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FLASH: Fast and Robust Framework for
Privacy-preserving Machine Learning
Abstract: Privacy-preserving machine learning
(PPML) via Secure Multi-party Computation (MPC)
has gained momentum in the recent past. Assuming
a minimal network of pair-wise private channels, we
propose an efficient four-party PPML framework over
rings Z2` , FLASH, the first of its kind in the regime of
PPML framework, that achieves the strongest security
notion of Guaranteed Output Delivery (all parties ob-
tain the output irrespective of adversary’s behaviour).
The state of the art ML frameworks such as ABY3
by Mohassel et.al (ACM CCS’18) and SecureNN by
Wagh et.al (PETS’19) operate in the setting of 3 par-
ties with one malicious corruption but achieve the
weaker security guarantee of abort. We demonstrate
PPML with real-time efficiency, using the following
custom-made tools that overcome the limitations of the
aforementioned state-of-the-art– (a) dot product, which
is independent of the vector size unlike the state-of-the-
art ABY3, SecureNN and ASTRA by Chaudhari et.al
(ACM CCSW’19), all of which have linear dependence
on the vector size. (b) Truncation and MSB Extraction,
which are constant round and free of circuits like Paral-
lel Prefix Adder (PPA) and Ripple Carry Adder (RCA),
unlike ABY3 which uses these circuits and has round
complexity of the order of depth of these circuits. We
then exhibit the application of our FLASH framework in
the secure server-aided prediction of vital algorithms–
Linear Regression, Logistic Regression, Deep Neural
Networks, and Binarized Neural Networks. We sub-
stantiate our theoretical claims through improvement
in benchmarks of the aforementioned algorithms when
compared with the current best framework ABY3. All
the protocols are implemented over a 64-bit ring in
LAN and WAN. Our experiments demonstrate that, for
MNIST dataset, the improvement (in terms of through-
put) ranges from 24× to 1390× over LAN and WAN
together.
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1 Introduction
Secure Multi-party Computation (MPC) [Yao82,
BGW88, GMW87, IKNP03, DPSZ12] has evolved over
the years in its pursuit of enabling a set of n mu-
tually distrusting parties to compute a joint function
f , in a way that no coalition of t parties can disrupt
the true output of computation (correctness) or learn
any information beyond what is revealed by the out-
put of the computation (privacy). The area of secure
MPC can be broadly categorized into honest major-
ity [BGW88, MRZ15, ABF+16, BJPR18] and dishonest
majority [Yao82, DPSZ12, DKL+13, MF06, GMW87].
Over the years, MPC has progressed from being sim-
ply of theoretical interest to providing real-time prac-
tical efficiency. In terms of efficient constructions, the
special case of dishonest-majority setting, namely two-
party computation (2PC) [Yao82, LP07, Lin16, NO16]
has been in limelight over the last decade. However
lately, the setting of three parties (3PC) [ABF+17,
ABF+16, MRZ15, BJPR18] and four parties (4PC)
[IKKPC15, BJPR18, GRW18] have drawn phenomenal
attention due to the customization in techniques and
efficiency that the constructions have to offer. In this
direction, the area of MPC in a small domain with an
honest majority is quite fascinating due to variety of
reasons mentioned below.

First, the most widely known real-time applica-
tions such as Danish Sugar-Beet Auction [BCD+09],
Distributed Credential Encryption [MRZ15], Fair-play
MPC [BNP08], VIFF [Gei07], Sharemind [BLW08] ex-
plore MPC with 3 parties. Second, the expensive public-
key primitives such as Oblivious Transfer (OT) known
to be necessary for 2PC can be eliminated in the hon-
est majority. Thus, the resulting constructions use only
light-weight primitives and can even be information-
theoretically secure. Third, the recent advances in se-
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cure Machine Learning (ML) have indicated real-time
applications involving a small number of parties [MZ17,
MRSV18, WGC19, MR18, CCPS19, ÁMJ+18, AFS19].
Furthermore, the stronger security notions of fairness
(the adversary gets the output if and only if the hon-
est parties do) and robustness aka guaranteed output
delivery (GOD) (all parties obtain the output irrespec-
tive of adversary’s behaviour) are guaranteed only in
the honest majority setting [Cle86].

In this work, we strongly motivate the need for ro-
bustness in privacy-preserving machine learning as a
service (MLaaS) and then go on to explore the setting of
4PC and demonstrate that our constructions are highly
efficient compared to the existing state of the art 3PC
ML frameworks. The guarantee of robustness is of ut-
most importance in the area of MLaaS. Consider the
following scenario where an entity owns a trained ML
model and wants to provide prediction as a service. The
model owner outsources her trained model parameters
to a set of three servers, which uses one of the afore-
mentioned 3PC ML frameworks for secure prediction.
These frameworks keep the privacy of the model pa-
rameters and the queries of the clients intact even when
one of the servers is maliciously corrupted, but cannot
guarantee an output to a given client’s query as the ad-
versary can cause the protocol to abort. Thus in the
practical setting, one simple strategy of the adversary
would be to make the protocol abort for all the client
queries. Eventually, this would steer the entity towards
loss of monetary value and trust of the clients.

Motivation for 4PC Framework: The specific
problem of MPC with 4-parties tolerating one corrup-
tion is of special interest to us. There are three primary
motivations for us to consider this setting for achiev-
ing GOD– (a) avoid theoretical necessity of broadcast
channel; (b) avoid expansive public-key primitives and
(c) communication efficiency. We elaborate these points
below. The popular setting of 3PC, when considered to
achieve robustness, suffers from the necessity of an ex-
pensive robust broadcast channel as proven in the result
of [CL14]. By moving to 4PC from 3PC, the need for
a broadcast channel is removed, which results in highly
efficient constructions [BJPR18] when compared to 3PC
[CCPS19, MR18, WGC19]. Additionally in 4PC, for any
message sent by a party that needs an agreement, a sim-
ple honest majority rule over the residual three parties
suffices. Such a property cannot be counted on in 3PC
which leads to the use of costly workarounds than 4PC.
[GRW18] was the most recent work to propose guaran-
teed output delivery (robustness) in the 4PC setting.
A major concern with GOD variant of multiplication

protocol in [GRW18] was utilizing Digital Signatures
and expensive public-key primitives: Broadcast and a
PKI Setup. Since our end goal is an efficient and robust
framework for ML, we let go their approach and propose
a simple primitive coupled with a new secret sharing
scheme which requires only symmetric-key primitives to
achieve robustness.

