPV.
We give the adversary P1’s view in all N OPV executions (including

viewOPV
1 (λ;x,⊥; rOPV

0 , rOPV
1 ) of i-th execution which we received as a challenge).

Depending on whether challenge input x was π(i) or π′(i), the distribution the
adversary sees is either Hi−1 or Hi. Therefore, if the adversary distinguishes
between the two distributions, we can break position hiding of OPV protocol
with the same success probability.

Share hiding. Recall that we need to show that for any π ∈ SN ,

(a, b, viewST
0 (λ;π,⊥; r0, r1)) ≈ (a′, b′, viewST

0 (λ;π,⊥; r0, r1)),

where a, b are true shares produced by the protocol, and a′, b′ are uniformly
random, subject to ∆ = b− π(a).

We show this indistinguishability in a sequence of hybrids H0, H1, . . . ,HN ,
where:

– H0 = (a, b, viewST
0 (λ;π,⊥; r0, r1)), for uniformly chosen r0, r1,

– HN = (a′, b′, viewST
0 (λ;π,⊥; r0, r1)), for uniformly chosen r0, r1,a′, and b′ =

∆+ π(a), where (∆,a, b) = execST(λ;π,⊥; r0, r1),
– Hi = (a(i), b(i), viewST

0 (λ;π,⊥; r0, r1)), where (∆,a, b) =
execST(λ;π,⊥; r0, r1) is the output of the Share Translation protocol for ran-
dom r1, r2, a(i) = (a

(i)
1 , . . . ,a

(i)
N ) is such that a(i)

j is uniformly chosen for
1 ≤ j ≤ i, a(i)

j = aj for i < j ≤ N , and b(i) = ∆+ π(a(i)).

We argue that for each 1 ≤ i ≤ N Hi ≈ Hi−1, by reducing it to value
hiding of OPV protocol. Indeed, note that the only difference between Hi and
Hi−1 is that a(i)

i is generated uniformly at random, rather then set to the true
output of the protocol. Therefore if some PPT adversary distinguishes between
Hi and Hi−1, then we break security of OPV as follows. Assume we are given the
challenge (vi, view

OPV
0 (λ;π(i),⊥; rOPV

0 , rOPV
1 )), where rOPV

0 , rOPV
1 are uniformly

chosen randomness of P0 and P1 in the OPV protocol, and viewOPV
0 is a view

of P0 in OPV protocol (which uses randomness rOPV
0 , rOPV

1 and P0’s input π(i)),
and challenge vi is either the true output of P1, or the output of P1 except
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that vi[π(i)] is set to a uniform value. We execute the rest N −1 OPV protocols
honestly using uniform randomness for each party and setting P0’s input to π(j),
for j 6= i. Let’s denote the outputs of each OPV execution j 6= i as (vj ,v′j).

Then we compute a(i), b(i) as follows:
– b(i)[k]←

∑
j

vk[j], for each k ∈ [N ],

– a(i)[k]←
∑
j

vj [k], for each k ∈ [N ],

Then we give the adversary a(i), b(i), and the views of party P0 in all N OPV
executions (including the challenge view viewOPV

0 (λ;π(i),⊥;
rOPV
0 , rOPV

1 ) of i-th execution). Depending on whether challenge vi[π(i)] was uni-
form or not, the distribution the adversary sees is either Hi−1 or Hi.

5 Permute and Share and Secret Shared Shuffle
Here we will abuse notation a bit and use π(x) for a permutation π and vector
x to mean the permutation which produces xπ(1), ..., xπ(N).

We will use the Share Translation scheme we presented in the previous scheme
to construct first a secure computation for permuting and secret sharing elements
where one party chooses the permutation and the other the elements, and then
a construction for a full secret shared shuffle.

5.1 Definitions
We consider the following functionality, which we call permute and share, in
which one party provides as input a permutation, and the other party provides
as input a set of elements, and the output is secret shares of the permuted
elements:

FPermute+Share[N,`](π,x) = (r, π(x)− r), where r ←$ [2`]N .

