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Abstract

In the blockchain space, there are elaborate proof-of-stake based protocols with an
assumption of clock synchronization, i.e. that all of them know the current time of the
protocol. However, this assumption is satisfied by relying on the security of centralized
systems such as Network Time Protocol (NTP) or Global Positioning System (GPS).
An attack on these systems (which has happened in the past) can cause corruption of
blockchains that rely on the time data that they provide. To solve this problem in the
nature of the decentralized network, we first define a general universally composable
(GUC) model that captures the notion of consensus on a clock. A consensus clock is a
clock that is agreed upon by honest parties by considering the clocks of all parties. In the
end, we give a simple but useful protocol relying on a blockchain network. Our protocol
is secure according to our new model. It can be used by full nodes of a blockchain who
need to have a notion of common time to preserve the correctness and the security of the
blockchain protocol. One advantage of our protocol is that it does not cause any extra
communication overhead on the underlying blockchain protocol.

1 Introduction

The first popular decentralized cryptocurrency, Bitcoin, maintains its public distributed ledger
with a proof-of-work (PoW) based consensus protocol. PoW has been studied for many
decades and its impact in the development of blockchain technologies is undeniable. However,
it is also a well-known fact that this protocol consumes vast amounts of energy. Consequently,
there are ongoing efforts in the community to replace PoW with more energy-efficient alter-
natives, that still preserve its decentralized features. Proof of stake (PoS) is arguably the
most promising replacement among the many recently proposed solutions [16, 5, 18, 1]. It
has the same nature as PoW; while in the latter the next block producer is selected from a
set of nodes at random proportional to their computational power, in PoS, they are randomly
selected proportional to their stake.

One of the most critical issues in PoS is constructing a selection mechanism which cannot
be biased by an adversary. Many solutions to the problem of unbiased random selection have
been proposed, based on random oracles [35, 14], publicly verifiable secret sharing (PVSS)
schemes [27], verifiable random functions (VRF) [15, 13, 21, 22], and threshold cryptography
[22]. Using any such selection mechanism, each party must decide if they are eligible to
produce the next block within a specific time interval. However, a second critical issue, which
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has not yet been treated satisfactorily, is how this party detects this time interval correctly.
Indeed, in order to preserve security, it is paramount for an honest party to release their
produced block at the right time. If they are late, then other producers continue to build on
the chain without seeing their block; as a result, the honest party may not have any chance
to contribute to the chain growth. If they are early, a similar problem arises.

One may ask why parties of a blockchain cannot simply use their own local computer
clock to deduce their time interval. It is a known fact that a party cannot rely solely on
the computer clock, as they are controlled by the vibration of crystal oscillators which are
not very accurate (up to a few seconds drift in one day). Therefore, these parties usually
update their local time via the Network Time Protocol (NTP) which has long been the
main clock synchronization protocol on the internet. In the past, NTP servers have been
attacked [31, 37, 33]. In one incident (on November 19, 2012) [8], two critical NTP servers
were set to a time twelve years in the past. This caused many important external servers,
such as Active Directory authentication servers, to fail. If the same attack happens in a
proof-of-stake blockchain protocol, honest parties would stop producing blocks because they
think that their time did not come, while malicious full nodes would continue to produce
blocks, populating the blockchain entirely with maliciously-produced blocks. Another option
is to synchronize local time with the Global Posioning System (GPS) clock. Although this
requires a little more investment in setup, it is more accurate than NTP and does not have the
potential problem of corrupted servers. However, GPS is also vulnerable to spoofing attacks
[40, 25, 34, 24, 41] (e.g., delay signals). Even in the absence of an actual attack, mere poor
weather conditions can cause inaccurate signals to be received from the GPS satellite. All of
these existing solutions show that relying on a centralized system for time synchronization is
a major security vulnerability, as well as going against the ultimate goal of building a fully
decentralized system.

Sharing timestamps among parties of a blockchain is an appropriate solution, but without
an additional mechanism like the one we propose, it is not obvious how to use these timestamps
in a system with malicious actors. For example, consider a method that says synchronize the
clock based on the timestamp contained in the last block. This is not a secure solution for
several reasons: first, not all parties have the same block considered as their last block, and
second, it gives power to a malicious block producer to change the clocks of honest parties
as he wants. Solutions that give power to the adversary to modify honest parties’ clocks of
honest parties is certainly not ideal. Beyond this, it is also important to ensure that the
clocks of honest parties do not dramatically shift, causing block production to stop (as in the
example noted above). Considering these issues, we propose a new synchronization protocol
on top of a blockchain protocol that interprets timestamps (clock values) in blocks and arrival
times of blocks to obtain a consensus clock between parties.

In designing a solution, the other issue we encountered was proving the security of such
synchronization mechanisms. For this, we decided to prove the security of our protocol in a
universally composable (UC) model, as we want to make sure that our protocol can be com-
posed on top of blockchain protocols securely. The closest UC model for our purposes is the
GUC network time model designed by Canetti et al. [12], which models the clock adjustment
of a client with servers which can be corrupted. In their model, clients want to synchronize
their clock with the reference clock. However, when we consider the synchronization issue in
a blockchain protocol, we see that we do not actually need any notion of a reference clock.
In simple terms, the functionality we want to have is to update clocks of honest parties such
that they are close enough to each other, and to limit the difference between the updated
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clocks and the old clocks for the security of the blockchain. For our purposes, we do not need
to consider how close the updated clocks are to a reference clock. Therefore, we design a
new general universally composable (GUC) consensus clock. In our model, the parties have
local timers which let them construct their own clock based on a consensus clock. We note
that the notion of consensus on clock is not a new idea. Indeed, it has been studied in other
areas outside of cryptography [30, 36, 23, 3, 42, 38, 29]. However, there is not currently any
security model capturing this notion except ours. We note that our model is generic and can
be used for the security of any synchronization protocol without a reference clock.

