
Network Time with a Consensus on Clock

Abstract. Decentralized protocols which require synchronous commu-
nication usually achieve it with the help of the time that computer clocks
show. These clocks are mostly adjusted by centralized systems such as
Network Time Protocol (NTP) because these adjustments are indispens-
able to reduce the effects of random drifts on clocks. On the other hand,
an attack on these systems (which has happened in the past) can cause
corruption of the protocols which rely on the time data that they pro-
vide to preserve synchronicity. So, we are facing the dilemma of relying
on a centralized solution to adjust our timers or risking the security of
our decentralized protocols. In this paper, we propose a Global Universal
Composable (GUC) model for the physical clock synchronization prob-
lem in the decentralized systems by modelling the notion of consensus on
clocks. Consensus on clocks is agreed upon considering the local clocks of
all parties in a protocol which are possibly drifted. In this way, we model
the functionality that e.g. NTP provides in a decentralized manner. In
the end, we give a simple but useful protocol relying on a blockchain net-
work that realizes our model. Our protocol can be used by the full nodes
of a blockchain that need synchronous clocks in the real world to preserve
the correctness and the security of the blockchain protocol. One advan-
tage of our protocol is that it does not cause any extra communication
overhead on the underlying blockchain protocol.

1 Introduction

In physics, time is defined as ‘what a clock measures’. Nowadays, time is usually
measurement of the number of vibrations happening on crystal oscillators in a
clock e.g., a crystal oscillator vibrate 32768 times per second. So, the frequency of
vibrations directly affects a computer’s understanding of time. Unfortunately, the
frequency of vibrations varies over time with small changes in the environment
such as temperature, pressure, humidity thus causing clock drifts. As a result
of this, the time knowledge of a clock starts to be inconsistent with the rest of
the world. The computer clocks that are connected to the Internet mostly use
Network Time Protocol (NTP) to determine the time instead of just relying on
crystal oscillators so that the cumulative drift on the computer clock stays close
to zero. In this way, not only clocks measure the time correctly but also the
protocols such as certificate validation which require synchronized clocks can be
executed securely.

Some decentralized protocols such as proof of stake (PoS) based blockchain
protocols [28,15,5,6,14] are secure in the synchronous communication model
[10,27,29] i.e., round based communication which all parties proceed next syn-
chronously. Parties part of a decentralized protocol usually realize this commu-
nication by measuring time with their local clocks in the real world implementa-
tions e.g., They start a new round every T ticks of the local clock corrected by
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NTP. So, the security of the such decentralized protocols reduce to the NTP’s
security which relies on the security of centralized servers. Unfortunately, the
safety track record of NTP servers is not clean [33,39,35]. In one incident (on
November 19, 2012) [7], two critical NTP servers were set to time twelve years in
the past. This caused many important external servers, such as Active Directory
authentication servers, to fail for a while. If the same attack happens for example
in a PoS blockchain protocol even in a short time, honest parties would stop pro-
ducing blocks because they think that their round did not come, while malicious
full nodes would continue to produce blocks, populating the blockchain entirely
with maliciously-produced blocks. Apart from NTP, some clocks are synchro-
nized with the Global Positioning System (GPS). This requires a little more
investment in the setup but it is more accurate than NTP and does not have
the potential problem of corrupted servers. However, GPS is also vulnerable to
spoofing attacks [42,25,36,24,43] (e.g., delay signals). Even in the absence of an
actual attack, mere poor weather conditions can cause inaccurate signals to be
received from the GPS satellite. All of these existing solutions show that relying
on an external system to build a correct local clock in decentralized protocols
such as blockchains could be a major security vulnerability, as well as going
against the ultimate goal of building a fully decentralized system.

In this paper, we model the problem of synchronization of (physical) clocks
in a decentralized manner in the Global Universal Composable (GUC) model.
In our model, parties have local timers (modelling crystal oscillators) and build
local clocks that advances in every certain number of ticks of the timer. The envi-
ronment can modify the frequency of ticks of timers. In such a model, clearly, the
local clocks may drift apart even if they were the same at some point. Therefore,
we constructed another functionality called consensus clock which realigns them.
The consensus clock functionality receives the local clocks of parties in a proto-
col as an input. Then, it gives new local clocks to all parties which are close to
the consensus clock constructed with respect to the input clocks. Thus, the con-
sensus clock functionality provides a way to decide the current right clock to be
aligned in a decentralized network. We have two similar notions timer and clock
to be able to represent the difference between two different local clocks with a
smaller time unit. Thus, we can define synchronization between local clocks more
precisely. We note that our aim is not designing a new model for the synchronous
communication which has elaborate UC-security models [10,27,29]. We deal with
physical clocks which have an ability to measure time while global clock func-
tionalities in the synchronous communication models are logical clocks which
proceed based on some events in the protocol independent from actual time.

The closest model for our purposes is the GUC network time model designed
by Canetti et al. [12], that models the physical clock adjustment process of a
client with corrupted servers. In this model, the goal of a client is to synchronize
his local clock close enough to a reference clock incremented by the environment.
Canetti et al. [12] designed this model to capture the functionality of NTP.
If parties in a decentralized protocol advances a round of the protocol locally
according to their local clocks in the network time model [12], the security and
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the decentralized manner of the protocol can be violated because of the reasons
that we discussed above. Let us summarize them in the network time model with
three points:

1. The environment can increment the reference clock too many times between
two local clock-synchronization processes with the reference clock so that the
local clock of an honest party skips the round. This may cause the exclusion
of some honest parties from the protocol.

2. The environment can increment the reference clock too fast so that the proto-
col collapses since the protocol may not have enough time to execute the spe-
cific instructions. For example, this is the case for the protocols [28,15,5,14]
where the correctness of rounds depends on the correct execution of previous
rounds.

3. How to define the reference clock in the real world is not very clear in decen-
tralized protocols. It cannot be the clock provided by NTP or GPS because
it is a centralized solution. It cannot be the clock of one of the parties since
it gives too much power to modify the clocks of all other nodes. We cannot
have an authority that defines them because we face the same problems that
we have in NTP.

