
Variable Tag Length Message Authentication Code Schemes

Sebati Ghosh and Palash Sarkar
Indian Statistical Institute

203, B.T.Road, Kolkata, India - 700108.
{sebati r, palash}@isical.ac.in

November 22, 2019

Abstract

This work studies message authentication code (MAC) schemes supporting variable tag
lengths. We provide a formalisation of such a scheme. Several variants of the classical Wegman-
Carter MAC scheme are considered. Most of these are shown to be insecure by pointing out
detailed attacks. One of these schemes is highlighted and proved to be secure. We further build
on this scheme to obtain single-key nonce-based variable tag length MAC schemes utilising either
a stream cipher or a short-output pseudo-random function. These schemes can be efficiently
instantiated using practical well known primitives. We further consider the problem of building
variable tag length MAC schemes without nonces. Again, efficient constructions of such schemes
are described along with their proofs of security.
Keywords: MAC, variable tag length, Wegman-Carter, security bound.

1 Introduction

Message authentication code (MAC) is the cryptographic mechanism to ensure the authenticity of
messages transmitted across a public channel. A MAC scheme typically appends a short length
tag to the message which is then transmitted. At the receiving end, a verification algorithm is run
on the message-tag pair to confirm the authenticity. In such a set-up, the sender and the receiver
share a previously agreed upon secret key.

Most MAC schemes specify a single value for the tag length. The question that we address in
this work is the following. Is it possible to have MAC schemes where the tag length can vary? While
the question seems to be a natural one, there does not appear to have been much discussion about
this issue in the literature. The only material we could locate is an almost 15-year old CFRG [23]
discussion pertaining to different tag lengths suggested for the MAC scheme UMAC [14]. This
scheme had the possibility of using 32-bit, 64-bit, 96-bit and 128-bit tags. Finney [11], crediting
“Dan Bernstein’s poly1305-aes mailing list”, had pointed out that this feature would allow forging
a 64-bit tag using about 233 queries. A later post [12] explains the issue further and suggests how
a valid 128-bit tag can be obtained with only about 234 queries. Wagner [24] supporting the issue
raised by Finney, had mentioned that to fix the problem “it suffices to ensure that the tag length
is a parameter that is immutably bound to the key and never changed. In other words, never use
the same key with different parameter sizes.” Following this suggestion, Section 6.5 of the UMAC
specification [14] states that a “UMAC key (or session) must have an associated and immutable
tag length”. Another suggestion put forward by Finney [12] to handle the issue requires “stealing
two bits of input into the block cipher from the nonce and using them to encode tag size”. Apart

1

from the interesting discussion on variable tag lengths for the UMAC scheme, we know of no other
place where the issue of variable tag length MAC schemes has been considered.

The question of variable tag length received some attention in the past few years in the context
of authenticated encryption (AE) schemes and the CAESAR [9] competition. Manger [16] pointed
out that for the AE scheme OCB, 64-bit, 96-bit and 128-bit tags are defined where the “64-bit
and 96-bit tags are simply truncated 128-bit tags”. This leads to simple truncation attacks on the
scheme. An earlier paper by Rogaway and Wagner [21] had also discussed the problem of variable
tag lengths in the context of the AE scheme CCM. A formal treatment of variable tag length AE
schemes has been given by Reyhanitabar, Vaudenay and Viźar [20].

Two concrete motivations are provided in [20] as to why a variable tag length AE scheme may
indeed be desirable in practice. The first mentions that variable tag lengths may be used with the
same key due to “misuse and poorly engineered security systems”. The second reason is that for
resource constrained devices, variable tag lengths may be desirable though changing the key for
every tag length may be infeasible due to limited bandwidth and low power.

While the above two reasons have been put forward in the context of AE schemes, they are
equally valid for MAC schemes. More generally, the issue of “mis-implementation” (also called
“footguns”) [19] of cryptographic primitives has been extensively discussed as part of the discussion
forum on post-quantum cryptography.

More concretely, Auth256 [7] is a Wegman-Carter type construction targeted at the 256-bit
security level. Similarly, a 256-bit secure universal hash function has been proposed in [10], which
can be mated to a 256-bit secure PRF using the Wegman-Carter template to obtain a 256-bit
secure MAC. Such MAC schemes would be appropriate for high-security applications, or, for a
post-quantum world. On the other hand, bandwidth limited applications would require shorter
tags. Also, the possibility of mis-implementation using tag truncation remains. So, the question
of designing a MAC scheme which can support various tag lengths up to 256 bits is of practical
interest.

To summarise, the problem of variable tag length MAC schemes has been briefly mentioned
about 15 years ago. Since then, there has neither been any formal treatment of the topic and nor
has there been any variable tag length MAC scheme which is accompanied by a proof of security.
The problem of constructing such MAC schemes, though, is of contemporary and future practical
interest.

Our Contributions

We provide a formalisation of the notion of security for a variable tag length MAC scheme. For
the same key, the desired tag length is to be provided as part of the input to the tag generation
algorithm. Consequently, in the security model, we allow the adversary to control the tag length as
well as the message. This is an extension of the usual security model for MAC schemes. We provide
a formalisation of the new model both for the case of MAC schemes with and without nonces.

We consider the problem of obtaining secure variable tag length MAC schemes. The Wegman-
Carter [26] scheme is the classical nonce-based MAC scheme. A naive approach to obtain a variable
tag length MAC scheme is to truncate tags produced by the Wegman-Carter scheme. We show an
easy attack on such a truncation scheme. Next, we consider eight possible “natural” variants that
arise from the Wegman-Carter MAC scheme. We show attacks on six of these schemes. Among the
attacked schemes is the scheme obtained by nonce stealing following the suggestion of Finney [11]
as mentioned above. One of the eight schemes is generically secure since it uses independent keys
for different tag lengths. The last of the eight schemes is proved to be secure. This scheme uses

2

nonce stealing but, for different tag lengths, it uses independent keys for the universal hash function
component of the Wegman-Carter scheme.

From a practical point of view, it is desirable to have a scheme which uses a single key. The key
for the hash function is then derived from the key of the scheme and the tag length. The manner
in which such derivation is made depends upon the primitive used to derive the hash key. We show
two methods of deriving the hash key. The first method uses a stream cipher while the second
method uses a short output length pseudo-random function (PRF). So, in effect, we obtain two
constructions of single key variable tag length MAC scheme with nonces.

Constructions of variable tag length MAC schemes which do not use nonces have also been
provided. We show that the availability of a PRF scheme which supports variable input lengths
directly leads to a variable tag length MAC scheme. Three constructions of variable input length
PRF schemes are presented and analysed.

All the schemes that we describe can be instantiated by readily available concrete cryptographic
primitives. For example, either of the 256-bit secure universal hash functions in [7, 10] can be
combined with Salsa20 [3] to obtain nonce-based MAC schemes supporting variable tag lengths up
to 256 bits. So, our work provides templates for designing efficient and practical MAC schemes
which support variable tag lengths.

AE with variable tag length versus MAC with variable tag length: An AE scheme
supporting variable tag length has been proposed in [20]. Given a message M , suppose that the
ciphertext is (C, tag). One may wonder whether we can construct a MAC scheme by throwing away
C and keeping tag. A MAC scheme obtained from the AE scheme in [20] in this manner is not
secure. A simple reshuffling of the message blocks will give rise to the same tag. This, of course,
has no implication to the security of the construction in [20] as an AE scheme. More generally, the
above kind of simple strategy will fail to produce a secure MAC scheme from a secure AE scheme.

Previous and Related Works

The notion of MAC is several decades old. So, there is an extensive literature on this topic. Here
we mention the papers which are directly related to our work.

The Wegman-Carter [26] scheme is four decades old. Several important and practical MAC
schemes, such as UMAC [8] and Poly1305 [4] are based on the Wegman-Carter scheme. From
a theoretical point of view, the security of the Wegman-Carter scheme was later analysed by
Shoup [22] and Bernstein [5]. Recently, the optimality of Bernstein’s bound was established in [15,
18].

2 Definitions

Let x be a binary string: len(x) denotes the length of x; for a non-negative integer λ, msbλ(x)
denotes the λ most significant bits of x. Given an integer i in the range 0 ≤ i < 2k − 1, bink(i)
denotes the k-bit binary representation of i.

Throughout this paper, n is a fixed positive integer.

2.1 Hash Function

Let M and Θ be finite non-empty sets. Let {Hτ}τ∈Θ be an indexed family of functions such that
for each τ ∈ Θ, Hτ : M → {0, 1}n. The sets M and Θ are respectively the message and the key

3

spaces. Typically, a message is a binary string of some maximum length.
For distinct x, x′ ∈ M and any n-bit string y, the differential probability of Hτ for the triplet

(x, x′, y) is defined to be Prτ [Hτ (x)⊕Hτ (x′) = y], where the probability is taken over the uniform
random choice of τ from Θ. The differential probability may depend on the lengths of x and x′.
Suppose L is the maximum of the lengths of the binary strings in M. Let ε : {0, . . . , L}2 → [0, 1]
be a function such that the differential probability for any (x, x′, y) is at most ε(len(x), len(x′)).
Then the family {Hτ}τ∈Θ is said to be ε-AXU.

2.2 Pseudo-Random Function

Let D and R be finite non-empty sets of binary strings and K be a finite non-empty set. Let
{FK}K∈K be a keyed family of functions with FK : D → R. Informally speaking, the function
family {FK}K∈K is considered to be pseudo-random if a resource limited adversary is unable to
distinguish it from a uniform random function from D to R. This is formalised in the following
manner.

We consider an adversary A which has access to an oracle O, which is written as AO. A
adaptively sends queries to O and receives appropriate responses. At the end of the interaction,
A outputs a bit. The adversary is allowed to perform computations and also has access to private
random bits.

Let (K
$← K : AFK(·) ⇒ 1) denote the event that K is chosen uniformly at random from K

and the adversary produces 1 after interacting with the oracle FK(·). Let $(·) be a function chosen
uniformly at random from the set of all functions from D to R. Let (A$(·) ⇒ 1) denote the event
that the adversary produces 1 after interacting with the oracle $(·).

The advantage of A in breaking the pseudo-randomness of {FK}K∈K is defined as follows.

Adv
prf
F (A) = Pr

[
K

$← K : AFK(·) ⇒ 1
]
− Pr

[
A$(·) ⇒ 1

]
. (1)

The probabilities are over the randomness of A, the choice of K and the randomness of $(·).
Suppose that A makes a total of q queries sending a total of σ bits in all the queries. By

Adv
prf
F (t, q, σ) we will denote the maximum advantage of any adversary taking time at most t,

making at most q queries and sending at most σ bits in all its queries.

2.3 Variable Tag Length Message Authentication Code

A MAC scheme has two algorithms, namely, the tag generation algorithm and the verification
algorithm. Typically, in a MAC scheme, tags are binary strings of some fixed length. The definition
of MAC schemes, however, does not require tags to have the same length. So, it is possible to
consider variable length tags within the ambit of the currently used definition of MAC schemes.

Our goal, on the other hand, is different. We would like the tag length to be provided as part of
the input to the tag generation and verification algorithms. So, for the same message, by providing
different values of the tag length, it is possible to generate tags of different lengths. This feature
is not covered by the presently used definition of MAC schemes. We extend the syntax of MAC
schemes and the definition of security to incorporate this feature.

A MAC scheme is given by the message space M, the key space K, the allowed set L of tag
lengths, the tag space T ; and the two algorithms MAC.Gen(K,x, λ) and MAC.Verify(K,x, tag, λ),
where K ∈ K, x ∈ M, λ ∈ L and tag ∈ T . We consider M, K and L to be finite non-empty
sets and T to be equal to ∪i∈L{0, 1}i. We write MAC.GenK(x, λ) to denote MAC.Gen(K,x, λ), and
MAC.VerifyK(x, tag, λ) to denote MAC.Verify(K,x, tag, λ).

4

The inputs and outputs of MAC.GenK(x, λ) and MAC.VerifyK(x, tag, λ) are as follows.

• MAC.GenK(x, λ):
input: K ∈ K; x ∈M; and λ ∈ L.
output: tag ∈ T is a binary string of length λ.

• MAC.VerifyK(x, tag, λ):
input: K ∈ K; x ∈M; tag ∈ T ; and λ ∈ L such that tag is of length λ.
output: an element from the set {true, false}. The value true indicates that the input is
accepted while the value false indicates that the input is rejected.

The following correctness condition must hold.

MAC.VerifyK(x,MAC.GenK(x, λ), λ) = true.

Security: The security for a MAC scheme against an adversary A is modelled as follows. Suppose
K is chosen uniformly at random from K and the tag generation and verification algorithms are
instantiated with K. A is given oracle access to the tag generation and the verification algorithms.
This means that A can adaptively query the tag generation algorithm with inputs of the type
(x, λ) and gets back in response the output of MAC.GenK(x, λ). Also, A adaptively queries the
verification algorithm with inputs of the type (x, tag, λ) and gets back in response either true or
false. Further, A can interleave queries to the tag generation and the verification oracles.

The adversary makes a total of qg queries to the tag generation algorithm and a total of qv
queries to the verification algorithm. Let the queries to the tag generation algorithm be(

x(1)
g , λ(1)

g

)
, . . . ,

(
x

(qg)
g , λ

(qg)
g

)
and the corresponding responses be tag

(1)
g , . . . , tag

(qg)
g respectively. Similarly, let the queries to the

verification algorithm be (
x(1)
v , tag(1)

v , λ(1)
v

)
, . . . ,

(
x(qv)
v , tag(qv)

v , λ(qv)
v

)
and the corresponding responses be xxx

(1)
v , . . . , xxx

(qv)
v respectively, where for 1 ≤ j ≤ qv, xxx

(j)
v is

either true or false. The query profile of A is the list

C =
(
qg, qv, (m

(1)
g , λ(1)

g), . . . , (m
(qg)
g , λ

(qg)
g), (m(1)

v , λ(1)
v), . . . , (m(qv)

v , λ(qv)
v)

)
(2)

where for 1 ≤ s ≤ qg, m(s)
g = len(x

(s)
g) and for 1 ≤ s ≤ qv, m(s)

v = len(x
(s)
v).

The restriction on the adversary is that it should not make any useless query. A query is
useless if its response can be computed by the adversary. This means that the adversary should
not repeat a query to the tag generation oracle or the verification oracle; and it should not query

the verification oracle with
(
x

(i)
g , tag

(i)
g , λ

(i)
g

)
for any i in {1, . . . , qg}.