Our motivation for this kind of security model without a reference clock comes from
blockchain consensus mechanisms. In such distributed and decentralized consensus protocols,
accepting one static clock (e.g., reference clock in [12]) as the correct clock goes against the
grain of distributed consensus. Imagine a protocol where each party starts with a synchronized
clock. As time passes, the synchronization may be broken because of random drift on clocks.
At some point, parties may end up with a situation where no relation exists between their
clocks. In this case, the question is, in respect to which reference clock should the parties
synchronize their clock? We have at least two options for a reference clock:
• An authority defines the reference clock to be synchronized similar to the GUC model

Canetti et al. [12].
• Parties agree on the reference clock to be synchronized
We believe most people would agree on the second option being more appropriate if

we want to construct completely distributed system without trust in any particular entity.
Therefore, we construct a new GUC clock model which avoids any authority deciding with
which reference clock parties should synchronize.

1.1 Our Contribution

In more detail, our contribution is as follows:
• We construct a GUC model that captures the notion of consensus on clocks. Our model

realizes situations where a party has a local clock constructed based on the ticks of his
local timer and wants to update the local clock with a consensus clock. We define a
global functionality which defines the rate of timers globally and another functionality
of a local timer which does not necessarily follow the global rate to capture the notion
of drifted timers in the real world. Our other functionality provides the consensus
clock to honest parties. According to our definition, the consensus clock can change
as the time passes based on the clocks of parties but this change is limited. To the
best of our knowledge, our GUC model is the first model which models the notion of
consensus on clock. We note that this model was not designed specifically for blockchain
protocols. It can be used by any protocol whose aim is to achieve consensus on clocks
in a decentralized manner.
• We construct a generic protocol called Relative Time protocol that is realizable in our

model. Our protocol ensures that honest clocks are close enough to the consensus
clock even if a local timer of a party drifts or network delay exists. Our protocol
can be adapted to all blockchain protocols that fit our abstraction. Thus, we solve
the synchronization problem in PoS-based blockchain protocols where an eligible block
producer creates a block in a certain time interval.

We note that our relative time protocol is currently used in Polkadot [43] which aims to
connect multiple blockchain networks.
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1.2 Related Works

UC Timing Model: There are UC models [10, 26] designed to emulate the synchronous
communication between parties but they do not provide ways for realizing the functionalities
from a real world solutions such as network time. The closest timing model to ours is called
the network time model by Canetti et al. [12]. Their model has a reference clock that keeps a
counter incremented by the adversary. The network time model captures the physical clocks
where a party can access immediately but that may be arbitrarily shifted and which can be
updated by asking other parties’ clock. The security of the clock is defined based upon the
closeness of the reference clock. So, the ultimate goal in this model is to obtain local clocks
with a time close enough to the reference clock. Differently, in our model, the ultimate goal
of parties is to have clocks that are close to each other. It is not important how close the
consensus clock is to a reference clock (e.g. a clock defined by NTP, GPS). Our model is
useful for protocols which do not need to rely on any real world notion of the correct time for
security and completeness. In a nutshell, our model is a version of the network time model
where the reference clock is defined based on the consensus on a clock.
PoS protocols: In Ouroboros [27] and Ouroboros Praos [15] protocols, there is a common
timeline that is divided into slots, where each slot may or may not have a block producer.
Their security is based on the assumption that all parties know when each slot starts and ends.
The Ouroboros Genesis [6] protocol is similar to Ouroboros Praos, and it explicitly mentions
that violation of this assumption breaks the security of the chain selection rule. The timeline
in the Dfinity consensus protocol [22] progresses based on certain events, but it is not clear
how everyone can agree on the time at which any event occurs in a partially synchronous
network. On the other hand, the Algorand protocol [13, 21] executes Byzantine agreement
on each block, hence parties can trust all blocks and adjust their local clock according to the
round inside the blocks. We note that this is not possible in Ouroboros [27], Ouroboros Praos
[15] or Ouroboros Genesis [6] because a party cannot know whether a block is produced by
an honest party, or whether it is sent during the correct time slot. Snow White [14, 35] is the
only protocol where this timing issue is considered in their analysis, and the authors propose
adding up the maximum time difference between parties into the network delay. However,
they do not propose any protocol to obtain clocks with this maximum difference.

Recently, a new protocol called Ouroboros Chronos [7] was proposed to solve the timing
issues in Ouroboros Genesis [6] that we mention. Their adversarial model is different than
ours since they assume that there exists a core set of parties (termed “alert parties”) who
are honest and synchronized. The synchronization algorithm that they propose helps new
joining parties to synchronize themselves with the alert parties. The existence of such a
core set of parties is based on the assumption that their clocks follow almost the same rate.
However, we know that modern computer clocks do not have such an accurate rate. Our model
and theirs differ on this point, as we assume that the clocks of parties can arbitrarily shift
considering the nature of real world computer clocks based on crystal oscillators. Therefore,
synchronization between parties cannot be maintained for a long time in our model unless
there is a mechanism, such as the one we propose, to preserve it. In addition to having a
different adversarial model, our protocol is generic and can thus be applied any blockchain
protocol compatible with our abstraction (e.g. Ouroboros Praos, Genesis [15, 6]). Ouroboros
Clepsydra [4] has the similar adversarial model as Chronos.
Synchronization Protocols: Independently from blockchains, synchronization protocols
[17, 19, 32, 39, 28] have been deeply studied in previous work, as it is a important component
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in distributed systems. Many protocols [30, 36, 23, 3] exist for consensus clocks with differ-
ent assumptions. One approach is based on dividing the network into some well-connected
clusters [17] that aim to achieve consensus between clusters. There are also fully distributed
approaches [42, 38] based on clock skew and network delay estimation. Even though many
works exist related to consensus clock, to best of our knowledge, there exists no formal crypto-
graphic security model as we defined for these types of functionality . Differently, our protocol
works on top of a secure blockchain protocol with a consensus mechanism which lets parties
also reach consensus on clocks. Compared to the previous protocols, our proposed protocol
has the advantage of building the synchronization protocol on top of an existing consensus
mechanism.

