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Abstract. The Legendre PRF relies on the conjectured pseudorandom-
ness properties of the Legendre symbol with a hidden shift. Originally
proposed as a PRG by Damgård at CRYPTO 1988, it was recently
suggested as an e�cient PRF for multiparty computation purposes by
Grassi et al. at CCS 2016. Moreover, the Legendre PRF is being consid-
ered for usage in the Ethereum 2.0 blockchain.
This paper improves previous attacks on the Legendre PRF and its
higher-degree variant due to Khovratovich by reducing the time com-
plexity from O(p log p/M) to O(p log2 p/M2) Legendre symbol evalua-

tions when M ≤ 4
√
p log2 p queries are available. The practical relevance

of our improved attack is demonstrated by breaking three concrete in-
stances of the PRF proposed by the Ethereum foundation. Furthermore,
we generalize our attack in a nontrivial way to the higher-degree variant
of the Legendre PRF and we point out a large class of weak keys for this
construction.
Lastly, we provide the �rst security analysis of two additional generaliza-
tions of the Legendre PRF originally proposed by Damgård in the PRG
setting, namely the Jacobi PRF and the power residue PRF.

1 Introduction

The Legendre symbol is a multiplicative function modulo an odd prime number
p that assigns to an element a ∈ Fp the value 1, 0 or −1 depending on whether
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or not a is a square. Speci�cally,

(
a

p

)
=


1 if a = b2 for some b ∈ F×p ,

0 if a = 0 ,

−1 otherwise .

The distribution of Legendre symbols has been a subject of study for number
theorists at least since the early 1900s [Ala96, vS98, Jac06, Dav31, Dav39]. In
particular, it follows from the Weil bound [Wei48] that the number of occurrences
of a �xed pattern of l nonzero Legendre symbols among the integers 1, 2, . . . , p−1
modulo p is

p

2l
+O(√p) ,

as p→∞. In other words, the distribution of �xed length substrings of Legendre
symbols converges to the uniform distribution.

In 1988, Damgård [Dam90] conjectured pseudorandom properties of the sequence(
k

p

)
,

(
k + 1

p

)
,

(
k + 2

p

)
, . . . ,

where k has been sampled from Fp uniformly at random. He proposed to use
this construction as a pseudorandom number generator. More recently, Grassi et
al. [GRR+16] have proposed the same construction as a candidate pseudoran-
dom function and have shown that it can be evaluated very e�ciently in the
secure multiparty computation setting. Concretely, the Legendre pseudorandom

function Lk(x) is de�ned by mapping the Legendre symbol with a secret shift k
to {0, 1}:

Lk(x) =

⌊
1

2

(
1−

(
k + x

p

))⌋
,

where p is a public prime number.

Damgård's work additionally considers several generalizations of the Legendre
PRG that could be more e�cient and/or more secure. One of these is to replace
the Legendre symbols above by Jacobi symbols. In this case, the public modulus
n is taken to be a product

∏
i pi of odd primes. Recall that the Jacobi symbol

of a ∈ Fp is de�ned as (a
n

)
=
∏
i

( a
pi

)
.

Damgård argues that Jacobi symbols are more secure by showing that the Ja-
cobi generator is strongly unpredictable if the Legendre generator is weakly un-
predictable. Further, he notes that calculating Jacobi symbols is more e�cient
because computing them reduces to computing Legendre symbols modulo each
of the smaller prime factors. A second generalization proposed by Damgård is
the use of higher power residue symbols instead of quadratic residue symbols.
Concretely, for a prime p with p ≡ 1 mod r, he proposes to use the r-th power
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residue symbol a 7→ a(p−1)/r mod p. This potentially increases the throughput
of the PRF, because we now obtain log2 r bits of output per PRF call rather
than a single bit.

Very recently, the Legendre PRF was proposed to be used in the Ethereum
2.0 proof-of-custody mechanism [Fei19b]. In this context, several cryptanalysis
bounties were announced by the Ethereum foundation during the CRYPTO
2019 rump session [Fei19a]. Among the proposed challenges, there are concrete
instances of the Legendre PRF with expected security levels ranging from 44 to
128 bits of security. For each instance, 220 sequential output bits are given and
the goal is to recover the secret key.

Despite the longevity of Damgård's pseudorandomness conjecture and the re-
cent surge of application-oriented interest in the Legendre PRF, relatively few
cryptanalytic results are available. It is known that, given quantum query access
to Lk, the key k can be recovered with a single query to Lk and in quantum
polynomial time [vDH00]. No subexponential attacks are known in the classical
setting or the setting where a quantum adversary is only allowed to query Lk
classically.

The best cryptanalytic results in the classical setting are due to Khovratovich
[Kho19], who gives a memoryless birthday-bound attack. His attack recovers the
key with a computational cost of O(√p log p) Legendre symbol evaluations when
given

√
p log p queries to Lk. Khovratovich also considers a higher-degree variant

of the Legendre PRF, where the output is computed as the Legendre symbol of a
secret polynomial in the input. Similar to the Jacobi symbol generalization, the
higher-degree Legendre PRF potentially o�ers security and e�ciency bene�ts.

Contributions. This paper aims to advance the state-of-the-art in the crypt-
analysis of the Legendre PRF by improving upon Khovratovich's attacks on the
one hand, and by providing the �rst security analysis of the Jacobi and power
residue symbol generalizations on the other hand. Table 1 provides a summary
of our main results. The main improvement stems from the fact that, unlike
earlier work, we manage to exploit the multiplicative property of the Legendre
symbol. The practical relevance of our attacks is demonstrated by our solution
of the �rst three concrete Legendre PRF challenges proposed by the Ethereum
foundation [Fei19b]. These were expected to correspond to a security level of
44 and 54 bits, but our attacks imply that the actual security levels for these
challenges are signi�cantly lower.

