
Sashimi: Cutting up CSI-FiSh secret keys to produce an actively
secure distributed signing protocol

Daniele Cozzo1[0000−0001−5289−3769] and Nigel P. Smart1,2[0000−0003−3567−3304]

1 imec-COSIC, KU Leuven, Leuven, Belgium.
2 University of Bristol, Bristol, UK.

daniele.cozzo@kuleuven.be, nigel.smart@kuleuven.be

Abstract. We present the first actively secure variant of a distributed signature scheme based on
isogenies. The protocol produces signatures from the recent CSI-FiSh signature scheme. Our scheme
works for any access structure, as we use a replicated secret sharing scheme to define the underlying
secret sharing; as such it is only practical when the number of maximally unqualified sets is relatively
small. This, however, includes the important case of full threshold, and (n, t)-threshold schemes when
n is small.

1 Introduction

Threshold signature schemes have recently received more and more attention due to applications
in blockchain and other scenarios where high value signatures are produced. Apart from early work
on threshold RSA signatures [Sho00, DK01] and DSA/EC-DSA signatures [GJKR96, MR01], we
have seen renewed interest in methods to produce EC-DSA signatures [CDK+18,DKLs18,GGN16,
GG18,Lin17,LN18,LNR18], and interest in threshold schemes from standards bodies such as NIST
[BDV19].

In the post-quantum world there has obviously been less work on this problem. In [CS19] Cozzo
and Smart discuss the possibilities for threshold-izing the Round 2 candidate signature schemes in
the NIST post-quantum ‘competition’. The authors conclude that virtually all proposed signature
schemes, with the possible exception of those based on the MQ-like problems, are hard to efficiently
turn into threshold variants. However, the NIST candidates do not include any submission based
on isogenies; mainly because isogeny based signature schemes did not become efficient until after
the NIST ‘competition’ started.

Isogeny based cryptography goes back to the work of Couveignes, Rostovtsev and Stolbunov
[Cou06, RS06]. The first isogeny based signature scheme was created by Stolbunov in his thesis
[Sto12]. The basic construction was a Fiat-Shamir transform applied to a standard three-round
isogeny-based identification scheme. The problem with Stolbunov’s scheme is that one required an
efficient method to sample in the class group, and that each class group member should have an
efficiently computable unique representation.

To solve these problems De Feo and Galbraith used the Fiat-Shamir with aborts method to
produce a new signature scheme, based on Stolbunov’s, called SeaSign [DG19]. The SeaSign scheme
was further improved by Decru et al [DPV19]. However, the algorithm still required two minutes
to sign a single message.

Recently, Beullens at el [BKV19] returned to Stolbunov’s original method and by calculating
the ideal class group of an imaginary quadratic number field with large discriminant were able to
instantiate the signature scheme efficiently. This new variant, called CSI-FiSh, requires only 390ms

to sign or verify a message, and has signature sizes of only 263 bytes. Thus with CSI-FiSh isogeny
based signatures are truly practical.

In [FM19] De Feo and Meyer consider the cash of making CSI-FiSh into a threshold scheme,
by distributing the secret key using the Shamir secret sharing scheme. Their resulting protocol
is efficient, but only passively secure. The main trick that De Feo and Meyer use is to overcome
the difficulty that isogenies can be composed, but do not form a group. As a result, performing
the calculation of the signature will be more challenging than in the classic setting of distributed
signatures based on discrete logarithms. Distributed signing protocols typically have each signer
producing a partial signature which is then combined non-interactively into the final signature.
Instead, in both the protocol of De Feo and Meyer and our protocol, the signature is produced
more in the fashion of a ring signature, with each signer needing to accept and receive a message.
A major simplification in our presentation is that we use a Replicated Secret Sharing Scheme. This
means that, for a given qualified set, we can treat the resulting sharing as a full threshold sharing.

Just as CSI-FiSh follows the Fiat-Shamir paradigm in defining a signature scheme from isogenies,
in much the same way as Schnorr signatures are created from discrete logarithms, we can follow the
same paradigm in creating an actively secure threshold variant as is done in the standard case of
actively secure distributed Schnorr signatures. Each signer, in the qualified set being used to sign,
attaches a zero-knowledge proof to their partial signatures. This ensures the signer has followed the
protocol, and importantly for our simulation proof it allows the simulator to extract the underlying
secret witness. A similar strategy is used for simulating the key generation.

As just indicated, we prove our protocol secure in a simulation paradigm, but not in a the
Universal Composability setting. This is because our protocol makes extensive use of Σ-protocols
and the simulator needs to rewind the adversary in order to perform knowledge extraction from
the special soundness of the underlying Σ-protocols. Thus our protocol should only be considered
‘stand-alone’ secure.

We estimate that our protocol will require roughly three minutes to execute for the important
cases of two party signing, or threshold signing with (n, t) = (3, 1). This cost is mainly due to the
zero-knowledge proofs needed to provide active security for our signing protocol.

Improvements to our work could be performed in a number of directions. On a theoretical front
a fully UC protocol and proof would be interesting. A method to produce active security, in the
standalone setting, without recourse to our zero-knowledge proofs would obviously have a big affect
on performance. Extending our method to create an actively secure variant of the Shamir based
protocol of De Feo and Meyer should be relatively easy. A change to our zero-knowledge proof
technique would be of great interest, although this seems particularly hard, as any improvement
to that would likely result in a major performance improvement in the basic CSI-FiSh signature
scheme as well.