2 Preliminaries

Notations: We use D to define a distribution. x← D shows that x is selected with respect
to the distribution D.

Two ensembles X = {X1, X2, ..., Xn} and Y = {Y1, Y2, ..., Yn} are computationally indis-
tinguishable if for all probabilistic polynomial time (PPT) algorithms D and for all c > 0,
there exists an integer N such that for all n ≥ N

|Pr[D(Xi) = 1]− Pr[D(Yi) = 1]| < 1

nc
.

≈ means that two ensembles are computationally indistinguishable (i.e. X ≈ Y ).

2.1 Blockchain

A protocol that defines the construction of a blockchain is called a blockchain protocol. Garay
et al. [20] define the properties defined below in order to obtain a secure blockchain protocol.
A blockchain protocol progresses in rounds C1, C2, ... which can also executed in loose and
asynchronous way. The formal definition of the concept of C1, C2 is in Section 3.1. If a
blockchain protocol satisfies the properties below, it is called secure.

Definition 2.1 (Common Prefix (CP) Property [20]). The CP property with parameters
k ∈ N ensures that any blockchains B1, B2 owned by two honest parties at the onset of rounds
C1 < C2 satisfy that Bpk

1 is the prefix of B2 where Bpk
1 is B1 without last k blocks.

In other words, the CP property ensures that blocks which are k blocks before the last
block of an honest party’s blockchain cannot be changed. We call all unchangeable blocks
finalized blocks.

Definition 2.2 (Chain Growth (CG) Property [20]). The CG property with parameters τ ∈
(0, 1] and scg ∈ N ensures that if the length of a blockchain owned by an honest party at
the onset of a round Cu is `u and the length of the same blockchain at round Cv where
Cv ≤ Cu − scg is `v, then the `u − `v ≥ τscg.

In other words, the CG property guarantees if a chain is owned by an honest party at a
round, then this chain has grown τscg blocks in every scg rounds.

Definition 2.3 (Chain Quality (CQ) Property [20]). The CQ property with parameters µ ∈
(0, 1] and k ∈ N ensures that the ratio of honest blocks in any k length portion of a blockchain
owned by an honest party is at least µ.
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The CQ property ensures the existence of sufficient honest blocks on any blockchain owned
by an honest party.

We also define a new property which is necessary for our protocol.

Definition 2.4 (Chain Density (CD) Property). The CD property with parameters scd ∈ N
ensures that if a blockchain owned by an honest party at the onset of a round Cu is B then
any portion of B spanning scd prior rounds with n blocks contains number of nh honest blocks
where nh

n > 1
2 .

The CD property ensures that a blockchain adopted by an honest party contains more
honest blocks than malicious ones in a sufficiently long span of that blockchain. A blockchain
which has been constructed based on the longest chain rule implies the CD property if it
satisfies CG and CQ [27].

2.2 Universally Composable (UC) Model:

The UC model consists of an ideal functionality that defines the execution of a protocol in an
ideal world where there is a trusted entity. The real-world execution of a protocol (without
a trusted entity) is called UC-secure if running the protocol with the ideal functionality F is
indistinguishable by any external environment Z from the protocol running in the real-world.

A protocol π is defined with distributed interactive Turing machines (ITM). Each ITM
has an inbox collecting messages from other ITMs, adversary A or environment Z. Whenever
an ITM is activated by Z, the ITM instance (ITI) is created. We identify ITI’s with an
identifier consisting of a session identifier sid and the party identifier P .
π in the Real World: Z initiates all or some ITM’s of π and the adversary A to execute
an instance of π with the input z ∈ {0, 1}∗ and the security parameter κ. The output of a
protocol execution in the real world is denoted by EXEC(κ, z)π,A,Z ∈ {0, 1}. Let EXECπ,A,Z
denote the ensemble {EXEC(κ, z)π,A,Z}z∈{0,1}∗ .
π in the Ideal World: The ideal world consists of an incorruptible ITM F which executes π in
an ideal way. The adversary S (called simulator) in the ideal world has ITMs which forward
all messages provided by Z to F . These ITMs can be considered corrupted parties and are
represented as F . The output of π in the ideal world is denoted by EXEC(κ, z)F ,S,Z ∈ {0, 1}.
Let EXECF ,S,Z denote the ensemble {EXEC(κ, z)F ,S,Z}z∈{0,1}∗ .
Z outputs whatever the protocol in the real world or ideal world outputs. We refer to

[9, 10] for further details about the UC-model.

Definition 2.5. (UC-security of π) Let π be the real-world protocol and F be the ideal-world
functionality of π. We say that π UC-realizes F (π is UC-secure) if for all PPT adversaries
A in the real world, there exists a PPT simulator S such that for any environment Z,

EXECπ,A,Z ≈ EXECF ,S,Z

π in the Hybrid World: In the hybrid world, the parties in the real world interact with some
ideal functionalities. We say that a protocol π in hybrid world UC-realizes F when π consists
of some ideal functionalities.