After introducing the necessary preliminaries in Section 2, we show how the
Khovratovich attack can be signi�cantly improved in the low-data setting. In
particular, for M ≤ 4

√
p queries, the attack in Section 3 of this paper recovers

the key with a time-complexity of O(p log2 p/M2) Legendre symbol evaluations
and a memory cost of O(M2). In Section 4, the attack from Section 3 is general-
ized to the higher-degree case. As before, this amounts to a signi�cant improve-
ment in the low-data setting. In addition, for d ≥ 3 and with M = p queries,
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we gain a factor of p in time-complexity compared to Khovratovich's results.
Furthermore, in Section 4, a large class of weak keys for the higher-degree Leg-
endre PRF is shown to exist. For keys in this class, key-recovery requires roughly
O(pbd/2cd log p) Legendre symbol evaluations with only ddlog pe queries to the
PRF. This attack requires O(pdd/2ed log p) memory, but trade-o�s are available
using Van Oorschot-Wiener golden collision search. We also give a reduction to
the unique k-XOR problem, which results in further time-memory trade-o�s.

The �rst of Damgård's generalizations is discussed in Section 6. Speci�cally, it
will be shown that the Jacobi PRF can be broken with cost proportional to the
cost of breaking the Legendre PRF for each of the prime factors of the modulus
separately. The power residue symbol generalization is analyzed in Section 7.
Besides the straightforward generalization of the attack from Section 3 to the
r-th power residue symbol PRF, we additionally provide a more e�cient attack
for the case where r is large.

Finally, concrete implementation results are provided in Section 8. We report
on the speci�c amount of time and memory that was necessary to solve the
�rst three Legendre PRF challenges of the Ethereum foundation. These results
showcase the practical relevance of our attacks.

Concurrent work. Days after this work �rst appeared on ePrint, Kalu�erovi¢ et
al. [KKK20] solved the next Legendre PRF challenge. Their attack uses sim-
ilar ideas to our attack, but with an improved complexity of O(M2/ log p +
p log p log log p/M2) operations on a machine with word size Θ(log p).

2 Preliminaries

After introducing the Legendre PRF and some related notation in Section 2.1,
Section 2.2 recalls how Legendre and power residue symbols can be computed
e�ciently. Finally, Sections 2.3 and 2.4 discuss Khovratovich's attacks on the
Legendre PRF and its higher degree variant.

2.1 Legendre PRF

De�nition 1 (Legendre function). For a given odd prime p, we consider the
function

l : Fp → F2

x 7→
⌊
1

2

(
1−

(
x

p

))⌋
which maps quadratic residues modulo p to 0 ∈ F2 and quadratic non-residues

to 1 ∈ F2.
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Table 1. Query, time and memory requirements of previous and new attacks on the
Legendre PRF. The reported time and memory values are asymptotic upper bounds
(O-notation) and assume a machine with word size Θ(log p), ` and s denote the time-
complexity of computing a Legendre and power residue symbol respectively. The attack
strategy for composite moduli from Section 6 can be combined with any of the attacks
in this table.

Reference Queries Time Memory

Legendre PRF

Randomized [Kho19] log p `p log p log p
Khovratovich [Kho19]

√
p log p `

√
p log p log p

Section 3.1 M M + `p log p/M M log p
Section 3.3 M M2 + `p log2 p/M2 M2

Section 3.4 M M2 + p log2 p/M2 M2/ log p

Degree d ≥ 2
Legendre PRF

Randomized [Kho19] log p `pd d log p d log p

Khovratovich [Kho19] p `pd−1d log p d log p

Section 4 M M2 + `pdd2 log2 p/M2 M2

Section 5 d log p `pbd/2cd log p pdd/2ed log p

r-th power-
residue PRF

Section 7.2 M M2 + sp log2 p/(M2 log2 r) M2 log r
Section 7.3 M M + sp log2 p/(Mr log2 r) M log r

De�nition 2 (Legendre PRF). Let p be an odd prime and d a positive integer.
The degree d-Legendre PRF over Fp is a family of functions Lk : Fp → F2 such

that for each k ∈ Fdp,

Lk(x) = l
(
xd +

∑d−1
i=0 ki+1 x

i
)
.

Remark 1. For any given �eld Fp, the Legendre symbol is multiplicative, i.e.(
ab

p

)
=

(
a

p

)(
b

p

)
for all a, b ∈ Fp.

In terms of the Legendre function l, multiplication of inputs corresponds to
addition in F2 of the respective images. Indeed

l(ab) = l(a)⊕ l(b) for all a, b ∈ F×p ,

where ⊕ denotes addition in F2.

In our analysis, we will often consider sequential evaluations of a given degree
d Legendre PRF Lk starting from a point a with an additive or multiplicative
step b. We call such vectors L-sequences.

De�nition 3 (L-sequences). Let p be an odd prime, m a positive integer and

a, b ∈ Fp. For a given Lk over Fp, we de�ne the arithmetic L-sequence of length
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m with starting point a and stride b as the Fm2 -vector

Lk(a+ b [m]) := (Lk(a), Lk(a+ b), . . . , Lk(a+ (m− 1)b) ).

Similarly, we de�ne the geometric L-sequence of length m with starting point a
and common ratio b as the Fm2 -vector

Lk(a · b[m]) := (Lk(a), Lk(a · b), . . . , Lk(a · bm−1 )).

To justify the correctness of our attack, the following property of Lk will be
assumed.

Assumption 1 Let p be an odd prime and d a positive integer. Letm = ddlog pe.
For all k ∈ Fdp, then as p→∞, there exist at most O(1) keys k′ ∈ Fdp such that

Lk′([m]) = Lk([m]).

2.2 Evaluating Legendre and Power Residue Symbols

Using the law of quadratic reciprocity, i.e. for odd coprime integers p and q(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 ,

Legendre symbols (and more generally Jacobi symbols) can be computed at es-
sentially the same cost as a GCD computation. Using the Euclidean algorithm,
the cost of a Legendre symbol computation is O(log p) arithmetic operations, or
O(log2 p log log p) bit operations. Brent and Zimmerman [BZ10] give an asymp-
totically better algorithm with complexityO(log p log2 log p). Power residue sym-
bols can be computed via modular exponentiation in timeO(log p log(p/r) log log p).
In the remainder of this paper, we will often refer to the cost of an algorithm in
terms of the number of Legendre symbol computations or power residue symbol
computations.