2 Preliminaries

2.1 Notation

We assume that all involved parties are probabilistic polynomial time Turing machines. Given a
positive integer n, we denote by [n] the set {1, . . . , n}. We let x← X denote the uniformly random
assignment to the variable x from the set X, assuming a uniform distribution over X. We also write
x← y as shorthand for x← {y}. If D is a probability distribution over a set X, then we let x← D
denote sampling from X with respect to the distribution D. If A is a (probabilistic) algorithm then

2

we denote by a ← A the assignment of the output of A where the probability distribution is over
the random tape of A.

2.2 Replicated Secret Sharing

Let P = {Pi}i=1,...,n be the set of parties and let Γ ⊂ 2P be a monotone family for the relation of

inclusion, that is if Q ∈ Γ and Q ⊂ Q′ then Q′ ∈ Γ . Similarly, let ∆ ⊂ 2P be a monotone family
with respect to the relation of subsets, that is if U ∈ ∆ and U ′ ⊂ U then U ′ ∈ ∆. The pair (∆,Γ) is
called a monotone access structure if it holds that ∆∩Γ = ∅. We will only consider access structures
where ∆ and Γ are complementary to each other. The sets inside Γ are called qualified sets while
the one in ∆ are called unqualified sets. We denote by Γ− the family of minimally qualified sets in
Γ with respect to the inclusion relation, that is

Γ− =
{
Q ∈ Γ : Q′ ∈ Γ,Q′ ⊂ Q⇒ Q′ = Q

}
.

Similarly, we define the family of maximally unqualified sets ∆+ as

∆+ =
{
U ∈ Γ : U ′ ∈ ∆,U ⊂ U ′ ⇒ U ′ = U

}
.

Let Γ be a general monotone access structure and let R be a ring. The replicated scheme for Γ is
defined as in Figure 1. To define the replicated scheme we first define a set B =

{
B ∈ 2P : P \B ∈ ∆+

}
,

then to share a secret s ∈ R the dealer first additively shares s = sB1 + . . . + sBt for Bi ∈ B. To
open a secret is straightforward. For each qualified set Q we define a mapping ΨQ : B −→ P which
allows the parties in Q to uniquely treat their shares as a full threshold sharing of the secret. In
particular for each Q we require

s =
∑
Pi∈Q

 ∑
ΨQ(B)=Pi

sB

 ,

i.e. ΨQ partitions the shares sB for B ∈ B between the parties in Q. Such replicated secret sharing
schemes are clearly linear, and we will denote sharing an element by this secret sharing scheme by
〈s〉.

For a set of adversarys A ∈ ∆ we can divide the sets B ∈ B, and hence shares sB, into three
disjoint sets BA, BM and BH ; B = BA ∪ BM ∪ BH . The sets B in BA correspond to shares sB that
are held only by the adversary, those in BH are those held only by honest parties, whist those in
BM are held by a mixture of honest and adversarial parties. For all secret sharing schemes we have
BH 6= ∅, otherwise we would have A = P. In the case of full-threshold sharing we always have
BM = ∅.

2.3 Commitment Schemes

Our protocols require access to a commitment functionality FCommit. The commitment functionality
is a standard functionality allowing one party to first commit, and then decommit, to a value towards
another set of parties. We assume that the opened commitment is only available to the receiving
parties (i.e. it is sent over a secure channel). The functionality is given in Figure 2, and it is known
to be easily implemented in the random oracle model.

3

Replicated Secret Sharing over the ring R

Input: For party to share a secret input s ∈ R, it performs
- Sample sB ← R for B ∈ B subject to

∑
B∈B sB = s

- For each B ∈ B and each Pj ∈ B give sB to party Pj .
Open: For a qualified set of parties Q to open a secret s

- For each B ∈ B if Pj ∈ Q and Pj /∈ B then all parties Pi ∈ B send sB to party Pj
- Each party computes s =

∑
B∈B sB .

ToFullThreshold: For a qualified set of parties Q
- For Pi ∈ Q define zPi ←

∑
ΨQ(B)=Pi

sB .

Figure 1. Replicated Secret Sharing over the ring R

The Functionality FCommit

Init: On input of (Init, Pi, B) from all players, this initializes a commitment functionality from player Pi to
the players in B. We write this as F i,BCommit, if B is a singleton set B = {j} then we write F i,jCommit, and if

B = P \ {i} then we write FPi
Commit.

Commit: On input of (Commit, id, data) from player Pi and (Commit, id,⊥) from all players in B the function-
ality stores (id,⊥).

Open: On input of (Commit, id) from all players in B ∪ {i} the functionality retrieves the entry (id, data) and
returns data to all parties in B.

Figure 2. The Functionality FCommit

2.4 PRSSs

In our protocols we utilize the fact that, after a key distribution phase, parties can generate non-
interactively sharings in a replicated scheme; namely we can define a so-called PRSS. In particular,
we require the parties to engage in a pre-processing phase in which they share keys for a Pseudo-
Random Function (PRF) in order to generate Pseudo-Random Secret Sharings (PRSSs) for the
replicated scheme 〈v〉. In particular, we make black-box use of the functionality given in Fig-
ure 3. PRSSs for arbitrary access structures can involve a set-up phase requiring the agreement of
exponentially-many keys in general. The general protocol is given in [CDI05]. To set up the PRSS
in the case of our replicated scheme we use the method described in Figure 4, where Fk(·) is a PRF
with codomain equal to R.

The Functionality FRand

Init: The functionality accepts Init or abort from all parties and the adversary. If any party inputs abort, the
functionality sends the message abort to all parties.

PRSS: On input PRSS(cnt) from all parties, if the counter value is the same for all parties and has not been
used before, the functionality samples a set {rB}B∈B ← R and for each B ∈ B sends rB to all i ∈ B.

Figure 3. The Functionality FRand

Theorem 2.1. Assuming F is a pseudo-random function, the protocol ΠRand securely realises FRand

in the FCommit-hybrid model.