For λ ∈ L, let succA(λ) be the event that there is a j ∈ {1, . . . , qv} such that λ
(j)
v = λ and

MAC.VerifyK

(
x

(j)
v , tag

(j)
v , λ

(j)
v

)
returns true. For each λ ∈ L, the adversary’s advantage in breaking

the authenticity of MAC is defined to be Pr[succA(λ)]. This is written as follows.

Advauth
MAC [λ](A) = Pr [succA(λ)] . (3)

5

The above probability is taken over the uniform random choice of K from K and over the possible
internal randomness of the adversary A.

The query complexity is the total number of bits sent by the adversary in all its queries. For
tag generation queries, this consists of both the number of bits sent as part of the messages and the
number of bits sent as part of λg’s. For verification queries, this consists of the number of bits sent
as part of the messages, the number of bits sent as part of the tags and the number of bits sent
as part of λv’s. Let the qg tag generation queries require a total of σg bits and the qv verification

queries require a total of σv bits. So, σg =
∑

1≤i≤qg(len(x
(i)
g)+ len(λ

(i)
g)) =

∑
1≤i≤qg(m

(i)
g + len(λ

(i)
g))

and σv =
∑

1≤i≤qv(len(x
(i)
v)+len(tag

(i)
v)+len(λ

(i)
v)) =

∑
1≤i≤qv(m

(i)
v +λ

(i)
v +len(λ

(i)
v)), as len(tag

(i)
v) =

λ
(i)
v . If the elements of L are expressed as t-bit binary strings, then σg =

∑
1≤i≤qg m

(i)
g + qgt and

σv =
∑

1≤i≤qv(m
(i)
v + λ

(i)
v) + qvt.

Given a query profile C, Advauth
MAC [λ](t,C) is the maximum of Advauth

MAC [λ](A) taken over all ad-
versaries A running in time t and having query profile C.

Information theoretic security: This consists of analysing the security of a MAC scheme
against a computationally unbounded adversary. In other words, the probability in (3) is considered
for an adversary A without any reference to the run time of A. For such a computationally
unbounded adversary A, without loss of generality, we may assume A to be deterministic. In the
context of information theoretic security, given a query profile C, Advauth

MAC [λ](C) is the maximum of

Advauth
MAC [λ](A) taken over all adversaries A having query profile C.

2.4 Variable Tag Length Nonce-Based Message Authentication Code

In this section, we extend the notion of a MAC scheme described in the previous section to that of
a MAC scheme supporting a nonce.

A nonce-based MAC scheme is given by the message spaceM, the nonce space N , the key space
K, the allowed set L of tag lengths, the tag space T ; and two algorithms NMAC.Gen(K,N, x, λ)
and NMAC.Verify(K,N, x, tag, λ), where K ∈ K, N ∈ N , x ∈ M, λ ∈ L and tag ∈ T . We
consider M, N , K and L to be finite non-empty sets and T to be equal to ∪i∈L{0, 1}i. We write
NMAC.GenK(N, x, λ) to denote NMAC.Gen(K,N, x, λ), and NMAC.VerifyK(N, x, tag, λ) to denote
NMAC.Verify(K,N, x, tag, λ).

The inputs and outputs of NMAC.GenK(N, x, λ) and NMAC.VerifyK(N, x, tag, λ) are as follows.

• NMAC.GenK(N, x, λ):
input: K ∈ K; N ∈ N ; x ∈M; and λ ∈ L.
output: tag ∈ T is a binary string of length λ.

• NMAC.VerifyK(N, x, tag, λ):
input: K ∈ K; N ∈ N ; x ∈M; tag ∈ T ; and λ ∈ L such that tag is of length λ.
output: an element from the set {true, false}. The value true indicates that the input is
accepted while the value false indicates that the input is rejected.

The following correctness condition must hold.

NMAC.VerifyK(N, x,NMAC.GenK(N, x, λ), λ) = true.

6

Security: The security for a nonce-based MAC scheme against an adversary A is modelled in a
manner similar to that of a MAC scheme. As before, suppose K is chosen uniformly at random
from K and the tag generation and verification algorithms are instantiated with K. A is given
oracle access to the tag generation and the verification algorithms. A makes a total of qg queries to
the tag generation oracle and a total of qv queries to the verification oracle. The queries are made
adaptively and queries to the tag generation oracle can be interleaved with those to the verification
oracle.

Let the queries to the tag generation oracle be(
N (1)
g , x(1)

g , λ(1)
g

)
, . . . ,

(
N

(qg)
g , x

(qg)
g , λ

(qg)
g

)
and the corresponding responses be tag

(1)
g , . . . , tag

(qg)
g respectively. Similarly, let the queries to the

verification oracle be (
N (1)
v , x(1)

v , tag(1)
v , λ(1)

v

)
, . . . ,

(
N (qv)
v , x(qv)

v , tag(qv)
v , λ(qv)

v

)
and the corresponding responses be xxx

(1)
v , . . . , xxx

(qv)
v respectively, where for 1 ≤ j ≤ qv, xxx

(j)
v is

either true or false. The query profile of A is the list

C = (qg, qv, (n
(1)
g ,m(1)

g , λ(1)
g), . . . , (n

(qg)
g ,m

(qg)
g , λ

(qg)
g), (n(1)

v ,m(1)
v , λ(1)

v),

. . . , (n(qv)
v ,m(qv)

v , λ(qv)
v)) (4)

where for 1 ≤ s ≤ qg, n
(s)
g = len(N

(s)
g),m

(s)
g = len(x

(s)
g) and for 1 ≤ s ≤ qv, n

(s)
v = len(N

(s)
v),m

(s)
v =

len(x
(s)
v).

There are two restrictions on the adversary. The first is a weaker form of nonce-respecting

behaviour, namely,
(
N

(i)
g , λ

(i)
g

)
6=
(
N

(j)
g , λ

(j)
g

)
for 1 ≤ i < j ≤ qg. Note that the adversary is

allowed to repeat (nonce, tag-length) pair for verification queries and it is also allowed to re-use
a (nonce, tag-length) pair used in a tag generation query in one or more verification queries. The
second restriction on the adversary is that it should not make any useless query. As before, a query
is useless if its response can be computed by the adversary. This means that the adversary should
not repeat a query to the tag generation oracle or the verification oracle; and it should not query

the verification oracle with
(
N

(i)
g , x

(i)
g , tag

(i)
g , λ

(i)
g

)
for any i in {1, . . . , qg}.

For λ ∈ L, let succA(λ) be the event that there is some j ∈ {1, . . . , qv} such that λ
(j)
v = λ and

NMAC.VerifyK

(
N

(j)
v , x

(j)
v , tag

(j)
v , λ

(j)
v

)
returns true. For each λ ∈ L, the adversary’s advantage in

breaking the authenticity of NMAC is defined to be Pr[succA(λ)]. This is written as follows.

Advauth
NMAC[λ](A) = Pr [succA(λ)] . (5)

The above probability is taken over the uniform random choice of K from K and over the possible
internal randomness of the adversary A.

The query complexity is the total number of bits sent by the adversary in all its queries. For tag
generation queries, this consists of the number of bits sent as part of the nonces, the messages and
the λg’s. For verification queries, this consists of the number of bits sent as part of the nonces, the
messages, the tags and the λv’s. Let the qg tag generation queries require a total of σg bits and the

qv verification queries require a total of σv bits. So, σg =
∑

1≤i≤qg(len(N
(i)
g)+ len(x

(i)
g)+ len(λ

(i)
g)) =

7

∑
1≤i≤qg(n

(i)
g + m

(i)
g + len(λ

(i)
g)) and σv =

∑
1≤i≤qv(len(N

(i)
v) + len(x

(i)
v) + len(tag

(i)
v) + len(λ

(i)
v)) =∑

1≤i≤qv(n
(i)
v + m

(i)
v + λ

(i)
v + len(λ

(i)
v)), as len(tag

(i)
v) = λ

(i)
v . If the elements of L are expressed as

t-bit binary strings, then σg =
∑

1≤i≤qg(n
(i)
g +m

(i)
g) + qgt and σv =

∑
1≤i≤qv(n

(i)
v +m

(i)
v +λ

(i)
v) + qvt.

Given a query profile C, Advauth
NMAC[λ](t,C) is the maximum of Advauth

NMAC[λ](A) taken over all
adversaries running in time t and having query profile C.

Information theoretic security: In a manner analogous to that of MAC schemes, we consider
information theoretic security of nonce-based MAC schemes: Given a query profile C, Advauth

NMAC[λ](C)

is the maximum of Advauth
NMAC[λ](A) taken over all adversaries A having query profile C.

3 Towards Building a Variable Tag Length Nonce-Based MAC

It may appear that a variable tag length nonce-based MAC scheme can be obtained simply by
truncating the output of the Wegman-Carter MAC algorithm. This, however, does not work as
we show in this section. We further consider several “natural” extensions of the Wegman-Carter
MAC algorithm and show that most of them are insecure. Only two of these extensions are secure:
one of them is a generic construction, while we prove the security of the other in the next section.
Overall, the discussion in the present section may be considered as showing the subtlety involved
in constructing a variable tag length nonce-based MAC scheme.

Let N be the nonce space and M be the message space. Let {FK}K∈K be a PRF such that
FK : N → {0, 1}n; let {Hashτ}τ∈Θ be an AXU hash function such that Hashτ : M → {0, 1}n.
Given {FK}K∈K and {Hashτ}τ∈Θ, the Wegman-Carter MAC [26] is the following. A nonce-message
pair (N, x) is mapped under a key (K, τ) to FK(N)⊕ Hashτ (x), i.e.,

WC-NMAC : (N, x)
(K,τ)−→ FK(N)⊕ Hashτ (x). (6)

Below we argue that several natural extensions of WC-NMAC are not secure. The attacks are
shown for the following specific choice of the hash function. Under a fixed representation of the
elements of the finite field F2n , we identify the elements of F2n with the set {0, 1}n. The specific
hash function that we consider is Hashτ (x) = τx, i.e., the output of Hashτ (x) is the n-bit string
representing the product of τ and x considered as elements of F2n . This hash function is known
to be AXU. Attacks on schemes built using this specific hash function is sufficient to show that
the schemes described below are not secure for an arbitrary AXU hash function. The choice of the
hash function fixes the key space of the hash function to be Θ = F2n and the message space M to
be either F2n or F2n−8 , depending on the scheme.

We will use the following simple fact about the specific hash function that we consider.

Proposition 1. Consider the AXU hash function {Hashτ}τ∈F2n
where Hashτ (x) = τx. Let x1 and

x2 be distinct elements of F2n and c be such that Hashτ (x1)⊕Hashτ (x2) = c, then τ = c(x1⊕x2)−1.

The most obvious approach to obtain a variable tag length scheme from (6) is to truncate the
output, i.e.,

trunc : (N, x, λ)
(K,τ)−→ msbλ(WC-NMACK,τ (N, x)) = msbλ(FK(N)⊕ Hashτ (x)). (7)

The scheme in (7) is not secure as can be seen from the following argument. Here the message space
is F2n . Let x1, x2 and x3 be distinct messages and N be a nonce. The adversary makes two tag

8

generation queries (N, x1, n) and (N, x2, n− 1) and gets in response t1 and t2 respectively. So, we
have the following relations: FK(N)⊕Hashτ (x1) = t1 and msbn−1(FK(N)⊕ Hashτ (x2)) = t2. From
the second relation, it follows that either FK(N)⊕ Hashτ (x2) = t2||0 or FK(N)⊕ Hashτ (x2) =
t2||1. Using Proposition 1, the adversary solves the equations Hashτ (x1)⊕Hashτ (x2) = t1 ⊕ (t2||0)
and Hashτ (x1) ⊕ Hashτ (x2) = t1 ⊕ (t2||1) for τ to obtain the solutions τ0 and τ1 respectively.
As FK(N)⊕ Hashτ (x2) takes exactly one of the two values t2||0 or t2||1, τ takes exactly one of
the two values τ0 or τ1. Let y0 = t1 ⊕ Hashτ0(x1). The adversary makes a verification query
(N, x3, y0⊕Hashτ0(x3), n). If the verification query is successful then τ0 is the correct value of τ . If
the verification query fails, then τ1 is the correct value of τ . Thus the adversary recovers the hash
key with 2 tag generation and 1 verification queries. This shows that a simple truncation of the
Wegman-Carter MAC scheme does not work.

In the scheme trunc, the output of neither F nor Hash depends on λ. To rectify this situation,
one may introduce λ as part of the input of one or both of F and Hash. Another possibility is to
have one or both of the keys K and τ to depend on λ. Key dependencies are achieved by using
a family of independent keys {Kλ}λ∈L and/or a family of independent keys {τλ}λ∈L. The various
schemes that arise from such considerations are as follows. Dependencies of input and/or key are
summarised in Table 1.

NMAC-t1K,τ : (N, x, λ)
(K,τ)−→ msbλ(FK(bin8(λ)||N)⊕ Hashτ (x)). (8)

NMAC-t2K,τ : (N, x, λ)
(K,τ)−→ msbλ(FK(N)⊕ Hashτ (bin8(λ)||x)). (9)

NMAC-t3K,τ : (N, x, λ)
(K,τ)−→ msbλ(FK(bin8(λ)||N)⊕ Hashτ (bin8(λ)||x)). (10)

NMAC-Generic(Kλ,τλ)λ∈L : (N, x, λ)
(Kλ,τλ)−→ msbλ(FKλ(N)⊕ Hashτλ(x)). (11)

NMAC-t4(Kλ,τ)λ∈L : (N, x, λ)
(Kλ,τ)−→ msbλ(FKλ(N)⊕ Hashτ (x)). (12)

NMAC-t5(Kλ,τ)λ∈L : (N, x, λ)
(Kλ,τ)−→ msbλ(FKλ(N)⊕ Hashτ (bin8(λ)||x)). (13)

NMAC-t6(K,τλ)λ∈L : (N, x, λ)
(K,τλ)−→ msbλ(FK(N)⊕ Hashτλ(x)). (14)

NMAC(K,τλ)λ∈L : (N, x, λ)
(K,τλ)−→ msbλ(FK(bin8(λ)||N)⊕ Hashτλ(x)). (15)

Nonce stealing: Finney [11] had suggested that the nonce may be reduced by a few bits and
a binary encoding of the tag length be inserted. In the present context, this refers to letting the
input of F depend on the tag length. From Table 1, we see that the schemes NMAC-t1, NMAC-t3
and NMAC use nonce stealing. While NMAC is secure (as proved later), schemes NMAC-t1 and
NMAC-t3 are insecure. So, nonce stealing by itself does not guarantee security.