Moreover, the state-of-the-art 3PC ML frameworks,
like ABY3 and ASTRA, focused on highly efficient
frameworks for machine learning in the semi-honest set-
ting but suffered from efficiency loss for the primitives
dot product, MSB extraction, and truncation in the ma-
licious setting. For example, many of the widely used
ML algorithms like Linear Regression, Logistic Regres-
sion, and Neural Networks use dot product computation
as its building block. While the above frameworks incur
a communication cost which is linearly dependent on
the underlying size of the feature vector, we are able to
eliminate this limitation and provide a dot product pro-
tocol whose communication is independent of the vector
size. Additionally, we also make all our building blocks
constant round and free of any circuits, unlike ABY3
which uses expensive non-constant round circuits like
Parallel Prefix Adder (PPA) and Ripple Carry Adder
(RCA) in their protocols.

Lastly, we choose build our framework over rings.
Most of the computer architectures, Intel x64 for exam-
ple, have their primitive data-types over rings. These
architectures have specially designed hardware which
can support fast and efficient arithmetic operations
over rings. This led the way for efficient protocols over
rings [BLW08, DOS18, ABF+17, EOP+19, CCPS19,
BBC+19] as opposed to fields, which are usually 10-
20x slower since they have to rely on external libraries.
Thus, our protocols over rings give the additional ad-
vantage of faster performance when implemented in the
real-world architectures.

1.1 Our Contribution

We propose FLASH, the first robust framework for
privacy-preserving machine learning in the four party
(4PC) honest majority setting over a ring Z2` . We sum-
marize our contributions below:

Robust 4PC protocol: We present an efficient
and robust MPC protocol for four parties tolerating one
malicious corruption. Concretely, for the multiplication
operation, we require an overall communication of just
12 elements in the amortized sense. This is ≈ 2× im-
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Protocol Equation
ABY3 ASTRA FLASH

Rounds Comm. Rounds Comm. Rounds Comm.

Multiplication JxK.JyK→ Jx.yK 5 21` 7 25` 5 12`

Dot Product J~x� ~yK = J
∑d

i=1 xiyiK 5 21m` 7 23m`+ 2` 5 12`

MSB Extraction JxK→ Jmsb(x)KB log `+ 4 42` 10 52`+ 4 6 16`+ 4

Truncation JxK.JyK→ J(xy)tK 2`− 1 ≈ 108` − − 5 14`

Bit Conversion JbKB → JbK 6 42` − − 5 14`

Bit Insertion JbKBJxK→ JbxK 7 63` − − 5 18`

Table 1. Comparison of FLASH framework with ABY3 and ASTRA; ` and m denote the ring size and number of features respectively.

provement in terms of communication over the state-
of-the-art protocol of [GRW18]. Moreover, our solution
forgoes the need for Digital Signatures and expensive
primitives like Broadcast and Public-Key Setup, unlike
[GRW18]. The removal of this additional setup of Digi-
tal Signatures, PKI and Broadcast primarily comes from
two factors – i) a new secret sharing scheme which we
call as mirrored-sharing, enables two disjoint sets of par-
ties to perform the computation and perform an effec-
tive validation in a single execution, and ii) a simple yet
novel bi-convey primitive, which enables two designated
parties, say S1, S2, to send a value to a designated party
R with the help of a fourth party T .

The bi-convey primitive guarantees that if both S1
and S2 are honest, then party R will receive the value
x for sure. If not, either the party R will be able to ob-
tain x or both the parties R and T identify that one
among S1, S2 is corrupt. Our construction for the bi-
convey primitive requires a commitment scheme as the
only cryptographic tool, which is considered inexpen-
sive. Moreover, the commitments can be clubbed to-
gether for several instances and thus the cost of com-
mitment gets amortized as well. Looking ahead, most
of our constructions are designed in such a way that ev-
ery message to be communicated will be made available
to at least two parties and thus we can use the bi-convey
primitive for the same.

Building Blocks for Machine Learning: We
propose practically efficient building blocks that form
the base for secure prediction. While ABY3 and Se-
cureNN propose building blocks for security with abort,
ASTRA elevates the security of these blocks from abort
to fairness. We further strengthen the security and make
all the building blocks robust. Additionally, we achieve
significant efficiency improvements in all the building
blocks due to the aid provided by an additional honest
party in our setting. The improvements for each block
are summarized as follows:

i) Dot Product: The aforementioned 3PC frame-
works involve communication, linear in the order of vec-
tor size, we overcome this limitation with an efficient
technique, independent of the vector size. This indepen-
dence stems from the peculiar structure of our mirrored
sharing alongside the multiplication protocol in 4PC.

ii) Truncation: Overflow caused by repeated multi-
plications may cause accuracy loss which can be pre-
vented with truncation. Truncation has been expensive
in the 3PC framework, especially ABY3 uses a Ripple
Carry Adder (RCA) circuit which consumes around 108
ring elements to achieve MSB Extraction. We propose a
simple yet efficient technique with a total of just 14 ring
elements and does not require any circuits. The techni-
cal novelty comes from the specific roles played by the
parties, in conjunction with the multiplication protocol
of 4PC. We defer the detailed analysis of our truncation
protocol and the corresponding roles of the parties to
Section 5.4.

iii) MSB Extraction: Comparing two arithmetic val-
ues in a privacy-preserving manner is one of the major
hurdles in realizing efficient privacy-preserving ML algo-
rithms. The state of the art SecureML[MZ17] and ABY3
made an effort in this direction with the use of a gar-
bled circuit technique and parallel prefix adder (PPA)
respectively. Yet, these techniques still involve signifi-
cant computation and communication which are a bot-
tleneck to efficiency. We propose a technique free of any
circuit computation and instead relies on the multipli-
cation protocol of our 4PC.

iv) Bit Conversion and Insertion: Operating inter-
changeably in the arithmetic and boolean worlds often
demand conversion of a boolean bit to its arithmetic
equivalent (bit conversion) or the multiplication of a
boolean bit with an arithmetic value (bit insertion). We
propose efficient techniques to achieve the same with in-
novations coming from our mirrored secret sharing and
its linearity property. Ours is the first work in 4PC that
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proposes these transformations and is even superior to
the state-of-the-art 3PC ML frameworks ABY3 and AS-
TRA, in terms of both efficiency and security guarantee.
Table 1 provides a detailed comparison in terms of com-
munication (Comm.) and rounds with ABY3 and AS-
TRA, where ` and m denote the ring size and number
of features respectively.