4

Protocol ΠRand

Init: The parties initialise by doing the following:

1. For each i ∈ P, for each j ∈ P \ {i}, party i samples κi,j ← {0, 1}λ.
2. Each pair of parties initialises an instance of FCommit; call it F i,jCommit.
3. For each i ∈ P, for each j ∈ P \ {i}, the parties call F i,jCommit where i submits input (Commit, idi,j , κi,j) and

j gives (Commit, idi,j ,⊥).
4. For each i ∈ P, for each j ∈ P \ {i}, the parties execute F i,jCommit with input (Open, idi,j) and abort if FCommit

returns abort.
5. For each B ∈ B, each party i ∈ B samples κB,i ← {0, 1}λ.
6. Each set of parties B ∈ B initialises an instance of FCommit; call it F i,BCommit.
7. For each B ∈ B, for each i ∈ B, the parties call F i,BCommit where i submits input (Commit, idB,i, κB,i) and all

j ∈ B \ {i} give (Commit, idB,i,⊥).
8. For each B ∈ B and for each i, j ∈ P with i, j ∈ B, the parties i and j call F i,BCommit with input (Open, idB,i)

and abort if FBCommit returns abort.
9. Each party i sets κB ← ⊕j∈BκB,j for each B containing i.

10. Finally, each party i sets cnt← 0, and cntB ← 0 for all B ∈ B where i ∈ B.

PRSS: For each B ∈ B containing i, party i computes

rB ← FκB (cntB)

and increments cntB .

Figure 4. Protocol ΠRand

Proof. The Init procedure is clearly secure assuming an secure commitment functionality. As there is
no interaction after Init, the protocol is clearly secure if it is correct and passively secure. Correctness
follows from basic algebra, and security follows from the fact that F is assumed to be a PRF and
from the fact that there is at least one B not held by the adversary (by definition of the access
structure). ut

2.5 Elliptic Curves and Isogenies

In what follows E denotes an elliptic curve over a finite field Fp where p is a large prime. An elliptic
curve is called supersingular if its number of rational points satisfies the equation #E (Fp) ≡ 1
(mod p). An elliptic curve is called ordinary if this does not happen. An isogeny between two
elliptic curves E and E′ is a rational map ϕ : E → E′ which is also an homomorphism with respect
to the natural group structure of E and E′. An isomorphism between two ellliptic curves is an
injective isogeny. The j-invariant of an elliptic curve is an algebraic invariant under isomorphism.
As isogenies are group homomorphism, any isogeny comes with a subgroup of E, which is its kernel.
On the other hand, any subgroup G ⊂ E

(
Fpk
)

yields a unique (up to automorphism) separable
isogeny ϕ : E → E/G having G as kernel. It can be shown that the quotient E is an elliptic curve
and its equation can be computed using standard formulae [V7́1].

The set End (E) of all the isogenies of an elliptic curve E forms a ring under the composition
operator. The isogenies that can be written with coefficients in Fp forms a subring of End (E) and
is denoted by EndFp (E). For supersingular elliptic curves this happens to be a proper subset. In
particular, for supersingular elliptic curves the ring End (E) is an order of a quarternion algebra
defined over Q, while EndFp (E) is isomorphic to an order of the imaginary quadratic field Q (

√
−p).

5

By abuse of notation we will identify EndFp (E) with the isomorphic order which we will denote by
O. The quotient of the fractional invertible ideals by the principal ideals in O, denoted by Cl (O)
of O, is a group called class group of O. There is a natural action of the class group on the class
of elliptic curves defined over Fp with order O. Given an ideal a ⊂ O one can define the subgroup
Sa = ∩α∈aKer(α). As this is a subgroup of E one gets an isogenous elliptic curve E/Sa defined
up to Fp-automorphism. We will denote the action of an element a ⊂ O on an elliptic curve E by
a ? E. This action is free and transitive. This action is believed hard to invert, even for a quantum
computer. Specifically, constructions based on the following problems are believed to be quantum
secure:

Definition 2.1 (Group action inverse problem (GAIP) [DG19]). Given two elliptic curves
E and E′ over the same finite field and with End (E) = End (E′) = O, find an ideal a ⊂ O such
that E′ = a ? E.

There is a obvious decisional version of this problem, which we refer to as the decisional-GAIP,
see [Sto12].

The CSI-FiSh signature scheme relies on the hardness of random instance of a multi-target
version of GAIP, called MT-GAIP. In [DG19] it is shown that MT-GAIP reduces to GAIP when
the class group structure is known.

Definition 2.2 (MT-GAIP). Given k elliptic curves E1, . . . , Ek over the same field, with End (E1) =
· · · = End (Ek) = O, find an ideal a ⊂ O such that Ei = a ?Ej for some i, j ∈ {0, . . . , k} with i 6= j.

2.6 Digital Signature Schemes

As is standard digital signature schemes are defined by

Definition 2.3. A digital signature scheme is given by a tuple of probabilistic algorithms (KeyGen,
Sign, Verify):

- KeyGen
(
1λ
)

is a randomized algorithm that takes as input the security parameter and returns
the public key pk and the private key sk.

- Sign (sk, µ) is a randomized signing algorithm that takes as inputs the private key and a message
and returns a signature on the message.

- Verify (pk, (σ, µ)) is a deterministic verification algorithm that takes as inputs the public key and
a signature σ on a message µ and outputs a bit which is equal to one if and only if the signature
on µ is valid.

Correctness and security (EU-CMA) are defined in the usual way.