We can also consider the equivalent functionality when the permutation or
the initial database is secret shared as input. (Here we consider a secret sharing of
permutation π which consists of two permutations π0, π1 such that π = π0 ◦π1.)

Finally, we define the secret shared shuffle functionality:

FSecretSharedShuffle[N,`](x0,x1) = (r, π(x0 + x1)− r),

where r ←$ [2`]N and π is a random permutation over N elements.

5.2 Permutation networks
Before we describe our Permute+Share construction, we briefly review the Benes
permutation network for permutations on N = 2n elements.

The Benes network has 2 logN − 1 layers each with N/2 2-element permu-
tations (each is either an identity permutation or a swap). Any permutation on
N elements can be represented as a combination of these N/2 ∗ (2 logN − 1) 2
element permutations.

Specifically, if inputs are numbered with index 1...N where index i is ex-
pressed in binary as σ1...σn, then the ι layer and the 2 logN − ιth layer contain
permutations of pairs of elements with indices of the form σ1 . . . σι−10σι+1, . . . σn
and σ1 . . . σι−11σι+1, . . . σn.
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Larger subpermutations For our application, we note that we can divide this
network up into permutations on T = 2t bits each. The ith layer in this network
corresponds to layers it − (t − 1), . . . , it of the Benes network, where each per-
mutation is applied to a group of elements of the form σ1 . . . σi(t−1)xσit+1 . . . σn
where x includes all t- bit strings. Finally, we note that the center 2t− 1 layers
of the Benes network can be seen as a set of N/T permutations on T elements
each. Thus, the total number of layers will be d2n−tt e+ 1 = 2dnt e − 1.

So, given any permutation π, we can reformulate it into choices for each of
the 2-element permutations in the switching network, and then segment that
into d = 2dnt e − 1 layers of N/T T -element permutations. Call the resulting
composite N -element permutation for the ith layer πi, and call this π1 . . . πm
the T -subpermutation representation of π.

5.3 Permute + Share from Share Translation

Let ShareTransT be a protocol satisfying the definition in Section 4 for per-
mutations on T elements. We construct our permute and share protocol
Permute+ Share using the permutation network described above as follows.

1. P0 computes the T -subpermutation representation π1, . . . , πd of its input π.
2. For each layer i, the parties run N/T instances of ShareTransT , with P0

providing as input the N/T permutations making up πi. (Note that all of
these instances and layers can be run in parallel.) For each i, P1 obtains
a(i,1), . . . ,a(i,N/T ) and b(i,1), . . . , b(i,N/T ). Call the combined vectors a(i) and
b(i). Similarly, P0 obtains ∆(i,1), . . . ,∆(i,N/T ), which we will call ∆(i).

3. For each i, P1 computes δ(i) = a(i+1)−b(i) and sends it to P0. P1 also sends
m = x+ a(1), and samples and sends random w. P1 outputs b = w − b(d)

4. P0 computes ∆ =∆(d)+πd(δ
(d−1)+∆(d−1)+πd−1(δ

(d−2)+∆(d−2)+ ....+
π2(δ

(1) +∆(1)) and outputs π(m) +∆−w.

Theorem 7. The construction described above is a Permute+Share protocol se-
cure against static semi-honest corruptions.

Correctness By correctness of ShareTransT , for all i ∆(i) = b(i) − πi(a(i)). This
means that for all i, δ(i)+∆(i) = a(i+1)−b(i)+b(i)−πi(a(i)) = a(i+1)−πi(a(i)).

Thus, the final ∆ produced by P0 is

∆(d) + πd(δ
(d−1) +∆(d−1) + πd−1(δ

(d−2) +∆(d−2) + . . .+ π2(δ
(1) +∆(1))

=∆(d) + πd(a
(d) − πd−1(a(d−1)) + πd−1(a

(d−1) − πd−2(a(d−2)) + . . .+ π2(a
(2) − π1a(1))))

=∆(d) + πd(a
(d) − πd−1(. . . π2(π1a(1))))

=b(d) − πd(a(d)) + πd(a
(d) − πd−1(. . . π2(π1a(1))))

=b(d) − πd(πd−1(. . . π2(π1(a(1)))))

=b(d) − π(a(1))
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The output for P0, P1 is:

π(m) +∆−w, w − b(d)

=π(x+ a(1)) +∆−w, w − (∆+ π(a(1)))

=π(x) + π(a1)) +∆−w, −∆− π(a(1)) +w

If we let r = π(x)+π(a(1))+∆−w, we see that this has the correct distribution.