Secure Prediction: We aim at secure prediction
in a server-aided setting. Here, the model owner (M)
holds a set of trained model parameters which are used
to predict output to client’s (C) input query, while pre-
serving the privacy of the inputs of both the parties.
The servers perform computation and reconstruct the
output towards the client. Security is provided against
a malicious adversary corrupting one server along with
either model owner or client. We extend our techniques
for vital machine learning algorithms namely: i) Lin-
ear Regression, ii) Logistic Regression, iii) Deep Neu-
ral Network (DNN) and iv) Binarized Neural Network
(BNN). While Linear Regression is extensively used in
Market Analytics, Logistic Regression is used in a va-
riety of applications like customer segmentation, insur-
ance fraud detection and so on. Despite being compu-
tationally cheap and smaller in size, the performance
accuracy of BNNs is comparable to that of deep neural
networks. They are the go-to networks for running neu-
ral networks on low-end devices. These use cases exhibit
the importance of these algorithms in real-time and we
make an effort to efficiently perform the secure evalua-
tion for these algorithms.

ML Algorithm
Setting

LAN WAN

Linear Regression 1390× 125.4×

Logistic Regression 601× 48.5×

Deep Neural Network 344× 29.1×

Binarized Neural Network 277× 23.8×

Table 2. Improvement over ABY3 in terms of throughput for
MNIST dataset

We provide implementation results for all our proto-
cols over a ring Z264 . We summarize the efficiency gain
of our protocols over the state-of-the-art ABY3 and AS-
TRA, albeit more elaborate details follow in Section 6.
The latency and throughput (the number of operations
per unit time) of the protocols are measured in the
LAN (1Gbps) and WAN (20Mbps) setting while com-
munication complexity is measured independent of the
network. We compare the most crucial building blocks,

namely i) Dot Product, ii) MSB Extraction and iii)
Truncation of our framework with state-of-the-art and
show the practical improvement observed in each of the
building blocks. We also provide throughput compar-
isons (# queries per sec in LAN and # queries per min
in WAN) for the aforementioned algorithms, over mul-
tiple real-world datasets. Table 2 below shows the im-
provement over ABY3 for MNIST dataset [LC10] which
has 784 features. We omit comparison with ASTRA as
ABY3 outperforms ASTRA in terms of total communi-
cation (ref. Table 1). The improvements for DNN and
BNN stated in Table 2 are for a network having 2 hidden
layers, each layer consisting of 128 nodes.

4PC Abort: As an extension, we also propose pro-
tocols for the weaker abort setting. The abort variant
for the protocols are achieved by tweaking the bi-convey
primitive present in the robust protocols. We give a
detailed analysis and comparison with state-of-the-art
works in Appendix A.

1.2 Related Work:

In the regime of MPC over a small domain, interest-
ing works that achieve guaranteed output delivery have
been carried out mainly in the class of low-latency
(consisting of small constant number of rounds) pro-
tocols [PR18, BJPR18, BHPS19]. However, in the view
of practical efficiency, high throughput (light in com-
munication and computation complexity) is desirable.
Yet the literature of high throughput protocols has seen
limited work [GRW18] in guaranteeing security notions
stronger than abort. The existing state-of-the-art in-
cludes notable works that are highly efficient, but trade
security for efficiency [ABF+17, AFL+16, ABF+16,
CGH+18, FLNW17, NV18]. In this work, we attempt
to bridge the gap between the security achieved and the
corresponding efficiency, thus providing highly efficient
PPML framework using robust 4PC as the backbone.
Below we summarize the contributions closest to our
setting.

The study of MPC in high-throughput networks
accelerated with the celebrated work of [DSZ15].
The works of [ABF+17, AFL+16, ABF+16, CGH+18,
FLNW17, NV18] swiftly followed. These works focus
on the evaluation of arithmetic circuits over rings or fi-
nite fields. [AFL+16] is semi-honest and operates over
both rings and fields. The works of [ABF+17, FLNW17,
DOS18] achieve abort security over rings with one
malicious corruption. A compiler to transform semi-
honest security to malicious-security was proposed by
[CGH+18]. This conversion is obtained at twice the cost
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of the semi-honest protocol. The work of [GRW18] ex-
plores 4PC and the security notions of fairness and guar-
anteed output delivery. However, [GRW18] is dual exe-
cution based and relies on expensive public-key primi-
tives and broadcast channel to achieve guaranteed out-
put delivery. [NV18] improvises over [CGH+18] by pre-
senting a batch multiplication technique and addition-
ally explores the notion of fairness.

The influence of ML has found its way in a broad
range of areas such as facial recognition [SKP15], bank-
ing, medicine [EKN+17], recommendation systems and
so on. Consequently, technology giants such as Ama-
zon, Google are providing ML as a service (MLaaS)
for both training and prediction purposes, where the
parties outsource their computation to a set of servers.
However, for confidential purposes, government regula-
tions and competitive edge, such data cannot be made
publicly available. Thus, there is a need for privacy of
data while still enabling customers to perform training
and prediction. This need for privacy has given rise to
the culmination of MPC and ML. Recent works [MZ17,
MR18, MRSV18, WGC19, CCPS19, RWT+18] have
shown the need of MPC in achieving efficient tech-
niques for privacy-preserving machine learning in server
aided setting, where parties outsource their data to a
set of servers and the servers compute for purposes of
training or classification. There have been works dedi-
cated to linear regression [MR18, CCPS19, MZ17], logis-
tic regression [MR18, CCPS19, MZ17] and neural net-
works [MR18, MZ17, WGC19, JVC18, RWT+18] for
both training and inference. Recent works have dived
into variants of neural networks like Deep Neural Net-
works (DNNs) [MR18, MMH+19, RWT+18], Convo-
lutional Neural Networks (CNNs) [WGC19, RWT+18,
JVC18], Binarized Neural Networks (BNNs) [KCY+18]
and Quantized Neural Networks (QNNs) [ADAM19,
JBAP19]. DNNs and CNNs have become one of the
most powerful machine learning models in recent his-
tory with amount of data available to train them and
are one of the most widely considered models for train-
ing and prediction tasks for low power devices. MOBIUS
[KCY+18] was the first to explore secure prediction in
BNNs for semi-honest 2PC.