These reasons let us consider a new and more appropriate model in the
nature of decentralized networks. We note that the issues in 1 and 2 come from
the strong adversarial model that Canetti et al. [12] consider in their security
model. Therefore, one possible solution could have been to consider a weaker
adversarial model in which we do not let the environment modify the reference
clock. However, this assumption would not be realistic because the concept of
having one reference clock implies centralization as pointed in 3. Therefore,
instead of a reference clock, we consider a consensus clock notion where the
adversarial effect is limited since it is generated with respect to all local clocks.
We note that the notion of consensus on clock is not a new idea. Indeed, it
has been studied in other areas outside of cryptography [32,38,23,3,44,40,31].
However, there is currently no security model capturing this except ours.

In more detail, our contributions are as follows:
– We construct a GUC model that captures the notion of consensus on clock

and allows parties in a decentralized network to align their clock with it. Our
model realizes situations where a party has a local clock constructed based
on the ticks of his local timer and wants to synchronize the local clock with
the current consensus clock in the protocol. We define a global functionality
which sets the rate of timers globally and another functionality of a local
timer which does not necessarily follow the global rate to capture the notion
of drifted timers in the real world. Our other functionality provides the
consensus clock to honest parties. According to our definition, the consensus
clock can change as the time passes based on the clocks of parties but this
change is limited. To the best of our knowledge, our model is the first security
model for the notion of consensus on clock.

– We construct the Relative Time protocol on top of blockchain protocols that
realizes consensus on clock functionality in our model. The parties construct
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local clocks as in our model that count the rounds of the blockchain protocol
and behave based on the round information provided by their local clocks.
Our protocol ensures that honest clocks preserve closeness to each other
by staying close to the consensus clock during the protocol even if local
timers drift or network delay exists. We define the consensus clock based on
the clock information in the blocks which are in the finalized (consensus)
blockchain. Periodically, all parties update their clocks with the time data
in these blocks not to be drifted apart. Our protocol can be adapted to
all blockchain protocols that fit our abstraction. It does not add any extra
communication to the network or any extra weight to the blocks. Thus, we
solve the physical clock synchronization problems of PoS-based blockchain
protocols in a decentralized manner without putting an extra overhead to
the network and the blockchain.
We note that our relative time protocol is currently used in Polkadot [45]

which aims to connect multiple blockchain networks.

1.1 Related Works

UC Clock Models: There are UC models [10,27,29] designed to emulate the
synchronous communication between parties but they do not provide ways for
realizing the functionalities from real-world solutions such as network time pro-
tocols or local physical clocks. The clock functionalities in these models are
different from physical clocks. They keep the round of a protocol and make sure
that all parties are in the same or close rounds which is decent to model the
synchronous communication. We note that we do not aim to construct a model
for synchronous communication even though there are some name resemblance
among clock notions. The difference between clocks in our model and the clock
functionality in [10,27,29] are as follows:

– Each local clock represents the round view of a party which does not need
to be the same with other parties. Beyond this, we consider local clocks as a
mechanism that measures the time while clock functionality [10,27,29] does
not need to have this ability.

– Consensus-clock functionality in our model and clock functionalities in
[10,27,29] serve completely different purposes. Ours should be imagined as a
mechanism which does not let the local clocks drift apart too much. It does
not keep the round of the protocol in a systematic way as clock functionalities
in [10,27,29].

We believe that precise enough local clocks with the help of the consensus-
clock functionality could be used to realize synchronous communication in these
models.

The network time model by Canetti et al. [12] is the first model that defines
clocks with the ability to measure time. In this model, a party can access im-
mediately to his local clock which can be arbitrarily shifted. The aim of a party
is to minimize these shifts by adjusting it with a reference clock that keeps a
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counter incremented by the environment. The security of a local clock is defined
based upon the closeness of a reference clock. So, the ultimate goal in this model
is to obtain local clocks with a time close enough to the reference clock. This
type of clock model is useful for the protocols accepting one clock as valid and
expect from all other parties to follow this clock. For example, the Public Key
Infrastructure (PKI) limits the validity of certificates and expects from all users
to consider the validity of a certificate within the same duration. Differently, in
our model, the ultimate goal of parties is to have clocks that are close to a con-
sensus clock which is constructed with respect to all existing local clocks. It is
not important how close the consensus clock is to a reference clock (e.g. a clock
defined by NTP, GPS). Our model is useful for protocols (e.g., blockchain proto-
cols) which do not need to rely on any real-world notion of the correct time for
security and completeness. In a nutshell, our model is a version of the network
time model [12] where the reference clock is replaced with the consensus clock.
We note that our model is not practical for example for certificate validation in
PKI since it requires knowing all clocks of users which is millions in the PKI
case to construct the consensus clock.

PoS protocols: The security of some PoS blockchain protocols [28,15,5,14] is
preserved in the synchronous communication model. Ouroboros Genesis [5] is
built on top of the clock functionality [29] that counts the rounds to preserve
synchronous communication. Since in the real world, there is not any such clock
functionality, the parties try to realize it with their local clocks that starts a new
round when a certain time passed from the last round. Therefore, it is important
whether the required synchronous communication is preserved with these local
clocks. If they use the local clocks without any adjustment mechanism, the syn-
chronous communication cannot be satisfied because of the unavoidable drifts.
If the drifted local clocks are adjusted by NTP, the synchronous communication
may not be preserved because of the vulnerabilities of NTP [33,39,35] as we
pointed.