Generalized UC model [11] (GUC) formalizes the global setup in a UC-model. In GUC
model, Z can interact with arbitrary protocols and ideal functionalities F can interact with
GUC functionalities G.
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3 UC-Model for Relative Time

In this section, we describe our new GUC-model for consensus clocks and a partially syn-
chronous network for blockchain protocols.

In our model we have multiple ITMs that we call as a party Pi. Z activates all parties
and the adversary and creates ITIs. A is also activated whenever the ideal functionalities are
invoked. A can corrupt parties P1, P2, ..., Pn. When Z permits a corruption of a party Pi,
it sends the message (Corrupti, Pi). If a party is corrupted, then whenever it is activated, its
current state is shared with A.

We first introduce our new GUC-model for the concept of consensus clocks, and then give
the UC-model for a partially synchronous network similar to the model in [15, 6].

3.1 GUC-Model of Relative Time

A similar model to ours, “GUC network time model”, is introduced by Canetti et al. [12].
This models the clock adjustment of a client connected to servers which can be corrupted. In
their model, clients attempt to adjust their clock to be as close as possible to the reference
clock which can be controlled by the adversary. In our model, we do not necessarily have
a reference clock that progresses depending on inputs of Z. Instead, the parties come to a
consensus on a clock which can be considered as reference clock in the GUC network time
model [12].

In a nutshell, we construct a GUC- model where parties have access to their local timers
(e.g., computer clocks in real life) that are constructed to tick according to a certain global
metric time but it may not follow the metric time because of adversarial interruptions. Parties
construct their clocks according to their local timers. In such an environment, we model how
parties achieve consensus on a clock. Our model consists of the following functionalities:

Functionality GrefRate

GrefRate has a list of registered parties ListRate which is initially empty.

• (Registration) If a functionality F sends a message (Register, sid,F), GrefRate

adds F to ListRate and sends (Registered, sid,F) to P .

• (Progress in Time) In every tick according to the defined rate, GrefRate sends
(Tick, sid′, P ) to all P ∈ ListRate

Figure 1: The global functionality GrefRate

3.1.1 Reference Rate (GrefRate)

This functionality defines a metric time for timers. More precisely, it can be considered as
a global timer that ticks with respect to the metric time (e.g., it ticks every second.). The
entities who want to be notified in every tick register with GrefRate. Whenever GrefRate ticks, it
informs them. The difference between GrefClock [12] and GrefRate is that GrefRate does not have
any absolute values related to time (e.g., it does not keep how many ticks it had). We note
that ITI’s cannot contact with GrefRate. The details are in Figure 1.
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One may question whether the concept of a reference rate contradicts the idea of a trustless
distributed system. It does not, because metric system for time is universally defined and
unchangeable (e.g., “One second is the time that elapses during 9.192631770 × 109 cycles of
the radiation produced by the transition between two levels of the cesium 133 atom [2]”).

We note that we do not aim to construct protocols that precisely follow this global rate.
This functionality is intended to be useful in the notion of relative time.

3.1.2 Local timer (FΣ,P
timer)

The functionality FΣ,P
timer represents a local timer of a party P . Σ ∈ Z represents how much the

local timer has drifted from the correct relative time (e.g. 1 hour passed according to GrefRate

since the initialization of P , but the local timer indicates that 58 minutes have passed. In
this case, the total drift is −2 minutes). FΣ,P

timer is accessible by the party P without any delay.

FΣ,P
timer stores two types of timer: timer and timer∗. It increments timer whenever it receives a

message from Z and increments timer∗ whenever it receives a signal from GrefRate. However,
it never shares timer∗ (the real timer) with the party. The reason of having timer∗ is to allow
us to calculate the amount of total drift (Σ) at any given time. We define it in Figure 2.

Functionality FΣ,P
timer

Z initiates FΣ,P
timer with a value t ∈ Z. Then, FΣ,P

timer creates two parameters timer = t
and timer∗ = t.

• (Registration) FΣ,P
timer sends (Register, sid,FΣ,P

timer) and receives back
(Registered, sid,FΣ,P

timer). This is done once after the initialization of the
functionality.

• (Increasing timer) When Z sends (Increase, sid, P ), FΣ,P
timer increments timer and

lets Σ = timer − timer∗.

• (Increasing timer∗) When GrefRate sends (Tick, sid,FΣ,P
timer), F

Σ,P
timer increments

timer∗ and lets Σ = timer − timer∗.

• If P sends (Get Timer, sid, P ), FΣ,P
timer sends the message (Timer, sid, timer, P ).

Figure 2: The global functionality FΣ,P
timer

We note that FΣ,P
timer does not differ from real-world computer timers because timer∗ (the

real clock) is never shared with the parties and the execution of the local timer does not
depend on it. Therefore, a computer timer in the real world can be proven as a realization of
FΣ,P

timer.

Definition 3.1 (Correspondence of Timer Values). Assume that Pi and Pj sends

(Get Timer, sid, Pi) to FT,Pi

timer and (Get Timer, sid, Pj) to FT,Pj

timer at the same time, respectively

and FT,Pi

timer responds with timeri = ti and FT,Pj

timer responds with timerj = tj. We call ti is the
corresponding timer value of tj in timerj in that moment (the moment that parties asked) and
similarly we call that tj is the corresponding timer value of ti in timerj in that moment.

We denote by an algorithm map(timeri, timerj , ti) the corresponding value of ti in timerj .
Before defining our consensus clock functionality, we first give some definitions to define

clocks.
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Definition 3.2 (Clock Value). A clock value is some natural number. Given that the initial
clock value which is 0 is matched with timer = t∗, we define the clock value when timer = t ≥ t∗
for all timer of FΣ,P

timer of any P as:

Clock(t, T, t∗) = b t− tinit
T

c. (1)

where T ∈ N is the measure of time interval between two consequent clock values.

t∗ serves as a local reference point to obtain a clock (defined below) that lets a clock
determine its clock value at a given timer (i.e., after t∗, for every T increment in timer,
increase the clock value).