For the ensuing discussion, we will consider the message space for the schemes NMAC-t1, NMAC-
Generic, NMAC-t4 and NMAC-t6 to be F2n , and that for NMAC-t2, NMAC-t3 and NMAC-t5 to be
F2n−8 . The scheme NMAC is discussed in more generality in the next section.

The schemes NMAC-t1, NMAC-t2 and NMAC-t3 are based only on input dependencies. In
NMAC-t1, the input to F depends on the tag length but, the input to Hash does not; in NMAC-t2,
the input to Hash depends on the tag length but, the input to F does not; and in NMAC-t3, the
inputs to both F and Hash depend on the tag length. None of these schemes are secure.

1. Algorithm 1 presents an attack on NMAC-t1. In the attack, the tag generation and verifica-
tion oracles are denoted by Og and Ov respectively. The intuition behind the attack is the

9

Table 1: For the schemes in (8) to (15), a summary of whether the input and/or the key of F and/or
Hash depend on the tag length λ.

scheme F Hash secure?
i/p key i/p key

NMAC-t1 yes no no no no

NMAC-t2 no no yes no no

NMAC-t3 yes no yes no no

NMAC-Generic no yes no yes yes

NMAC-t4 no yes no no no

NMAC-t5 no yes yes no no

NMAC-t6 no no no yes no

NMAC yes no no yes yes

following. The key (K, τ) of the scheme does not depend on λ. In particular, as the hash
key τ does not depend on λ, the attack retrieves τ using a smaller value of λ and uses it for
the forgery with the target λ successfully. Retrieving τ using a smaller value of λ requires
significantly lesser number of oracle queries than that required for an attack by exhaustive
search for the target λ. The analysis of the attack is given in Proposition 2.

2. For NMAC-t2, the attack on NMAC-t1 works as it is. The attack can, however, be modified
to a more efficient one in the following manner. Instead of the verification queries inside the
do-while loop in Steps 7 to 11, the adversary can make another tag generation query on the
tuple (N1, x2, λ) to get tag(2), so that,

msbλ(FK(N1)⊕ Hashτ (bin8(λ)||x2)) = tag(2). (16)

The adversary takes msbλ1(·) of (16) and gets τc as in the attack in Algorithm 1.

Now the adversary forges with (N1, x,Hashτc(bin8(λ)||x2)⊕ tag(2) ⊕ Hashτc(bin8(λ)||x), λ).
So, here the adversary makes 2 tag generation queries and at most 2n−λ1 + 1 verification
queries including the forgery.

3. For NMAC-t3 the attack on NMAC-t1 works as it is with the forgery (N1, x,Hashτc(bin8(λ)||x)⊕
Hashτc(bin8(λ)||x4)⊕ tag(4), λ). Here also, the adversary makes 2 tag generation queries and
at most 2λ1 + 2n−λ1 + 1 verification queries including the forgery.

Proposition 2. The attack given in Algorithm 1 on the scheme NMAC-t1 given in (8) forges with
probability 1 and requires 2 tag generation queries and at most 2λ1 + 2n−λ1 + 1 verification queries
including the forgery.

Proof. That the attack mentioned in Algorithm 1 forges with probability 1 is proved if it can
be shown that the forgery returned by the attack in Step 25 is accepted, i.e. the corresponding
response from Ov is true.
From Step 4 we get,

msbλ1(FK(bin8(λ1)||N1)⊕ Hashτ (x1)) = tag(1). (17)

10

Algorithm 1 Attack on NMAC-t1 for λ = n.

1: set λ← n;
2: choose λ1 ∈ L, such that λ1 < λ;
3: choose any N1 ∈ N and any x1 ∈M and let
4: tag(1) ← Og(N1, x1, λ1);
5: set D ← {};
6: choose x2 ∈M, such that x2 6= x1;
7: do
8: choose tag(2) ← {0, 1}λ1 \ D;
9: set D ← D ∪ tag(2);

10: R(2)
v ← Ov(N1, x2, tag

(2), λ1);

11: while R(2)
v = false;

12: set C ← {};
13: choose x3 ←M\ {x1, x2};
14: do
15: choose c← {0, 1}n−λ1 \ C;
16: set C ← C ∪ c;
17: using Proposition 1 solve Hashτ (x1)⊕ Hashτ (x2) = (tag(1) ⊕ tag(2))||c
18: for τ and let the solution be τc;
19: set xc ← tag(1) ⊕msbλ1(Hashτc(x1));

20: R(3)
v ← Ov(N1, x3, xc ⊕msbλ1(Hashτc(x3)), λ1);

21: while R(3)
v = false;

22: choose any x4 ∈M and let
23: tag(4) ← Og(N1, x4, λ);
24: choose any x ∈M \ {x4} and
25: return (N1, x,Hashτc(x)⊕ Hashτc(x4)⊕ tag(4), λ).

11

As NMAC-t1(N1, x2, λ1) ∈ {0, 1}λ1 and tag(2) is varied through {0, 1}λ1 , the do-while loop in

Steps 7 to 11 terminates and for the terminating query, i.e. for the query for which R(2)
v = true, we

get,
msbλ1(FK(bin8(λ1)||N1)⊕ Hashτ (x2)) = tag(2). (18)

So, from (17) and (18) we get,

msbλ1(Hashτ (x1)⊕ Hashτ (x2)) = tag(1) ⊕ tag(2). (19)

Here tag(1) ⊕ tag(2) is a λ1-bit binary string. Following Proposition 1, for each choice of c in the
do-while loop in Steps 14 to 21, the equation in Step 17 can be solved to get τc and xc.
The fact that Hashτ (x1)⊕Hashτ (x2) ∈ {0, 1}n and (19) suggest that there is a correct c, such that
the equation in Step 17 holds and we consider that iteration of the do-while loop which deals with
this particular c. The τc obtained in this iteration is the actual hash key used in the scheme. So,

NMAC-t1(N1, x3, λ1)

= msbλ1(FK(bin8(λ1)||N1)⊕ Hashτc(x3))

= tag(1) ⊕msbλ1(Hashτc(x1))⊕msbλ1(Hashτc(x3)) (20)

= xc ⊕msbλ1(Hashτc(x3)). (21)

The expression in (20) comes from (17) and that in (21) comes from Step 19 in Algorithm 1.

Hence, in this particular iteration of the do-while loop, R(3)
v = true and the loop terminates.

Next, from Step 23, we get

msbλ(FK(bin8(λ)||N1)⊕ Hashτc(x4)) = tag(4). (22)

Hence,
FK(bin8(λ)||N1) = Hashτc(x4)⊕ tag(4); (23)

msbλ is omitted as λ = n.
Now, for the x ∈M \ {x4},

NMAC-t1(N1, x, λ)

= msbλ(FK(bin8(λ)||N1)⊕ Hashτc(x))

= Hashτc(x4)⊕ tag(4) ⊕ Hashτc(x), (24)

which is returned as the tag for (N1, x, λ) in the forgery and hence, the corresponding response
from Ov is true with probability 1, which proves the first part of the result.

In the attack, there are 2 tag generation queries in Steps 4 and 23. In each iteration of each of
the do-while loops in Steps 7 to 11 and 14 to 21, one verification query is made. The do-while loop
in Steps 7 to 11 iterates at most 2λ1 times for different values of tag(2) and that in Steps 14 to 21
iterates at most 2n−λ1 times for different values of c. The forgery returned in Step 25 is another
verification query. Hence, the attack requires 2 tag generation queries and at most 2λ1 + 2n−λ1 + 1
verification queries including the forgery.

Next we consider allowing the keys to depend on λ. The generic scheme of this type is
NMAC-Generic. This scheme can be considered to be a collection of #L independent WC-NMAC
schemes, one for each value of λ. Each of the individual schemes for fixed values of λ are already
known to be secure. Since the keys of the various schemes are independent, it can be argued that

12

the collection is also secure. The problem, however, is that size of the key increases by a factor of
#L. So, NMAC-Generic cannot be considered to be a practical solution to the problem of obtaining
a variable tag length nonce-based MAC scheme.

The remaining schemes consider various possibilities for reducing the key size.

1. The scheme NMAC-t4 uses independent Kλ and the same τ for all λ. For this scheme,
the attack for the scheme NMAC-t1 works with the forgery (N, x,Hashτc(x) ⊕ Hashτc(x4) ⊕
tag(4), λ); the adversary makes 2 tag generation queries and at most 2λ1 +2n−λ1 +1 verification
queries including the forgery.

2. The scheme NMAC-t5 uses independent Kλ and the same τ for all λ. It introduces λ into the
input of Hash. This, however, is not sufficient. The attack on the scheme NMAC-t1 works with
the forgery (N, x,Hashτc(bin8(λ)||x)⊕Hashτc(bin8(λ)||x4)⊕ tag(4), λ); the adversary makes 2
tag generation queries and at most 2λ1 + 2n−λ1 + 1 verification queries including the forgery.

3. The scheme NMAC-t6 uses independent τλ and the same key K for all λ and the input of F
does not depend on λ. The insecurity of NMAC-t6 is discussed in Appendix A.

4. The final scheme NMAC uses independent τλ and the same key K for all λ. In this case, the
input of F depends on λ. This scheme is secure. The information theoretic analysis of the
security of this scheme is provided in the next section.

4 Secure and Efficient Nonce-Based MAC Schemes with Variable
Length Tag

We start with the scheme NMAC given in (15). We carry out an information theoretic analysis of
this scheme. To this end, we consider the scheme obtained by replacing FK with a random function
f : {0, 1}n → {0, 1}n. The tag generation algorithm for this scheme is shown in Table 2. We require
a hash family {Hashτ}τ∈Θ, where for each τ ∈ Θ, Hashτ :M→ {0, 1}n, with M = ∪Li=0{0, 1}i for
some sufficiently large positive integer L.

The nonce space for the scheme NMAC is N = {0, 1}n−8 and the message space is M. Let
L ⊆ {1, . . . ,min(255, n)} be the allowed set of tag lengths. So, tag lengths can be represented by
bytes. The key space for NMAC is Θ#L, i.e., a particular key is a tuple (τλ)λ∈L. The key generation
algorithm consists of choosing τλ independently and uniformly at random from Θ for each λ. The
verification algorithm is as follows. Given (N, x, tag, λ), compute tag′ = NMAC.Gen(τλ)λ∈L(N, x, λ);
if tag = tag′ then return true, else return false.

Here f is a random function but, not necessarily a uniform random function. Given q pairs
(a1, b1), . . . , (aq, bq), the q-interpolation probability [5] of f is defined to be Pr[f(a1) = b1, . . . , f(aq) =
bq]. Following the analysis in [5], the security bound for the resulting scheme is obtained in terms of
the interpolation probability of f . Known bounds on the interpolation probability of uniform ran-
dom function and uniform random permutation provide the corresponding bounds on the security
of the resulting NMAC schemes.

Theorem 1. In NMAC defined in Table 2, suppose that the hash function {Hashτ}τ∈Θ is ε-AXU,
where ε(`, `′) ≥ 1/2n for all `, `′ ≤ L.

Fix a query profile C. For λ ∈ L, let qg,λ (resp. qv,λ) be the number of tag generation (resp.
verification) queries for λ which are in C. Let λ be such that qv,λ ≥ 1 and for 1 ≤ i ≤ qv,λ, let

Q
(i)
v,λ = (N

(i)
v,λ, x

(i)
v,λ, tag

(i)
v,λ, λ) be the i-th verification query with tag length λ. Let `

(i)
v,λ = len(x

(i)
v,λ).

13

Table 2: A secure and efficient NMAC scheme from a random function.
NMAC.Gen(τλ)λ∈L(N, x, λ)

Q = f(bin8(λ)||N);
R = Q⊕ Hashτλ(x);
tag = msbλ(R);

return tag.

Corresponding to Q
(i)
v,λ, there is at most one tag generation query Q

(i?)
g,λ = (N

(i?)
g,λ , x

(i?)
g,λ , λ) such that

N
(i)
v,λ = N

(i?)
g,λ . Let `

(i?)
g,λ = len(x

(i?)
g,λ) if there is such a Q

(i?)
g,λ , otherwise `

(i?)
g,λ is undefined.

Fix λ0 ∈ L. Let Sλ0 be the set of all queries made by the adversary other than the verification
queries for tag length λ0. Suppose that the queries in Sλ0 give rise to at most q distinct (nonce,
tag-length) values. Further, suppose that the i-interpolation probability of f is at most δi/(2

n)i.
Then

Advauth
NMAC[λ0](t,C) ≤ 1

2λ0
×

∑
1≤i≤qv,λ0

γi (25)

where γi = 2nδqε
(
`
(i)
v,λ0

, `
(i?)
g,λ0

)
if there is a Q

(i?)
g,λ0

corresponding to Q
(i)
v,λ0

with N
(i)
v,λ0

= N
(i?)
g,λ0

; other-

wise γi = δq+1.

Remark: It has been proved in [5], that for 1 ≤ j ≤ 2n, if f is a uniform random function, then
δj = 1, and if f is a uniform random permutation, then δj ≤ (1− (j − 1)/2n)−j/2.

Proof. The proof builds upon and generalises ideas used in the security proof of the Wegman-Carter
nonce-based MAC scheme given in [5].

Let A be an adversary attacking the authenticity of NMAC. The result concerns information
theoretic security and so we consider the adversary to be deterministic. A makes a number of
queries to its oracles and receives the appropriate responses. The interaction of A with its two
oracles is given by a transcript T which is a list of the queries made by A and the responses it
received in return. The adversary’s view of the oracles is completely determined by the transcript
T . By A(T), we will denote the interaction of A with the oracles as given by the transcript T .
The responses to the queries made by A are computed using the random function f and hence
are random variables. Since A is deterministic, the randomness in a transcript T arises only from
these responses. By succ(A(T), λ0) we will denote the event that the adversary A with transcript T
makes a verification query for tag length λ0 which returns true. So, if the transcript T corresponds
to the query profile C, then Advauth

NMAC[λ0](t,C) = Pr[succ(A(T), λ0)].
The first reduction is to assume that qv,λ0 = 1. If qv,λ0 = 0, i.e., A does not make any verification

query, then clearly, A has advantage 0 so that the theorem is trivially proved. So, suppose that A
with transcript T makes qv,λ0 > 1 verification queries for tag-length λ0. Let E be the event that
the first verification query for the tag length λ0 is successful and S be the event that one of the
later verification queries for the tag length λ0 is successful. So,

Advauth
NMAC[λ0](A) = Pr[succ(A(T), λ0)] = Pr[E ∨ S] = Pr[E ∨ (E ∧ S)] ≤ Pr[E] + Pr[E ∧ S].