Ouroboros Chronos [6] which is an improved version of Ouroboros Genesis
adds a mechanism that helps adjusting the physical clocks of parties without
relying on any external Internet service such as NTP as our relative time proto-
col. In this way, loosely synchronous communication in the UC model [6,29] is
preserved in Ouroboros Chronos. In order for this, the parties who are selected
to produce block in the current round send a synchronization beacon along with
the block of the round and others store the arrival time of the beacons. At some
point, these beacons are added to a block to agree on which beacons are going
to be used for the adjustment. Periodically, parties sort the beacons based on
the difference from their own local clocks and arrival times. At the end, they
adjust their clocks with the median one. Parties in our relative time protocol
also adjust their local clock according to the median clock but in our case it is
achieved without using extra messages such as beacons or adding new type of
blocks for synchronization. The critical issue in both Ouroboros Chronos and
ours is to make sure that all parties find the median with the arrival time of the
same messages which are beacons in Chronos and blocks in our protocol. While
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Chronos achieves this by deciding them on the blockchain, we use already the
existing consensus mechanism of a PoS protocol. In every synchronization pe-
riod, parties in our protocol obtain the median clock by considering the arrival
times of the blocks in the final (consensus) chain after the previous synchro-
nization. We guarantee that the median clock does not dramatically change the
local clock of honest parties because we specify the length of one synchronization
period sufficiently long so that the final chain includes more honest blocks than
malicious blocks (the blocks that are not sent on time). This could be satisfied
as long as the chain quality is preserved [28]. The synchronization mechanism in
Ouroboros Chronos is tailored for Ouroboros Genesis while our protocol is more
generic in this sense which can be constructed on top of coherent PoS protocols
with our abstraction. As such, our protocol does not modify the block gener-
ation mechanism of the underlying PoS protocol and does not introduce any
extra messages in the network. The length of the synchronization period of our
protocol depends on the underlying PoS protocol. For example, if our protocol
is constructed on top of Ouroboros Genesis [5], it may require a longer synchro-
nization period than Ouroboros Chronos. This is because of the distribution of
honest rounds in Ouroboros Genesis [5].

The timeline in the Dfinity consensus protocol [22] progresses based on cer-
tain events, but it is not clear how everyone can agree on the time at which
any event occurs in a partially synchronous network. On the other hand, the
Algorand protocol [13,21] executes Byzantine agreement on each block, hence
parties can trust all consensus blocks and adjust their local clock according to
the round inside the last consensus blocks. We note that this is not possible
in PoS protocols where the consensus mechanism is probabilistic [28,15,5,14,22]
because a party cannot know whether the round in a block is correct since it is
not finalized right away as in Algorand.
Synchronization Protocols: Clock synchronization protocols [17,19,34,41,30]
have been extensively studied in previous work, as it is a important component
in distributed systems. Many protocols [32,38,23,3] exist for consensus clocks
with different assumptions. One approach is based on dividing the network into
some well-connected clusters [17] that aim to achieve consensus between clusters.
There are also fully distributed approaches [44,40] based on clock skew and
network delay estimation. Even though many works exist related to consensus
clock, to best of our knowledge, there is no formal cryptographic security model
as we defined for these types of functionality. Differently, our protocol works
on top of a secure blockchain protocol with a consensus mechanism which lets
parties also reach consensus on clocks. Compared to the previous protocols, our
proposed protocol has the advantage of building the synchronization protocol on
top of an existing consensus mechanism.

2 Preliminaries

Notations: We use D to define a distribution. x ← D shows that x is selected
with respect to the distribution D.
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Two ensembles X = {X1, X2, ..., Xn} and Y = {Y1, Y2, ..., Yn} are compu-
tationally indistinguishable if for all probabilistic polynomial time (PPT) algo-
rithms D and for all c > 0, there exists an integer N such that for all n ≥ N

|Pr[D(Xi) = 1]− Pr[D(Yi) = 1]| < 1

nc
.

X ≈ Y means that two ensembles X and Y are computationally indistinguish-
able.

2.1 Universally Composable (UC) Model:

The UC model consists of an ideal functionality that defines the execution of
a protocol in an ideal world where there is a trusted entity. The real-world
execution of a protocol (without a trusted entity) is called UC-secure if running
the protocol with the ideal functionality F is indistinguishable by any external
environment Z from the protocol running in the real-world.

A protocol π is defined with distributed interactive Turing machines (ITM).
Each ITM has an inbox collecting messages from other ITMs, adversary A or
environment Z. Whenever an ITM is activated by Z, the ITM instance (ITI) is
created. We identify ITI’s with an identifier consisting of a session identifier sid
and the party identifier P .
π in the Real World: Z initiates all or some ITM’s of π and the adver-
sary A to execute an instance of π with the input z ∈ {0, 1}∗ and the se-
curity parameter κ. The output of a protocol execution in the real world is
denoted by EXEC(κ, z)π,A,Z ∈ {0, 1}. Let EXECπ,A,Z denote the ensemble
{EXEC(κ, z)π,A,Z}z∈{0,1}∗ .
π in the Ideal World: The ideal world consists of an incorruptible ITM F which
executes π in an ideal way. The adversary S (called simulator) in the ideal world
has ITMs which forward all messages provided by Z to F . These ITMs can be
considered corrupted parties and are represented as F . The output of π in the
ideal world is denoted by EXEC(κ, z)F,S,Z ∈ {0, 1}. Let EXECF,S,Z denote the
ensemble {EXEC(κ, z)F,S,Z}z∈{0,1}∗ .
Z outputs whatever the protocol in the real world or ideal world outputs.

We refer to [9,10] for further details about the UC-model.

Definition 1. (UC-security of π) Let π be the real-world protocol and F be the
ideal-world functionality of π. We say that π UC-realizes F (π is UC-secure)
if for all PPT adversaries A in the real world, there exists a PPT simulator S
such that for any environment Z,

EXECπ,A,Z ≈ EXECF,S,Z

π in the Hybrid World: In the hybrid world, the parties in the real world interact
with some ideal functionalities. We say that a protocol π in hybrid world UC-
realizes F when π consists of some ideal functionalities.

Generalized UC model [11] (GUC) formalizes the global setup in a UC-model.
In GUC model, Z can interact with arbitrary protocols and ideal functionalities
F can interact with GUC functionalities G.
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3 Security Model

In this section, we first introduce our new GUC-model for the consensus clock,
and then give the UC-model for a partially synchronous network similar to the
model in [15,5]. We note that we refer physical clocks that measure the time in
our model. They are not logical clocks.

We have multiple ITMs that we call as a party Pi. Z activates all parties
and the adversary and then creates ITIs. A is also activated whenever the ideal
functionalities are invoked. A can corrupt parties P1, P2, ..., Pn. When Z permits
a corruption of a party Pi, it sends the message (Corrupti, Pi). If a party is
corrupted, then whenever it is activated, its current state is shared with A.