Security. Our simulator behaves as follows: If b = 0 (i.e. P0 is corrupt):
sim(1λ, 0, π,y0) will first generate the subpermutations for π as described
above, and then internally run all of the ShareTransT protocols to obtain
simulated view for P0 and a(1), . . . ,a(d), b(1), . . . , b(d). Let ∆(1), . . . ,∆(d) be
the corresponding values computed by P0 in these protocols. Choose random
δ(1), . . . , δ(d−1). It then computes ∆ as in step 4 of the protocol and sets
w = −y0 + π(m) + ∆. It outputs the views from the ShareTransT protocols
and the messages m,w, δ(1), . . . , δ(d).

If b = 1 (i.e. P1 is corrupt): sim(1λ, 1,x,y1) will pick random π′, compute
the subpermutations, internally run the ShareTransT protocols with these per-
mutations to obtain the views for P1, and compute b(d) from these runs as in
the real protocol. It will set the random tape w = y1 + b

(d). It outputs the view
from the ShareTransT protocols and the random tape w.

We show that this simulator produces an ideal experiment that is indistin-
guishable from the real experiment. We start with the case where b = 0 and
show this through a series of games:

Real Game : Runs the real experiment. The output is P0’s view (its input the
view0s from the Share Translation protocols and the messages m, w, and
δ(1), . . . , δ(d−1) it receives), and the honest P1’s input x and output w − b.

Game 1: As in the previous game except in step 2, compute∆(i) as b(i)−πi(a(i)

instead of through the ShareTransT protocols. This is identical by correctness
of Share Translation .

Game 2: As in the previous game except after step 2 for each i we sample
random a′(i) and compute b′(i) = πi(a

′(i))+∆(i), and then use these values
in place of a(i), b(i) in steps 3 and 4.
We can show that this is indistinguishable via a series of hybrids, where
in hybrid Hi, we use a′(j), b′(j) for the output of the first i ShareTransT
protocols and a(j), b(j) for the rest. Then Hi, Hi+1 are indistinguishable by
the share hiding property of ShareTransT .

Game 3: As above, but choose random m, δ(1), . . . , δ(d−1). Set a′(1) =m− x.
For i = 1 . . . d, compute b′(i) = πi(a

′(i)) + ∆(i) as above, and then set
a′

(i+1)
= δ(i) − b(i). Note that this is distributed identically to Game 2.

Game Simulated: The only difference between the simulated game and Game
3 is that in Game 3, w is chosen at random, and P1’s output is computed as
w−b′(d), while in Game Simulated, P1’s output is random r and w is set to
−y0 +π(m)+∆ = −(π(x)− r)+π(m)+∆ = π(a′

(1)
)+ r+∆ = b′

(d)
+ r

by construction of ∆. Thus, the two games are identical.
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We argue the case when b = 1 as follows:

Real Game : Runs the real experiment. The output is P1’s view (it’s input
x, view1 from the Share Translation protocol and the random string w it
chooses) and the honest P0’s input π and output π(m) +∆ −w where ∆
is as computed in step 4 of the protocol.

Game 1: As in the previous game, but P0’s output is π(x)+b(d)−w. Note that
π(x) + b(d) −w = π(x+ a(1)) + b(d) − π(a(1))−w = π(m) +∆−w where
a(1), b(d) are the values P1 obtains from the first and last layer ShareTranst
protocols.

Game 2: As in the previous game except run the ShareTransT protocols with
π′1, . . . , π

′
d derived from a random permutation π′.