Definition 2.4. Let A be an adversary that is given the public key pk and oracle access to the
signing oracle Signsk. In its interaction with the oracle it can receive signatures on messages it
adaptively chooses. Let Q be the set of of messages queried by A. A digital signature scheme Π =
(KeyGen,Sign,Verify) is said to be existentially unforgeable if there exists no such an adversary that
can produce a signature on a message m /∈ Q, except with negligible probability in λ

6

2.7 Distributed Signature Schemes

We assume the existence of secure point-to-point channels and synchronous channels, so parties
receive data at the same time in a given round. For our adversarial model, we assume a malicious
adversary that might deviate arbitrarily from the protocol. Given our access structure (∆,Γ), the
adversary can statically corrupt any non-qualified set. For a corrupted party, the adversary learns
all the internal variables and controls both the input and the output ports of that party. Informally,
our security requirement is that such an adversary will learn nothing about the underlying secret
signing key, and that deviations from the protocol will result in an abort signal being sent to the
honest parties.

Formally we define the ideal functionality given in Figure 5, and security is defined by requiring
that for every adversary there is a simulator such that the adversary cannot tell if it is interacting in
the real protocol, or if it is interacting with a simulator which has access to the ideal functionality.
The ideal functionality is designed for a signature scheme in which the secret key is a vector of T
elements in R, and the secret sharing of such keys is done via a replicated scheme. Note that, the
ideal functionality allows the adversary to alter the sharing provided by the ideal functionality to
a different secret key; however the ideal functionality then fixes this change to correspond to the
public key initially generated. This cannot be detected by the adversary as the adversary does not
see the public key until after it has made the change. This is consistent with how the adversary
could attack an initial key distribution based on using a PRSS.

Distributed Signature Functionality: FDSign

We let A denote the set of parties controlled by the adversary.

KeyGen: This proceeds as follows:
1. The functionality generates a public/private key pair; let the private key (say) be sk ∈ RT and let the

public key be pk.
2. The functionality shares sk via the replicated scheme as 〈ski〉′, with ski =

∑
B∈B s

′
i,B .

3. The values s′i,B are sent to player Pj for Pj ∈ B for every B ∈ BA ∪ BM .
4. The adversary enters shares si,B for all share components in BA.
5. The functionality now defines si,B = s′i,B for all share components in BM .
6. The functionality completes the sharing so that it still shares ski by fixing the shares in BH appropriately.
7. The value pk is output to the adversary.
8. The adversary returns with either abort or deliver. If deliver the functionality returns pk to the honest

parties, otherwise it aborts.
Sign: On input of a message m the functionality proceeds as follows:

1. The functionality adversary waits for an input from the adversary.
2. If the input is not abort then the functionality generates a signature σ on the message m.
3. The signature is returned to the adversary, and the functionality again waits for inpit. If the input is

again not abort then the functionality returns σ to the honest players.

Figure 5. Distributed Signature Functionality: FDSign

7

3 The CSI-FiSh signature scheme

In this section we recap on the basic CSI-FiSh signature scheme from [BKV19]. The scheme is
defined in the isogeny graph of the public supersingular elliptic curve

E0(Fp) : y2 = x3 + x

where p is a prime of the form p = 4 · `1 · · · · · `n − 1, with `i being distinct small odd primes. For
the set of primes `1, . . . , `74, chosen in [CLM+18] for the CSIDH-512 parameter set, the authors
of [BKV19] determine that the associated class group of the endomorphism ring is cyclic, generated
by g, and has cardinality N = #Cl (O) given by

N = 3× 37× 1407181× 51593604295295867744293584889

× 31599414504681995853008278745587832204909.

For any ideal a ∈ Cl (O) we can write a = ga, where a ∈ Z/NZ, since the group is cyclic.
Therefore we can identify uniquely the ideal a with the integer a. To simplify notation we write, for
an elliptic curve E′ isogenous to E0, a?E

′ = [a]E′. With this notation we have [a]([b]E) = [a+ b]E.
For the elliptic curve E0 it is also very easy to compute the quadratic twists. The quadratic twist
Et of the elliptic curve E = [a]E0 is isomorphic over Fp to the elliptic curve [−a]E0.

The basic identification scheme on which CSI-FiSh is built on starts with a public key being
the action of a on the elliptic curve E0, that is E1 := a?E0 = [a]E0. The prover starts by sampling
a random element b ∈ Z/NZ, and sends the resulting commitment [b]E0 to the verifier. This
computation, according to [BKV19], takes around 40ms to compute per value of b. The verifier
then samples a random challenge bit c ∈ {0, 1} and returns it to the prover. The prover then
responds with r = b modulo N if c = 0 and with r = b − a modulo N if c = 1. The verifier then
checks that [r]E0 = E if c = 0 or [r]E1 = E if c = 1. This can then be turned into a signature
scheme in the standard manner.

Having a binary challenge spaces gives an adversary 1
2 chances to produce an invalid proof.

One way to fix this is to enlarge the challenge space. This is done in [BKV19] as follows, which
improves soundness, but increaes the size of the public key. A positive integer S is chosen, with
the secret key being a vector of dimension S − 1, say (a1, . . . , aS−1) and with public key (E0, E1 =
[a1]E0, . . . , ES−1 = [aS−1]E0). The prover now must prove that it knows a secret s ∈ Z/NZ such
that Ej = [s]Ei for some pair of elliptic curves appearing in the public key list. The prover again
chooses a random mask b ∈ Z/NZ and commits to it via E′ = [b]E0. The verifier now samples the
challenge c uniformly from the set {−S + 1, . . . , S − 1} and the prover responds with r = b − ac
(mod N). Verification consists in checking that [r]Ec = E′, where we use the notation E−c = Etc,
for negative values. This variant of CSI-FiSh achieves soundness security 1

2·S−1 . Thus to obtain
2−sec soundness security overall we need to repeat the basic protocol tS = sec/ log2(2 ·S− 1) times,
although one can reduce tS a little bit by choosing a ‘slow’ hash function3

When combined with the Fiat–Shamir heurstic this gives the signature scheme presented in
Figure 6, where H : {0, 1}∗ −→ [−S + 1, . . . , S − 1]tS . This signature scheme is EU-CMA secure
under the MT-GAIP assumption, when H is modelled as a random oracle.