2.3 Attacks on the Linear Legendre PRF

Khovratovich [Kho19] describes a chosen plaintext attack for the linear Legendre
PRF Lk that recovers k ∈ Fp with O(

√
p log p) queries to Lk. The attack is based

on a memoryless collision search between two speci�c functions and can be brie�y
summarized as follows.

Letm = dlog pe and consider the functions x 7→ Lk(x+[m]) and x 7→ L0(x+[m]).
Note that the L-sequence Lk(x+[m]) is available by querying the Legendre PRF,
whereas L0(x+[m]) does not depend on k. By Assumption 1, a collision between
x 7→ Lk(x + [m]) and x 7→ L0(x + [m]) yields k with high probability. Indeed,
let a, b ∈ Fp be such that Lk(a+ [m]) = L0(b+ [m]). We have

L0(a+ k + [m]) = L0(b+ [m]).
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In accordance with Assumption 1, the number of super�uous candidates for k
satisfying the above equality is expected to be at most O(1).

Collisions between x 7→ Lk(x + [m]) and x 7→ L0(x + [m]) can be found with a
generic memoryless collision search method [MOM92,vOW94] in O(√p) evalua-
tions of both functions. Since computing each L-sequence requires m = O(log p)
calls to Lk, the overall complexity sums up to O(√p log p) queries to Lk and L0.
More generally, if only M queries to Lk are allowed, a collision can be found
with O(p log2 p/M) queries to L0. This will be discussed in detail in Section 3.1.

We note that Khovratovich's original attack builds sequences of length m using
arbitrary evaluations of the Legendre function Lk rather than consecutive ones.
This di�erence does not a�ect the overall attack complexity, but by using L-
sequences we will be able to reduce the data complexity in Section 3.

2.4 Attacks on the Higher-Degree Legendre PRF

Khovratovich [Kho19] also presents a generalization of the chosen plaintext at-
tack from Section 2.3 to the quadratic case and, ultimately, to arbitrary degrees.

Let k = (k1, k2) ∈ F2
p and consider the associated quadratic Legendre PRF Lk.

Choose any r ∈ F×p . From the multiplicative property of the Legendre symbol
we get that for any a ∈ Fp and j ∈ Z,

L(r2j k1,rj k2)(a) = l(r2j)⊕ L(k1,k2)(ar
−j) = Lk(ar

−j), 3

since r2j is clearly a quadratic residue modulo p. Let m = 2dlog pe. If we �nd a
k′ ∈ F2

p and a j ∈ Z such that

Lk′(r · r[m]) = Lk(r
1−j · r[m]),

then we successfully recover k by letting k1 = k′1r
−2j and k2 = k′2r

−j . As for the
linear case, such a collision can be found memorylessly with O(p) queries to Lk
and O(p) Legendre symbol computations.

For the general case, consider the degree-d Legendre PRF Lk. Similarly to the
quadratic case, we have for each a ∈ Fp and j ∈ Z that

Lk1rdj ,k2r(d−1)j ,...,kdrj (a) = l(rdj)⊕ Lk(ar−j).

By guessing the coe�cients k3, . . . , kd, it is possible to attack the remaining
coe�cients k1 and k2 using geometric L-sequences of length ddlog pe similar to
the quadratic case. It follows that k can be recovered using O(pd−2 ·p ·d log p) =
O(pd−1d log p) Legendre symbol evaluations, given O(p) queries to Lk.
3 This equation, and many other equations in this paper, only holds if none of the
involved Legendre symbols evaluate to zero. Since this does not pose a problem in
practice we choose to ignore this issue for notational convenience.
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3 Improved Attack on the Linear Legendre PRF

In this section, we show how Khovratovich's attack (Section 2.3) on the Legendre
PRF can be improved when the total number of available queries is less than√
p. Although, in its simplest form, our method requires additional memory,

we discuss several techniques to reduce memory requirements while keeping the
same overall time complexity.

3.1 Table-Based Collision Search

We �rst transform the attack by Khovratovich into a table-based collision search.

LetM be the allowed number of queries to the oracle Lk, where log p�M <
√
p.

Let m = dlog pe and let M̃ =M −m+ 1. The attack proceeds as follows:

1. Store in a table T the pairs (Lk(a+ [m]), a) for all a ∈
{
0, . . . , M̃ − 1

}
.

2. Sample b uniformly at random from Fp until (L0(b + [m]), a) ∈ T for some

a ∈ {0, . . . , M̃ −1}. For each a corresponding to such a collision, a candidate
key k̃ is recovered as k̃ = b− a. By Assumption 1, the number of candidate
keys is at most O(1). Candidate keys k̃ can be tested by comparing one
or more entries of T with the corresponding arithmetic L-sequences with
starting point k̃.

Regarding the time and memory complexity of this attack, we note that the �rst
step requires M queries to Lk, from which we obtain M̃ arithmetic L-sequences
that are stored using O(M log p)memory. The second step requires O(p log p/M)
evaluations of the Legendre symbol and no additional memory is needed. Hence,
the overall computational cost of the attack is O(M + p log p/M).

Note that this variant of the attack already reduces the query and time com-
plexities by a log p factor compared to the memoryless collision search, although
a signi�cant amount of memory is employed.

Remark 2. The above attack can be made deterministic by choosing b ∈ {0, . . . ,
bp/M̃c} and considering the sequences v = L0(bM̃ + [m]) in the second step
of the attack. Indeed, it is easy to see that for any k ∈ Fp, the arithmetic L-

sequence at o�set M̃
⌈
k/M̃

⌉
will be computed in both steps of the attack and

the correct key is guaranteed to be recovered after at most O(M + p log p/M)
Legendre symbol evaluations.