2 Preliminaries and Definitions
We consider a set of four parties P = {V1,V2,E1,E2}
connected by pair-wise private and authentic channels
in a synchronous network. E1, E2 define the role of the

parties as evaluators in the computation while parties
V1, V2 enact the role of verifiers in the computation. We
use E and V to denote the set of evaluators {E1,E2}
and verifiers {V1,V2} respectively. The function f to be
evaluated is expressed as a circuit ckt, with a publicly
known topology and is evaluated over either an arith-
metic ring Z2` or a Boolean ring Z21 , consisting of 2-
input addition and multiplication gates. d denotes the
multiplicative depth of ckt.

We use a collision-resistant hash function, denoted
by H() and a commitment scheme, denoted by com(), in
our protocols for practical efficiency. The details of the
same can be found in Section B.1.
Security Model: For MPC, each party is modelled as a
non-uniform probabilistic polynomial time (PPT) inter-
active Turing Machine. We operate in a static security
model with an honest majority, where a PPT adversary
A can corrupt a party at the onset of the protocol. A
can be malicious in our setting i.e., the corrupt parties
can arbitrarily deviate from the protocol specification.
The computational security parameter is denoted by κ.
Robustness or Guaranteed Output Delivery: A
protocol is said to be robust if all the parties can com-
pute the output of the protocol irrespective of the be-
haviour of the adversary. The security of our protocols is
proved in the standard real/ideal world paradigm. The
details for the ideal world functionality Frobust that real-
izes the same in the 4PC setting is presented in Fig 19.
Shared Key Setup: We adopt a one-time key setup to
minimize the overall communication of the protocol. We
use three types of key setup namely, between i) a pair of
parties, ii) a committee of three parties and iii) all the
four parties. In each type, the parties in consideration
can run an MPC protocol to agree on a randomness and
use it as the key for pseudo-random function (PRF) to
derive any subsequent co-related randomness. We model
the protocol for the shared key setup as functionality
Fsetup and is presented in Fig 17.

3 Sharing Semantics
We use additive secret sharing of secrets over either an
arithmetic ring Z2` or a Boolean ring Z21 . We define two
variants of secret sharing that are used in this work.

• Additive sharing ([·]-sharing): A value x is addi-
tively shared between two parties if x = x1 + x2, where
one party holds the first share x1 while the other party
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holds x2. We use [x] = (x1, x2) to denote [·]-sharing of x.

• Mirrored sharing (J·K-sharing): A value x is said
to be J·K-shared among the parties in P if:
– There exist values σx, µx such that µx = x+ σx.
– σx is [·]-shared among parties in E as [σx]E1 = σ1

x and
[σx]E2 = σ2

x, while parties in V hold both σ1
x and σ2

x.
– µx is [·]-shared among parties in V as [µx]V1 = µ1

x

and [µx]V2 = µ2
x, while parties in E hold both µ1

x and
µ2
x.

The shares of each party can be summarized as:

E1 : JxKE1
= (σ1

x, µ
1
x, µ

2
x) V1 : JxKV1

= (σ1
x, σ

2
x, µ

1
x)

E2 : JxKE2
= (σ2

x, µ
1
x, µ

2
x) V2 : JxKV2

= (σ1
x, σ

2
x, µ

2
x)

We use the notation JxK = ([σx], [µx]) to denote J·K-
sharing of value x. Sharing techniques and protocols for
the boolean variant (Z21) are identical to their arith-
metic counterparts apart from addition and subtraction
operations being replaced with XOR and multiplication
with AND. We use J·KB to denote the sharing over a
boolean ring.

• Linearity of [·]-sharing and J·K-sharing: Given
[x] = (x1, x2), [y] = (y1, y2) and public constants c1, c2 ∈
Z2` , we have

[c1x+ c2y] = (c1x1 + c2y
1, c1x

2 + c2y
2) = c1[x] + c2[y]

Thus, [c1x + c2y] and c1[x] + c2[y] are equivalent and
implies that parties can compute shares of any linear
function of [·]-shared values locally. It is easy to see that
the linearity property extends to our J·K-sharing as well.

4 Robust 4PC
In this section, we present a robust and efficient 4PC
protocol with security against one malicious adversary.
Our protocol incurs 12 ring elements per multiplication
and removes the need for any additional setup of Broad-
cast, Digital Signatures, and Public-Key Setup, unlike
[GRW18]. We begin this section by introducing a "bi-
convey primitive", which forms the core for the majority
of our constructions. As mentioned in the introduction,
bi-convey primitive enables two designated parties to
send a value x to the third party with the aid of the
fourth party. The remainder of the section describes a
high-level overview of our protocol which is divided into
3 stages– i) input sharing, ii) circuit evaluation and iii)
output computation. We elaborate on our primitive and
each of the stages below:

4.1 Bi-Convey Primitive

Bi-convey primitive enables either i) two parties, say
S1, S2, to convey a value x ∈ Z2` to a designated party R
or ii) allows party R to identify that one among S1, S2 is
corrupt. The technical innovation of our construction for
the 4 party case lies in using the fourth party available,
say T , in an efficient manner. To elaborate, the protocol
proceeds as follows. Parties S1, S2 both send the value
x to R. In parallel, they send a commitment of the same
(com(x)) to the fourth party T . Note that the random-
ness used to prepare the commitment is picked from the
common source of the randomness of S1, S2 and R. If
the received copies of xmatch, party R accepts the value
and sends continue to T , and discards any message re-
ceived from T . If not, R will identify that one among
(S1, S2) is corrupt and thus T is honest. She then sends
her internal randomness to T and waits for a message
from T . Note that, the internal randomness of R which
is forwarded to T , in our setting are all the keys of R
(established during the shared key setup phase) that are
not available with T . Party T , on the other hand, first
checks if the commitments received from S1, S2 match
or not. If they match, she will forward com(x) to R else,
she will identify that one among (S1, S2) is corrupt and
thus sends her internal randomness to R. Now, if R re-
ceives com(x) from T , then she will accept the version
of x that matches with the received com(x) and stops. If
not, then both R and T have identified that one among
(S1, S2) is corrupt.