Definition 3.3 (Clock). A clock of P is a counter that keeps the clock value based on pro-
gression on timer of FΣ,P

timer after an initial assignment at t∗. The clock C of a party when
timer = tcurr is defined with [t∗, (tcurr, ccurr)] where ccurr = Clock(tcurr, T, t

∗)1.

C represents the clock at tcurr while c represents the clock value, which is any output from
Equation (1).

Definition 3.4 (Time Difference of Clocks). Given that two clocks Ci = [t∗i , (ci, tj)] and
Cj = [t∗j , (cj , tj)] at the same time that increments according to timeri and timerj, respectively,
we define the time difference of clock Ci and Cj (Ci −Cj) as the elapsed time between the first
time Cj’s clock value is changed to c and the first time Cj’s clock value is changed to c where
c ∈ N.

More formally, Ci−Cj = |t∗j− t∗ij | = |t∗i − t∗ji | where t∗ij = |tj−(ti− t∗i |) is the corresponding

timer value of t∗i in timerj and t∗ji = |ti − (tj − t∗j |) is the corresponding timer value of t∗j in
timeri.

The time difference of two clocks can be visualized as in Figure 3.1.2.

t∗i

t∗ijt∗j

timeri

timerj

t∗i

t∗j

t∗ji(ti, ci)

(tj , cj)

(ti, ci)

(tj , cj)

Ci − Cj

Ci − Cj

Figure 3: Time difference of clocks: |Ci−Cj |. It can be computed on the timer of Cj (left-hand
side) or on the timer of Ci (right-hand side).

We note that the time difference between clocks does not have to be constant, because
the timers can drift backward or forward. Therefore, we define the difference between clocks
instantaneously.

3.1.3 Consensus Clock Provider (FT,ΘClock)

FT,ΘClock has a similar role with GClock in the network time model [12]. Differently, in our
functionality, the new clock is determined based on a consensus algorithm Clock Consensus

which outputs the current agreed clock or ⊥ given a set of clocks provided by parties.

1It is redundant to have ccurr in a clock [t∗, (tcurr, ccurr)] but we have it there for the sake of clarity.
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Functionality FT,Θ
Clock

FT,Θ
Clock is parameterized with T and Θ = (Θc,Θp) given by Z. FT,Θ

Clock first sends
(Register, sid,FT,Θ

Clock) and receives back (Registered, sid, P ). Thus, it constructs its
own timer.

• (Initial Consensus) Each party Pi ∈ Ph sends the message
(Get Clock, sid, Pj , Cj) where Cj is the clock of the party Pj . FT,Θ

Clock runs the
algorithm Clock Consensus({Cj}Pj∈Ph) . If Clock Consensus outputs ⊥, then

FT,Θ
Clock sends (Current Clock, sid,⊥) to each Pj and aborts the protocol. If it

outputs C̄h, it sends {(Get Clock, sid, Pj , Cj)}Pj∈Ph to A.

• (New Clocks) A replies with (Init Clock, sid,FT,Θ
Clock, C̃1, C̃2, ..., C̃n) for all Pi ∈

Ph. If there exists C̃i = null, FT,Θ
Clock aborts.

• (New Consensus) FT,Θ
Clock runs the algorithm

Clock Consensus({Cj}Pj∈Ph∪Pc). If it does not output ⊥ and |C̄ − C̄h| ≤ Θc

and |C̄ − C̃i| ≤ Θp for all Pi ∈ Ph, it sends the C̃i to each party Pi ∈ Ph.
Otherwise, it sends C̄h to each party Pi ∈ Ph.

Figure 4: The functionality FT,ΘClock

GT,ΘClock is defined with the parameter T and Θ. T as in Equation (1) is the amount of
time that defines the duration between one increment in the clock. Θ = (Θc,Θp) is the

desynchronization parameter. FT,ΘClock provides agreed clock to a requester party based on a
consensus.

We call Ph is the set of honest parties and Pc is the set of corrupted parties.
(Initial Consensus): At first, FT,ΘClock finds the initial consensus between honest parties.

If it does not exist from the beginning, FT,ΘClock aborts the protocol. In more detail, FT,ΘClock first
collects clocks from honest parties Pi ∈ Ph. We note that some clocks can be null meaning
that the honest party does not have any clock. FT,ΘClock runs the algorithm Clock Consensus2

with the honest clocks and obtains either ⊥ or a consensus clock of honest parties C̄h. If it is
⊥, FT,ΘClock sends an abort message to the adversary A and the honest parties and the protocol

ends. Otherwise, FT,ΘClock gives the honest clocks to the adversary A.
(New Clocks:) After receiving clocks of honest parties, A gives new clocks for honest

parties to FT,ΘClock. If there exists a null clock among new clocks then FT,ΘClock aborts.

(New Consensus): At this point, FT,ΘClock checks if a new consensus is possible with
the new clocks. If the new consensus clock exists and it is close enough to the initial one,
then all parties continue with their new clocks provided by A. In more detail, FT,ΘClock runs
the algorithm Clock Consensus with the new honest clocks provided by the adversary. If
Clock Consensus outputs ⊥, FT,ΘClock sends C̄h (the initial consensus) to the honest parties. If

it outputs a consensus clock C̄, FT,ΘClock continues as follows: If |C̄ − C̄h| ≤ Θc and |C̄ − C̃i| ≤ Θp

for all Pi ∈ Ph, it sends the C̃i to each party Pi ∈ Ph. Otherwise, it sends C̄h to each party
Pi ∈ Ph. More details are in Figure 4.