We can show that this is indistinguishable via a series of hybrids, where
in hybrid Hi, we use the subpermutations derived from π′ for the first i
protocols, and the subpermutations derived from π for the rest. Then Hi, Hi+1

are indistinguishable by the permutation hiding property of ShareTransT .
Game Simulated: As in the previous game except choose random r and set

w = π(x)− r + b(d). This is identically distributed to Game 1 and identical
to the ideal experiment.

5.4 Secret Shared Shuffle from Permute+Share
The Secret Shared Shuffle protocol proceeds as follows:

0. P0 and P1 each choose a random permutation π0, π1 ← SN .
1. P0 and P1 run the Permute+Share protocol to apply π0 to x1, resulting in

shares x(1)
0 for P0 and x(1)

1 for P1.
2. P0 computes x(2)

0 = π0(x0) + x
(1)
0 .

3. P1 and P0 run the Permute+ Share protocol to apply π1 to x(2)
0 , resulting in

shares x(3)
1 for P1 and x(3)

0 for P0.
4. P1 computes x(4)

1 = π1(x
(1)
1 ) + x

(3)
1 .

5. P0 outputs x(3)
0 and P1 outputs x(4)

1 .

Correctness. The output for P0, P1 is:

x
(3)
0 , x

(4)
1

=x
(3)
0 , π1(x

(1)
1 ) + x

(3)
1

=π1(x
(2)
0 )− r(3), π1(x

(1)
1 ) + r(3)

=π1(π0(x0) + x
(1)
0 )− r(3), π1(x

(1)
1 ) + r(3)

=π1(π0(x0) + r
(1))− r(3), π1(π0(x1)− r(1)) + r(3)

=π1(π0(x0)) + π1(r
(1))− r(3), π1(π0(x1))− (π1(r

(1))− r(3))

Where r(1) and r(3) are the values generated by the first and second invocations
of Permute+Share . If we let r = π1(π0(x0))+π1(r

(1))− r(3) and π = π1 ◦π0 we
see that this has the correct distribution.
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Security. Our simulator behaves as follows:
If b = 0 (i.e. P0 is corrupt): sim(1λ, 0,x0,y0) will choose random π0,x

(1)
0 ,

set x(2)
0 = π0(x0) + x

(1)
0 , simulate the view from the first Permute+Share

with simPermute+Share(1λ, 0, π0,x
(1)
0 ), and simulate the view from the second Per-

mute+Share with simPermute+Share(1λ, 1,x
(2)
0 ,y0).

If b = 1 (i.e. P1 is corrupt): sim(1λ, 1,x1,y1) will choose random π1,x
(1)
1 ,

set x(3)
1 = y1 − π1(x

(1)
1 ), simulate the view from the first Permute+Share

with simPermute+Share(1λ, 1,x1,x
(1)
1 ), and simulate the view from the second Per-

mute+Share with simPermute+Share(1λ, 0, π1,x
(3)
1 ).

The analysis showing that this simulator satisfies the security definition is
straightforward and is deferred to the supplementary material.

6 Experimental Evaluation
In this section, we compare the solution for our Permute+ Share with public key
based solution and permutation network based solution. Recall Permute+ Share
primitive where party P0 starts with a permutation π and party P1 starts with
a input vector x. We define the domain of x, r to be {0, 1}L bit strings and
|x| = N . We first give the various solutions and then compare their performance
in terms of communication and computation. Throughout this section, we do
not report the cost of doing local XORs and base OTs since they are extremely
fast and the cost is negligible compared to the cost of the rest of the protocol.

6.1 Public Key Encryption (PKE) based solution

Permute+ Share can be implemented using a additively homomorphic public
key encryption scheme such as Paillier [22]. Another alternative to using Paillier
encryption, is to use El Gamal encryption [5] which provides multiplicative ho-
momorphism. But using El Gamal encryption will result in multiplicative shares
instead of additive and converting them to additive share introduces huge over-
head and quickly makes the scheme unfeasible. We discuss both approaches here.