Fbic receives x, x′, IR and IT from the parties S1, S2, R and T
respectively. Here IR and IT denote the internal randomness
of parties R and T respectively. Fbic sets msgS1 = msgS2 = ⊥.

– If x = x′, then Fbic sets msgT = ⊥ and msgR = x. Else
it sets msgT = IR and msgR = IT .

– Fbic sends msgS1 ,msgS2 ,msgR and msgT to parties S1,
S2, R and T respectively.

Fig. 1. Functionality Fbic: Ideal Functionality for party R to
receive value x from S1 and S2.

The formal protocol appears in Fig 2 and the details
for corresponding ideal world functionality Fbic appears
in Fig 1.

• Input: Parties S1, S2, R and T input x, x, IR and IT
respectively.
• Output: Parties S1, S2 receive ⊥. Parties R and T receive
x and ⊥ as outputs respectively, when S1, S2 are honest.
For the case when one among S1, S2 is corrupt, party R

obtains either x or IT , while party T obtains either IR or
⊥, depending on the adversary’s strategy.
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– Parties S1, S2 send the value x to party R. In parallel,
S1, S2 compute commitment of x, com(x), using shared ran-
domness known to R as well (sampled from the key shared
amongst S1, S2 and R established during the shared key
setup phase) and send it to T .

– If the received values match, party R sets msgR =
continue, accept the value x and discard any further mes-
sage from T . Else, he sets msgR = IR, where IR denotes the
internal randomness of R.

– If the received commitments match, party T sets msgT =
com(x), else sets msgT = IT , where IT denotes the internal
randomness of T .

– Parties R and T mutually exchange the msg values.
– If msgR = IR and msgT = com(x), then R accepts the
value x that is consistent with com(x).

Fig. 2. Πbic(S1, S2, x, R, T ): Protocol for S1, S2 to convey a
value x to R with the help of T

We now provide a brief motivation for the need of bi-
convey primitive in our framework. Looking ahead, the
bi-convey primitive is used as a black-box in almost all
of our subsequent protocol constructions. Consider the
case where a call to this primitive from the outer pro-
tocol results in exchange of internal randomness among
two parties. This implies both the parties conclude one
among the remaining parties is corrupt and can safely
trust each other. Thus both the honest parties com-
bined, act as a single trusted party and use the received
randomness to compute the inputs of all the parties in
clear. Note that, both the honest parties together are
able to compute the inputs in clear primarily because of
the specific design of our mirrored sharing format (Sec-
tion 3) where two parties together posses all the shares
to reconstruct the inputs of the circuit. The honest par-
ties then compute the final circuit output and send it to
the remaining two parties ensuring guaranteed output
delivery. We give a more detailed explanation of a use
case of bi-convey primitive fitting in a larger protocol in
Section 4.3.

4.2 Input Sharing

The goal is to robustly generate a J·K-sharing of a party’s
input. We call a party who wants to share the input as
a Dealer. On a high level, if a dealer D wants to share a
value x, parties start by locally sampling σ1

x, σ
2
x and µ1

x,
according to the defined sharing semantics. The dealer
then sets the last share as µ2

x = x + σx − µ1
x. In case

when the dealer is a verifier (say V1), we enforce V1
to send µ2

x to both the evaluators and com(µ2
x) to V2.

Now, all parties except V1, exchange com(µ2
x) and com-

pute the majority. If there exists no majority then V1 is
known to be corrupt and eliminated from the computa-
tion. The remaining parties can then run a semi-honest
three-party protocol to compute the output. A similar
idea follows for the case when the dealer is an evaluator.
We provide the formal details of our Πsh in Fig 3 below.

• Input: Party D inputs value x while others input ⊥.
• Output: Parties obtain JxK as the output.

– If D = E1: Parties in V and E1 locally sample σ1
x, while

all the parties in P locally sample σ2
x. Parties in V and E1

locally compute σx = σ1
x + σ2

x. Similar steps are done for
D = E2.

– If D = Vi for i ∈ {1, 2}: Parties in V and E1 locally
sample σ1

x, while parties in V and E2 locally sample σ2
x.

Parties in V locally compute σx = σ1
x + σ2

x.
– If D = V1: Party V1 computes µx = x + σx. Parties in

E and V1 locally sample µ1
x. Party V1 computes and sends

µ2
x = µx − µ1

x to parties in E and V2. Parties in E and
V2 exchange the received copy of µ2

x. If there exists no
majority, then they identify V1 to be corrupt and engage in
semi-honest 3PC excluding V1 (with default input for V1).
Else, they set µ2

x to the computed majority. Similar steps
are done for D = V2.

– If D = Ei for i ∈ {1, 2}: Party Ei computes µx = x+ σx.
Parties in E and V1 locally sample µ1

x. Party Ei computes
and sends µ2

x = µx−µ1
x to V2 and the co-evaluator. Ei sends

com(µ2
x) to V1. Parties other than the dealer exchange the

commitment of µ2
x to compute majority (the co-evaluator

and V2 also exchange their copies of µ2
x). If no majority

exists, then they identify Ei to be corrupt and engage in
semi-honest 3PC excluding Ei (with default input for Ei).
Else, they set µ2

x to the computed majority.

Fig. 3. Πsh(D, x): Protocol to generate JxK by dealer D.

4.3 Circuit Evaluation

The circuit is evaluated in topological order where for
every gate g the following invariant is maintained: given
the J·K-sharing of the inputs, the output is generated in
the J·K-shared format. When g is an addition gate (z =
x + y), the linearity of J·K-sharing suffices to maintain
this invariant.

• Input: Parties input their JxK and JyK shares.
• Output: Parties obtain JzK as the output, where z = xy.