Let A′ be an adversary with a transcript T ′ which is obtained from T by discarding all queries after
the first verification query for tag length λ0. Let A′′ be an adversary with a transcript T ′′ obtained

14

from T in the following manner: the first verification query for tag length λ0 is dropped from T ;
instead A′′ takes the answer false as the response to this query. (Note that since we are disallowing
useless queries, there could not have been a previous tag generation query for tag length λ0 with
the same nonce and message as that of the first verification query for tag length λ0.) We have
Pr[succ(A′(T ′), λ0)] = Pr[E] and Pr[succ(A′′(T ′′), λ0)] = Pr[E ∧ S]. Note that A′′ makes qv,λ0 − 1
verification queries for tag length λ0. So, the problem of proving the result for qv,λ0 verification
queries has been reduced to the problem of proving the result for qv,λ0 − 1 verification queries.
Proceeding by induction, to prove the bound given in (25), it is sufficient to consider an adversary
which makes exactly one verification query for tag length λ0. Let the single verification query for
tag length λ0 be (N, x, tag, λ0).

The second reduction is to ignore all queries in T after the verification query for tag length λ0.
Such queries have no effect on the success probability of the verification query for tag length λ0.

The third reduction is the following. If the queries in Sλ0 give rise to less than q distinct (nonce,
tag-length) values, then insert additional tag generation queries to the transcript with (nonce, tag-
length) values not equal to (N,λ0) such that the queries in the augmented Sλ0 give rise to exactly
q distinct (nonce, tag-length) values. Such augmentation of the transcript does not decrease the
adversary’s advantage.

In view of the above reductions, it is sufficient to consider an adversary A with a transcript
T where the last query is the verification query (N, x, tag, λ0) for tag length λ0 and the queries
in Sλ0 give rise to exactly q distinct (nonce, tag-length) values. The transcript T can contain any
number of tag generation queries for the tag length λ0. However, by the restriction that among
the tag generation queries, the (nonce, tag-length) pair cannot repeat, T can contain at most one
tag generation query of the form (N, x′, λ0). For λ 6= λ0, the transcript T can contain multiple
verification queries with the same value for the (nonce, λ) pair. So, the total number of queries in
Sλ0 can be greater than q.

Let N = bin8(λ0)||N , Q = f(N) and τ0 = τλ0 . Let the q distinct values of (nonce, tag-
length) pairs arising from the queries in Sλ0 be (N (1), λ(1)), . . . , (N (q), λ(q)). For i = 1, . . . , q, let
N(i) = bin8(λ(i))||N (i) and Q(i) = f(N(i)). Define Q = (Q(1), . . . , Q(q)). Let q′ be the number of
distinct tag-length values arising from the queries in Sλ0 and let λ(1), . . . , λ(q′) be these tag lengths.
For i = 1, . . . , q′, define τi = τλ(i) and τ = (τ1, . . . , τq′). The entire randomness in the transcript
arises from Q and τ .

Consider the final verification query (N, x, tag, λ0) and let ` = len(x). Let `(?) = len(x(?)) if
there is a prior tag generation query (N (?), x(?), λ(?)) (with response tag(?)) such that N (?) = N and
λ(?) = λ0; otherwise, `(?) is undefined. Let γ = 2nδqε(`, `

(?)) if `(?) is defined, otherwise, γ = δq+1.
To prove the theorem, it is sufficient to show

Pr[succ(A(T), λ0)] ≤ γ/2λ0 . (26)

The verification query is successful if tag = msbλ0(Q⊕ Hashτ0(x)). So,

Pr[succ(A(T), λ0)] = Pr[msbλ0(Q⊕ Hashτ0(x)) = tag]. (27)

We consider the probability on the right hand side of (27) under two cases.
The first case is when there is no tag generation query having (nonce, tag-length) pair to be

equal to (N,λ0) in T . In this case, N(1), . . . ,N(q),N are distinct values to which f is applied.
Since the adversary is adaptive, the x and tag in the final verification query are functions of the
earlier responses it received and in turn are functions of Q and τ . We write x ≡ x(Q, τ) and

15

tag ≡ tag(Q, τ) to emphasise this functional dependence. Let a and a be arbitrary values of τ0 and
τ . Let b1, . . . , bq be arbitrary n-bit strings and let b = (b(1), . . . , b(q)). So,

Pr[msbλ0(Q⊕ Hashτ0(x(Q, τ))) = tag(Q, τ)]

= Pr[msbλ0(Q) = tag(Q, τ)⊕msbλ0(Hashτ0(x(Q, τ)))]

=
∑
a,a

Pr[msbλ0(Q) = tag(Q, τ)⊕msbλ0(Hashτ0(x(Q, τ))) ∧ (τ = a) ∧ (τ0 = a)]

=
∑
a,a

Pr[msbλ0(Q) = tag(Q,a)⊕msbλ0(Hasha(x(Q,a))) ∧ (τ = a) ∧ (τ0 = a)]

=
∑
a,a

Pr[msbλ0(Q) = tag(Q,a)⊕msbλ0(Hasha(x(Q,a)))] Pr[(τ = a) ∧ (τ0 = a)].

(28)

Let c be an arbitrary (n− λ0)-bit binary string. We consider

Pr[msbλ0(Q) = tag(Q,a)⊕msbλ0(Hasha(x(Q,a)))]

=
∑
b

Pr[msbλ0(Q) = tag(Q,a)⊕msbλ0(Hasha(x(Q,a))) ∧ (Q = b)]

=
∑
b

Pr[msbλ0(Q) = tag(b,a)⊕msbλ0(Hasha(x(b,a))) ∧ (Q = b)]

=
∑
b

Pr[msbλ0(Q) = b ∧ (Q = b)] where b = tag(b,a)⊕msbλ0(Hasha(x(b,a)))

=
∑
b

Pr[msbλ0(f(N)) = b, f(N(1)) = b(1), . . . , f(N(q)) = b(q)]

=
∑
b

∑
c

Pr[f(N) = b||c, f(N(1)) = b(1), . . . , f(N(q)) = b(q)]

≤
∑
b

2n−λ0δq+1/(2
n)q+1

= 2n−λ0δq+1/2
n = γ/2λ0 . (29)

Combining (28) and (29), we have

Pr[msbλ0(Q⊕ Hashτ0(x(Q, τ))) = tag(Q, τ)]

=
∑
a,a

Pr[msbλ0(Q) = tag(Q,a)⊕msbλ0(Hasha(x(Q,a)))] Pr[(τ = a) ∧ (τ0 = a)]

≤ γ/2λ0
∑
a,a

Pr[(τ = a) ∧ (τ0 = a)] = γ/2λ0 . (30)

This proves the first case.
In the second case, let the transcript T be such that there is a tag generation query (N (?), x(?), λ(?))
(with response tag(?)) where N (?) = N and λ(?) = λ0. Note that by the query restriction on the
adversary, x(?) 6= x. Let N(?) = bin8(λ(?))||N (?), Q(?) = f(N(?)) and τ? = τλ(?) . Then Q(?) = Q and
τ? = τ0. Let Q be the vector consisting of Q(1), . . . , Q(q) but, not containing Q(?) and let τ be the
vector consisting of τ1, . . . , τq′ but, not containing τ?. So, Q is a vector having q−1 components and
τ is a vector having q′−1 components. In this case, x ≡ x(Q, τ , tag(?)) and tag ≡ tag(Q, τ , tag(?)).

16

Due to the adaptive nature of the adversary, x(?) is also a function of portions of Q and τ which
corresponds to the queries earlier to (N (?), x(?), λ(?)). Hence, we write x(?) ≡ x(?)(Q, τ). Note that
τ0 is independent of τ .

Let a and t be arbitrary values for τ and tag(?) respectively. Then

Pr[msbλ0(Q⊕ Hashτ0(x(Q, τ , tag(?)))) = tag(Q, τ , tag(?))]

=
∑
a,t

Pr[(msbλ0(Q⊕ Hashτ0(x(Q, τ , tag(?)))) = tag(Q, τ , tag(?))) ∧ (τ = a)

∧(tag(?) = t)]

=
∑
a,t

Pr[(msbλ0(Q⊕ Hashτ0(x(Q,a, t))) = tag(Q,a, t))

∧(msbλ0(Q⊕ Hashτ0(x(?)(Q,a))) = t) ∧ (τ = a)]

=
∑
a

(∑
t

Pr[(msbλ0(Hashτ0(x(Q,a, t))⊕ Hashτ0(x(?)(Q,a))) = tag(Q,a, t)⊕ t)

∧(msbλ0(Q) = tag(Q,a, t)⊕msbλ0(Hashτ0(x(Q,a, t))))]
)
× Pr[τ = a]. (31)

Let b and a be an arbitrary value of Q and τ0. Let c1 and c2 be arbitrary (n− λ0)-bit strings. We
consider

Pr[(msbλ0(Hashτ0(x(Q,a, t))⊕ Hashτ0(x(?)(Q,a))) = tag(Q,a, t)⊕ t)
∧(msbλ0(Q) = tag(Q,a, t)⊕msbλ0(Hashτ0(x(Q,a, t))))]

=
∑
b

Pr[(msbλ0(Hashτ0(x(Q,a, t))⊕ Hashτ0(x(?)(Q,a))) = tag(Q,a, t)⊕ t)

∧(msbλ0(Q) = tag(Q,a, t)⊕msbλ0(Hashτ0(x(Q,a, t)))) ∧ (Q = b)]

=
∑
b

Pr[(msbλ0(Hashτ0(x(b,a, t))⊕ Hashτ0(x(?)(b,a))) = tag(b,a, t)⊕ t)

∧(msbλ0(b) = tag(b,a, t)⊕msbλ0(Hashτ0(x(b,a, t)))) ∧ (Q = b)]

To simplify notation, we write x(b,a, t) as x, x?(b,a) as x? and tag(b,a, t) as tag. So, we have∑
b

Pr[(msbλ0(Hashτ0(x)⊕ Hashτ0(x(?))) = tag ⊕ t)

∧(msbλ0(Q) = tag ⊕msbλ0(Hashτ0(x))) ∧ (Q = b)]

=
∑
b,a

Pr[(msbλ0(Hasha(x)⊕ Hasha(x
(?))) = tag ⊕ t)

∧(msbλ0(Q) = tag ⊕msbλ0(Hasha(x))) ∧ (Q = b) ∧ (τ0 = a)]

=
∑
b,a

Pr[(msbλ0(Hasha(x)⊕ Hasha(x
(?))) = tag ⊕ t) ∧ (τ0 = a)]

×Pr[(msbλ0(Q) = tag ⊕msbλ0(Hasha(x))) ∧ (Q = b)]

=
∑
b,a

Pr[(msbλ0(Hasha(x)⊕ Hasha(x
(?))) = tag ⊕ t) ∧ (τ0 = a)]

×

(∑
c1

Pr[(Q = (tag ⊕msbλ0(Hasha(x)))||c1) ∧ (Q = b)]

)

17

Let b = (tag ⊕msbλ0(Hasha(x)))||c1). Then Pr[(Q = b) ∧ (Q = b)] is bounded from above by the
q-interpolation probability of f . So, we have∑

b,a

Pr[(msbλ0(Hasha(x)⊕ Hasha(x
(?))) = tag ⊕ t) ∧ (τ0 = a)]

×

(∑
c1

Pr[(Q = b) ∧ (Q = b)]

)
≤
∑
b,a

Pr[(msbλ0(Hasha(x)⊕ Hasha(x
(?))) = tag ⊕ t) ∧ (τ0 = a)]× 2n−λ0δq/(2

n)q

= 2n−λ0δq/(2
n)q ×

∑
b,a

Pr[(msbλ0(Hasha(x)⊕ Hasha(x
(?))) = tag ⊕ t) ∧ (τ0 = a)]

= 2n−λ0δq/(2
n)q ×

∑
b

Pr[msbλ0(Hashτ0(x)⊕ Hashτ0(x(?))) = tag ⊕ t]

= 2n−λ0δq/(2
n)q ×

∑
b

∑
c2

Pr[Hashτ0(x)⊕ Hashτ0(x(?)) = (tag ⊕ t)||c2]

≤ 2n−λ0δq/(2
n)q ×

∑
b

2n−λ0ε(`, `(?))

= 2n−λ0δq/(2
n)q × (2n)q−1 × 2n−λ0ε(`, `(?))

= 2n−2λ0δqε(`, `
(?)). (32)

Combining (31) and (32), we have,

Pr[msbλ0(Q⊕ Hashτ0(x(Q, τ , tag(?)))) = tag(Q, τ , tag(?))]

≤
∑
a

(∑
t

2n−2λ0δqε(`, `
(?))
)
× Pr[τ = a]

=
∑
t

2n−2λ0δqε(`, `
(?))×

∑
a

Pr[τ = a]

= 2λ02n−2λ0δqε(`, `
(?))

= 2n−λ0ε(`, `(?))δq = γ/2λ0 . (33)

This proves the second case.

Tightness of the security bound: The scheme NMAC is obtained as a variant of the Wegman-
Carter scheme. The statement and proof of Theorem 1 follows the bound on the Wegman-Carter
scheme established by Bernstein [5]. As mentioned earlier, Bernstein’s bound has been proved to
be tight [15, 18]. A natural question is to consider whether the bound of Theorem 1 is also tight.
We have considered this question for NMAC. It does not seem possible to use the proof approach
used in [15, 18] to show the tightness of the bound in Theorem 1. In fact, the approach does not
also seem to work for the generic scheme NMAC-Generic.

4.1 Reducing Key Size

In a practical instantiation of NMAC, the random function f will be instantiated by a keyed function
FK . The key for the entire scheme will consist of the key K along with the #L keys (τλ)λ∈L for

18

the hash function Hash. Depending on the size of L, for certain applications, the size of the key
may be too large. Our next constructions show how to obtain NMAC schemes with short keys.

The hash family {Hashτ}τ∈Θ, the nonce space N , the message space M, the set of allowed tag
lengths L and the tag space remain the same as in the case of NMAC.

Our goal is to derive the key for the hash function by applying a PRF to the concatenation
of the tag length and the nonce. Depending upon the actual choice of the hash function, the key
could either be an n-bit string (or, a string of some fixed length which is at least n), or, it could be
a variable length string which depends upon the length of the message. Typical examples of hash
function where the key is a fixed length string is the polynomial hash or the BRW hash [4, 17, 6]
while typical examples of hash function where the key depends upon the length of the message is
either the multi-linear hash [13], or the pseudo-dot product [27], or the UMAC [8] construction.