3 For highest computational efficiency [BKV19] selects, for sec = 128, the values S = 215 and tS = 7, using a hash
function which is 216 times slower than SHA-3.

8

The CSI-FiSh Signature Algorithm

KeyGen: Key generation proceeds as follows:
1. For i ∈ [1, . . . , S − 1] do

(a) ai ← Z/NZ.
(b) Ei ← [ai]E0.

2. sk← (a1, . . . , aS−1).
3. pk← (E0, E1, . . . , ES−1).

Sign(m, sk): To sign a message m, the signer performs
1. For i = 1, . . . , tS

(a) bi ← Z/NZ.
(b) E′i ← [bi]E0.

2. (c1, . . . , ctS)← H(E′1‖ . . . ‖E′tS‖m).
3. For i = 1, . . . , tS

(a) ri ← bi − sign(ci) · a|ci| (mod N).

4. Output {(ri, ci)}tSi=1.
Verify({(ri, ci)}tSi=1,m, pk): To verify a signature {(r, c)}tSi=1 on a message m one performs

1. For i = 1, . . . , tS execute E′i ← [ri]Eci .
2. (c′1, . . . , c

′
tS)← H(E′1‖ . . . ‖E′tS‖m).

3. If ((c1, . . . , ctS) = (c′1, . . . , c
′
tS) then output one, else output zero.

Figure 6. The CSI-FiSh Signature Algorithm

3.1 Zero-Knowledge Proof

Our goal is to define a distributed signing protocol which is secure against malicious adversaries.
To guarantee that the parties behave correctly, they are asked to commit to their secrets using the
class group action and prove that what they are committing to is of the correct form. Clearly, to
prove knowledge of a secret isogeny is sufficient to run an instance of the underlying basic CSI-FiSh
identification scheme described above. However, we require to prove something a little more general,
namely a witness s to the following relation, which we define for arbitrary j, but for which we only
use when j = 1 and j = 2.

Lj :=
{ (

(E1, E
′
1, . . . , Ej , E

′
j), s

)
:

j∧
i=1

(
E′j = [s]Ej

) }
In other words, the prover wants to prove in zero-knowledge that he knows a unique witness for j
simultaneous instances of the GAIP. This can be done by using standard techniques of Σ-protocols.
We present the underlying protocol in Figure 7.

The following theorem shows that the basic interactive proof of knowledge has soundness error
1/3, thus we need to repeat it sec/ log2 3 times to achieve a security level of sec. In the random oracle
this can be made non-interactive in the standard manner using a hash function G with codomain
{−1, 0, 1}tZK . Using a ‘slow’ hash function for G, as in the case of CSI-FiSh, which is 2k times slower
than a normal hash function we can reduce the number of repetitions to tZK = (sec − k)/ log2 3.
When k = 16 and sec = 128 as in the fastest CSI-FiSh parameters this gives us tZK = 70. We
denote the resulting non-interactive proof and verification algorithms by ZK.P and ZK.V .

Theorem 3.1. The interactive proof in Figure 7 is correct, has soundness error 1
3 , and is compu-

tational zero-knowledge assuming decisional-GAIP.

9

The prover ZK.Pi((E1, E
′
1, . . . , Ej , E

′
j), s) and verifier ZK.Vi(E1, E

′
1, . . . , Ej , E

′
j), π) functions for our

zero-knowledge proof

ZK.P1((E1, E
′
1, . . . , Ej , E

′
j)): The first stage of the prover executes:

1. b← Z/NZ.
2. For i = 1, . . . , j do Êi ← [b]Ej .
3. Output (Ê1, . . . , Êj).

ZK.V1((E1, E
′
1, Ê1, . . . , Ej , E

′
j , Êj), s): The first stage of the verifier is simply:

1. Select c ∈ {−1, 0, 1} and output it.
ZK.P2((E1, E

′
1, Ê1, . . . , Ej , E

′
j , Êj), c, s): The second stage of the prover executes:

1. r ← b− c · s mod N , and outputs r.
ZK.V2((E1, E

′
1, Ê1, . . . , Ej , E

′
j , Êj), c, r): This algorithm gives the verifiers final calculation:

1. If c = −1 return
∧j
i=1

(
[r]E′i

t = Êi
)

.

2. If c = 0 return
∧j
i=1

(
[r]Ei = Êi

)
.

3. If c = 1 return
∧j
i=1

(
[r]E′i = Êi

)
.

Figure 7. The prover ZK.Pi((E1, E
′
1, . . . , Ej , E

′
j), s) and verifier ZK.Vi(E1, E

′
1, . . . , Ej , E

′
j), π) functions for our zero-

knowledge proof

Proof. Correctness is straightforward.
To show soundness we build an extractor using the standard technique. As Ei and E′i are

isogenous we can write E′i = [si]Ei, for some unknown value s ∈ Z/NZ. After rewinding the prover,
we obtain two accepting proofs of the form

π =
(

(Ê1, . . . , Êj), c, r
)

and π′ =
(

(Ê1, . . . , Êj), c
′, r′
)

where c 6= c′, and hence r 6= r′ (unless s = 0). We consider the case that (c, c′) = (0, 1); with the
other cases following in a similar manner. Since the proofs accept we have, for all i ∈ [1, . . . , j],

[r]Ei = Êi ∧ [r′]E′i = Êi.