– Parties in V and E1 collectively sample σ1
z and δ1

xy, while
parties in V and E2 together sample σ2

z .
– Verifiers V1,V2 compute δxy = σxσy, set δ2

xy = δxy − δ1
xy

and invoke Πbic(V1,V2, δ2
xy,E2,E1) , which makes sure that

E2 receives δ2
xy.
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– Parties in V and E1 collectively sample ∆1. Parties V1
and E1 compute A1 = −µ1

xσ
1
y − µ1

yσ
1
x + δ1

xy + σ1
z + ∆1 and

invoke Πbic(V1,E1,A1,E2,V2) , such that E2 receives A1.
– Similarly, parties in V and E2 collectively sample ∆2. Par-
ties V1 and E2 compute A2 = −µ1

xσ
2
y −µ1

yσ
2
x +δ2

xy +σ2
z +∆2

and invoke Πbic(V1,E2,A2,E1,V2), such that E1 receives
A2.

– Parties V2 and E1 compute B1 = −µ2
xσ

1
y − µ2

yσ
1
x −

∆1 and invoke Πbic(V2,E1,B1,E2,V1). Similarly, V2 and
E2 compute B2 = −µ2

xσ
2
y − µ2

yσ
2
x − ∆2 and invoke

Πbic(V2,E2,B2,E1,V1).
– Evaluators compute µz = A1 + A2 + B1 + B2 + µxµy
locally. Parties in E and V1 collectively sample µ1

z fol-
lowed by evaluators setting µ2

z = µz − µ1
z and invoking

Πbic(E1,E2, µ2
z ,V2,V1)for V2 to receive µ2

z .

Fig. 4. Πmult(x, y, z): Multiplication Protocol

For a multiplication gate g (z = xy), the goal is for
the evaluators to robustly compute µz where

µz = xy + σz = (µx − σx)(µy − σy) + σz

= µxµy − µxσy − µyσx + σxσy + σz

followed by evaluators setting µ2
z share and robustly

sending it to V2. On a high level, we view the aforemen-
tioned equation of µz as: µz = µxµy + A + B, where
A = −µ1

xσy − µ1
yσx + δxy + σz + ∆ is solely possessed by

V1 and B = −µ2
xσy − µ2

yσx − ∆ is possessed V2. In or-
der for evaluators to compute µz, E1 and E2 needs to
robustly receive A + B. Note that µxµy is already avail-
able with the evaluators. Thus A is further split into
A1 + A2, such that each Aj ∈ {1, 2} is possessed by V1
and Ej . Similarly, B is split such that each Bj ∈ {1, 2}
is possessed by V2 and Ej . Now parties need to simply
invoke Πbic protocol, one for each Aj and Bj with the co-
evaluator acting as the receiving party. Thus evaluators
are able to compute A+B correctly. After computing µz,
the evaluators set µ2

z = µz − µ1
z and call Πbic protocol

to send µ2
z to V2, where µ1

z is collectively sampled by
parties in E and V1. We provide the formal details of
our Πmult(x, y, z) in Fig 4. For correctness of µz,

µz = xy + σz = (µx − σx)(µy − σy) + σz

= µxµy − µxσy − µyσx + σxσy + σz

= (−µ1
xσy − µ1

yσx + δ1
xy + σ1

z + ∆1 + ∆2)

+ (−µ2
xσy − µ2

yσx + δ2
xy + σ2

z −∆1 −∆2)

= µxµy + (A1 + A2) + (B1 + B2)

where Aj = −µ1
xσ
j
y − µ1

yσ
j
x + δjxy + σjz + ∆j and

Bj = −µ2
xσ
j
y − µ2

yσ
j
x −∆j for j ∈ {1, 2}. The evaluators

receive A1,A2,B1 and B2, whose correctness is guaran-
teed by Πbic protocol. Thus the evaluators can correctly
compute µz = µxµy + (A1 + A2) + (B1 + B2). Verifier V2
also correctly receives µ2

z share from the evaluators, by
the underlying correctness guarantee of Πbic protocol.

We now analyze how Πbic primitive fits into the
larger Πmult protocol to make it robust. Consider
Step 2 of the protocol Πmult where parties invoke
Πbic(V1,V2, δ

2
xy,E2,E1). As mentioned in Section 4.1,

primitive Πbic guarantees that either i) party E2 receives
the correct value δ2

xy or ii) both E1 and E2 identify that
one among (V1,V2) is corrupt. In the first case, parties
can proceed with the execution of the protocol. For the
second case, parties E1 and E2 mutually exchange their
internal randomness (this includes the keys established
during the shared key setup phase). Using the received
randomness, both E1 and E2 can compute the missing
part of her share corresponding to the J·K-sharing of the
inputs and hence obtain all the inputs in clear. Given
the inputs in clear, both E1 and E2 can compute the
function output in clear and send it to the remaining
two parties.

4.4 Output Computation

The output computation phase is comparatively simple.
The missing share of the output with respect to each
party is possessed by the remaining three parties. Thus
two out of the three parties send the missing share and
the third party sends the corresponding hash. Thus each
party sets the missing share as the majority among the
received values and reconstruct the output. The formal
details of our robust output computation protocol Πoc
is given in Fig 5.

• Input: Parties input their JzK shares.
• Output: Parties obtain z as the output.

– For i, j ∈ {1, 2} and i 6= j, Ei receives σjz from parties in
V and H(σjz ) from Ej .

– V2 receives µ1
z from parties in E and H(µ1

z ) from V1.
– V1 receives µ2

z from parties in E and H(µ2
z ) from V2.

– Each party sets the missing share as the majority among
the received values and outputs z = µ1

z + µ2
z − σ1

z − σ2
z .

Fig. 5. Πoc: Protocol for Robust Reconstruction

5 ML Building Blocks
In this section, we provide constructions for our cru-
cial building blocks necessary to achieve secure training
and prediction for algorithms namely– i) Linear Regres-
sion, ii) Logistic Regression, iii) Deep Neural Network
(DNN) and iv) Binarized Neural Network (BNN). We
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provide the formal details of the corresponding lemmas
and proofs to Appendix C.

5.1 Arithmetic/Boolean Couple Sharing
Primitive

Two parties, either {V1,V2} (set V) or {E1,E2} (set E)
own a common value x and want to create a J·K- sharing
of x. We abstract out this procedure (Fig 6) and define
it as couple sharing of a value.

Case 1: (S = E)

• Input: E1 and E2 input x while others input ⊥.
• Output: Parties obtain JxK as the output.