We consider the key of the hash function to be a sequence of n-bit blocks with the last block
possibly being a partial block. Given the hash function Hash and a message x, let b(x) denote the
number of n-bit blocks of key material required by Hash to process the message x. As mentioned
above, depending upon the choice of Hash, b(x) could be independent of x (i.e., Hash uses fixed
length keys), or, it could depend upon x (i.e., Hash uses a key which depends upon the length of
x).

We start by constructing a nonce-based MAC scheme from a stream cipher supporting an
initialisation vector. The assumption on such a stream cipher is that it is a PRF [2]. Formally, we
use the PRF {SCK}K∈K, where SCK is a stream cipher which maps an n-bit string under the key K
to an output keystream. We will assume that the output keystream is of some fixed length which is
sufficiently big for all practical applications. An appropriate length prefix of the output keystream
is used in a particular context. We denote the NMAC scheme built from SC as SC-NMAC. The
tag generation algorithm for the SC-NMAC scheme is shown in Table 3. The verification algorithm
SC-NMAC.VerifyK(N, x, tag, λ) works as follows: compute tag′ = SC-NMAC.GenK(N, x, λ); return
true if tag = tag′, else return false.

The key space for SC-NMAC is K. The key generation algorithm consists of sampling K uni-
formly at random from K.

Table 3: A secure and efficient NMAC scheme using a stream cipher supporting an initialisation
vector.

SC-NMAC.GenK(N, x, λ)
b = b(x);
(Q, τ) = msb(b+1)n(SCK(bin8(λ)||N));

R = Q⊕ Hashτ (x);
tag = msbλ(R);

return tag.

The security of SC-NMAC is given by the following result.

Theorem 2. In SC-NMAC defined in Table 3, suppose that the hash function {Hashτ}τ∈Θ is ε-AXU,
where ε(`, `′) ≥ 1/2n for all `, `′ ≤ L.

Fix a query profile C. For λ ∈ L, let qg,λ (resp. qv,λ) be the number of tag generation (resp.
verification) queries for λ which are in C. Let qg =

∑
λ∈L qg,λ and qv =

∑
λ∈L qv,λ. Let σg (resp.

σv) be the total number of bits in all the tag generation (resp. verification) queries in C.

19

Let λ be such that qv,λ ≥ 1 and for 1 ≤ i ≤ qv,λ, let Q
(i)
v,λ = (N

(i)
v,λ, x

(i)
v,λ, tag

(i)
v,λ, λ) be the i-th

verification query with tag length λ. Let `
(i)
v,λ = len(x

(i)
v,λ). Corresponding to Q

(i)
v,λ, there is at most

one tag generation query Q
(i?)
g,λ = (N

(i?)
g,λ , x

(i?)
g,λ , λ) such that N

(i)
v,λ = N

(i?)
g,λ . Let `

(i?)
g,λ = len(x

(i?)
g,λ) if

there is such a Q
(i?)
g,λ , otherwise `

(i?)
g,λ is undefined.

Fix λ0 ∈ L. Let Sλ0 be the set of all queries made by the adversary other than the verification
queries for tag length λ0. Suppose that the queries in Sλ0 give rise to at most q distinct (nonce,
tag-length) values. Then

Advauth
SC-NMAC[λ0](t,C) ≤ Adv

prf
SC (t+ t′, qg + qv, n(qg + qv)) +

1

2λ0
×

∑
1≤i≤qv,λ0

γi (34)

where γi = 2nε(`
(i)
v,λ0

, `
(i?)
g,λ0

) if there is a Q
(i?)
g,λ0

corresponding to Q
(i)
v,λ0

with N
(i)
v,λ0

= N
(i?)
g,λ0

; otherwise
γi = 1. Here t′ is the time required to hash qv + qg messages of total length at most σg + σv, plus
some bookkeeping time.

Proof. The proof is similar to the proof of Theorem 1. We mention the differences.
The first reduction is to replace SCK by a uniform random function ρ from {0, 1}n to {0, 1}L.

The advantage of the adversary in detecting this change is captured by the term Adv
prf
SC (t+ t′, qg +

qv, n(qg + qv)) in (34). Let the scheme resulting from the replacement be denoted as ρ-NMAC.
Since SCK has been taken care of, the ensuing analysis is information theoretic. Let A be

a deterministic and computationally unbounded adversary attacking ρ-NMAC and having query
profile C. It is required to upper bound Advauth

ρ-NMAC[λ0](A).
As in the proof of Theorem 1, the task reduces to analysing the probability of the event

succ(A(T), λ0) for a transcript T whose query profile is C.
The second reduction is to assume that qv,λ0 = 1; the third reduction is to assume that all queries

after the single verification query for tag length λ0 are discarded. These reductions are also used
in the proof of Theorem 1 and the justifications for these reductions in the present context are the
same as those described in the proof of Theorem 1. As in Theorem 1, consider the set Sλ0 which
consists of all queries made by A other than the verification queries for λ0. Further, similar to
the proof of Theorem 1, insert queries to the transcript T , to ensure that the number of distinct
(nonce, tag-length) pairs arising from the queries in Sλ0 is q.

In view of the above reductions, it is sufficient to consider an adversary A with a tran-
script T where the last query is the verification query (N, x, tag, λ0) for tag length λ0. Also,
let (N (1), λ(1)), . . . , (N (q), λ(q)) be the distinct (nonce, tag-length) pairs arising from the queries in
Sλ0 . For 1 ≤ i ≤ q, define N(i) = bin8(λ(i))||N (i), (Q(i), τi) = ρ(N(i)) (considering the full length
output of ρ), Q = (Q(1), . . . , Q(q)) and τ = (τ1, . . . , τq). The entire randomness in the transcript
arises from Q and τ .

At this point, we would like to mention a small difference with the proof of Theorem 1. In
the scheme NMAC, the hash key depends upon the tag length, whereas in SC-NMAC, the hash key
is determined by (nonce, tag-length) pair. As a consequence, the vector τ defined above has q
components, while the vector τ defined in the proof of Theorem 1 has q′ components, where q′ is
the number of distinct tag lengths arising from the queries in Sλ0 .

Modulo this small difference, the rest of the proof is the same as the proof of Theorem 1. In
particular, the proof divides into two cases. The first case is where the adversary does not make
any previous tag generation query with (nonce, tag-length) pair equal to (N,λ0) and the second
case is where the adversary does make such a query. The probability calculations for these two

20

cases are almost the same as those in the proof of Theorem 1. The only difference is that in the
present case, ρ is uniform random function and so δj = 1. Using these values of δj , the calculations
done in the two cases of the proof of Theorem 1 show the bound stated in (34).

In the scheme SC-NMAC, the pair (Q, τ) is derived by applying the stream cipher to bin8(λ)||N .
Since a stream cipher produces a long enough keystream, a single application of SC is sufficient to
obtain the pair (Q, τ). Suppose that we wish to use a PRF F whose output is an n-bit string (or,
a short fixed length string). Clearly, then a single invocation of F will not be sufficient to obtain
the pair (Q, τ). The PRF F will have to be invoked repeatedly to obtain an output bit string of
desired length from which the pair (Q, τ) can be obtained.

Formally, we use a PRF family {FK}K∈K, where for each K ∈ K, FK : {0, 1}n → {0, 1}n. Similar
to the case of SC-NMAC, the hash family {Hashτ}τ∈Θ, the nonce space N , the message space M,
the set of allowed tag lengths L and the tag space remain the same as in the case of NMAC. The
key space for the scheme is K. The key generation algorithm consists of sampling K uniformly at
random from K.

The tag generation algorithm of an NMAC scheme built from the PRF F is shown in Table 4
and is denoted as F-NMAC.Gen. The verification algorithm F-NMAC.Verify(N, x, tag, λ) works as
follows. Given (N, x, tag, λ), compute tag′ = F-NMAC.GenK(N, x, λ); if tag = tag′, return true, else
return false. In Table 4, F is used in a counter type mode of operation which was proposed in [25].

Instantiation of F may be done by a fixed output length PRF such as Siphash [1]. Alternatively,
it can also be done using the encryption function EK(·) of a block cipher. Since E is a bijection, the
PRF assumption on EK(·) does not hold beyond the birthday bound. While using EK(·), it would
have been better to perform the analysis under the assumption that EK(·) is a pseudo-random
permutation (PRP). This, however, is problematic. The key τ to the hash function is derived by
applying EK(·). Under the assumption that EK(·) is a PRP, it would not be possible to assume
that τ is uniformly distributed. The differential probability determining the AXU property of the
hash function is computed based on uniform random τ . So, if τ cannot be considered to be uniform
random, the AXU property of the hash function cannot be invoked. As a result, the proof would
not go through. On the other hand, up to the birthday bound, it is reasonable to assume that the
encryption function of a secure block cipher behaves like a PRF.

Table 4: A secure and efficient NMAC scheme using a short output length PRF.
F-NMAC.GenK(N, x, λ)

b = b(x);
S = FK(bin8(λ)||N);
(Q, τ) = FK(S⊕ binn(1))|| · · · ||FK(S⊕ binn(b+ 1));
R = Q⊕ Hashτ (x);
tag = msbλ(R);

return tag.

The security of F-NMAC is given by the following result.

Theorem 3. In F-NMAC defined in Table 4, suppose that the hash function {Hashτ}τ∈Θ is ε-AXU,
where ε(`, `′) ≥ 1/2n for all `, `′ ≤ L.

21

Fix a query profile C. For λ ∈ L, let qg,λ (resp. qv,λ) be the number of tag generation (resp.
verification) queries for λ which are in C. Let qg =

∑
λ∈L qg,λ and qv =

∑
λ∈L qv,λ. Let σg (resp.

σv) be the total number of bits in all the tag generation (resp. verification) queries in C.

Let λ be such that qv,λ ≥ 1 and for 1 ≤ i ≤ qv,λ, let Q
(i)
v,λ = (N

(i)
v,λ, x

(i)
v,λ, tag

(i)
v,λ, λ) be the i-th

verification query with tag length λ. Let `
(i)
v,λ = len(x

(i)
v,λ). Corresponding to Q

(i)
v,λ, there is at most

one tag generation query Q
(i?)
g,λ = (N

(i?)
g,λ , x

(i?)
g,λ , λ) such that N

(i)
v,λ = N

(i?)
g,λ . Let `

(i?)
g,λ = len(x

(i?)
g,λ) if

there is such a Q
(i?)
g,λ , otherwise `

(i?)
g,λ is undefined.

Fix λ0 ∈ L. Let Sλ0 be the set of all queries made by the adversary other than the verification
queries for tag length λ0. Suppose that the queries in Sλ0 give rise to at most q distinct (nonce,
tag-length) values. Then

Advauth
F-NMAC[λ0](t,C) ≤ Adv

prf
F (t+ t′, Bg +Bv, n(Bg +Bv))

+
(Bg +Bv)

2

2n
+

1

2λ0
×

∑
1≤i≤qv,λ0

γi (35)

where

• γi = 2nε(`
(i)
v,λ0

, `
(i?)
g,λ0

) if there is a Q
(i?)
g,λ0

corresponding to Q
(i)
v,λ0

with N
(i)
v,λ0

= N
(i?)
g,λ0

; otherwise
γi = 1;

• b(i)v,λ = b(x
(i)
v,λ), b

(i)
g,λ = b(x

(i)
g,λ), Bv =

∑
λ

∑
1≤i≤qv,λ

(b
(i)
v,λ + 2) and Bg =

∑
λ

∑
1≤i≤qg,λ

(b
(i)
g,λ + 2).

Here t′ is the time required to hash qv + qg messages of total length at most σg + σv, plus some
bookkeeping time.

Proof. The proof is very similar to the proofs of Theorems 1 and 2. We briefly discuss the differences.
There are two differences in the bound.

The first difference is in the number of queries to the PRF F in the expression Adv
prf
F . In the

present case, if a query requires b+ 1 n-bit blocks to obtain the pair (Q, τ), the number of times F
is invoked is b+2. The rest of the analysis proceeds by replacing F with a uniform random function
ρ from {0, 1}n to {0, 1}n.

The main argument requires that for distinct values of (N,λ), the random variables (Q, τ) are
independent and uniformly distributed. The pair (Q, τ) is derived by successively applying ρ to
S⊕binn(1), . . . ,S⊕binn(b+ 1) where S itself is obtained by applying ρ to bin8(λ)||N . If for distinct
values of (N,λ), the quantities S, S⊕ binn(1), . . . ,S⊕ binn(b+ 1) are distinct, then the independent
and uniform random distribution of (Q, τ) is ensured.

Let the q distinct values of (nonce, tag-length) pairs arising from the queries in Sλ0 be (N (1), λ(1)),
. . . , (N (q), λ(q)). Let D(i) = {S(i), S(i) ⊕ binn(1), . . . ,S(i) ⊕ binn(b(i) + 1)} be the set of random vari-
ables in the input of ρ corresponding to (N (i), λ(i)). Let D = ∪qi=1D(i) and so #D ≤ Bg +Bv. Let
bad be the event that any two of the variables in D are equal. Using the fact that ρ is a uniform
random function, it is standard to see that Pr[bad] ≤ (Bg +Bv)

2/2n.
Let A be an adversary attacking the scheme where F is replaced with ρ. We assume that A is

deterministic and computationally unbounded. Let succ(A) be the event that an adversary A is
successful. Then

Pr[succ(A)] ≤ Pr[bad] + Pr[succ(A)|bad]

≤ (Bg +Bv)
2

2n
+ Pr[succ(A)|bad].

22

Table 5: A variable tag length MAC scheme obtained from a PRF {GK}K∈K, GK :M×L → {0, 1}n.

MAC.GenK(x, λ)
R = GK(x, λ);
tag = msbλ(R);

return tag.

Conditioned on the event bad, the pairs (Q(i), τ (i)) are independent and uniformly distributed.
From this point onwards, the rest of the proof is exactly the same as the proof of Theorem 2 and
provides the same bound. We skip these details.

5 PRF Supporting Variable Input Length

There could be situations where it is not feasible to use a nonce. Such situations require the use
of MAC schemes which do not utilise nonces. The goal of supporting variable length tag, however,
remains the same. This calls for MAC schemes which do not use nonces but support variable length
tags.

Suppose as before that the message space is M and the set of allowed tag lengths is L.
Let {GK}K∈K, GK : M× L → {0, 1}n be a PRF. Such a PRF can be used to obtain a MAC
scheme supporting variable length tag. The tag generation algorithm for the scheme MAC is
shown in Table 5. The verification algorithm MAC.VerifyK(x, tag, λ) works as follows: compute
tag′ = MAC.GenK(x, λ); if tag = tag′, return true, else return false. The key space for MAC is K
and the key generation algorithm consists of choosing K uniformly at random from K.

The following result relates the authenticity of MAC to the PRF-security of G.