Pailler encryption based solution: Before getting into the the Permute+ Share
construction, let us recall Pailler = (Gen,Enc,Dec)[22].
Key Generation: This algorithm consists of the following:

1. n = pq where p, q are two large primes of equal length.
2. Define φ(n) = (p− 1)(q − 1).
3. Set g = n+ 1 and µ = φ(n)−1 mod n
4. Set sk = (p, q) and pk = (n, g).

Encryption: Let m be a message to be encrypted where 0 ≤ m < n. Select
a random r where 0 < r < n and r ∈ Z∗n2 . Compute ciphertext c ← gmrn

mod n2. Let us denote this as c = [m]
Decryption: Given a ciphertext c < n2, compute

m← (L(cφ(n) mod n2) ∗ µ mod n) where L(u) = u−1
n for u = 1 mod n.

We will be using the following properties of Pailler in our construction:
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Homomorphism: The product of a ciphertext c with a plaintext m′ raising g
will decrypt to the sum of the corresponding plaintexts: Decrypt([m] · gm′

mod n2) = m+m′ mod n.
Ciphertext Randomization: To randomize a ciphertext c, pick a random r′

where 0 < r′ < n and compute c · r′n mod n2.

Now let us define the Permute+ Share protocol using Pailler. Let (sk, pk) be
P1’s encryption keys. In the following we denote the component wise Hadamard
product of two vectors a, b by a� b.

1. P1 sends encrypted vector x, denoted as c = [x] to P0.
2. P0 picks a vector of random elements r1 where each element e ∈ Z∗n2

and 0 < e < n and randomizes the ciphertexts c′ ← c� rn1 mod n2.
3. P0 permutes c′ to obtain b← [π(x)]
4. Then P0 picks another vector of random elements r2 where each element
e ∈ Z∗n2 is in 0 < e < n and computes b · g−r2 mod n2 and sends it
back to P1.

5. P0’s share is r2.
6. P1 decrypts [π(x)− r2] to receive π(x)− r2.

Cost: In this protocol, since every element of x has to be encrypted and the
encryption message space in defined to be Zn, therefore, each element has to
be broken into blocks of size n for this protocol. This implies P0 computes
N∗dL/ne encryptions and P1 computesN∗dL/ne ciphertext randomizations and
ciphertext with plaintext multiplications. The communication for this protocol
is N ∗ dL/ne ∗ 2n bits. The protocol is 1 round.

El Gamal encryption based solution: Typically, Pailler requires 4096 bit primes
for the modern standard of security, which is expensive. An alternate solution
will be to use El Gamal Encryption [5] which provides multiplicative homomor-
phism. So, if we were to implement the above scheme using El Gamal encryption,
P0, P1 will end up with multiplicative shares and will need to run a secure proto-
col (using Garbled Circuits) to convert from multiplicative to arithmetic shares.
El Gamal can be implemented on Elliptic Curves with gives small parameters,
typically, 256 bits. But this means, the multiplicative shares are Elliptic Curve
point shares; converting EC point shares to arithmetic shares inside a GC is pro-
hibitively expensive. Yet another solution will be to avoid using Elliptic Curves
and use large finite fields, but this will require large parameters, typically 2000
bits or more, which will result in multiplicative shares over large finite fields.
Converting them to arithmetic shares using a GC is also prohibitively expen-
sive. So we rule out the possibility of using El Gamal.

6.2 Fixed key Block Ciphers
The symmetric key based protocols (ours and the one described in [21]) rely
on two fundamental building blocks, namely, Oblivious Transfer extension
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(OTe) [15] and GGM PRG [9]. Typically, published OTe protocols are based on
a hash function that is modeled as a random oracle. However, in most of the re-
cent implementations, the hash function is instantiated, somewhat haphazardly,
using fixed key block ciphers (AES). In a recent work [12], the authors provided
a principled way of implementing [15] using fixed key AES and formally proved
that it is secure. The authors also propose that the length doubling PRG used in
GGM [9] can be implemented using fixed key AES for better efficiency, though
they do not prove it. Here, we first prove that it is safe to use this optimized
PRG construction [12] and then use it in our experiments. In our experiments,
we will also use the fixed-key AES based length extension technique for stretch-
ing short messages into longer ones (both for OTe and for OPV message length
extension) described in Section 6.1 in [12].