3.1 The Model for the Consensus of Clocks

We construct a model where parties have access to their local timers (e.g., com-
puter clocks in real life) that are constructed to tick according to a certain global
metric time but it may not follow the metric time because of adversarial inter-
ruptions. Parties construct their clocks according to their local timers. In such
an environment, we model how parties synchronize their clocks without having
a global clock. Our model consists of the following functionalities:

Functionality GrefRate

GrefRate has a list of registered parties ListRate which is initially empty.

– (Registration) If a functionality F sends a message (Register, sid,F), GrefRate adds
F to ListRate and sends (Registered, sid,F) to F .

– (Progress in Time) In every tick according to the defined rate, GrefRate sends
(Tick, sid′, P ) to all P ∈ ListRate

Fig. 1. The global functionality GrefRate

Reference Rate (GrefRate) This functionality defines a metric time for timers.
More precisely, it can be considered as a global timer that ticks with respect
to the metric time (e.g., it ticks every second.). The entities who want to be
notified in every tick register with GrefRate. Whenever GrefRate ticks, it informs
them. The difference between GrefClock [12] and GrefRate is that GrefRate does not
have any absolute values related to time (e.g., it does not keep how many ticks it
had). We note that ITI’s cannot contact with GrefRate. The details are in Figure
1.

One may question whether the concept of a reference rate contradicts the
trustless distributed system without a global clock. It does not, because a metric
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system for time is universally defined and unchangeable (e.g., “One second is the
time that elapses during 9.192631770× 109 cycles of the radiation produced by
the transition between two levels of the cesium 133 atom [2]”). In real world, all
physical clocks are designed to follow a global definition of time although they
may have difficulties to follow it at some point because of their nature.

We note that we do not aim to construct protocols that precisely follow this
global rate. This functionality is intended to be useful to model the time.

Local timer (GΣ,Ptimer) We define the global functionality GΣ,Ptimer to model the local
clock of a computer. We do not directly model it, instead we define a local timer
that ticks with a rate which may vary in time (as crystal oscillators of clocks in
the real world). We choose the name timer because its absolute values does not
matter as a clock. The local clocks measure how much time passed with the help
of these timers in our model.

In more details, GΣ,Ptimer represents a local timer of a party P . Σ is an array

which holds the drift from the real time for each timer value. GΣ,Ptimer is accessible

by the party P without any delay. GΣ,Ptimer stores two types of timer: timer and
timer∗. It increments local timer timer whenever it receives a message from Z
and increments the real timer timer∗ whenever it receives a signal from GrefRate.
However, it never shares timer∗ (the real timer) with the party. The reason of
having timer∗ is to allow us to calculate the amount of total drift stored in Σ at
each timer value. The reason that we define GΣ,Ptimer in GUC model is to capture
the fact that the real world timers interact with arbitrary protocols.We define it
in Figure 2.

We note that GΣ,Ptimer does not differ from real-world computer timers because
timer∗ (the correct measurement of time) or Σ is never shared with its party and
the execution of the local timer does not depend on it. Therefore, a computer
timer in the real world can be shown as a realization of GΣ,Ptimer. It shares Σ with
FC Clock so that FC Clock can compute clock difference (Definition 6).

Next, we define notions related to local clocks which are constructed with
respect to local timers. These clocks can be used to count locally the round of a
protocol which progresses depending on time.

Definition 2 (Correspondence of Timer Values). Assume that Pi and Pj

sends (Get Timer, sid, Pi) to GΣ,Pitimer and (Get Timer, sid, Pj) to GT,Pjtimer at the same

time, respectively and GΣ,Pitimer responds with timeri = t and GΣ,Pjtimer responds with
timerj = t̂. In this moment, the corresponding value of any ti on timeri is t̂ +
(ti − t) on timerj and the corresponding value of any t̂j on timerj is t+ (t̂j − t̂)
on timerj.

Correspondence of timer values help us to define the difference of time values
as below. As it can be seen from the definition, the correspondence of timer
values may change in time because of the drifts on timers. Therefore, we define
it for the moment when timeri = t and timerj = t̂.
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Functionality GΣ,Ptimer

Z initiates GΣ,Ptimer with a value t ∈ Z and empty array Σ. Then, GΣ,Ptimer creates two
parameters timer = t and timer∗ = t and lets Σ[t] = 0.

– (Registration to GrefRate) GΣ,Ptimer sends (Register, sid,GΣ,Ptimer ) to GrefRate and receives
back (Registered, sid,GΣ,Ptimer ). This is done once after the initialization of the func-
tionality.

– (Registration) If FC Clock (See Figure 4) sends a message (Register, sid,FC Clock),
GΣ,Ptimer replies with (Registered, sid,FC Clock).

– (Increasing timer) When Z sends (Increase, sid, P ), GΣ,Ptimer increments timer and
lets Σ[timer] = timer∗ − timer. Then, it sends the message (Timer, sid, timer, P )
to P and the message (Timer, sid, timer, Σ[timer],FC Clock) if FC Clock registered.

– (Increasing timer∗) When GrefRate sends (Tick, sid,GΣ,Ptimer ), G
Σ,P
timer increments

timer∗ and lets Σ[timer] = timer∗ − timer. P and the message
(Timer, sid, timer, Σ[timer],FC Clock) if FC Clock registered.

– If P sends (Get Timer, sid, P ), GΣ,Ptimer sends the message (Timer, sid, timer, P ) to
P .

Fig. 2. The global functionality GΣ,Ptimer

Definition 3 (Clock Interval). Clock interval T ∈ N is the minimum time
that a clock measures.

Definition 4 (Clock Value). Given that the initial clock value c∗ ∈ N is
mapped with timer = t∗, we define the clock value for all timer = t ≥ t∗ of
a GΣ,Ptimer as:

Clock Val(t, T, t∗, c∗) = c∗ + b t− t
∗

T
c. (1)

where T is the clock interval.

t∗ serves as a local reference point to obtain a clock (defined below) that lets
a clock determine its clock value at a given timer value (i.e., starting from t∗,
every T progress in timer, increase the clock value).