Theorem 4. Fix a query profile C. For λ ∈ L, let qg,λ (resp. qv,λ) be the number of tag generation
(resp. verification) queries for λ which are in C. Let qg =

∑
λ∈L qg,λ and qv =

∑
λ∈L qv,λ. Let σg

(resp. σv) be the total number of bits in all the tag generation (resp. verification) queries in C.
Then for the scheme MAC given in Table 5,

Advauth
MAC [λ](t,C) ≤

qv,λ
2λ

+ Adv
prf
G (t+ t′, q, σg + σv) (36)

where t′ denotes bookkeeping time.

Proof. Let A be an adversary attacking the authentication property of MAC. Using A, we build an
adversary B attacking the PRF-property of G as follows. B has access to an oracle, which is either
the real oracle (i.e., GK(·, ·) where K is chosen uniformly from K) or the random oracle, which on
distinct inputs (x, λ) returns independent and uniform random n-bit strings. Let the response from
the oracle of B corresponding to (x, λ) be str.
B maintains a list L of tuples of the form (x, λ, str) which is initially empty. For any tag

generation query (xg, λg) made by A, B queries its oracle on the same input and receives in return
an n-bit string strg. It enters (xg, λg, strg) in L and returns msbλg(strg) to A. For any verification
query (xv, tagv, λv) made by A, B first searches for a tuple containing (xv, λv) in L. If no such tuple
is present in L, B makes a query to its oracle on (xv, λv). Let the corresponding n-bit string it
obtains in return, either from L or from its oracle, be strv. If strv is obtained from the oracle, i.e. if

23

the tuple (xv, λv, strv) is not present in L, B adds it to L and returns true to A if msbλv(strv) = tagv;
otherwise, B returns false to A. If for any of the verification queries (xv, tagv, λv) it turns out that
λv = λ and B returns true to A then B finally outputs 1; otherwise B continues and when A
terminates, B returns 0. Note that by the condition on A all its tag generation queries are distinct
and further (xv, λv) corresponding to any verification query is also distinct from the tag generation
queries. But for two verification queries the part (xv, λv) may repeat. By using L, B ensures that
all its queries to its oracles are distinct for any combination of queries made by A. Let q′v be the
number of verification queries made by A with unique pair of message and tag length and σ′v be
the total number of bits in these q′v queries. Clearly, qg + q′v ≤ qg + qv = q and σg + σ′v ≤ σg + σv.
Hence, B makes at most q queries to its oracle with total number of bits at most σg + σv.

Let Breal ⇒ 1 (Brnd ⇒ 1) be the event that B returns 1 when its oracle is real (resp. random).
By definition,

Adv
prf
G (B) = Pr[Breal ⇒ 1]− Pr[Brnd ⇒ 1]. (37)

Also, B returns 1 if and only if some verification query made by A for tag length λ returns true.
So,

Advauth
MAC [λ](A) = Pr[Breal ⇒ 1]. (38)

When the oracle to B is random, the outputs that B receives from the oracle are independent and
uniform random n-bit strings. In this case, B outputs 1 if and only if at least one of the qv,λ
verification queries for tag length λ is successful. The probability that any such query is successful
is 1/2λ and so the probability that B outputs 1 when its oracle is random is at most qv,λ/2

λ.
Combining this fact with (37) and (38) we obtain

Adv
prf
G (B) = Pr[Breal ⇒ 1]− Pr[Brnd ⇒ 1]

≥ Advauth
MAC [λ](A)−

qv,λ
2λ

. (39)

From previous discussion on the number of queries and the query complexities of A and B, we
obtain the following relation.

Advauth
MAC [λ](t, qg, qv, σg, σv) ≤

qv,λ
2λ

+ Adv
prf
G (t+ t′, qg + qv, σg + σv). (40)

In view of Theorem 4, the problem reduces to constructing a PRF which accepts as input a
pair (message, tag-length) and produces as output an n-bit string. Such a PRF can be constructed
using known techniques. We consider the construction of such a PRF using a hash function and a
PRF which accepts n-bit strings as inputs. Table 6 provides three such constructions. The message
space, the set of allowed tag lengths and the tag space are the same as those of NMAC. Further,
fStr is a fixed binary string of length n− 8 bits.

All the three PRF constructions in Table 6 utilise a hash function {Hashτ}τ∈Θ. The scheme
F-PRF uses a PRF {FK}K∈K, FK : {0, 1}n → {0, 1}n. The key to F-PRF consists of the pair
(K, τ) consisting of the key for F and the key for Hash. The schemes SC-PRF and E-PRF use a
single key and derive the key for the hash function as part of the scheme. The scheme SC-PRF
uses a stream cipher supporting an initialisation vector which is modelled as a PRF {SCK}K∈K,

24

Table 6: PRF schemes from a hash function {Hashτ}τ∈Θ and a PRF which accepts n-bit strings as
inputs.

F-PRFK,τ (x, λ)
N = Hashτ (bin8(λ)||x);
R = FK(N);

return R.

SC-PRFK(x, λ)
str = bin8(λ)||fStr;
b = b(x);
τ = msbbn(SCK(str));
N = Hashτ (x);
R = SCK(N);

return R

E-PRFK(x, λ)
str = bin8(λ)||fStr;
b = b(x);
if b = 1
τ = EK(str);

else
Q = EK(str);
for i← 1 to b do

Qi = EK(Q⊕ binn(i));
τ = Q1|| · · · ||Qb;

N = Hashτ (x);
R = EK(N);

return R.

SCK : {0, 1}n → {0, 1}L where L is large enough to derive all practical size strings. The scheme
E-PRF uses a PRF {EK}K∈K, EK : {0, 1}n → {0, 1}n.

The key space for F-PRF is K×Θ and choosing a key (K, τ) consists of sampling K uniformly
at random from K and independently sampling τ uniformly at random from Θ. The key spaces for
SC-PRF and E-PRF are both K and choosing a key consists of sampling K uniformly at random
from K.

The security statements and the proofs for the PRF schemes in Table 6 are given in Appendix B.

6 Conclusion

In this paper, we have considered the problem of constructing variable tag length MAC schemes.
Several variants obtained from the Wegman-Carter MAC scheme have been shown to be insecure.
One of these variants is proved to be secure. This scheme is extended to obtain constructions of
single-key nonce-based variable tag length MAC schemes using either a stream cipher or a short-
output PRF. The problem of constructing variable tag length MAC schemes without nonces have
also been considered and several practical schemes have been described.

Acknowledgement

We thank Debrup Chakraborty for having provided an outline of the attack on NMAC-t1 and also
for several other important discussions.

References

[1] Jean-Philippe Aumasson and Daniel J. Bernstein. Siphash: A fast short-input PRF. In
Steven D. Galbraith and Mridul Nandi, editors, Progress in Cryptology - INDOCRYPT 2012,
13th International Conference on Cryptology in India, Kolkata, India, December 9-12, 2012.

25

Proceedings, volume 7668 of Lecture Notes in Computer Science, pages 489–508. Springer,
2012.

[2] Côme Berbain and Henri Gilbert. On the security of IV dependent stream ciphers. In Alex
Biryukov, editor, FSE, volume 4593 of Lecture Notes in Computer Science, pages 254–273.
Springer, 2007.

[3] Daniel J. Bernstein. The Salsa20 family of stream ciphers. http://cr.yp.to/papers.html#

salsafamily. Document ID: 31364286077dcdff8e4509f9ff3139ad. Date: 2007.12.25.

[4] Daniel J. Bernstein. The poly1305-aes message-authentication code. In Henri Gilbert and
Helena Handschuh, editors, Fast Software Encryption: 12th International Workshop, FSE
2005, Paris, France, February 21-23, 2005, Revised Selected Papers, volume 3557 of Lecture
Notes in Computer Science, pages 32–49. Springer, 2005.

[5] Daniel J. Bernstein. Stronger security bounds for Wegman-Carter-Shoup authenticators. In
Ronald Cramer, editor, EUROCRYPT, volume 3494 of Lecture Notes in Computer Science,
pages 164–180. Springer, 2005.

[6] Daniel J. Bernstein. Polynomial evaluation and message authentication, 2007. http://cr.

yp.to/papers.html#pema.

[7] Daniel J. Bernstein and Tung Chou. Faster binary-field multiplication and faster binary-field
macs. In Antoine Joux and Amr M. Youssef, editors, Selected Areas in Cryptography - SAC
2014 - 21st International Conference, Montreal, QC, Canada, August 14-15, 2014, Revised
Selected Papers, volume 8781 of Lecture Notes in Computer Science, pages 92–111. Springer,
2014.

[8] John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip Rogaway. UMAC: Fast
and secure message authentication. In Michael J. Wiener, editor, CRYPTO, volume 1666 of
Lecture Notes in Computer Science, pages 216–233. Springer, 1999.

[9] CAESAR. Competition for Authenticated Encryption: Security, Applicability, and Robust-
ness. http://competitions.cr.yp.to/caesar.html.

[10] Debrup Chakraborty, Sebati Ghosh, and Palash Sarkar. A fast single-key two-level universal
hash function. IACR Trans. Symmetric Cryptol., 2017(1):106–128, 2017.

[11] Hal Finney. CFRG discussion on UMAC. https://marc.info/?l=cfrg&m=

143336318427069&w=2, accessed on 15 November, 2019, 2005.

[12] Hal Finney. CFRG discussion on UMAC. https://marc.info/?l=cfrg&m=

143336318527072&w=2, accessed on 15 November, 2019, 2005.

[13] Edgar N. Gilbert, F. Jessie MacWilliams, and Neil J. A. Sloane. Codes which detect deception.
Bell System Technical Journal, 53:405–424, 1974.

[14] Ted Krovetz. UMAC: Message authentication code using universal hashing. https://tools.
ietf.org/html/draft-krovetz-umac-05.html, accessed on 15 November, 2019., 2005.

26

[15] Atul Luykx and Bart Preneel. Optimal forgeries against polynomial-based macs and GCM.
In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT
2018 - 37th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part I, volume 10820 of
Lecture Notes in Computer Science, pages 445–467. Springer, 2018.

[16] James H. Manger. Attacker changing tag length in OCB. https://mailarchive.ietf.org/

arch/msg/cfrg/gJtV9FCw92MguqqhxrSNUyIDZIw, accessed on 15 November, 2019., 2013.

[17] David A. McGrew and John Viega. The security and performance of the Galois/Counter Mode
(GCM) of operation. In Anne Canteaut and Kapalee Viswanathan, editors, INDOCRYPT,
volume 3348 of Lecture Notes in Computer Science, pages 343–355. Springer, 2004.

[18] Mridul Nandi. Bernstein bound on WCS is tight - repairing luykx-preneel optimal forgeries.
In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology - CRYPTO
2018 - 38th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
19-23, 2018, Proceedings, Part II, volume 10992 of Lecture Notes in Computer Science, pages
213–238. Springer, 2018.

[19] Mike Ounsworth. Footguns as an axis of security analysis. https://groups.google.com/a/

list.nist.gov/forum/#!topic/pqc-forum/l2iYk-8sGnI, accessed on 15 November, 2019,
2019.

[20] Reza Reyhanitabar, Serge Vaudenay, and Damian Vizár. Authenticated encryption with vari-
able stretch. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology -
ASIACRYPT 2016 - 22nd International Conference on the Theory and Application of Cryp-
tology and Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I,
volume 10031 of Lecture Notes in Computer Science, pages 396–425, 2016.

[21] P. Rogaway and D. Wagner. A critique of ccm. Cryptology ePrint Archive, Report 2003/070,
2003. https://eprint.iacr.org/2003/070.

[22] Victor Shoup. On fast and provably secure message authentication based on universal hashing.
In Neal Koblitz, editor, CRYPTO, volume 1109 of Lecture Notes in Computer Science, pages
313–328. Springer, 1996.

[23] UMAC. CFRG discussion on UMAC. http://marc.info/?l=cfrg&m=143336318427068&w=2,
accessed on 15 November, 2019., 2005.

[24] David Wagner. CFRG discussion on UMAC. https://marc.info/?l=cfrg&m=

143336318527073&w=2, accessed on 15 November, 2019, 2005.

[25] Peng Wang, Dengguo Feng, and Wenling Wu. HCTR: A variable-input-length enciphering
mode. In Dengguo Feng, Dongdai Lin, and Moti Yung, editors, CISC, volume 3822 of Lecture
Notes in Computer Science, pages 175–188. Springer, 2005.

[26] Mark N. Wegman and Larry Carter. New hash functions and their use in authentication and
set equality. J. Comput. Syst. Sci., 22(3):265–279, 1981.

[27] Shmuel Winograd. A new algorithm for inner product. IEEE Transactions on Computers,
17:693–694, 1968.

27

A Attack on NMAC-t6

Algorithm 2 Attack on NMAC-t6 for λ2 = n:

1: set λ2 ← n;
2: choose λ1 ∈ L, such that λ1 < λ2;
3: choose any N1 ∈ N and any x1 ∈M and let
4: tag(1) ← Og(N1, x1, λ1);
5: set D ← {};
6: choose x2 ∈M, such that x2 6= x1;
7: do
8: choose tag(2) ← {0, 1}λ1 \ D;
9: set D ← D ∪ tag(2);

10: R(2)
v ← Ov(N1, x2, tag

(2), λ1);

11: while R(2)
v = no;

12: set C1 ← {};
13: choose x3 ←M\ {x1, x2};
14: do
15: choose c1 ← {0, 1}n−λ1 \ C1;
16: set C1 ← C1 ∪ c1;
17: using Proposition 1 solve Hashτλ1 (x1)⊕ Hashτλ1 (x2) = (tag(1) ⊕ tag(2))||c1

18: for τλ1 and let the solution be τc1 ;
19: set xc1 ← tag(1) ⊕msbλ1(Hashτc1 (x1));

20: R(3)
v ← Ov(N1, x3, xc1 ⊕msbλ1(Hashτc1 (x3)), λ1);

21: while R(3)
v = no;

22: choose any x4 ∈M and let
23: tag(4) ← Og(N1, x4, λ2);
24: set C2 ← {};
25: choose x ∈M \ {x4};
26: do
27: choose c2 ← {0, 1}n−λ1 \ C2;
28: set C2 ← C2 ∪ c2;
29: solve Hashτλ2 (x4) = msbλ1(tag(4))⊕ xc1 ||c2

30: for τλ2 and let the solution be τc2 ;
31: set xc2 ← (msbλ1(tag(4))⊕ xc1 ||c2)⊕ tag(4);

32: R(5)
v ← Ov(N1, x, xc2 ⊕ Hashτc2 (x), λ2);

33: while R(5)
v = no.