The optimized PRG construction is based on correlation-robust hash (CRH)
function [15, 12]. Roughly, the definition of CRH says thatH is correlation-robust
if the keyed function fR(x) = H(x⊕R) is pseudorandom, given R is sufficiently
random. Given a CRH H, the length doubling PRG is constructed as follows:
G(x) = H(1⊕ x) ◦H(2⊕ x). We give more details in Appendix A.1.

In our experiments, we will use the following concrete instantiation of
CRH [12]: H(x) = π(x) ⊕ x where π(.) is a fixed key block cipher, such as
AES.

6.3 OT extension costs

In our experiments, we simulate the cost of OT-extensions as follows. The cost
is reported in number of fixed-key AES calls for sender and receiver and com-
munication is reported in number of bits. For random OT’s on strings of length
l > k = 128 bits, we use IKNP OT-extension protocol with fixed-key AES opti-
mization [12].The cost form Random OTs on messages of length l bits are shown
in Table 6.3, where the 2ml/k for sender and ml/k for receiver is for extending
the random messages from k to l bits. We denote this functionality as ROTml .
For l = k, no message length extension is required (both for ROT and SOT).
Fixed message OT’s or standard OTs (SOT) are obtained from ROT by using
the ROT messages as one-time pads for the actual messages. So SOTml adds an
additional 2ml bits of communication over ROTml , i.e., the communication cost
of SOTml is m(k+2l) bits. There is no additional computation overhead (except
some additional XORs, which we ignore).

OT Sender Receiver Communication (bits)
ROTmk 3m 3m mk
ROTml 3m+ 2ml/k 3m+ml/k mk
SOTml 3m+ 2ml/k 3m+ml/k m(k + 2l)
SOTmk 3m 3m 3mk

6.4 Concrete Efficiency

In this section, we look at the concrete cost of our Permute+ Share protocol
whose construction and compare it with this concrete cost of the Permute+ Share
protocol of [21].
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Our protocol: The compute cost of our Permute+ Share protocol is the compute
cost of dN/T ShareTransT protocols, where d = 2dlogN/ log T e − 1. The com-
munication cost includes the cost of dN/T ShareTransT protocols + (d + 1)Nl
bits.

Each ShareTransT protocol requires SOTT log T
k and T 2(2 + l/k) local fixed

key AES calls (for both parties) which includes PRG calls in the GGM tree
and message length extension and for the underlying OPV protocol. There is no
additional communication over the cost of SOTT log T

k .

Protocol from [21]: This Permute+ Share requires SOT
N logN−N/2
2l and has an

additional 2Nl bits communication overhead.

Benchmark: We use the permute_block function in prp of [26] to benchmark the
cost of a single fixed key AES-ECB 128 on 128 blocks (since we set the security
parameter k = 128 for our experiments). To get this cost, we run fixed key AES
for multiple number of blocks (4096, 8192, 12288) to get the amortized cost of
a single AES. We repeat each experiment 100 times and the report the average
amortized cost of a single AES call (no significant variance was noticeable). For
estimating the cost of a single encryption and a single ciphertext randomization
(for the Paillier based protocol in Section 6.1 we use the RSA signing cost for
modulus of size 4096. We get this cost using the OpenSSL benchmark [6] by
running the command openssl speed. The cost we get are the following: AES-ECB
128: 3.5 ns, RSA 4096 signing 0.17s. All the benchmarks are run a Macbook Pro
2017 with a 3.1 GHz Intel core i-7 processor and 16GB of 2133MHz LPDDR3
RAM.