Definition 5 (Clock). A clock of P is a counter that keeps the clock value

based on progression on timer of GΣ,Ptimer after an initial match (t∗, c∗). The clock

C of a party P when timer = tcurr is defined with [(t∗, c∗), (tcurr, ccurr),GΣ,Ptimer]
where ccurr = Clock Val(tcurr, T, t

∗, c∗)1.

The notation C represents the clock at tcurr while the notation c represents
a clock value, which is any output from Equation (1).

Given
1 It is redundant to have ccurr in a clock [(t∗, c∗), (tcurr, ccurr)] but we have it there

for the sake of clarity.
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Definition 6 (Clock Difference). Consider two clocks Ci =

[(c∗, t∗), (c, t),GΣ,Pitimer ] and Cj = [(ĉ∗, t̂∗), (ĉ, t̂),GΣ,Pitimer ] given by a party Pi
and Pj. The timer of C is timeri and the timer of Cj is timerj.

We let the start time of c be ts = t∗+(c−c∗)T on timeri and be ts = ts+Σi[ts]
on timer∗j . Similarly, we let the start time of ĉ be t̂s = t̂∗ + (ĉ − ĉ∗)T on timerj
and be t̂s = t̂s +Σj [t̂s] on timer∗j . The corresponding timer value of ts on timerj
is tsj and the corresponding timer value of t̂s on timeri is t̂si (See Definition 2).

Without loss of generality, we assume that c ≤ ĉ. We define the clock differ-
ence Ci − Cj |tsj +Σj [t

s
j ]− (̂ts − (ĉ− c)T )| = |t̂si +Σi[t̂

s
i ]− (ts + (ĉ− c)T )|.

t∗i

t∗ijt∗j

timeri

timerj

t∗i

t∗j

t∗ji(ti, ci)

(tj , cj)

(ti, ci)

(tj , cj)

Ci − Cj

Ci − Cj

Fig. 3. Time difference of clocks: |Ci − Cj |. It can be computed on the timer of Cj
(left-hand side) or on the timer of Ci (right-hand side).

We note that the time difference between clocks does not have to be con-
stant, because the timers can drift backward or forward. Therefore, we define
the difference between clocks instantaneously.

Consensus Clock Provider (FT,Θ
C Clock) FT,ΘC Clock helps parties to synchronize

their clocks with respect to consensus on a clock. In a nutshell, FT,ΘC Clock takes
all clocks and construct a new clock with the algorithm Clock Consensus as a
reference clock to be synchronized.
FT,ΘC Clock is defined with the parameter T which is the clock interval and Θ.

Θ = (Θc, Θp) is the desynchronization parameter. We call Ph is the set of honest

parties and Pc is the set of corrupted parties. In more detail, FT,ΘC Clock works as
follows:

(Initial Consensus): At first, FT,ΘC Clock finds the initial consensus between

honest parties. If it does not exist from the beginning, FT,ΘC Clock aborts the pro-

tocol. In more detail, FT,ΘC Clock first collects clocks of all parties. We note that

some clocks can be null meaning that the party does not have any clock. FT,ΘC Clock

runs the algorithm Clock Consensus2 with the honest clocks and obtains either
⊥ or a consensus clock C̄init. If it is ⊥, FT,ΘC Clock sends an abort message to the

2 Clock Consensus can be defined based on the needs of the real-world protocol. e.g.,
the mostly agreed or minimum clock can be the consensus clock or the way that we
define for our protocol in Section 4.
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Functionality FT,ΘC Clock

FT,ΘC Clock is parameterized with T and Θ = (Θc, Θp) given by Z. FT,ΘC Clock first sends
(Register, sid,FT,ΘC Clock) and receives back (Registered, sid, P ). Thus, it constructs its
own timer.

– (Initial Consensus) Each party Pi ∈ Ph sends the message
(Get Clock, sid, Pj , Cj) where Cj is the clock of the party Pj . FT,ΘC Clock runs
the algorithm Clock Consensus({Cj}Pj∈Ph) . If Clock Consensus outputs ⊥,

then FT,ΘC Clock sends (Current Clock, sid,⊥) to each Pj and aborts the protocol. If
it outputs C̄h, it sends {(Get Clock, sid, Pj , Cj)}Pj∈Ph to A.

– (New Clocks) A replies with (Init Clock, sid,FT,ΘC Clock, C̃1, C̃2, ..., C̃n) for all Pi ∈
Ph. If there exists C̃i = null, FT,ΘC Clock aborts.

– (New Consensus) FT,ΘC Clock runs the algorithm Clock Consensus({Cj}Pj∈Ph∪Pc).
If it does not output ⊥ and |C̄ − C̄h| ≤ Θc and |C̄ − C̃i| ≤ Θp for all Pi ∈ Ph, it
sends the C̃i to each party Pi ∈ Ph. Otherwise, it sends C̄h to each party Pi ∈ Ph.

Fig. 4. The functionality FT,ΘC Clock

adversary A and the honest parties and the protocol ends. Otherwise, FT,ΘC Clock

gives the honest clocks to the adversary A.

(New Clocks:) After receiving clocks of honest parties, A gives new clocks

for honest parties to FT,ΘC Clock. If there exists a null clock among new clocks then

FT,ΘC Clock aborts.

(New Consensus): At this point, FT,ΘC Clock checks if a new consensus is
possible with the new clocks. If the new consensus clock exists and it is close
enough to the initial one, then all parties continue with their new clocks provided
by A. In more detail, FT,ΘC Clock runs the algorithm Clock Consensus with the new

honest clocks provided by the adversary. If Clock Consensus outputs ⊥, FT,ΘC Clock

sends C̄h (the initial consensus) to the honest parties. If it outputs a consensus

clock C̄, FT,ΘC Clock continues as follows: If |C̄ − C̄h| ≤ Θc and |C̄ − C̃i| ≤ Θp for all

Pi ∈ Ph, it sends the C̃i to each party Pi ∈ Ph. Otherwise, it sends C̄h to each
party Pi ∈ Ph. More details are in Figure 4.