– Parties set σ1
x = 0 and σ2

x = 0. Parties in E and V1
collectively sample random µ1

x ∈ Z2` .
– E1 and E2 set µ2

x = x − µ1
x. Parties then execute

Πbic(E1,E2, µ2
x,V2,V1), such that V2 receives µ2

x.

Case 2: (S = V)

• Input: V1 and V2 input x while others input ⊥.
• Output: Parties obtain JxK as the output.

– Parties set µ1
x = 0 and µ2

x = 0. Parties in V and E1
collectively sample random σ1

x ∈ Z2` .
– V1 and V2 set σ2

x = x − σ1
x. Parties then execute

Πbic(V1,V2, σ2
x5,E2,E1), such that E2 receives σ2

x.

Fig. 6. ΠcSh(S, x): Protocol to generate couple sharing of x

On a high level when set S = E, in order to share a value
x, parties set σ1

x = σ2
x = 0. A random µ1

x is collectively
sampled and the owners of the value set µ2

x such that
µ1
x +µ2

x = x and send µ2
x to V2 using Πbic protocol. The

shares of parties can be viewed as:

E1 : JxKE1
= (0, µ1

x, µ
2
x) V1 : JxKV1

= (0, 0, µ1
x)

E2 : JxKE2
= (0, µ1

x, µ
2
x) V2 : JxKV2

= (0, 0, µ2
x)

For the case when set S = V and value x, parties in
V and E1 collectively sample random σ1

x followed by V
setting σ2

x = −x− σ1
x and robustly sending it to E2.

E1 : JxKE1
= (σ1

x, 0, 0) V1 : JxKV1
= (σ1

x, σ
2
x, 0)

E2 : JxKE2
= (σ2

x, 0, 0) V2 : JxKV2
= (σ1

x, σ
2
x, 0)

5.2 Dot Product

Given vectors ~x and ~y, each of size d, the goal is to com-
pute the dot product z = ~x�~y =

∑d
i=1 xiyi. The recent

works of ABY3 and ASTRA have tackled dot product
computation in the semi-honest setting with cost equal
to that of a single multiplication thus, making the to-

tal cost independent of the vector size. However, in the
malicious setting, their techniques become expensive,
with cost dependent on the vector size. In this work, we
remove this dependency and retain the cost to be the
same as that of a single multiplication. This indepen-
dence stems from the peculiar structure of our sharing
and our robust multiplication method. On a high level,
instead of calling Πbic protocol for A1i,A2i,B1i and B2i
corresponding to each product zi = xiyi, the parties add
up their shares and then invoke Πbic once for each of the
summed up share. To facilitate this modification, veri-
fiers also adjust δ2

xy =
∑d
i=1 δxiyi − δ1

xy before sending to
E2. Formal details are presented in Fig 7 below.

• Input: Parties input their J~xK and J~yK shares.
• Output: Parties obtain JzK as output, where z = ~x� ~y.

– Parties in V and E1 collectively sample σ1
z and δ1

xy, while
parties in V and E2 together sample σ2

z .
– Verifiers V1,V2 compute δxy = Σdi=1σxiσyi , set δ2

xy = δxy−
δ1

xy and invoke Πbic(V1,V2, δ2
xy,E2,E1), such that E2 receives

δ2
xy.

– Parties in V and E1 collectively sample ∆1. Parties V1 and
E1 compute A1 = Σdi=1(−µ1

xi
σ1
yi
−µ1

yi
σ1
xi

) +σ1
z + δ1

xy + ∆1
and invoke Πbic(V1,E1,A1,E2,V2), such that E2 receives
A1.

– Similarly, parties in V and E2 collectively sample ∆2. Par-
ties V1 and E2 compute A2 = Σdi=1(−µ1

xi
σ2
yi
− µ1

yi
σ2
xi

) +
σ2

z + δ2
xy + ∆2 and invoke Πbic(V1,E2,A2,E1,V2), such that

E1 receives A2.
– V2 and E1 compute B1 = Σdi=1(−µ2

xi
σ1
yi
− µ2

yi
σ1
xi

) −∆1
and invoke Πbic(V2,E1,B1,E2,V1). Similarly, V2 and E2
compute B2 = Σdi=1(−µ2

xi
σ2
yi
− µ2

yi
σ2
xi

)−∆2 and execute
Πbic(V2,E2,B2,E1,V1).

– Evaluators compute µz = µxµy + A1 + A2 + B1 + B2
locally. Parties in E and V1 collectively sample µ1

z fol-
lowed by evaluators setting µ2

z = µz − µ1
z and execute

Πbic(E1,E2, µ2
z ,V2,V1) for V2 to receive µ2

z .

Fig. 7. Πdp(J~xK, J~yK): Dot Product of two vectors

5.3 MSB Extraction

The goal is to check if u < v, given two elements JuK
and JvK. Most state-of-the-art protocols [MZ17, MR18]
adopt a circuit based approach to perform comparison
which is a bottleneck for efficiency. However recently,
ASTRA [CCPS19] proposed a solution for 3 parties
that is free of any circuits. Inspired from their idea, we
present a solution that consumes only 16`+4 bits in to-
tal. The problem of comparison can be reduced to check-
ing the MSB of the value, represented as msb(a), where
a = u − v. If u < v, then msb(a) = 1, else 0. Evaluators
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collectively sample random r ∈ Z2` , compute msb(r) and
generate Jmsb(r)KB. Parties then execute Πmult on r and
a, followed by reconstruction of ra towards V1 and V2.
Verifiers then compute msb(ra) and generate Jmsb(ra)KB.
Parties locally XOR their boolean shares of msb(r) and
msb(ra) to obtain Jmsb(a)KB. The formal protocol is pre-
sented in Figure 8 below.

• Input: Parties input their JaK shares.

• Output: Parties obtain Jmsb(a)KB as the output.

– Parties in E sample random r ∈ Z2` and set p = msb(r).
– Parties execute ΠcSh(E, r) and ΠB

cSh(E, p) to generate JrK
and JpKB respectively.

– Parties execute Πmult(JrK, JaK) to generate JraK. Parties also
execute Πbic(E1,E2, µ2

ra,V1,V2) and Πbic(E1,E2, µ1
ra,V2,V1)

to reconstruct ra towards V1 and V2 respectively. Verifiers
then set q = msb(ra).

– Parties execute ΠB
cSh(V, q) to generate JqKB followed by

locally computing Jmsb(a)KB = JpKB ⊕ JqKB.