This implies that, for all i, we have

E′i = [−r′]([r′]E′i) = [−r′]([r]E′i) = [r − r′]E′i

which implies that si = r − r′ for all i.
To simulate the proof, one samples c at random from {−1, 0, 1} and r at random from Z/NZ

and then one sets Êi = [r]Ei if c = 0, Êi = E′i if c = 1 and Êi = [r]E′i
t if c = −1. In the

case that the input to the proof is from the language Lj then this simulation is perfect. If the
input is not from the language Lj then the commitments also look like they come from a uniform
distribution, because they are deterministic functions of the variable r which is uniform. However,
the distribution of Ê1, . . . , Êj is not correct. By the decisional version of the GAIP problem the
tuples this is computationally hard for an adversary to distinguish and thus the simulation is
computationally zero-knowledge.

4 A Threshold Implementation

In this section we show how to create an actively secure threshold implementation of the CSI-
FiSh signature scheme for any access structure, where we hold the secret key using a replicated

10

secret sharing scheme. Before doing so we present a useful sub-protocol for performing a full-
threshold variant of the group action computation at the heart of isogeny based cryptography.
See Figure 8 for the details; we defer the relevant proof of security till later. It uses the abstract
(standard) commitment functionality FCommit given earlier. For later use we denote this sub-protocol
by GrpAction(E,Q, [s]).

Group Action Computation for a Full Threshold Secret Sharing

Input: A fixed elliptic curve E, a set of parties Q, a secret shared element s ∈ Z/NZ held via a full threshold
sharing, i.e. P ∈ Q holds sP such that s =

∑
P∈Q sP .

Output: [s]E

1. Define an ordering the players in Q = {P1, . . . , Pt}.
2. Each party Pj initialises an instance of FCommit; call it FPj

Commit.
3. For j = 1, . . . , t

- EPj ← [sPj]E.
- π1

Pj
← ZK.P ((E,EPj), sPj).

- The parties call FPj

Commit where Pj submits input (Commit, idPj , (EPj , π
1
Pj

)) and all other parties input
(Commit, idPj ,⊥)

4. For j = 1, . . . , t

- The parties execute FPj

Commit with input (Open, idPj) and abort if FPj

Commit returns abort.
- For all Pj 6= Pi party Pj executes ZK.V ((E,EPi), π

1
Pi

) and aborts if the verification algorithm fails.
5. E0 ← E.
6. For j = 1, . . . , t do

- Party Pj computes Ej ← [sPj]Ej−1.

- π2
P ← ZK.P ((E,EPj , E

j−1, Ej), sPj).

- Broadcast (Ej , π2
Pj

) to all players.

- All players execute ZK.V ((E,EPj , E
j−1, Ej), π2

Pj
) and abort if the verification algorithm fails.

7. Return Et.

Figure 8. Group Action Computation for a Full Threshold Secret Sharing

Note that GrpAction(E,Q, [s]) requires two zero-knowledge proofs of two isogenies to be com-
puted per player. And each player needs to verify 2 · (|Q| − 1) zero-knowledge proofs. However, the
latency is O(|Q|) due to the second loop.

If s is shared by our replicated scheme 〈s〉 we can use GrpAction(E,Q, [s]), for a qualified set
Q, to compute 〈s〉E as well. The resulting operation we will denote by GrpAction(E,Q, 〈s〉). The
modifications needed are as follows: Recall we have s =

∑
B∈B sB, and for a qualified set Q we can

assign each sB to a given player P via the function ΨQ(B). Thus we can represent 〈s〉 as a full
threshold scheme over the players in Q, where potentially each player plays the part of a set of
players. Then we can execute the protocol as above, except that in line 4 we perform an additional
check in that if P ′ ∈ B then player P ′ checks whether EP = [sP]E. This check is performed by all
players in P, including those not in Q. This copes with the situations where BM 6= ∅, and we need
to check consistency of the sharing.

Note, there is a trival optimization of the protocol for GrpAction(E,Q, 〈s〉) which does not
expand the number of players artificially to |B| but keeps it at size |Q|. However, the above (less
efficient) variant is what we will require for our protocol.

11

4.1 The Distributed Key Generation and Signing Protocols

We can now define our distributed key generation and signing protocols. The key generation protocol
and the protocol to execute the signing operation in a distributed manner are given in Figure 9.
The protocols are defined in the (FRand,FCommit)-hybrid models.

The Distributed Key Generation and Signing Protocols ΠKeyGen, ΠSign

KeyGen: To generate a distributed key we execute:
1. Call FRand.Init().
2. For i ∈ [1, . . . , S − 1] do

(a) 〈ai〉 ← FRand.PRSS().
(b) Ei ← GrpAction(E0, Q, 〈ai〉) for some qualified set Q. If this protocol aborts, then abort.

3. Output 〈a1〉, . . . , 〈aS−1〉 and E1, . . . , ES−1.
Sign(m, 〈s〉): For a set of qualified parties Q to sign a message m they execute:

1. Write Q = {P1, . . . , Pt} ⊂ P.
2. For i = 1, . . . , tS

(a) Party Pj generates bi,j ← Z/NZ, so as to form a full threshold sharing [bi] over the t parties.
(b) The parties execute E′i ← GrpAction(E0, Q, [bi]).

3. The parties locally compute (c1, . . . , ctS)← H(E′1‖ . . . ‖E′tS‖m).
4. For i = 1, . . . , tS party Pj computes ri,j ← bi,j − sign(ci) ·

∑
ΨQ(B)=Pj

a|ci|,B .