In a nutshell, this functionality aims to provide clocks to honest parties which
do not drift apart from the initial consensus that they have and which is close
enough to their own clock. Having the difference limit between the initial con-
sensus clock C̄h and the new consensus clock C̄ is useful not to slow down the
protocols relying on the output of FT,ΘC Clock. For example, (a very extreme exam-
ple) we do not want to end up with a new consensus clock that says that we
are in the year 2001 when we were in 2019 according to the previous consensus.
In this case, parties may wait 18 years to execute an action that is supposed to
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be done in 2019. However, if a protocol do not need such bound, θc should be
considered as ∞.

We note that the requirement of initial consensus can be removed by defining
the algorithm Clock Consensus accordingly. We have it in our definition to be
more general.

3.2 UC- Partially Synchronous Blockchain Network Model

Our network model FDDiffuse is similar to the network model of Ouroboros Praos
[15,28,20]. Differently, it accesses to GrefRate in order to have the notion of rel-
ative time. Now, we define the functionality FDDiffuse which models a partially
synchronous network with the time delay δ. Here, δ represents number of δ-
increment message by GrefRate.
FδDDiffuse: The message handling functionality Diffuse for a blockchain network
was first introduced by Garay et al. [20] in a synchronous network where message
delivery is executed in a certain amount of known time. Then, David et al. [15]
define a new functionality “delayed diffuse” (DDiffuse) for a blockchain network
that realizes a partially synchronous network where a message arrives to others
eventually, but parties do not know how long it takes. DDiffuse is parameterized
with the network delay parameter ∆ and ensures that all messages are received at
most ∆-slots later. Here, a slot is the duration to produce one block. However, it
does not use any clock to determine how many slots have passed since a message
was sent. FδDDiffuse is a version of DDiffuse which can access of GrefRate. It simply
sends a given message from a party Pi to all other parties within a bound δ.
FδDDiffuse first registers to GrefRate and creates a local timer timer = 0. Whenever
GrefRate sends a message with Increase, it increments timer.

Each honest party Pi can access its inbox anytime. A can read all messages
sent by the parties and decide their delivery order before they arrive to inboxes
of honest parties. For any message coming from an honest party, A can label it
as delayedi. When FDDiffuse receives delayedi for a message to Pi, it marks it with
the current local timer value ti. A delayed message is not moved to the inbox of
Pi until A lets FδDDiffuse move it or the timer reaches ti+ δ. In the end, all parties
always receive any message sent by a party.

4 Realization of Consensus Clock

In this section, we describe our relative time protocol for blockchain protocols
that realizes the functionality FT,ΘC Clock. Before describing the protocol, we give
some preliminary definitions related to security of blockchain.

4.1 Blockchain

A protocol that defines the construction of a blockchain structure is called a
blockchain protocol. Garay et al. [20] define some properties given below to
obtain a secure blockchain protocol. In these definitions, the blockchain protocol
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follows the logical clock r1, r2, ... in the synchronous communication [10,27,29].
We note that these rounds do not have to advance based on the measurement
of time as our clocks.

Definition 7 (Common Prefix (CP) Property [20]). The CP property with
parameters k ∈ N ensures that any blockchains B1, B2 owned by two honest
parties at the onset of rounds r1 < r2 satisfy that B1 without the last k blocks is
the prefix of B2.

In other words, the CP property ensures that blocks which are k blocks
before the last block of an honest party’s blockchain cannot be changed. We
call all unchangeable blocks finalized blocks and the blockchain including the
finalized blocks final blockchain.

We modify the chain quality property (CQ) by Garay et al. and give chain
density property. CQ property ensures the existence of sufficient honest blocks
on any blockchain owned by an honest party.

Definition 8 (Chain Density (CD) Property). The CD property with pa-
rameters scd ∈ N, µ ∈ (0, 1] ensures that any portion B[su : sv] of a fi-
nal blockchain B spanning between rounds su and sv = su + scd contains
length(B[su : sv])µ honest blocks.

The CD property ensures a minimum ratio of honest blocks in the final sub-
blockchain. In our protocol, we need CD property with µ > 0.5 which implies
that the sufficiently long span of the final blockchain contains more honest blocks
than malicious ones.

4.2 Consensus Clock

We first describe the algorithm Clock Consensus in FT,ΘC Clock that defines con-
sensus clock in our protocol. Clock Consensus receives clocks of multiple parties
as input, and outputs one of them as a consensus clock. In our setup, we say
that two clocks are synchronous if their difference is κ according to Definition
6. For example, assume that κ is 5 seconds. A clock that starts to output the
clock value c in the first second, and another clock that starts to output c in the
fourth second, are still considered synchronized, even though they do not output
the same clock value in the sixth second (i.e., one outputs c + 1 and the other
outputs c in the sixth second). We say that clocks are synchronized if all pairs
of these clocks are synchronized.

Given clocks Cj = [(t∗j , c
∗
j ), (cj , tj),G

Σ,Pj
timer ], Clock Consensus first finds the

pairwise difference of all clocks as defined in Definition 6. We note that FT,ΘC Clock

has enough source to compute the difference. It can access the drift information
of each timer value by asking their local timer functionalities and know the
corresponding timer values between timers because all ti’s and tj ’s given as a
current timer value in Ci’s and Cj ’s are their corresponding timer value. If there
exists two clock with the difference greater than κ (no synchronization exist),
Clock Consensus outputs ⊥ meaning that no consensus exists. Otherwise, it
selects the median clock as consensus clock as described in Algorithm 1.
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Algorithm 1 Clock Consensus({Cj}) where Cj = [(c∗j t
∗
j ), (cj , tj),G

Σ,Pj
timer ]

1: start lst = ∅
2: t← value of timerFT,Θtimer

when clocks are given

3: add all clocks list
4: for all Cu, Cv ∈ list where Cu 6= null and Cv 6= null do
5: if Cu − Cv > κ then
6: return ⊥
7: pick c ∈ N such that for all j such that c > cj
8: for all Cj 6= null do
9: tcj ← t∗j + cT // start time of clock value on timerj

10: t̂cj ← t+ (tj − tcj) // correspondence value of tcj on timerFT,Θtimer
(See Definition 2)

11: add t̂cj to start lst

12: t̂ci ← Median(start lst) // Median(start lst) sorts the list and returns the median
13: return Ci

4.3 Relative Time Protocol

The relative time protocol realizes FT,θC Clock (See Figure 4) meaning that it let’s
parties to obtain a clock which is close enough to the consensus clock. We build
it on top of a blockchain protocol where parties produce blocks when it is their
turn. In more detail, the blockchain protocol is defined as follows: After the
genesis block is released, each party starts their local timer. In every T tick of
their timer according to FΣ,Ptimer (See Figure 2), they increment their clock which
is initially 0 when they receive the genesis block. The blockchain protocol has a
selection mechanism which tells parties at which clock value they are supposed
to produce a block. Selected parties produce blocks only when their clock reaches
the right clock value. Whenever they produce a block they also add their current
clock value to the block as a timestamp. The environment Z activates parties
just before the genesis block. It then can stop these parties or add new parties.
We believe that Ouroboros [28], Ouroboros Praos [15], Ouroboros Genesis [5],
Dfinity [22] and Snow White [14] can all easily fit into this abstraction.