3.2 Expanding the Number of L-Sequences

We now show that the table can be expanded without increasing the number of
queriesM . The key idea is to exploit the multiplicative property of the Legendre
symbol.
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Lemma 1. Let m be a positive integer and k ∈ Fp. For any b ∈ F×p and a ∈ Fp
it holds that

Lk/b(a/b+ [m]) = (l(b), . . . , l(b))⊕ Lk(a+ b[m]).

Proof. Immediate by the multiplicative property of l.

Lemma 2. Let k ∈ Fp and m ≤M positive integers. Then from the arithmetic

L-sequence Lk([M ]), it is possible to extract ∼M2/m arithmetic L-sequences of
the form Lk/b(a/b+ [m]) for distinct pairs (a, b) ∈ Fp × F×p .

Proof. Let b a positive integer such that b ≤ bM/mc. By Lemma 1, we get

Lk(a+ b[m]) = (l(b), . . . , l(b))⊕ Lk/b(a/b+ [m])

for any a ∈ [0,M − bm + 1), thus each b yields a total of M − bm + 1 L-
sequences of length m. Moreover, since Lk(a − b[m]) is equal to the sequence
Lk(a−b(m−1)+b[m]) = Lk(a

′+b[m]) written in reverse order, we can consider
negative values for b too, thus doubling the total number of sequences. Hence,
the total number of arithmetic L-sequences of length m that can be extracted
from Lk([M ]) equals

2

bM/mc∑
b=1

(M − bm+ 1) ∼ 2M2

m
−m

M/m∑
b=1

b ∼ 2M2

m
− M2

m
=
M2

m
.ut

3.3 An Improved Table-Based Collision Search

The observations from Section 3.2 will now be used to improve the table-based
collision search from Section 3.1.

As before, let M be the allowed number of queries to the oracle Lk, where
log p�M <

√
p. Let m = dlog pe. The attack proceeds as follows:

1. Query the sequence Lk([M ]) and extract ∼ M2/m sequences of the form
Lk/b(a/b+ [m]) from it. This is possible by Lemma 2. Store all of the triples
(Lk/b(a/b+ [m]), a, b) in a table T .

2. Sample c uniformly at random from Fp until (L0(c+[m]), a, b) ∈ T for some
a and b. For each pair (a, b) corresponding to such a collision, a candidate
key k̃ is recovered as k̃ = bc− a. By Assumption 1, the number of candidate
keys is at most O(1). As before, the correctness of candidate keys k̃ can
easily be veri�ed.

The �rst step of the attack requires M queries to Lk and ∼ M/m Legendre
symbol evaluations. Storing the table T requires O(M2) memory. In the second
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phase, an average of ∼ mp/M2 samples must be tested before a collision is
found. Hence, the computational cost of this step is dominated by O(pm2/M2)
Legendre symbol evaluations.

It follows that the overall cost of the attack is dominated by the extraction of
O(M2/m) sequences, the evaluation of O(M/m+p log2 p/M2) Legendre symbols
and a memory requirement of O(M2). For M <

√
p, this is always an improve-

ment over the attack from Section 3.1 � possibly after discarding some of the
data.

3.4 Additional Optimizations

This section describes a number of additional optimizations that allow a further
reduction of both the time and the memory complexity of the attack by a factor
Ω(log p).

Using Consecutive Values of c The second step of the attack from Section 3.3
can be optimized by choosing consecutive values of c rather than uniform ran-
dom samples. This approach allows us to reuse most of the Legendre symbol
computations since, for example, L0(c + [m]) and L0(c + 1 + [m]) overlap al-
most completely. A priori, this allows reducing the number of Legendre symbol
computations by a factor of Ω(m). However, there is an important caveat: since
the guesses for c are not independent, the expected number of iterations of the
second step is no longer pm/M2. To see why this is the case, recall that for any
c, the algorithm will output the correct key k if there exists (∗, a, b) ∈ T such
that k = bc−a. Since the table contains an entry (∗, a, b) for all su�ciently small
values of a and b, it is clear that if the table contains (∗, a, b) such that k = bc−a
it is likely to also contain (∗, a′ = a+ b, b) such that k = b(c+1)−a′. Therefore,
if c is a good guess, then c+1 is also likely to be a good guess. Since the �good�
values of c are clustered together in groups of size O(m), we expect the required
number of iterations to be O(pm2/M2), which means that the factor Ω(m) that
we saved by using consecutive guesses for c is lost again. However, we can still
use this idea to reduce the memory complexity of the algorithm: by only stor-
ing one entry (∗, a, b) for each cluster of good c's, i.e. we only store the triples
(∗, a, b) such that |a| < |b|, the size of the table can be reduced by a factor of
Ω(m) without impacting the time complexity of the attack.

Expanding the Number of L-Sequences in the Second Step The idea
outlined in Section 3.2 can be used to create new L-sequences from those com-
puted during the second step of the attack. Indeed, after computing a large
number of w = Ω(m) consecutive Legendre symbols L0(c+[w]), it is possible to
extract Ω(w2/m2) arithmetic subsequences of the form L0(c + c′ + d[m]) such
that |c′| < |d|, with no need to compute additional Legendre symbols. Using the

10



property that

L0(c+ c′ + d[m]) = L0((c+ c′)/d+ [m])⊕ L0(d)

we can then do Ω(w2/m2) table lookups. Asymptotically, this allows to amor-
tize away the cost of computing Legendre symbols, so the time complexity is
dominated by the extraction of O(pm2/M2) subsequences rather than by the
computation of O(pm2/M2) Legendre symbols.