5. The parties broadcast their values ri,j and locally compute ri ←
∑t
j=1 ri,j .

6. Output {(ri, ci)}tSi=1.

Figure 9. The Distributed Key Generation and Signing Protocols ΠKeyGen, ΠSign

To estimate the cost of signing we use the estimate of 40ms from [BKV19] to compute a single
isogency calculation [b]E for a random b ∈ Z/NZ. By counting the number of such operations we
can determine an approximate value for the execution time of our distributed signing protocol.
The main cost is in computing E′ ← GrpAction(E0, Q, [b]) a total of tS times. We estimate the
cost in terms of the number of parties t in the qualified set Q. Due to the sequential nature of
the calculation this will have a latency of approximately (1 + tZK) isogeny calculations for Step 3,
(t · tZK) isogeny calculations for Step 4, and (t · (1 + 4 · tZK)) isogeny calculations for Step 4, of
Figure 8. Thus the rough total execution time is about (4 · |Q| + 1) · tZK · tS isogeny calculations.
Taking the specimum parameters of tZK = 70 and tS = 7, and considering the case of a set Q with
two members, this gives a latency of about 9 × 70 × 7 × 0.040 = 176 seconds per party, i.e. just
under three minutes.

4.2 Proofs of Security

To prove the distributed key generation and signing protocols secure we present a simulation of the
environment to the adversary. The simulator has access to a signing functionality for some unknown
secret key, via the functionality in Figure 5. For securtiy to hold the adversary must not be able
to distinguish between executing in the real environment and executing with the simulation. Our
simulation requires rewinding of the adversary in order to extract the witnesses for the associated
zero-knowledge proofs. Thus our security proof does not provide a UC-proof of the security of the
protocol. Thus our protocol should only be considered ‘stand-alone’ secure.

12

KeyGen Simulation: The simulator first calls the functionality FDSign, which outputs a replicated
secret sharing of the associated secret keys 〈ai〉 for the adversary, i.e. the simulator learns the values
a′i,B for all B ∈ BA ∪BM , but not for those values in BH . The simulator now passes the values a′i,B
for B ∈ BA ∪ BM to the adversary by simulating the FRand.PRSS() protocol.

For each i ∈ [1, . . . , S − 1] the adversary now engages in an execution of GrpAction(E0, Q, 〈ai〉);
note E0 is fixed across all public keys and hence known to the simulator ahead of time. From the
committed zero-knowledge proofs π1P the simulator is able to extract the value ai,B enterred by the
adversary in the first round of proofs. Note, this value may be different from the values returned
by the PRSS, but that is allowed in our security model, as long as it does not contradict a value
corresponding to an element in BM (if there is a contradiction we will be able to abort later when
the real system will abort during the check for this fact). The extracted values ai,B are now passed
to the functionality, which completes them to a valid set of shares of the secrets and returns the
corresponding public key E0, . . . , ES−1.

The simulator picks a single honest sharing B∗ ∈ BH and generates ai,B for B ∈ BH \ {B∗}
at random. Thus ai,B∗ will be the secret key values which are unknown to the simulator. We let
j denote the player index corresponding to the element B∗. We let the curve EPj in Step 3 of
Figure 8 denote a random element of the isogeny graph. We can now fake the associated zero-
knowledge proof π1Pj using the simulator for the zero-knowledge proof The commitments can now
be opened.

Now look at Step 6 of Figure 8. All steps for honest players can be simulated exactly by following
the real protocol, bar that for the party Pj which holds the unknown share ai,B∗. The input to this
party in execution i will be

Ej−1i =

[
j−1∑
k=1

sPk

]
E0,

whilst the output needs to be

Eji =

− t∑
k=j+1

sPk

Ei,
so as to create the correct output public key Ei. The value Eji can thus be computed by the
simulator in Step 6 of Figure 8, and the associated zero-knowledge proof can hence be simulated
as well.

If the adversary deviates from the protocol in any way, bar changing the values of ai,B for
B ∈ BA in the first phase, this is caught be the zero-knowledge proofs and the simulator will be
able to abort. Thus the protocol, assuming no abort occurs, will output the same public key as
provided by the ideal functionality.

Sign Simulation: The signing simulation is roughly the same as the key generation simulation.
For the qualified set Q, the adversarial inputs can be derived from the initial commitments in
GrpAction(E0, Q, [b]). We let j now be the player for which ΨQ(B∗) = Pj . In our simulation of
GrpAction(E0, Q, [b]) we can defined bi for Pi ∈ BH \ {Pj} at random, leaving the value bj unknown
and ‘fixed’ by the implicit equation given by the signature (r, c) returned by the functionality which
gives us E′ = [b]E0 = [r]Ec.

13

The final part of the signature which needs simulating is the output of the ri for the honest
players in Q. For i 6= j this is done exactly as one would in the real protocol. For party j, we know
what the adversary should output and hence can define rj = r −

∑
i 6=j ri.

If the adversary deviates from the protocol in the final step, and uses an invalid value of ri.
Then the adversary will learn the signature, but the honest players will abort; which is exactly the
behaviour required by the ideal functionality.

Acknowledgments

We would like to thank Frederik Vercauteren for the numerous and useful discussions on the arith-
metic of isogenies. This work has been supported in part by ERC Advanced Grant ERC-2015-
AdG-IMPaCT and by the FWO under an Odysseus project GOH9718N. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the ERC or FWO.

References

BDV19. Luis T. A. N. Brandao, Michael Davidson, and Apostol Vassilev. NIST 8214A (Draft): Towards NIST
standards for threshold schemes for cryptographic primitives: A preliminary roadmap, 2019.

BKV19. Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-FiSh: Efficient isogeny based signatures
through class group computations. IACR Cryptology ePrint Archive, 2019:498, 2019.