According to our abstraction, all initial active parties when the genesis block
is released have clocks that differ by at most δ (network delay bound). However,

after a while, the cumulative drift in their local clock (Σ in FΣ,Ptimer) may change
and so the difference between clocks can increase. In addition, new parties which
are activated after the genesis block need to another way to initiate their clock.
Therefore, all parties in such a blockchain protocol need to run the relative
time protocol to obtain a clock which is close enough to the consensus clock.
Our protocol does not provide perfect synchronization of physical clocks, but it
does preserve a maximum difference between the consensus clock and the clock
that the algorithm offers to the parties during the execution of the blockchain
protocol. The relative time protocol works as follows:

We divide the protocol into epochs. In each epoch, all active parties run
the relative time protocol and update their clocks according to output of the
protocol in the beginning of the next epoch. The first epoch starts just after
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the genesis block is released. The other epochs start when the clock value of the
last finalized block is ce. ce is the smallest clock value such that ce − ce−1 ≥ scd
where ce−1 is the clock value of the last finalized block in epoch e − 1. Here,
scd is the parameter of the chain density (CD) property (Definition 8). If the
previous epoch is the first epoch then ce−1 = 0.

The party P constantly stores the arrival time of valid blocks according to
the underlying blockchain protocol. Whenever it receives a new valid block B′i, it

sends (Get Timer, sid, P ) to FΣ,Ptimer and obtains the arrival time ti of B′i according
to its local timer. Let us denote the clock value of B′i by c′i. We note that the clock
values in these blocks do not have to be in a certain order because desynchronized
or malicious parties may not send their blocks on time. At the end of the epoch,
P retrieves the arrival times of valid and finalized blocks which have a clock
value cx where ce−1 < cx ≤ ce. Let us assume that there are n such blocks that
belong to the current epoch. Then, P selects a clock value c > ce Then, P runs
the median algorithm (Algorithm 2) which finds some candidate start times of
c using the arrival time of blocks and then picks the median of them.

Algorithm 2 Median(c, {ti, c′i}ni=1)

1: list← ∅
2: for i = 0 to n do
3: ai ← c− c′i
4: store (ti + aiT ) to list // start time of c according to the party that produced
B′i

5: lst← sort(list)
6: return median(list)

Assume that t is the output of the median algorithm. Then, P considers t as
a start time of the clock value c (i.e., a local reference clock (c, t)) and adjust its
clock so that it shows c when its timer is t.

The security of our protocol is based on the security of the CP and CD
properties. The CP property guarantees that all honest parties accept the same
blocks as finalized blocks. Therefore, all honest parties run the median algorithm
using the arrival time of the same blocks. Thus, since the network delay is at
most δ, the difference between the median outputs of each honest party is also at
most δ. Therefore, after each epoch, the difference between the clocks are at most
δ as in the right after the genesis block is released. The difference between a new
clock and an old clock of an honest party is limited thanks to the CD property
that the blockchain protocol provides. The reason for this is that CD property
guarantees that more than half of the blocks used in the median algorithm belong
to honest parties. Thanks to a nice property of the median operation, the output
of the median should be between the minimum and maximum honest of clocks.
The formal proof is as follows:
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Theorem 1. Assuming that the blockchain protocol preserves the common prefix
property with the parameter k, and the chain density property with the parameter
scd, µ > 0.5 as long as the maximum difference between honest clocks is 2δ+2|Σ|
where |Σ| is the maximum cumulative drift between epochs, Θc = 2δ + |Σ| and

Θp = δ , the relative time protocol in FδDDiffuse and FT,Σtimer-hybrid model realizes

FT,ΘC Clock except with the probability pcp+pcd which are the probability of breaking
CP and CD properties, respectively.

Proof. In order to prove the theorem, we construct a simulator S where S em-
ulates FδDDiffuse. The simulation is straightforward. S simulates honest parties in
the underlying blockchain protocol as well, and their local clocks based on the
clock increments by FT,ΘC Clock. For this, S selects an epoch randomly which is less
than the current epoch of the blockchain protocol and rewinds the adversary to
the beginning of the epoch. Given that the clock value of the beginning of the
epoch is c, S rewinds or forwards the clocks of honest parties to the value c of the
blockchain protocol i.e., given Ci = [t∗i , (ci, ti)], set Ci = [t∗i , (c, t

∗
i + cT )]. Then,

S sends (Register, sid,S) to GrefRate to emulate FΣ,Pitimer by setting timeri = t∗i + cT

and behave the same as FΣ,Pitimer . After setting up the time and clocks, S starts
to simulate each honest party Pi in the real protocol according to these clocks
and FΣ,Pitimer . S produces a block on behalf of Pj if Pj is eligible to produce a
block when the clock value is c according to underlying blockchain protocol. If
Pj is eligible, S sends the block of Pj to A (since S emulates FδDDiffuse too). If
A moves the block to the inbox of other honest parties, S stores the time that
the block moved to the inbox of honest parties as the arrival time of this block.
If the block is delayed by A, S waits until A permits the block to move it. If
the permission is not received after δ consecutive ticks by GrefRate, S moves the
block to the inbox of honest parties. In either case, it stores timer of FΣ,Pitimer when
a block arrives from any other party. Recall that S knows the duration of δ
because it receives the exact rate from GrefRate while simulating the local clocks.
During the simulation, S learns the clocks of corrupted parties in the epoch since
it simulates FP,Σtimer for a corrupted party as well. At the end of the epoch, S runs
the Median algorithm (Algorithm 2) and updates the clocks of honest parties
accordingly. S sends the clocks of honest parties. Finally, S outputs the clocks
of honest parties.