Not Storing Reverse Sequences Since the sequence a+b[m] is just the reverse
of the sequence a + b(m − 1) − b[m], there is some redundancy in the lookup
table. Indeed, for each entry (s, a, b) ∈ T , the reverse sequence corresponding to
the entry (s′, a+ b(m−1),−b) is also stored. If, instead, we only store either the
sequence or its reverse (e.g. by storing the lexicographically smallest sequence),
then the memory requirements are reduced by a factor of two without a�ecting
the overall time-complexity just by looking up either the sequence L0(c + [m])
or its reverse in T , depending which comes �rst lexicographically.

4 Application to the Higher-Degree Legendre PRF

In this section we generalize the attack described in Section 3 to Legendre PRFs
of degree d > 1. In Section 4.1 it is shown how to expand the number of L-
sequences in the higher-degree setting. The resulting attack is detailed in Sec-
tion 4.2.

4.1 Expanding the Number of L-Sequences

In order to generalize Lemma 2, we need to extend Lemma 1 to the higher-degree
case. This is the object of Lemma 3.

Lemma 3. For any positive integer m, b ∈ F×p and a ∈ Fp, there exists an

invertible a�ne transformation Ta,b such that for any k ∈ Fdp,

LTa,b(k)([m]) = (l(bd), . . . , l(bd))⊕ Lk(a+ b[m]).

Moreover, for any choice of (a, b) ∈ Fp × F×p , the transformation Ta,b can be

e�ciently computed.

Proof. Lef f be the monic degree d polynomial with coe�cient vector k, and let
Ta,b(k) be the coe�cient vector of the monic polynomial f(a+ bx)/bd. Then, by
the multiplicative property of the Legendre symbol, we have that

LTa,b(k)([m]) = (l(bd), . . . , l(bd))⊕ Lk(a+ b[m]).

Furthermore, it is not hard to see that Ta,b is invertible, a�ne and that it can
be computed e�ciently.
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Lemma 4. Let k ∈ Fdp and m ≤M positive integers. Then from the arithmetic

L-sequence Lk([M ]), it is possible to extract ∼ M2/m arithmetic L-sequences
of the form Lk′([m]) with k′ as de�ned in Lemma 3 for distinct pairs (a, b) ∈
Fp × F×p .

Proof. The proof is completely analogous to that of Lemma 2.

4.2 An Improved Table-Based Collision Search

The attack proceeds in essentially the same way as described in Section 3.3 for
the linear case. LetM be the allowed number of consecutive queries to the oracle
Lk. Let m = d dlog pe. The attack comprises the following steps:

1. Query the sequence Lk([M ]) and extract ∼ M2/m sequences of the form
Lk′([m]) from it. This is possible by Lemma 4. Store all of the triples
(Lk′([m]), a, b) in a table T .

2. Sample k′ uniformly at random from Fdp until (Lk′([m]), a, b) ∈ T for some
a and b. For each pair (a, b) corresponding to such a collision, a candidate
key k̃ can be recovered from k, a and b as in Lemma 3. By Assumption 1,
the number of candidate keys is at most O(1). As before, the correctness of
candidate keys can easily be veri�ed.

As in Section 3.3, the computational cost of the �rst step is dominated by the ex-
traction of O(M2/m) sequences. For the second step, at most O(pdm2/M2) Leg-
endre symbols are expected to be evaluated. Hence, the total computational cost
of the attack consists of O(M2/m) sequence extractions and O(pd d2 log2 p/M2)
Legendre symbol evaluations. The attack requires O(M2) memory.

For d ≥ 3, the time-complexity is minimized for M = p. The time complexity is
then O(pd−2d2 log2 p) Legendre symbol computations. Hence, we gain a factor
of p in time relative to the attacks by Khovratovich [Kho19].

5 Weak Keys in the Higher-Degree Legendre PRF

In this section, we exhibit a large class of weak keys for the higher-degree Leg-
endre PRF. Our attacks are based on the observation that for some keys, the
corresponding monic polynomial factors as a product of polynomials of lower
degree.

5.1 A Birthday-Bound Attack for Some Keys

Consider the Legendre PRF of degree d ≥ 2 over Fp for a prime p. Recall
that the key k ∈ Fdp of the PRF corresponds to the monic polynomial f(x) =
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xd+
∑d−1
i=0 ki+1x

i ∈ Fp[x]. The attack in this section is based on the observation
that, with high probability, the polynomial f has a factor of degree t = bd/2c.
In this case, there exist two monic polynomials g, h ∈ Fp[x] with deg g = t and
deg h = d− t such that f = gh.

Assume that we are given the outputs of the PRF on m = ddlog pe arbitrary
inputs, for example the sequence Lk([m]). Then, by the multiplicative property
of the Legendre symbol4,

Lk([m]) = l(g([m]))⊕ l(h([m])).

Hence, the problem of �nding the secret key k ∈ Fdp reduces to a simple collision
search:

1. Query the sequence Lk([m]) from the PRF. For each monic polynomial g of
degree t, store the pair (Lk([m])⊕ l(g([m])), g) in a table T .

2. Sample monic polynomials h of degree d− t until (l(f([m])), g) ∈ T for some
monic polynomial g of degree t. For each such g, recover a candidate key
from the coe�cients of gh. By Assumption 1, the number of candidate keys
will be at most O(1).

For t = dd/2e, this attack requires O(pdd/2ed log p) memory and its time com-
plexity is dominated by O(pbd/2cd log p) Legendre symbol computations. The
attack requires only m = O(d log p) queries to the PRF.

Using Van Oorschot-Wiener golden collision search [vOW94], an improved time-
memory trade-o� can be obtained: given M bits of memory, the key can be
recovered with a time-complexity of O(d log p

√
p3d/2/M) Legendre symbol eval-

uations.