CDI05. Ronald Cramer, Ivan Damg̊ard, and Yuval Ishai. Share conversion, pseudorandom secret-sharing and appli-
cations to secure computation. In Joe Kilian, editor, TCC 2005: 2nd Theory of Cryptography Conference,
volume 3378 of Lecture Notes in Computer Science, pages 342–362, Cambridge, MA, USA, February 10–12,
2005. Springer, Heidelberg, Germany.

CDK+18. Benôıt Cogliati, Yevgeniy Dodis, Jonathan Katz, Jooyoung Lee, John P. Steinberger, Aishwarya Thiruven-
gadam, and Zhe Zhang. Provable security of (tweakable) block ciphers based on substitution-permutation
networks. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018,
Part I, volume 10991 of Lecture Notes in Computer Science, pages 722–753, Santa Barbara, CA, USA,
August 19–23, 2018. Springer, Heidelberg, Germany.

CLM+18. Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes. CSIDH: An efficient
post-quantum commutative group action. In Thomas Peyrin and Steven Galbraith, editors, Advances in
Cryptology – ASIACRYPT 2018, Part III, volume 11274 of Lecture Notes in Computer Science, pages
395–427, Brisbane, Queensland, Australia, December 2–6, 2018. Springer, Heidelberg, Germany.

Cou06. Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint Archive, Report 2006/291, 2006.
http://eprint.iacr.org/2006/291.

CS19. Daniele Cozzo and Nigel P. Smart. Sharing the LUOV: Threshold post-quantum signatures. IACR
Cryptology ePrint Archive, 2019:1060, 2019.

DG19. Luca De Feo and Steven D. Galbraith. SeaSign: Compact isogeny signatures from class group actions. In
Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, Part III, volume
11478 of Lecture Notes in Computer Science, pages 759–789, Darmstadt, Germany, May 19–23, 2019.
Springer, Heidelberg, Germany.

DK01. Ivan Damg̊ard and Maciej Koprowski. Practical threshold RSA signatures without a trusted dealer. In
Birgit Pfitzmann, editor, Advances in Cryptology – EUROCRYPT 2001, volume 2045 of Lecture Notes in
Computer Science, pages 152–165, Innsbruck, Austria, May 6–10, 2001. Springer, Heidelberg, Germany.

DKLs18. Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Secure two-party threshold ECDSA from
ECDSA assumptions. In 2018 IEEE Symposium on Security and Privacy, pages 980–997, San Francisco,
CA, USA, May 21–23, 2018. IEEE Computer Society Press.

DPV19. Thomas Decru, Lorenz Panny, and Frederik Vercauteren. Faster SeaSign signatures through improved
rejection sampling. In Jintai Ding and Rainer Steinwandt, editors, Post-Quantum Cryptography - 10th
International Conference, PQCrypto 2019, pages 271–285, Chongqing, China, May 8–10 2019. Springer,
Heidelberg, Germany.

14

http://eprint.iacr.org/2006/291

FM19. Luca De Feo and Michael Meyer. Threshold schemes from isogeny assumptions. IACR Cryptology ePrint
Archive, 2019:1288, 2019.

GG18. Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA with fast trustless setup. In
David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018: 25th
Conference on Computer and Communications Security, pages 1179–1194, Toronto, ON, Canada, Octo-
ber 15–19, 2018. ACM Press.

GGN16. Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-optimal DSA/ECDSA signatures
and an application to bitcoin wallet security. In Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schneider,
editors, ACNS 16: 14th International Conference on Applied Cryptography and Network Security, volume
9696 of Lecture Notes in Computer Science, pages 156–174, Guildford, UK, June 19–22, 2016. Springer,
Heidelberg, Germany.

GJKR96. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Robust threshold DSS signatures.
In Ueli M. Maurer, editor, Advances in Cryptology – EUROCRYPT’96, volume 1070 of Lecture Notes in
Computer Science, pages 354–371, Saragossa, Spain, May 12–16, 1996. Springer, Heidelberg, Germany.

Lin17. Yehuda Lindell. Fast secure two-party ECDSA signing. In Jonathan Katz and Hovav Shacham, editors,
Advances in Cryptology – CRYPTO 2017, Part II, volume 10402 of Lecture Notes in Computer Science,
pages 613–644, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.

LN18. Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical distributed key generation
and applications to cryptocurrency custody. In David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors, ACM CCS 2018: 25th Conference on Computer and Communications Security,
pages 1837–1854, Toronto, ON, Canada, October 15–19, 2018. ACM Press.

LNR18. Yehuda Lindell, Ariel Nof, and Samuel Ranellucci. Fast secure multiparty ECDSA with practical dis-
tributed key generation and applications to cryptocurrency custody. IACR Cryptology ePrint Archive,
2018:987, 2018.

MR01. Philip D. MacKenzie and Michael K. Reiter. Two-party generation of DSA signatures. In Joe Kilian,
editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science,
pages 137–154, Santa Barbara, CA, USA, August 19–23, 2001. Springer, Heidelberg, Germany.

RS06. Alexander Rostovtsev and Anton Stolbunov. Public-Key Cryptosystem Based On Isogenies. Cryptology
ePrint Archive, Report 2006/145, 2006. http://eprint.iacr.org/2006/145.

Sho00. Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, Advances in Cryptology – EU-
ROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 207–220, Bruges, Belgium,
May 14–18, 2000. Springer, Heidelberg, Germany.

Sto12. Anton Stolbunov. Cryptographic schemes based on isogenies. PhD thesis, NTNU, 2012.
V7́1. Jacques Vélu. Isogènies entre courbes elliptiques. C.R. Acad. Sc. Paris, Série A., 273:238–241, 1971.

15

http://eprint.iacr.org/2006/145

	Sashimi: Cutting up CSI-FiSh secret keys to produce an actively secure distributed signing protocol