Lemma 5. The attack mentioned in Algorithm 2 forges with probability 1 and requires 2 tag gen-
eration queries and at most 2λ1 + 2× 2n−λ1 verification queries including the forgery attempts.

Proof. That the attack mentioned in Algorithm 2 forges with probability 1 is proved if it can be

shown that there is an iteration of the do-while loop in Steps 26 to 33 such that R(5)
v = yes, i.e.

there is a verification query in Step 32 which succeeds.
From Step 4, we get that

msbλ1(FK(N1)⊕ Hashτλ1 (x1)) = tag(1). (41)

28

As NMAC-t6(N1, x2, λ1) ∈ {0, 1}λ1 and tag(2) is varied through {0, 1}λ1 , the do-while loop in Steps 7
to 11 terminates and for the terminating (N1, x2, tag

(2), λ1) we get,

msbλ1(FK(N1)⊕ Hashτλ1 (x2)) = tag(2). (42)

So, from (41) and (42) we get,

msbλ1(Hashτλ1 (x1)⊕ Hashτλ1 (x2)) = tag(1) ⊕ tag(2). (43)

Here tag(1) ⊕ tag(2) is a λ1-bit binary string.
Following Proposition 1, for each choice of c1 in the do-while loop in Steps 14 to 21, the equation
in Step 17 can be solved to get τc1 and xc1 .

The fact that Hashτλ1 (x1) ⊕ Hashτλ1 (x2) ∈ {0, 1}n and (43) suggest that there is a correct c1,
such that the equation in Step 17 holds and we consider that iteration of the do-while loop which
deals with this particular c1. The τc1 obtained in this iteration is the actual hash key used in the
scheme. So,

NMAC-t6(N1, x3, λ1)

= msbλ1(FK(N1)⊕ Hashτc1 (x3))

= tag(1) ⊕msbλ1(Hashτc1 (x1))⊕msbλ1(Hashτc1 (x3)) (44)

= xc1 ⊕msbλ1(Hashτc1 (x3)). (45)

The expression in (44) comes from (41) and that in (45) comes from Step 19 in Algorithm 2.

Hence, in this particular iteration of the do-while loop, R(3)
v = yes and the loop terminates.

Next, from Step 23, we get

msbλ2(FK(N1)⊕ Hashτλ2 (x4)) = tag(4).

As, λ2 = n, so we can write,

FK(N1)⊕ Hashτλ2 (x4) = tag(4)

Hashτλ2 (x4) = tag(4) ⊕ FK(N1). (46)

Here, the n bits of tag(4) and msbλ1(·) of FK(N1), which is xc1 , are known.
As Hashτλ2 (x4) ∈ {0, 1}n, there is a c2 ∈ {0, 1}n−λ1 , such that,

Hashτλ2 (x4) = msbλ1(tag(4) ⊕ FK(N1))||c2 = (msbλ1(tag(4))⊕ xc1)||c2. (47)

Now, using a suitable length x4, for the correct c2, the actual values of τc2 and xc2 are obtained in
Steps 30 and 31 respectively.
For the correct c2, from (46) and (47), we get,

FK(N1) = Hashτλ2 (x4)⊕ tag(4) = ((msbλ1(tag(4))⊕ xc1)||c2)⊕ tag(4), (48)

which equals xc2 according to Step 31 in Algorithm 2.
Hence, for the x ∈M \ {x4},

NMAC-t6(N1, x, λ2)

= FK(N1)⊕ Hashτc2 (x)

= xc2 ⊕ Hashτc2 (x). (49)

29

The last equality follows from (48).
From (49), it is clear that for the iteration of the do-while loop in Steps 26 to 33, in which the

correct c2 is used, R(5)
v = yes with probability 1, which proves the first part of the Lemma.

In the attack, there are 2 tag generation queries in Steps 4 and 23. In each iteration of each of
the do-while loops in Steps 7 to 11, in 14 to 21 and in 26 to 33 one verification query is made. The
do-while loop in Steps 7 to 11 iterates at most 2λ1 times for different values of tag(2); the do-while
loop in Steps 14 to 21 iterates at most 2n−λ1 times for different values of c1 and that in Steps 26
to 33 iterates at most 2n−λ1 times for different values of c2, as tag(2) is λ1-bit quantity and each of
c1 and c2 is (n− λ1)-bit quantity. Hence, the attack requires 2 tag generation queries and at most
2λ1 + 2× 2n−λ1 verification queries including the forgery.

B Security of the PRF Schemes in Table 6

Here, we provide the security proofs of the PRF schemes in Table 6. For the proofs we require the
following additional notion for a hash function {Hτ}τ∈Θ, where for each τ ∈ Θ, Hτ :M→ {0, 1}n.

• For distinct x, x′ ∈ M, the collision probability of {Hτ}τ∈Θ, for the pair (x, x′) is defined
to be Prτ [Hτ (x) = Hτ (x′)]. Here the probability is taken over the uniform random choice of
τ from Θ.
Similar to differential probability, the collision probability may also depend on the lengths of
x and x′. As mentioned earlier, L is the maximum of the lengths of the binary strings inM.
Let ε : {0, . . . , L}2 → [0, 1] be a function such that the collision probability for any (x, x′) is
at most ε(len(x), len(x′)). Then the family {Hτ}τ∈Θ is said to be ε-AU.

• Let {Hτ}τ∈Θ satisfy the following properties.

– For τ1 and τ2 chosen independently and uniformly at random from Θ and for x1 and x2

(not necessarily distinct) from M,

Pr[Hτ1(x1) = Hτ2(x2)] ≤ ε1(len(x1), len(x2)), (50)

where ε1 : {0, . . . , L}2 → [0, 1].

– For any a ∈ {0, 1}n, an x ∈M and τ chosen uniformly at random from Θ,

Pr[Hτ (x) = a] ≤ ε2(len(x)), (51)

where ε2 : {0, . . . , L} → [0, 1].
Then the family {Hτ}τ∈Θ is said to be (ε1, ε2)-eligible.

• As mentioned earlier in the context of nonce-based MACs, depending upon the actual choice of
the hash function, the key could either be a fixed length string, or, it could be a variable length
string which depends upon the length of the message. In either case, we will consider the key
space Θ to consist of fixed length keys, where this length of the keys is some sufficiently large
fixed value, such that any practical size message can be taken care of by using the appropriate
length prefix of the key.

Theorem 6. Let q ≥ 1. Fix the query profile C = ((x(1), λ(1)), . . . , (x(q), λ(q))). Let the total
number of bits in the queries be σ ≥ 1. In F-PRF defined in Table 6, suppose that the hash function
{Hashτ}τ∈Θ is ε-AU, where ε(·, ·) ≥ 1/2n. Let, l(i) = len(bin8(λ(i))||x(i)), where 1 ≤ i ≤ q.

30

Then

Adv
prf
F-PRF(t, q, σ) ≤ Adv

prf
F (t+ t′, q) +

∑
1≤i<j≤q

ε(l(i), l(j)) (52)

where t′ is the time required to hash q pairs of message and tag length of total length at most σ,
plus some bookkeeping time.

Proof. LetA be the adversary attacking the PRF-security of F-PRF. FromA, we define an adversary
B attacking the PRF-security of F. B has access to an oracle, which is either the real oracle (i.e.
FK(·) instantiated with an independent and uniform random K from K) or the random oracle which
on provided with distinct n-bit inputs, outputs independent and uniform random n-bit strings. B
simulates A in the following manner. B maintains a list L of tuples of the form (N,R) which is
initially empty. At the outset, it chooses an independent and uniform random τ from Θ. For each
query (x(i), λ(i)) made by A, B uses this τ to hash (bin8(λ(i))||x(i)) and obtains the digest N . Now,
it searches for a tuple containing N in L. If no such tuple is present, B queries its oracle on the
input N to get the output corresponding to the call to F. Let the output, either obtained from L
or from the oracle, be R. If it is obtained from the oracle, i.e. it is not present in L already, B
adds the tuple (N,R) to the list and sends R to A. At the end, B outputs whatever bit A outputs.
By using L, it is ensured that B queries its oracle only on distinct inputs for any combination of
queries made by A and B makes at most q′ ≤ q oracle queries.

By Breal ⇒ 1 (resp. Brnd ⇒ 1) we denote the event that B outputs the bit 1 after interacting
with the real (resp. random) oracle. By definition

Adv
prf
F (B) = Pr[Breal ⇒ 1]− Pr[Brnd ⇒ 1]. (53)

If B’s oracle is real, then the following is immediate.

Pr[Areal ⇒ 1] = Pr[Breal ⇒ 1]. (54)

We now consider the situation when B’s oracle is random. In the subsequent discussion, the numbers
in the superscripts of the variables denote the sequence of the queries.

The q queries made by A are (x(i), λ(i)), i = 1, . . . , q. Define

Dom = {N (1), . . . , N (q)}

and let Bad be the event that two variables in Dom have the same value.
The variable N (i) is obtained as N (i) = Hashτ (bin8(λ(i))||x(i)), i = 1, . . . , q. So, from the fact

that {Hashτ} is ε-AU, we get the probability that N (i) = N (j) is at most ε(l(i), l(j)) and as a result,

Pr[Bad] ≤
∑

1≤i<j≤q
ε(l(i), l(j)) (55)

Further,

Pr[Brnd ⇒ 1] ≤ Pr[Brnd ⇒ 1 ∧ Bad] + Pr[Bad]. (56)

Seen in conjunction with Bad, the outputs of the random oracle on the inputs N (i), i = 1, . . . , q are
independent and uniform random n-bit strings. So, we have

Pr[Arnd ⇒ 1 ∧ Bad] = Pr[Brnd ⇒ 1 ∧ Bad]. (57)

31

Combining (53), (54), (56) and (57) we obtain:

Adv
prf
F (B) = Pr[Breal ⇒ 1]− Pr[Brnd ⇒ 1]

= Pr[Areal ⇒ 1]− Pr[Brnd ⇒ 1]

≥ Pr[Areal ⇒ 1]−
(

Pr[Brnd ⇒ 1 ∧ Bad] + Pr[Bad]
)

= Pr[Areal ⇒ 1]−
(

Pr[Arnd ⇒ 1 ∧ Bad] + Pr[Bad]
)

= Pr[Areal ⇒ 1]− Pr[Arnd ⇒ 1 ∧ Bad]− Pr[Bad]

≥ Pr[Areal ⇒ 1]− Pr[Arnd ⇒ 1]− Pr[Bad]

= Adv
prf
F-PRF(A)− Pr[Bad]. (58)

Rearranging (58) gives

Adv
prf
F-PRF(A) ≤ Adv

prf
F (B) + Pr[Bad]. (59)

Putting value of Pr[Bad] from (55) gives

Adv
prf
F-PRF(A) ≤ Adv

prf
F (B) +

∑
1≤i<j≤q

ε(l(i), l(j)). (60)

The resource bounded advantage follows from this on noting that the number of queries made
by B is upper bounded by the number of queries made by A and for each query made by A, B has
to hash the message and tag-length pair.

Theorem 7. Let q ≥ 1. Fix the query profile C = ((x(1), λ(1)), . . . , (x(q), λ(q))). Let the total
number of bits in the queries be σ ≥ 1. In SC-PRF defined in Table 6, suppose that the hash
function {Hashτ}τ∈Θ is ε-AU, where ε(·, ·) ≥ 1/2n. Further, suppose that Hashτ is (ε, ε′)-eligible
hash function, where ε′(·) ≥ 1/2n. Let, l(i) = len(x(i)), where 1 ≤ i ≤ q.

Then

Adv
prf
SC-PRF(t, q, σ) ≤ Adv

prf
SC (t+ t′, 2q) +

∑
1≤i<j≤q

ε(l(i), l(j)) + min(q,#L)×
∑

1≤k≤q
ε′(l(k)).(61)

Here, t′ is the time required to calculate the hash of q messages of total length at most σ, plus some
basic computation and bookkeeping time.

Proof. Let as in the proof of Theorem 6, A be the adversary attacking the PRF-security of SC-PRF.
From A, we define an adversary B attacking the PRF-security of SC. B has access to an oracle,
which is either the real oracle (i.e. SCK(·) instantiated with an independent and uniform random
K from K) or the random oracle which on provided with distinct n-bit inputs, outputs independent
and uniform random L-bit strings. B simulates A in the following manner.
B maintains a list L of tuples of the form (inp, out) which is initially empty. Here, for each tuple,

out is L-bit long. For any query (x(i), λ(i)) made by A, B first forms str as str = bin8(λ(i))||fStr and
calculates b = b(x(i)). Now, it searches for a tuple containing str in L. If no such tuple is present,
B queries its oracle on the input str to get the output corresponding to the call to SC. Let the
output, either obtained from L or from the oracle, be τ . If it is obtained from the oracle, i.e. it is
not present in L already, B adds the tuple (str, τ) to the list.

32

Now, it uses τ (or the appropriate length prefix of τ according to b) as the hash key to compute
the hash of x(i). Let, the digest be N . Again, B searches for a tuple containing N in L. If no such
tuple is present, B queries its oracle on the input N to get the output corresponding to the call
to SC. This time let the output, either obtained from L or from the oracle, be R. If it is obtained
from the oracle, i.e. it is not present in L already, B adds the tuple (N,R) to the list and sends
R to A. At the end, B outputs whatever bit A outputs. By using L, it is ensured that B queries
its oracle only on distinct inputs for any combination of queries made by A and B makes at most
2q′ ≤ 2q oracle queries.

By Breal ⇒ 1 (resp. Brnd ⇒ 1) we denote the event that B outputs the bit 1 after interacting
with the real (resp. random) oracle. By definition

Adv
prf
SC (B) = Pr[Breal ⇒ 1]− Pr[Brnd ⇒ 1]. (62)

If B’s oracle is real, then the following is immediate.

Pr[Areal ⇒ 1] = Pr[Breal ⇒ 1]. (63)

We now consider the situation when B’s oracle is random. This is essentially the part of the
argument which differs from that for Theorem 6. Here also, the numbers in the superscripts of the
variables denote the sequence of the queries.

We define Dom1 and Dom2 as in Table 7.

Table 7: Collision analysis.

Dom1 = {N (1), . . . , N (q)};

Subroutine CreateDom2(X)
Dom2 ← {};
for i = 1 to q

if bin8(λ(i))||fStr /∈ Dom2 then
Dom2 ← Dom2 ∪ {bin8(λ(i))||fStr};

endif;
endfor;

Let Bad1 be the event that two random variables in Dom1 have the same value; Bad2 be the
event that some random variable in Dom1 is equal to some random variable in Dom2; and let
Bad = Bad1 ∨ Bad2. The number of elements in Dom2 is upper bounded by the minimum of q and
the number of elements in L.