In a nutshell, this functionality aims to provide clocks to honest parties which do not drift
apart from the initial consensus that they have and which is close enough to their own clock.

2 Clock Consensus can be defined based on the needs of the real-world protocol. e.g., the mostly agreed or
minimum clock can be the consensus clock or the way that we define for our protocol in Section 4.
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Having the difference limit between the initial consensus clock C̄h and the new consensus clock
C̄ is useful not to slow down the protocols relying on the output of FT,ΘClock. For example, (a
very extreme example) we do not want to end up with a new consensus clock that says that
we are in the year 2001 when we were in 2019 according to the previous consensus. In this
case, parties may wait 18 years to execute an action that is supposed to be done in 2019.

We may have a stronger version of this functionality where honest parties do not have the
initial consensus clock and still obtain a consensus clock. Our protocol in the next section
runs on top of a blockchain protocol which assumes initial parties have a consensus on clock.
Therefore, we do not consider the stronger version.

3.2 UC- Partially Synchronous Blockchain Network Model

Our network model FDDiffuse is similar to the network model of Ouroboros Praos [15, 27, 20].
Differently, it accesses to GrefRate in order to have the notion of relative time. Now, we define
the functionality FDDiffuse which models a partially synchronous network with the time delay
δ. Here, δ represents number of δ-increment message by GrefRate.
FδDDiffuse: The message handling functionality Diffuse for a blockchain network was first intro-
duced by Garay et al. [20] in a synchronous network where message delivery is executed in a
certain amount of known time. Then, David et al. [15] define a new functionality “delayed
diffuse” (DDiffuse) for a blockchain network that realizes a partially synchronous network
where a message arrives to others eventually, but parties do not know how long it takes.
DDiffuse is parameterized with the network delay parameter ∆ and ensures that all messages
are received at most ∆-slots later. Here, a slot is the duration to produce one block. However,
it does not use any clock to determine how many slots have passed since a message was sent.
FδDDiffuse is a version of DDiffuse which can access of GrefRate. It simply sends a given message
from a party Pi to all other parties within a bound δ. FδDDiffuse first registers to GrefRate and
creates a local timer timer = 0. Whenever GrefRate sends a message with Increase, it increments
timer.

Each honest party Pi can access its inbox anytime. A can read all messages sent by the
parties and decide their delivery order before they arrive to inboxes of honest parties. For
any message coming from an honest party, A can label it as delayedi. When FDDiffuse receives
delayedi for a message to Pi, it marks it with the current local timer value ti. A delayed
message is not moved to the inbox of Pi until A lets FδDDiffuse move it or the timer reaches
ti + δ. In the end, all parties always receive any message sent by a party.

4 Realization of Consensus Clock

In this section, we describe our relative time protocol for blockchain protocols that real-
izes the functionality FT,ΘClock. Before describing the protocol, we first define the algorithm
Clock Consensus (Algorithm 4.1) that we designed for the relative time protocol. We note
that this is our way of defining consensus on clocks while every protocol can have a differ-
ent Clock Consensus algorithm. After defining the algorithm, we describe our relative time
protocol that lets parties agree on a clock according to Clock Consensus.
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4.1 Clock Consensus

The Clock Consensus algorithm receives clocks of multiple parties as input, and outputs one
of them as a consensus clock. We say that two clocks are synchronous if they output the same
clock at any time between a consecutive κ ticks by GrefRate. For example, assume that κ is 5
seconds. A clock that starts to output the clock value c in the first second, and another clock
that starts to output c in the fourth second, are still considered synchronized, even though
they do not output the same clock value in the sixth second (i.e., one outputs c+ 1 and the
other outputs c in the sixth second). We say that clocks are synchronized if all pairs of these
clocks are synchronized.

Given clocks Cj = [t∗j , (cj , tj)], Clock Consensus finds the corresponding time values t̂cj
(Definition 3.1) of tcj = t∗j+cT on timerFClock

of FT,ΘClock and checks whether the differences of t̂cj ’s
that are retrieved from clocks of parties are less than κ to check if clocks are synchronized. If
clocks are not synchronized, then the algorithm outputs ⊥ meaning that no consensus exists.
Otherwise, the clock of a party that corresponds to the median of all t̂cj ’s is selected as a
consensus clock. We give the algorithm of Clock Consensus in Algorithm 1.

Algorithm 1 Clock Consensus({Cj}) where Cj = [t∗j , (cj , tj)]

1: start lst = ∅
2: pick c ∈ N such that for all j such that c > cj
3: for all Cj 6= null do
4: tcj ← t∗j + cT

5: t̂cj ← map(timerj , timerFClock
, tcj)

6: add t̂cj to start lst

7: if |start lst| > 0 then
8: for all t̂cu, t̂

c
v ∈ start lst do

9: if |t̂cv − t̂cu| > κ then
10: return ⊥
11: t̂ci ← Median(start lst) // Median(start lst) sorts the list and returns the median
12: return Ci
13: else
14: return ⊥

4.2 Relative Time Protocol

The relative time protocol realizes FT,θClock (See Figure 4) meaning that it let’s parties to obtain
a clock which is close enough to the consensus clock. We build it on top of a blockchain
protocol where parties produce blocks when it is their turn. In more detail, the blockchain
protocol is defined as follows: After the genesis block is released, each party starts their local
timer. In every T tick of their timer according to FΣ,P

timer (See Figure 2), they increment their
clock which is initially 0 when they receive the genesis block. The blockchain protocol has
a selection mechanism which tells parties at which clock value they are supposed to produce
a block. Selected parties produce blocks only when their clock reaches the right clock value.
Whenever they produce a block they also add their current clock value to the block as a
timestamp. The environment Z activates parties just before the genesis block. It then can
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stop these parties or add new parties. We believe that Ouroboros [27], Ouroboros Praos [15],
Ouroboros Genesis [6], Dfinity [22] and Snow White [14] can all easily fit into this abstraction.