6.5 Performance Comparison

Now we will simulate the performance of the different constructions described
above. For this simulation, we experiment with two different database sizes,
N = 220 and N = 232 elements. We vary the lenth of each element in the
database from 640 bits to 64000 bits. This range of values is roughly inspired
from Machine Learning training applications which has 100s to 1000s of features
(with each feature represented by a 64 bit integer). We simulate the total run-
ning time on a WAN with bandwidth 9MB/s (we ignore the network latency
since all these protocols ate 1-1.5 rounds), WAN with identical bandwidth was
considered in [19] for experiments. These performance of our protocols are shown
in Figure 3-Figure 4. We see that we are 3 orders of faster compared to Paillier
based solution and one order of magnitude faster than [21].
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A Appendix

Here we show security of our secret shared shuffle protocol from section 5.4.

Security. Our simulator behaves as follows:
If b = 0 (i.e. P0 is corrupt): sim(1λ, 0,x0,y0) will choose random π0,x

(1)
0 ,

set x(2)
0 = π0(x0) + x

(1)
0 , simulate the view from the first Permute+Share

with simPermute+Share(1λ, 0, π0,x
(1)
0 ), and simulate the view from the second Per-

mute+Share with simPermute+Share(1λ, 1,x
(2)
0 ,y0).
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If b = 1 (i.e. P1 is corrupt): sim(1λ, 1,x1,y1) will choose random π1,x
(1)
1 ,

set x(3)
1 = y1 − π1(x

(1)
1 ), simulate the view from the first Permute+Share

with simPermute+Share(1λ, 1,x1,x
(1)
1 ), and simulate the view from the second Per-

mute+Share with simPermute+Share(1λ, 0, π1,x
(3)
1 ).

We show that this simulator produces an ideal experiment that is indistin-
guishable from the real experiment. We start with the case where b = 0 and
show this through a series of games:

Real Game : Runs the real experiment.

The output is P0’s view (its input x0, view
(1)
0 , view

(2)
0 from the two Per-

mute+Share protocols including the outputs x(1)
0 ,x

(3)
0 , and the honest P1’s

input x1 and output x(4)
1 = π1(x

(1)
1 ) + x

(3)
1

Game 1 : In step 1, first compute FPermute+Share(π0,x1), i.e. choose random r(1),
and set x(1)

0 = r(1) and x(1)
1 = π0(x1) − r(1). Then run the Permute+Share

simulator to generate the view view
(1)
0

′
for the first Permute+Share .

The output is P0’s view (its input x0, view
(1)
0

′
, view

(2)
0 from the two Per-

mute+Share protocols including its outputs from those protocols x(1)
0 = r(1)

and x(3)
0 ), and the honest P1’s input x1 and output x(4)

1 = π1(x
(1)
1 )+x

(3)
1 =

π1(π0(x1)− r(1)) + x(3)
1 .

This is indistinguishable by security of the Permute+Share protocol.

Game 2 : In step 3, first compute FPermute+Share(π1,x
(2)
0 ), i.e. choose random

r(3) and set x(3)
1 = r(3) and x(3)

0 = π1(x
(2)
0 ) − r(3). Then run the Per-

mute+Share simulator to generate the view view
(2)
0 for the second Per-

mute+Share .

The output is P0’s view (its input x0, view
(1)
0

′
, view

(2)
0

′
from the two Per-

mute+Share protocols including its outputs from those protocols x(1)
0 = r(1)

and x
(3)
0 = π1(x

(2)
0 ) − r(3)), and the honest P1’s input x1 and output

x
(4)
1 = π1(π0(x1)− r(1)) + x(3)

1 = π1(π0(x1)− r(1)) + r(3).

This is again indistinguishable by security of the Permute+Share protocol.

Game 3 : Choose random π, r,x
(1)
0 . Set π1 = π ◦ π−10 , r(1) = x

(1)
0 and r(3) =

π1(π0(x0)) + π1(r
(1))− r. Other than that, proceed as in Game 2.