Even if the polynomial f does not have a factor of degree exactly dd/2e, it might
still have a factor of large degree t < dd/2e. In this case, the same strategy
results in an attack with time complexity O(pd−td log p) and memory complexity
O(ptd log p). This gives a trade-o� between more e�cient attacks on a smaller
fraction of keys (when t is large) or less e�cient attacks on a larger fraction of the
keys (when t is small). This trade-o� is illustrated in Figure 1. The �gure shows
the time-complexity of the attack for a desired fraction of attackable keys. The
construction of Figure 1 is based on the following fact [Tao15]: the fraction of
monic degree-d polynomials whose factorization has exactly ci monic irreducible
factors of degree i is 1/

∏d
i=1 ci! i

ci as p → ∞. By summing these probabilities
over all integer partitions of d that allow a (t, d−t) split, we obtain the probability
that a uniformly random key is weak.

We conclude that if the key is chosen uniformly at random, the higher-degree
Legendre PRF has security only up to the birthday bound. To completely prevent
this class of attacks, one can choose the key k such that the corresponding
polynomial f is irreducible.

4 For convenience, we extend our notation for arithmetic L-sequences (De�nition 3)
to arbitrary functions on Fp. In particular, l(g([m])) = (l(g(0)), . . . , l(g(m− 1))).
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Fig. 1. The complexity of the attack, measured as a power of p, as a function of the
degree of f and the desired fraction of keys we want to attack.

5.2 Reduction to the Unique k-XOR Problem

More generally, the secret polynomial could factor into k polynomials of degree
roughly d/k. For example, if d is divisible by k and f =

∏k
i=1 fi with deg fi =

d/k, we have

Lk([m]) =

k⊕
i=1

l(fi([m])).

That is, it su�ces to �nd a solution to a variant of the k-XOR problem. Specif-
ically, since each list has length pd/k, a unique solution is expected. This makes
Wagner's approach [Wag02] inapplicable, but some improvements over the attack
in Section 5.1 are nevertheless possible.

In particular, for k = 4, the algorithm of Chose, Joux and Mitton [CJM02]
leads to a time complexity Õ(pd/2) with only Õ(pd/4) memory. Corresponding
time-memory trade-o�s can also be obtained.

Finally, we mention that there exist asymptotically better quantum algorithms
for the unique k-XOR problem. Bernstein et al. [BJLM13] give an Õ(p0.3d) al-
gorithm requiring Õ(p0.2n) quantum-accessible quantum memory for k = 4. For
any k ≥ 3, Naya-Plasencia and Schrottenloher [NPS19] give algorithms running

in time Õ(pβkd) where βk = (k+dk/5e)/(4k) using Õ(p0.2n) quantum-accessible

quantum memory. For k = 3, there is an algorithm using Õ(pd/3) time and

Õ(pd/3) quantum-accessible classical memory.

6 Jacobi Symbol PRF

The Jacobi pseudorandom generator was proposed by Damgård [Dam90] as a
variation on the Legendre PRG. As discussed by Damgård [Dam90, �5], it is po-
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tentially more e�cient because it can be computed as the exclusive-or of several
Legendre PRGs with a relatively small modulus. In addition, Damgård showed
that if the Legendre generator is weakly unpredictable, then the Jacobi genera-
tor is strongly unpredictable. A generator is de�ned to be weakly unpredictable
if, for all polynomials f , there exist only �nitely many integers m ≥ 0 such that
the next output bit in a sequence of length m can be predicted with probability
greater than 1 − 1/f(m). Similarly, the generator is said to be strongly unpre-
dictable if the probability of successful prediction exceeds 1/2+1/f(m) for only
�nitely many m. For a more formal de�nition, see [Dam90, �3] and references
therein.

This section investigates the security of the Jacobi PRF in the chosen-plaintext
setting. Whereas the unpredictability result of Damgård could be regarded as a
positive result related to the security of the Jacobi PRF, it remains inconclu-
sive concerning its concrete security. Indeed, strong unpredictability is a weaker
property than PRF-security and, in addition, it is only an asymptotic notion of
security.

Clearly, the cost of a key-recovery attack on the Jacobi PRF is at least the cost
of attacking a Legendre PRF corresponding to a prime factor of the modulus.
Below, a chosen-plaintext key-recovery attack on the Jacobi PRF is given which
nearly attains this lower bound. Hence, for most purposes, the Jacobi PRF o�ers
little bene�t over the Legendre PRF.

Let n =
∏m
i=1 pi with p1, . . . , pm distinct odd primes. Note that it may be as-

sumed that the prime factors of n are distinct, since(
x+ k

n

)
=

(
x+ k∏m
i=1 p

ei
i

)
=

m∏
i=1
ei odd

(
x+ k

pi

)
.

Let λj =
∏m
i=1
i 6=j

pi and denote the inverse of λj modulo pj by λ
′
j . Then(

λj x+ k

n

)
=

m∏
i=1

(
λj x+ k

pi

)
=

(
λj
pj

)(
k

n/pj

)(
x+ λ′j k

pj

)
.

Hence, in the chosen-plaintext setting, the key-recovery attack on the Legen-
dre PRF from Section 3 can be used to recover the key modulo pj . The factor(

k
n/pj

)
is not known to the attacker, but it is constant so the cost of the at-

tack is increased by a factor of at most two. Given the value of the key mod-
ulo each prime factor of n, the Chinese remainder theorem yields the value of
the key modulo n. Hence, key recovery for the Jacobi symbol costs at most
O(mM2+

∑m
i=1 pi log

2 pi/M
2) Legendre symbol evaluations. The same strategy

is applicable to the higher-degree case and can also be combined with the attacks
in Section 7 below. Note that a distinguishing attack on the Jacobi PRF reduces
to a distinguishing attack on the Legendre PRF corresponding to the smallest
prime factor of the modulus.
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7 Attacks on the Power Residue PRF

The MPC protocol of Grassi et al. [GRR+16] for computing the Legendre PRF
requires only three rounds of communication, which makes the Legendre PRF
superior among the PRF constructions investigated by Grassi et al. in terms of
latency. However, since the Legendre PRF only produces one bit of output, it
compares less favorably in terms of throughput than e.g. MiMC [AGR+16], a
block cipher that outputs full �eld elements.