According to our abstraction, all initial active parties when the genesis block is released
have clocks that differ by at most δ (network delay bound). However, after a while, the
cumulative drift in their local clock (Σ in FΣ,P

timer) may change and so the difference between
clocks can increase. In addition, new parties which are activated after the genesis block need
to another way to initiate their clock. Therefore, all parties in such a blockchain protocol
need to run the relative time protocol to obtain a clock which is close enough to the consensus
clock. Our protocol does not provide perfect synchronization, but it does preserve a maximum
difference between the consensus clock and the clock that the algorithm offers to the parties
during the execution of the blockchain protocol. The relative time protocol works as follows:

We divide the protocol into epochs. In each epoch, all active parties run the relative time
protocol and update their clocks according to output of the protocol in the beginning of the
next epoch. The first epoch starts just after the genesis block is released. The other epochs
start when the clock value of the last finalized block is ce which is the smallest clock value
such that ce−ce−1 ≥ scd where ce−1 is the clock value of the last finalized block in epoch e−1.
Here, scd is the parameter of the chain density (CD) property (Definition 2.4). If the previous
epoch is the first epoch then ce−1 = 0. We define the last finalized block as follows: Retrieve
the best blockchain according to the chain selection rule of the blockchain protocol, then trim
the last k blocks of the best chain, and the last block of the trimmed best chain is the last
finalized block. Here, k is defined according to the common prefix property (Definition 2.1).

The party P constantly stores the arrival time of valid blocks according to the underlying
blockchain protocol. Whenever it receives a new valid block B′i, it sends (Get Timer, sid, P )

to FΣ,P
timer and obtains the arrival time ti of B′i according to its local timer. Let us denote the

clock value of B′i by c′i. We note that the clock values in these blocks do not have to be in a
certain order because desynchronized or malicious parties may not send their blocks on time.
At the end of the epoch, P retrieves the arrival times of valid and finalized blocks which
have a clock value cx where ce−1 < cx ≤ Ce. Let us assume that there are n such blocks that
belong to the current epoch. Then, P selects a clock value c > ce Then, P runs the median
algorithm (Algorithm 2) which finds some candidate start times of c using the arrival time of
blocks and then picks the median of them.

Algorithm 2 Median(c, {ti, c′i}ni=1)

1: lst← ∅
2: for i = 0 to n do
3: ai ← c− c′i
4: store (ti + aiT ) to lst // start time of c according to the party that produced B′i
5: lst← sort(lst)
6: return median(lst)

Assume that t is the output of the median algorithm. Then, P considers t as a start time
of the clock value c (i.e., a local reference clock (c, t)) and adjust its clock so that it shows c
when its timer is t.

The security of our protocol is based on the security of the CP and CD properties. The
CP property guarantees that all honest parties accept the same blocks as finalized blocks.
Therefore, all honest parties run the median algorithm using the arrival time of the same
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blocks. Thus, since the network delay is at most δ, the difference between the median outputs
of each honest party is also at most δ. Therefore, after each epoch, the difference between the
clocks are at most δ as in the right after the genesis block is released. The difference between
a new clock and an old clock of an honest party is limited thanks to the CD property that
the blockchain protocol provides. The reason for this is that CD property guarantees that
more than half of the blocks used in the median algorithm belong to honest parties. Thanks
to a nice property of the median operation, the output of the median should be between the
minimum and maximum honest of clocks. The formal proof is as follows:

Theorem 4.1. Assuming that the blockchain protocol preserves the common prefix property
with the parameter k, and the chain density property with the parameter scd as long as the
maximum difference between honest clocks is 2δ+ 2|Σ| where |Σ| is the maximum cumulative
drift between epochs, Θc = 2δ + |Σ| and Θp = δ , the relative time protocol in FδDDiffuse and

FT,Σtimer-hybrid model realizes FT,ΘClock except with the probability pcp+pcd which are the probability
of breaking CP and CD properties, respectively.

Proof. In order to prove the theorem, we construct a simulator S where S emulates FδDDiffuse

and FT,Σtimer. The simulation is straightforward. S simulates honest parties in the underlying

blockchain protocol as well, based on the clocks given by FT,ΘClock. For this, S selects an epoch
randomly which is less than the current epoch of the blockchain protocol and rewinds the
adversary to the beginning of the epoch. Given that the clock value of the beginning of the
epoch is c, S rewinds or forwards the clocks of honest parties to the value c of the blockchain
protocol i.e., given Ci = [t∗i , (ci, ti)], set Ci = [t∗i , (c, t

∗
i + cT )]. Then, S sends (Register, sid,S)

to GrefRate to emulate FΣ,Pi

timer by setting timeri = t∗i + cT and behave the same as FΣ,Pi

timer. After
setting up the time and clocks, S starts to simulate each honest party Pi in the real protocol
according to these clocks and FΣ,Pi

timer. S produces a block on behalf of Pj if Pj is eligible to
produce a block when the clock value is c according to underlying blockchain protocol. If Pj
is eligible, S sends the block of Pj to A (since S emulates FδDDiffuse too). If A moves the block
to the inbox of other honest parties, S stores the time that the block moved to the inbox of
honest parties as the arrival time of this block. If the block is delayed by A, S waits until
A permits the block to move it. If the permission is not received after δ consecutive ticks
by GrefRate, S moves the block to the inbox of honest parties. In either case, it stores timer
of FΣ,Pi

timer when a block arrives from any other party. Recall that S knows the duration of δ
because it receives the exact rate from GrefRate while simulating the local clocks. During the
simulation, S learns the clocks of corrupted parties in the epoch since it simulates FP,Σtimer for
a corrupted party as well. At the end of the epoch, S runs the Median algorithm (Algorithm
2) and updates the clocks of honest parties accordingly. S sends the clocks of honest parties.
Finally, S outputs the clocks of honest parties.