The output is P0’s view (its input x0, view
(1)
0

′
, view

(2)
0

′
from the two Per-

mute+Share protocols including its outputs from those protocols x(1)
0 = r(1)

and x(3)
0 ), and the honest P1’s input x1 and output x(4)).
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This is identically distributed to Game 2. Note also that P1’s output in this
game is

x
(4)
1 =π1(x

(1)
1 ) + x

(3)
1

=π1(x
(1)
1 ) + π1(x

(2)
0 )− x(3)

0

=π1(x
(1)
1 ) + π1(π0(x0) + x

(1)
0 )− x(3)

0

=π1(π0(x1)− x(1)
0 ) + π1(π0(x0) + x

(1)
0 )− x(3)

0

=π1(π0(x1 + x0))− x(3)
0

=π(x1 + x0)− x(3)
0

Thus, this is identical to the ideal experiment.

Next, we turn to the case where b = 1.

Real Game : Runs the real experiment
Game 1 : In step 1, first compute FPermute+Share(π0,x1), i.e. choose random

x
(1)
0 , and then compute x(1)

1 = π0(x1)− x(1)
0 . Then run the Permute+Share

simulator to generate the view for the first Permute+Share . This is indis-
tinguishable by security of the Permute+Share protocol.

Game 2 : In step 3, first compute FPermute+Share(π1,x
(2)
0 ), i.e. choose random

x
(3)
1 , and then compute x(3)

0 = π1(x
(2)
0 )−x(3)

1 . Then run the Permute+Share
simulator to generate the view for the second Permute+Share . This is again
indistinguishable by security of the Permute+Share protocol.

Game 3 : Choose random x
(3)
0 . Set x(3)

1 = π1(x
(2)
0 ) − x(3)

0 . Other than that,
proceed as in Game 2. This is identically distributed to Game 2.

Game 4: Choose random π, set π0 = π−11 ◦ π and set x(3)
1 = π(x0 + x1) −

π1(x
(1)
1 )−x(3)

0 . Note that this means x(4)
1 = π(x0 +x1)−x(3)

0 so this is dis-
tributed identically to the ideal experiment. Note also that this is distributed
identically to Game 3, because:

π1(x
(2)
0 )− x(3)

0

=π1(π0(x0) + x
(1)
0 )− x(3)

0

=π1(π0(x0) + π0(x1)− x(1)
1 )− x(3)

0

=π1(π0(x0 + x1))− π1(x(1)
1 )− x(3)

0

=π(x0 + x1)− π1(x(1)
1 )− x(3)

0

A.1 Fixed-key blockcipher

In this section we give more details about the definition and security of primitives
from section 6.2.
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Definition 2. [12] Let H : {0, 1}λ → {0, 1}λ be a function and R ∈ {0, 1}λ.
Define OR(x) = H(x⊕R). Let Fλ denote the set of all functions from {0, 1}λ →
{0, 1}λ and f be randomly picked from Fλ. For a distinguisher D and for any
sufficiently large λ ∈ N, let

AdvH,R(D) = |PrR←{0,1}λ [DOR(.)(1λ) = 1]− Prf←Fk
[Df(.)(1λ) = 1]|

H is CRH if, for any PPT D making at most q queries to OR(.), there exists
a negligible function negl such that AdvH,R(D) ≤ negl(λ) where q is polynomial
in λ.

We note that, [12] defined a more general definition where R is picked from
a distribution with sufficient min-entropy (at least λ), but this definition suffices
for our purpose. Now, we are ready to prove the following theorem.

Theorem 8. if H is a correlation-robust hash function (CRH,) then G(x) de-
fined as G(x) = H(1⊕ x) ◦H(2⊕ x) is a length doubling PRG.

Proof. For the sake of contradiction, suppose not. Then there exists a PPT
distinguisher D that can break the PRG security game with overwhelming ad-
vantage. We will use D to construct a distinguisher D′ that can win the CRH
game in Definition 2 with the same advantage. D′ functions as follows. It invokes
its own oracle with messages 1 and 2 to get strings w1, w2 respectively. Then
it constructs w1 ◦ w2 and sends it to D as the PRG challenge. It outputs D’s
guess bit as its output, thereby inheriting its success probability. Note that, in
this reduction, D′ implicitly uses the fixed R as the PRG seed, even though it
does not know it. This concludes the proof. ut