To mitigate this limitation of the Legendre PRF we can, as proposed by Damgård
[Dam90], consider higher power residue symbols rather than quadratic residue
symbols. If r divides p− 1, the r-th power residue symbol of x ∈ Fp is de�ned as(

x

p

)
r

:= x
p−1
r mod p.

Jointly computing r-th power residue symbols in the MPC setting can be done
at essentially the same cost as computing Legendre symbols with the advantage
that log r bit outputs are produced instead. Therefore, this modi�cation has
the potential to signi�cantly increase the throughput of the Legendre PRF at
essentially no cost � keeping in mind that r should not be too large, since the
corresponding power residue PRF might lose its security (e.g. r = p− 1). In this
section we provide the �rst security analysis of the power residue PRF. We show
that there exists an attack with time complexity O(p log2 p/(Mr log2 r)), given
M ≤ √p queries to the PRF.

7.1 Power Residue PRF

By generalising the Legendre function and the Legendre PRF to higher power
residues, we obtain the following de�nitions:

De�nition 4 (r-th power residue function). Let p be a prime congruent to

1 mod r and g a generator of F×p . Then we de�ne the r-th power residue function

l(r) : Fp → Zr as

l(r)(a) =

{
k if a 6≡ 0 mod p and a/gk is an r-th power mod p

0 if a ≡ 0 mod p

De�nition 5 (r-th power residue PRF). Let p be a prime congruent to 1

modulo r. The power residue PRF over Fp is a family of functions L
(r)
k : Fp → Zr

such that for each k ∈ Fp,

L
(r)
k (x) = l(r)(k + x).
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7.2 Generalising our Attack to the Power Residue PRF

The attacks described in Section 3 and Section 4 do not use any properties of
the Legendre symbol other than its multiplicativity. Therefore, they trivially
generalize to any multiplicative function with a hidden shift, including the r-th
power residue function.

Unlike the quadratic case, the r-th power residue function can take r distinct
values, so it su�ces to consider L-sequences of length log p/ log r. It follows
that a straightforward generalization of our attack to r-th power residue Legen-
dre PRFs requires O(p log2 p/(M2 log2 r)) power residue symbol evaluations and
O(M2 log r) memory. However, for large values of r, there exists a better attack
which is detailed in the next section.

7.3 Attacks for Large r

We �rst describe a very simple attack on the linear r-th power residue Legendre
PRF that requires O(p/r) power residue symbol evaluations. In the following,
denote the subgroup of (p− 1)/r-th roots of unity of F×p by G. That is,

G = {x ∈ F×p | x(p−1)/r = 1}.

Remark that G is generated by gr, where g is any generator of F×p .

By querying L
(r)
k (0), the attacker immediately learns l(r)(k), the power residue

symbol of k ∈ Fp. We observe that this single query already narrows down
the set of possible values for k to at most (p − 1)/r elements of Fp. Indeed,
from De�nition 4, k is contained in the coset gsG, where g is any generator of
F×p and s is equal to l(r)(k). Therefore, an attacker can just go through all of
these elements and check each candidate. Since, on average, only O(1) power
residue symbols must be computed to check the validity of a candidate key, the
attack requires O(p/r) power residue symbols evaluations. The attack requires
a generator g, which can be precomputed in probabilistic subexponential time
by factoring p− 1.

We now explain a more general attack that requires O(p log2 p/(Mr log2 r))
power residue symbol evaluations and O(M log r) memory. The attack is similar
to the table-based collision search from Section 3.1. A speed-up of a factor r is
obtained by querying the PRF at more carefully chosen arithmetic L-sequences.
Let m = dlog p/ log re and M < p/r. The attack proceeds as follows:

1. For M/m distinct values a ∈ G, store each pair (L
(r)
k (a[m]), a) in a table T .

Furthermore, query the PRF to get the value s = L
(r)
k (0).

2. Sample x uniformly at random from the coset gsG until (L
(r)
0 (x+[m]), a) ∈ T

for some value a. For each entry (L
(r)
0 (x + [m]), a) ∈ T corresponding to
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such a collision, a candidate key is recovered as k̃ = xa. By a variant of
Assumption 1, the number of such candidate keys will be at most O(1).

The �rst step of the above attack usesM = m ·(M/m) queries to L
(r)
k and needs

O(M log r) memory to store the table T . The key k is found when, in the second
step, the attacker samples an x such that k/x is one of the a-values stored in
the table. On average, |G|/(M/m) = O(pm/(Mr)) iterations of the second step
are required in order to �nd a candidate key. Since each iteration requires m

power residue symbol computations to evaluate L
(r)
0 (x + [m]), it follows that

the total time-complexity of the attack consists of O(M) storage operations and
O(pm2/(Mr)) = O(p log2 p/(Mr log2 r)) power residue symbol evaluations.

8 Implementation Results

This section discusses several aspects of our implementation of the attack from
Section 3.3 that we applied to the key recovery puzzles proposed by the Ethereum
foundation [Fei19b]. Using the attack from Section 3, we managed to solve three
out of six challenges (including the test instance with a 40-bit prime). A summary
of the instance parameters and the time and memory requirements of the attack
is given in Table 2.