The q queries made by A are (x(i), λ(i)), i = 1, . . . , q. By the restriction on an adversary that
it cannot repeat queries, these pairs are distinct. For 1 ≤ i, j ≤ q, if λ(i) 6= λ(j), then τ (i) and τ (j)

are independent and uniform random. Hence, as {Hashτ} is (ε, ε′)-eligible hash function, it turns
out that the probability that N (i) = N (j) is at most ε(l(i), l(j)). On the other hand, if λ(i) = λ(j),
then definitely x(i) 6= x(j) and hence from the fact that {Hashτ} is ε-AU, again the probability that
N (i) = N (j) is at most ε(l(i), l(j)). Hence,

Pr[Bad1] ≤
∑

1≤i<j≤q ε(l
(i), l(j)); (64)

33

The random variables in Dom1 are of the form N (k) = Hashτ (k)(x
(k)) for 1 ≤ k ≤ q, where τ (k)

is uniform random and x(k) ∈ M. On the other hand, the random variables in Dom2 are n-bit
strings. From the fact that the hash function is (ε, ε′)-eligible, we get, for any 1 ≤ k ≤ q and any
a ∈ Dom2, Pr[N (k) = a] ≤ ε′(l(k)) and hence,

Pr[Bad2] ≤
∑

1≤k≤q(min(q,#L)× ε′(l(k))) ≤ min(q,#L)×
∑

1≤k≤q ε
′(l(k)); (65)

So, from (64) and (65), we get,

Pr[Bad] ≤
∑

1≤i<j≤q ε(l
(i), l(j)) + min(q,#L)×

∑
1≤k≤q ε

′(l(k)). (66)

Again,

Pr[Brnd ⇒ 1] ≤ Pr[Brnd ⇒ 1 ∧ Bad] + Pr[Bad]. (67)

Now, seen in conjunction with Bad, the random variables in Dom1 take distinct values and these
values are also distinct from the values of the random variables in Dom2. As a result, the outputs
of the random oracle on the inputs from Dom1 are independent and uniform random strings. So,
we have

Pr[Arnd ⇒ 1 ∧ Bad] = Pr[Brnd ⇒ 1 ∧ Bad]. (68)

Hence, as in (59) obtained as part of the proof of Theorem 6, here we get,

Adv
prf
SC-PRF(A) ≤ Adv

prf
SC (B) + Pr[Bad]. (69)

Using the upper bound on Pr[Bad] from (66) gives,

Adv
prf
SC-PRF(A) ≤ Adv

prf
SC (B) +

∑
1≤i<j≤q

ε(l(i), l(j)) + min(q,#L)×
∑

1≤k≤q
ε′(l(k)). (70)

The resource bounded advantage follows from this on noting that the number of queries made by B
is upper bounded by twice the number of queries made by A and for each query made by A, B has to
calculate the function b(·), hash the message and do some basic computation and bookkeeping.

Theorem 8. Let q ≥ 1. Fix the query profile C = ((x(1), λ(1)), . . . , (x(q), λ(q))). Let the total
number of bits in the queries be σ ≥ 1. In E-PRF defined in Table 6, suppose that the hash
function {Hashτ}τ∈Θ is ε-AU, where ε(·, ·) ≥ 1/2n. Further, suppose that Hashτ is (ε, ε′)-eligible
hash function, where ε′(·) ≥ 1/2n. Let l(i) = len(x(i)) and b(i) = b(x(i)), where 1 ≤ i ≤ q. Let
nBlks =

∑q
i=1 b

(i).
Then

Adv
prf
E-PRF(t, q, σ) ≤ Adv

prf
E (t+ t′, 2q + nBlks) +

∑
1≤i<j≤q

ε(l(i), l(j))

+
1

2n
×

∑
1≤i<j≤q

(b(i) × b(j)) + min(q,#L)×
∑

1≤k≤q
ε′(l(k)) +

q × nBlks

2n
.

(71)

Here, t′ is the time required to calculate the hash of q messages of total length at most σ, plus some
basic computation and bookkeeping time.

34

Proof. In the subsequent discussion, the numbers in the superscripts of the variables denote the
sequence of the queries.

Let as above, A be the adversary attacking the PRF-security of E-PRF. From A, we define
an adversary B attacking the PRF-security of E. B has access to an oracle, which is either the
real oracle (i.e. EK(·) instantiated with an independent and uniform random K from K) or the
random oracle which on provided with distinct n-bit inputs, outputs independent and uniform
random n-bit strings. B simulates A in the following manner. B maintains a list L of tuples of the
form (inp, out) which is initially empty. For any query (x(i), λ(i)) made by A, B first forms str(i) as
str(i) = bin8(λ(i))||fStr and computes b(i) = b(x(i)). Now, it searches for a tuple containing str(i) in
L. If no such tuple is present, B queries its oracle on the input str(i) to get the output corresponding
to the call to E. Let the output, either obtained from L or from the oracle, be Q(i). If it is obtained
from the oracle, i.e. it is not present in L already, B adds the tuple (str(i),Q(i)) to the list.

Now, if b(i) > 1, then B searches, in L, for tuples containing the oracle outputs corresponding
to Q(i) ⊕ binn(1), Q(i) ⊕ binn(2), · · · , Q(i) ⊕ binn(b(i)). If at least one of these is not present, B
queries its oracle to get the corresponding outputs for those which are not present in the list and
adds these new tuples to it. Now, it forms τ by concatenating these outputs if b(i) > 1; otherwise
τ = Q(i). This τ is used to compute the hash of x(i). Let the digest be N (i).

Again, it searches for a tuple containing N (i) in L. If no such tuple is present, B queries its
oracle on the input N (i) to get the output. Let the output, either obtained from L or from the
oracle, be R(i). If it is obtained from the oracle, i.e. it is not present in L already, B adds the
tuple (N (i), R(i)) to the list and sends R(i) to A. At the end, B outputs whatever bit A outputs.
By using L, it is ensured that B queries its oracle only on distinct inputs for any combination of
queries made by A. Here, B makes at most 2q +

∑q
i=1 b

(i) = 2q + nBlks oracle queries. Note that
it has to make extra b(i) oracle queries for the i-th query if and only if the hash key corresponding
to this query contains more than one n-bit block, i.e. b(i) > 1.

By Breal ⇒ 1 (resp. Brnd ⇒ 1) we denote the event that B outputs the bit 1 after interacting
with the real (resp. random) oracle. By definition

Adv
prf
E (B) = Pr[Breal ⇒ 1]− Pr[Brnd ⇒ 1]. (72)

If B’s oracle is real, then the following is immediate.

Pr[Areal ⇒ 1] = Pr[Breal ⇒ 1]. (73)

We now consider the situation when B’s oracle is random. This part is somewhat different from
that of Theorem 7.

Define Dom1, Dom2 and Dom3 as in Table 8.

Let Bad1 be the event that two random variables in Dom1 have the same value; Bad2 be the
event that some random variable in Dom1 is equal to some random variable in Dom2; Bad3 be
the event that some random variable in Dom1 is equal to some random variable in Dom3; and let
Bad = Bad1 ∨Bad2 ∨Bad3. The number of elements in Dom2 is at most the minimum of q and the
number of elements in L.

Note that, corresponding to the i-th query, 1 ≤ i ≤ q, Dom3 is non-empty if and only if b(i) > 1.
In that case, Bad3 is a null event and Bad = Bad1 ∨ Bad2. The number of elements in Dom3 is at
most

∑q
i=1 b

(i) = nBlks.
For 1 ≤ i, j ≤ q, there are two cases.

35

Table 8: Collision analysis.

Dom1 = {N (1), . . . , N (q)};

Subroutine CreateDom2(X)
Dom2 ← {};
for i = 1 to q

if bin8(λ(i))||fStr /∈ Dom2 then
Dom2 ← Dom2 ∪ {bin8(λ(i))||fStr};

endif;
endfor;

Subroutine CreateDom3(X)
Dom3 ← {};
for i = 1 to q

if b(i) > 1
for j = 1 to b(i)

if Q(i) ⊕ binn(j) /∈ Dom3 then
Dom3 ← Dom3 ∪ {Q(i) ⊕ binn(j)};

endif;
endfor;
endif;

endfor;

• Case λ(i) 6= λ(j): In this case, Q(i) and Q(j) are independent and uniform random. There are
three subcases.

– Subcase: b(i) = b(j) = 1. In this case,

Pr[N (i) = N (j)] = Pr[HashQ(i)(x(i)) = HashQ(j)(x(j))]

≤ ε(l(i), l(j)). (74)

The last inequality follows from the fact that Hash is an (ε, ε′)-eligible hash function.

– Subcase: Exactly one of b(i) and b(j) is more than 1. We consider without loss of
generality that b(i) = 1 and b(j) > 1; in this case, consider the set

Dj = {Q(j) ⊕ binn(1),Q(j) ⊕ binn(2), · · · ,Q(j) ⊕ binn(b(j))}.

The key τ (i) (used to hash x(i)) and the key τ (j) (used to hash x(j)) are independent if
and only if bin8(λ(i))||fStr /∈ Dj . Hence,

Pr[N (i) = N (j)] = Pr[Hashτ (i)(x
(i)) = Hashτ (j)(x

(j))]

≤ Pr[Hashτ (i)(x
(i)) = Hashτ (j)(x

(j))|bin8(λ(i))||fStr /∈ Dj]

+ Pr[bin8(λ(i))||fStr ∈ Dj]

≤ ε(l(i), l(j)) +
1

2n
× b(j). (75)

The last inequality follows from the fact that Hash is (ε, ε′)-eligible hash function and
Q(j) is uniformly distributed random variable.

36

– Subcase: b(i) > 1 and b(j) > 1. Consider the two sets

Di = {Q(i) ⊕ binn(1),Q(i) ⊕ binn(2), · · · ,Q(i) ⊕ binn(b(i))};
Dj = {Q(j) ⊕ binn(1),Q(j) ⊕ binn(2), · · · ,Q(j) ⊕ binn(b(j))}.

Now, τ (i) and τ (j) are independent if and only if no random variable in Di is equal to
any random variable in Dj . Let Coll(Di,Dj) be the event that some random variable in
Di is equal to some random variable in Dj .
So, in this case,

Pr[N (i) = N (j)] = Pr[Hashτ (i)(x
(i)) = Hashτ (j)(x

(j))]

≤ Pr[Hashτ (i)(x
(i)) = Hashτ (j)(x

(j))|Coll(Di,Dj)]

+ Pr[Coll(Di,Dj)]

≤ ε(l(i), l(j)) +
1

2n
× b(i) × b(j). (76)

The last inequality follows from the fact that Hash is (ε, ε′)-eligible hash function and
Q(i) and Q(j) are independent and uniform random.

• Case λ(i) = λ(j): In this case, definitely x(i) 6= x(j). If (b(i) = b(j) = 1) or (b(i) > 1 and
b(j) > 1), then from the fact that Hash is ε-AU, we get Pr[N (i) = N (j)] ≤ ε(l(i), l(j)). Note
that, in both cases τ (i) = τ (j) (in our setting, when b(i) > 1 and b(j) > 1, we have τ (i) = τ (j)

and for the hashing we use the appropriate length prefix of the key).
In the case when exactly one of b(i) and b(j) is greater than 1, i.e. b(i) = 1 and b(j) > 1 or vice
versa, without loss of generality we take b(i) = 1 and b(j) > 1 and consider the set

Dj = {Q(j) ⊕ binn(1),Q(j) ⊕ binn(2), · · · ,Q(j) ⊕ binn(b(j))}.

Again, τ (i) and τ (j) are independent of each other if and only if bin8(λ(i))||fStr /∈ Dj . Hence,
the bound stated in (75) applies here as well and we get

Pr[N (i) = N (j)] ≤ ε(l(i), l(j)) +
1

2n
× b(j), (77)

by the same argument.

From (74), (75), (76) and (77), Pr[N (i) = N (j)] ≤ ε(l(i), l(j)) + 1
2n × b

(i) × b(j).
Hence,

Pr[Bad1] ≤
∑

1≤i<j≤q Pr[N (i) = N (j)]

≤
∑

1≤i<j≤q(ε(l
(i), l(j)) + 1

2n × b
(i) × b(j))

≤
∑

1≤i<j≤q ε(l
(i), l(j)) + 1

2n ×
∑

1≤i<j≤q(b
(i) × b(j));

(78)

The property of the hash function that it is (ε, ε′)-eligible, gives

Pr[Bad2] ≤
∑

1≤k≤q Pr[N (k) ∈ Dom2]

≤ min(q,#L)×
∑

1≤k≤q ε
′(l(k));

(79)

From the fact that Q(i)s are uniform random variables, we have

Pr[Bad3] ≤
∑

1≤k≤q Pr[N (k) ∈ Dom3]

≤ q×nBlks
2n .

(80)

37

So, from (78), (79) and (80), we get,

Pr[Bad] = Pr[Bad1 ∨ Bad2 ∨ Bad3]

≤
∑

1≤i<j≤q ε(l
(i), l(j)) + 1

2n ×
∑

1≤i<j≤q(b
(i) × b(j))

+ min(q,#L)×
∑

1≤k≤q ε
′(l(k)) + q×nBlks

2n .

(81)

Again,

Pr[Brnd ⇒ 1] ≤ Pr[Brnd ⇒ 1 ∧ Bad] + Pr[Bad]. (82)

Seen in conjunction with Bad, the random variables in Dom1 take distinct values and these value
are also distinct from the values of the random variables in Dom2 and Dom3. As a result, the
outputs of the random oracle on the inputs from Dom1 are independent and uniform random n-bit
strings. So, we have

Pr[Arnd ⇒ 1 ∧ Bad] = Pr[Brnd ⇒ 1 ∧ Bad]. (83)

Hence, as in the expression (60) obtained in the proof of Theorem 7, here we get,

Adv
prf
E-PRF(A) ≤ Adv

prf
E (B) + Pr[Bad]. (84)

Using the upper bound on Pr[Bad] from (81), we get,

Adv
prf
E-PRF(A) ≤ Adv

prf
E (B) +

∑
1≤i<j≤q

ε(l(i), l(j)) +
1

2n
×

∑
1≤i<j≤q

(b(i) × b(j))

+ min(q,#L)×
∑

1≤k≤q
ε′(l(k)) +

q × nBlks

2n
. (85)

The resource bounded advantage follows from this on noting that the number of queries made by
B is at most 2q + nBlks and for each query made by A, B has to calculate the function b(·), hash
the message and do some basic computation and bookkeeping.

38