The output of an honest party in the real world and the honest party in the
ideal world are not the same if
1. there is no consensus according to Clock Consensus or
2. the difference between the initial consensus and the new consensus clock is

more than Θc or
3. the difference between the final consensus clock and the new clock of an

honest party is more than Θp.
4. at least one of the new clocks of honest parties is null.

Now, we analyze the probability of having such bad events in our simulation
in any epoch.

(1. Case and 3. Case): According to our Clock Consensus (Algorithm 1),
the consensus on clocks exists if and only if the difference between honest clocks
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is at most Θp = δ. Therefore, if we show that a consensus on clocks exists
after the update then we also show that the difference between clocks of honest
parties and the new consensus clock is at most δ. We can then show that a
consensus on clocks after the update exists given that CP property is not
broken during an epoch except with probability pcp. All honest parties run
the median algorithm with the arrival time of the same blocks thanks to the CP
property. FδDDiffuse guarantees that a block arrives at all honest parties within
δ-ticks. Therefore, the time difference in arrival time of any block differs at most
δ between honest parties, as well. This implies that the time difference between
the median of all honest parties’ list in Algorithm 2 can be at most δ. Thus, for
all Pi, Pj ∈ Ph, |Cj − Ci| ≤ δ and so |C̄ − Ci| ≤ δ = Θp. Now, we need to show
that the CP property is satisfied during all epochs with induction. We
know that at the beginning of the first epoch, the maximum difference between
clocks of honest parties is δ because of our assumption after release of the genesis
block. During the first epoch, the difference between the honest parties can be
at most 2|Σ|+ δ because of clock drifts. Therefore, the CP property is preserved
during the first epoch. Assume that the CP property is satisfied during the epoch
x. Then, we show that the CP property is satisfied during the epoch x+ 1. We
know that if CP property is satisfied then the difference between clocks of honest
parties is at most δ after running the median algorithm in the the end of the
epoch x. So, honest parties start the epoch x+1 with a clock which has difference
δ at most. For the same reasons as of the first epoch, the CP property is satisfied
during the epoch x+ 1 as well.

(2. Case) We know that the clocks of honest parties before simulation starts

have consensus since FT,ΘC Clock gave it to them. Therefore, the simulation starts
with the honest clock has difference at most δ. We know that the total drift of
timers of honest parties during the simulation is at most |Σ|. Therefore, the clock
difference of honest clocks can be at most δ+2|Σ| ≤ Θ during the simulation. It
is 2|Σ| because the drift can be forward or backward in the timeline. Therefore,
the CD property is satisfied during an epoch. It means that majority of the blocks
(at least bn2 c+ 1 finalized blocks in the epoch) used in the median algorithm are
honest ones except with the probability pcd.

We now show the difference between the new consensus clock C̄ and the
consensus clock C̄h just before the simulation starts is at most Θc assuming that
bn2 c+1 of the finalized blocks during the simulation were sent by honest parties.
Let us assume that for an honest party Pu, the median algorithm outputted
t̃ = t+ aiT where t is the arrival time of the block with clock value c according
to Pu’s timer. For the sake of clarity, all timer values are corresponding timer
values on timeru. If the block with the clock value c is sent by an honest party
Pv, it is sent at t′ which is the start of c according to Cv. Because of FδDDiffuse,
this block may be delayed before received by Pu. Therefore, t′ ≤ t ≤ t′ + δ.
The difference between the clock of Pu after updating its clock and the clock
of Pv before updating its clock is 0 ≤ C̃u − Cv = t − t′ ≤ δ. Since C̄ is one of
new clocks of honest parties C̃i’s and C̃u − Cv = t − t′ ≤ δ for all Pu ∈ Ph,
0 ≤ C̄ − Cv ≤ δ. We know that the difference between C̄h and the clock Cv is at
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the beginning of the epoch is at most δ and could be at most δ+ |Σ| at the end.
So, 0 ≤ Cv−C̄h ≤ δ+Σ. We know that C̄−Ch ≤ 2δ+|Σ| so C̄−Ch ≤ 2δ+Σ ≤ Θc.

We can now show that the same inequality holds even if the median t̃ is
computed from the clock value of an adversarial block. In this case, there exists
a tx, ty ∈ list (list in Algorithm 2) where tx and ty are generated from clock
values of honest blocks such that tx ≤ t̃ ≤ ty because at least bn2 c + 1 of the
collected blocks were sent by honest parties. Since C̄ − Ch ≤ 2δ +Σ ≤ Θc holds
for all clocks between tx and ty, it should hold for adversarial t̃.

(4. Case): Since CD and CP property is preserved between epochs as shown
in case 1, 2 and 3, there are finalized blocks between epochs so list in Algorithm
2 is never empty, so new clocks are never null

5 Conclusion

In this paper, we proposed a generic synchronization protocol that works on
top of a blockchain protocol. Our synchronization protocol takes advantage of a
regular messaging process (e.g., blocks are sent regularly) to preserve consensus
between honest parties’ clocks. We also designed the first formal security model
to capture the notion of consensus on clocks. Our security model is not specific
to blockchain protocols. It can be used to show the existence of a consensus clock
in arbitrary protocol. We proved that our protocol is secure in our new GUC
security model.

References

1. Proof of authority. .https://github.com/paritytech/parity/wiki/

Proof-of-Authority-Chains.
2. Second (s or sec).
3. H. Aissaoua, M. Aliouat, A. Bounceur, and R. Euler. A distributed consensus-based

clock synchronization protocol for wireless sensor networks. Wireless Personal
Communications, 95(4):4579–4600, 2017.

4. G. Ateniese, I. Bonacina, A. Faonio, and N. Galesi. Proofs of space: When space
is of the essence. In International Conference on Security and Cryptography for
Networks, pages 538–557. Springer, 2014.
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