The source code of our implementation is publicly available at

https://github.com/cryptolu/LegendrePRF

Table 2. Parameters of the concrete challenges proposed by the Ethereum founda-
tion [Fei19b]. For all instances, the �rst M = 220 consecutive PRF outputs were given.
For the �rst three instances, the running time and peak memory usage is given, for the
three hardest instances an estimation of time is provided (marked by †). All experi-
ments were performed on a Dell C6420 server with two Intel Xeon Gold 6132 CPUs
clocked at 2.6 GHz and 128 GB of RAM.

p
Security level5

(bits)
Time

(core-hours)
Memory / thread

(GB)
Key

240 − 87 20 < 0.001 < 1 4e2dea1f3c

264 − 59 44 1.5 3 90644c931a3fba5

274 − 35 54 1500 3 384f17db02976dcf63d

284 − 35 64 221† 3
2100 − 15 80 237† 3
2148 − 167 128 265† 3
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We compiled our C++ implementation of the attack using Clang 6.0.0 and ex-
ecuted it on a Dell C6420 server with two Intel Xeon Gold 6132 CPUs clocked
at 2.6 GHz (28 cores) and 128 GB of RAM. The optimizations described in Sec-
tion 3.4 allow to signi�cantly reduce the required memory and the number of
evaluations of the Legendre symbol. As a result, the table lookups are the bot-
tleneck in our implementation. On average, a single thread required 0.08µs to
compute and check a single 64-bit sequence. As discussed below, we expect to
compute p/228 sequences on average before the key is recovered. Hence, the re-
quired core time to solve a challenge with a prime p and 220 bits of PRF output
can be estimated as p/228 × 0.08µs. The required memory is 1 GB per server
and an additional 3 GB per thread. The parameters can be modi�ed to reduce
the memory without signi�cantly decreasing the performance.

For the �rst three instances we successfully recovered the secret key of the PRF in
a timespan close to our estimation. The corresponding keys are given in Table 2.
The third instance was solved in under two hours using a cluster of 40 nodes
with the described con�guration. Further details about the main steps of the
attack are provided below.

Step 1: Processing the PRF Output As a �rst step we compute the set
T consisting of all arithmetic sequences extracted from the sequence Lk([2

20])
given in the challenge. We chose to store sequences of length m = 64 since this
length provides an acceptable rate of false-positives and enables to e�ciently
process sequences as 64-bit words. As a result, the set T contains approximately
M2/(2m2) = 227 of such words-sequences.

A straightforward way to implement a set is by using a hash table, which has
a constant amortized time-complexity for membership testing. However, this
constant time may be quite large in practice, especially in the case of large
tables. Random memory accesses are often the main bottleneck. In our case,
the set T is never modi�ed after its creation. To exploit this fact, we sort the
elements of T and we store them in an array. Then, we compute membership
queries in batches. First, we collect a large amount of membership queries and we
sort them. Then, we scan through the two sorted arrays checking for collisions.
The bottleneck in this approach is represented by the sorting step of each batch
of membership queries. The described set T contains 227 64-bit words and the
corresponding sorted array requires 1 GB of memory. An extra 1 GB of memory
is used to store information required for the key recovery. Note that the set T and
the extra information are shared among all threads that are used to parallelize
the workload of the next step.

Step 2: Random Sampling The second and main step of the attack consists
of sampling sequences L0(c + [m]) for randomly chosen c and checking if they

5 Expected security level (conservative estimate) prior to this work.
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collide with an entry of T . Note that the reversed sequence L0(c+[m]) is checked
if it is lexicographically smaller.

For a uniformly chosen c ∈ Fp we compute a long sequence L0(c + [t]) and
we extract a large amount of m-bit sequences from it. More precisely, for all
b ∈ {1, 2, . . . , 28} and a ∈ {0, 1, . . . , t−1−b(m−1)}, we extract L0(c+a+b[m]).
The upper-bound for b is chosen as 28 since it is enough to make the time spent
on computing Legendre symbols negligible. Furthermore, all these sequences can
be computed on the �y by storing only the last sequence per pair (b, a). Indeed,
for a large enough i ∈ Z, after expanding the computed sequence L0(c+[i−1]) by
one Legendre symbol L0(c+i) we obtain a new sequence L0(c+i−b(m−1)+b[m])
for each b. In other words, we obtain 28 sequences from each single consequent
Legendre symbol computation.

As described above, the computed sequences are accumulated and checked in
batches for a collision with the set T . Each batch is sorted using base-28 radix
sort and collisions are checked using a linear scan through the sorted batch and
the sorted array of T . In the case of a collision, a key candidate is recovered and
checked against extra bits from the given PRF output.

Note that this step can be e�ciently parallelized. Each thread starts with a uni-
formly random a ∈ Fp and proceeds as described above. After a predetermined
amount of steps, a new value for a can be chosen to ensure a su�ciently uniform
coverage of the possible o�sets of the sequences.

9 Conclusions

In Section 3, a new attack on the Legendre PRF was presented. It is of particular
interest in the low-data setting. Speci�cally, given M ≤ 4

√
p queries, our attack

recovers the key using O(p log2 p/M2) Legendre symbol evaluations. The prac-
tical relevance of this result was demonstrated by solving the �rst two Legendre
PRF challenges set out by the Ethereum foundation [Fei19b]. Several aspects of
our implementation of the attack were discussed in Section 8.

In Section 4, it was shown how the technique from Section 3 yields improved at-
tacks on the higher-degree generalization of the Legendre PRF. Further attacks
on the higher-degree case were given in Section 5, where a large class of weak keys
was revealed. Keys from this class can be recovered using O(pbd/2cd log p) Leg-
endre symbol evaluations and O(pdd/2ed log p) memory. Further improvements
to the memory usage, based on a reduction to the unique k-XOR problem, were
also discussed. These weak key attacks can be prevented by choosing the key
such that the corresponding monic polynomial is irreducible.

In addition to the above, we provided the �rst security analysis of the Jacobi
and power-residue generalizations of the Legendre PRF. These extensions were
�rst suggested � for the Legendre pseudorandom generator � at CRYPTO 1988
by Damgård [Dam90]. It was demonstrated in Section 6 that the key of a Jacobi
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PRF can be recovered with time-complexity proportional to the time-complexity
of key-recovery on the Legendre PRF for each of the prime factors of the modu-
lus separately. This result eliminates the potential e�ciency bene�ts o�ered by
Jacobi symbols.

Power residue symbols were considered in Section 7. The low-data attack from
Section 3 equally applies in this setting, but we provide an additional attack
that preforms better for large power residue symbols. Speci�cally, for r-th power
residue symbols and given M ≤ √p queries, our key-recovery attack requires

O(p log2 p/(rM log2 r)) power residue evaluations and O(M) memory.
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