The output of an honest party in the real world and the honest party in the ideal world
are not the same if

1. there is no consensus according to Clock Consensus or
2. the difference between the initial consensus and the new consensus clock is more than

Θc or
3. the difference between the final consensus clock and the new clock of an honest party

is more than Θp.
4. at least one of the new clocks of honest parties is null.
Now, we analyze the probability of having such bad events in our simulation in any epoch.
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(1. Case and 3. Case): According to our Clock Consensus (Algorithm 1), the consensus
on clocks exists if and only if the difference between honest clocks is at most Θp = δ. Therefore,
if we show that a consensus on clocks exists after the update then we also show that the
difference between clocks of honest parties and the new consensus clock is at most δ. We can
then show that a consensus on clocks after the update exists given that CP property is not
broken during an epoch except with probability pcp. All honest parties run the median
algorithm with the arrival time of the same blocks thanks to the CP property. FδDDiffuse

guarantees that a block arrives at all honest parties within δ-ticks. Therefore, the time
difference in arrival time of any block differs at most δ between honest parties, as well. This
implies that the time difference between the median of all honest parties’ lst in Algorithm 2
can be at most δ. Thus, for all Pi, Pj ∈ Ph, |Cj − Ci| ≤ δ and so |C̄ − Ci| ≤ δ = Θp. Now,
we need to show that the CP property is satisfied during all epochs with induction.
We know that at the beginning of the first epoch, the maximum difference between clocks of
honest parties is δ because of our assumption after release of the genesis block. During the
first epoch, the difference between the honest parties can be at most 2|Σ|+ δ because of clock
drifts. Therefore, the CP property is preserved during the first epoch. Assume that the CP
property is satisfied during the epoch x. Then, we show that the CP property is satisfied
during the epoch x+ 1. We know that if CP property is satisfied then the difference between
clocks of honest parties is at most δ after running the median algorithm in the the end of the
epoch x. So, honest parties start the epoch x+ 1 with a clock which has difference δ at most.
For the same reasons as of the first epoch, the CP property is satisfied during the epoch x+ 1
as well.

(2. Case) We know that the clocks of honest parties before simulation starts have con-
sensus since FT,ΘClock gave it to them. Therefore, the simulation starts with the honest clock
has difference at most δ. We know that the total drift of timers of honest parties during the
simulation is at most |Σ|. Therefore, the clock difference of honest clocks can be at most
δ+2|Σ| ≤ Θ during the simulation. It is 2|Σ| because the drift can be forward or backward in
the timeline. Therefore, the CD property is satisfied during an epoch. It means that majority
of the blocks (at least bn2 c+ 1 finalized blocks in the epoch) used in the median algorithm are
honest ones except with the probability pcd.

We now show the difference between the new consensus clock C̄ and the consensus clock
C̄h just before the simulation starts is at most Θc assuming that bn2 c+1 of the finalized blocks
during the simulation were sent by honest parties. Let us assume that for an honest party Pu,
the median algorithm outputted t̃ = t+aiT where t is the arrival time of the block with clock
value c according to Pu’s timer. For the sake of clarity, all timer values are corresponding
timer values on timeru. If the block with the clock value c is sent by an honest party Pv, it is
sent at t′ which is the start of c according to Cv. Because of FδDDiffuse, this block may be delayed
before received by Pu. Therefore, t′ ≤ t ≤ t′+ δ. The difference between the clock of Pu after
updating its clock and the clock of Pv before updating its clock is 0 ≤ C̃u − Cv = t − t′ ≤ δ.
Since C̄ is one of new clocks of honest parties C̃i’s and C̃u − Cv = t − t′ ≤ δ for all Pu ∈ Ph,
0 ≤ C̄ − Cv ≤ δ. We know that the difference between C̄h and the clock Cv is at the beginning
of the epoch is at most δ and could be at most δ + |Σ| at the end. So, 0 ≤ Cv − C̄h ≤ δ + Σ.
We know that C̄ − Ch ≤ 2δ + |Σ| so C̄ − Ch ≤ 2δ + Σ ≤ Θc.

We can now show that the same inequality holds even if the median t̃ is computed from the
clock value of an adversarial block. In this case, there exists a tx, ty ∈ lst (lst in Algorithm 2)
where tx and ty are generated from clock values of honest blocks such that tx ≤ t̃ ≤ ty because
at least bn2 c+1 of the collected blocks were sent by honest parties. Since C̄−Ch ≤ 2δ+Σ ≤ Θc
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holds for all clocks between tx and ty, it should hold for adversarial t̃.
(4. Case): Since CD and CP property is preserved between epochs as shown in case 1, 2

and 3, there are finalized blocks between epochs so lst in Algorithm 2 is never empty, so new
clocks are never null

5 Conclusion

In this paper, we proposed a generic synchronization protocol that works on top of a blockchain
protocol. Our synchronization protocol takes advantage of a regular messaging process (e.g.,
blocks are sent regularly) to preserve consensus between honest parties’ clocks. We also
designed the first formal security model to capture the notion of consensus on clocks. Our
security model is not specific to blockchain protocols. It can be used to show the existence
of a consensus clock in arbitrary protocol. We proved that our protocol is secure in our new
GUC security model.
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