Fig. 8. Πmsb(JaK): Extraction of MSB from a value

5.4 Truncation

We use `-bit integers in signed 2′s complement form to
represent a decimal value where the sign of the decimal
value is represented by the most significant bit (MSB).
Consider a decimal value z represented in the signed 2’s
complement form. We use dz to denote the least signifi-
cant bits that represent its fractional part and iz = `−dz
to represent its integral part. It is observed that in the
face of repeated multiplications, dz and iz needed to
represent the output z keeps doubling with every mul-
tiplication and can eventually lead to an overflow. To
avoid this multiplication overflow while preserving the
accuracy and correctness, truncation is performed at the
output of a multiplication gate. Truncation of a value
z is defined as zt = z/2dz , where the value z is right
arithmetic shifted by dz bits.

SecureML [MZ17] proposed an efficient truncation
method for the two-party setting, where the parties lo-
cally truncate the shares after a multiplication. They
showed that this technique introduces at most 1 bit
error in the least significant bit (LSB) position and
thus causes a minor reduction in the accuracy. Later
ABY3 [MR18] showed that this idea cannot be triv-
ially extended to three party setting and proposed an
alternative technique to achieve truncation. Their main
idea revolves around generating (JrK, JrtK) pair, where r
is a random ring element and rt = r/2d. Parties then
compute z − r in clear and locally truncate it to ob-

tain (z− r)t. This is followed by generating J(z− r)t
K and

adding it to JrtK to obtain JztK. Similar to SecureML, this
technique may also incur a one-bit error in the LSB po-
sition of zt. To generate (JrK, JrtK), ABY3 requires two
expensive circuit evaluations and leading to a total cost
of more than 100 ring elements per multiplication. While
we adopt ABY3’s idea of using (r, rt) pair in our Πmult
protocol to achieve truncation, we remove the need of
expensive circuits and maintain the total cost to 14 ring
elements.

We begin with the generation of (r, rt) pair. Par-
ties in V and E1 sample random r1 ∈ Z2` , while par-
ties in V and E2 sample r2. Verifiers V1 and V2 set
r = r1 + r2. Then parties V1 and V2 locally truncate r to
obtain rt and execute ΠcSh to generate JrtK. Thus, the
pair ([r], JrtK) is generated. Unlike Πmult (Fig 4), eval-
uators instead reconstruct (z − r), followed by locally
truncating it to obtain (z− r)t. Evaluators execute ΠcSh
to generate J(z− r)t

K followed by locally adding to JrtK

to obtain JztK. The formal details of our protocol ΠmulTr
appears in Fig 9 below.

• Input: Parties input their JxK and JyK shares.
• Output: Parties obtain JztK as output, where zt = (xy)t.

– Parties in V and E1 collectively sample σ1
z and r1, while

parties in V and E2 together sample σ2
z and r2.

– Verifiers set r = r1 + r2 and truncate r by d bits to obtain
rt. Parties execute ΠcSh(V, rt) to generate JrtK sharing.

– Verifiers locally set δxy = σx ·σy and compute δ2
xy = δxy−

δ1
xy , where δ1

xy is collectively sampled by parties in V and
E1. Parties then execute Πbic(V1,V2, δ2

xy,E2,E1), such that
E2 receives δ2

xy.
– Parties in V and E1 collectively sample ∆1. Parties V1
and E1 compute A1 = −µ1

xσ
1
y − µ1

yσ
1
x + δ1

xy − r1 + ∆1 and
execute Πbic(V1,E1,A1,E2,V2), such that E2 receives A1.

– Similarly, parties in V and E2 collectively sample ∆2. Par-
ties V1 and E2 compute A2 = −µ1

xσ
2
y −µ1

yσ
2
x +δ2

xy− r2 +∆2
and execute Πbic(V1,E2,A2,E1,V2) , such that E1 receives
A2.

– Parties V2 and E1 compute B1 = −µ2
xσ

1
y − µ2

yσ
1
x − ∆1

and execute Πbic(V2,E1,B1,E2,V1) . Similarly, V2 and
E2 compute B2 = −µ2

xσ
2
y − µ2

yσ
2
x − ∆2 and execute

Πbic(V2,E2,B2,E1,V1) .
– Evaluators compute z− r = µxµy + A1 + A2 + B1 + B2
and truncate it by d bits to obtain (z− r)t .

– Parties execute ΠcSh(E, (z− r)t) to generate J(z− r)tK

sharing and locally add to obtain JztK = J(z− r)tK + JrtK

Fig. 9. ΠA
mulTr(x, y): Truncation Protocol
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5.5 Bit Conversion

Here, we describe a protocol to transform J·KB-sharing
of bit b to its arithmetic equivalent. For this transfor-
mation, we use the following equivalence relation:

b = σb ⊕ µb = µb′ + σb′ − 2µb′σb′

where µb′ and σb′ denote the bits µb and σb respectively
over Z2` . Parties who hold µb and σb in clear convert
them to µb′ and σb′ respectively. Parties generate J·K-
sharing of σb′ and µb′ by executing ΠcSh followed by
multiplication of Jµb′K and Jσb′K. We call the resultant
protocol as Πbtr and the formal details are given below.

• Input: Parties input their JbKB shares.
• Output: Parties obtain JbK as the output.

– Parties execute ΠcSh(V, σb′ ) and ΠcSh(E, µb′ ) to generate
Jσb′K and Jµb′K respectively.

– Parties execute Πmult(Jµb′K, Jσb′K) to generate Jµb′σb′K,
followed by locally computing JbK = Jµb′K + Jσb′K −
2 Jµb′σb′K.

Fig. 10. Πbtr(JbKB): Conversion of a bit to arithmetic equiva-
lent

We observe that cost of multiplication in Πbtr can
be reduced from 12` to 10` bits. Note that the value σµb′

is set to zero, when ΠcSh is executed to generate Jµb′K.
This implies δµb′σb′ = 0 and thus removes the extra call
to Πbic protocol.

5.6 Bit Insertion

Given a bit b ∈ {0, 1} in J·KB-shared form and x ∈ Z2`

in J·K-shared form, we have to compute JbxK. A trivial
solution is to convert JbKB to JbK using Πbtr followed by a
multiplication with JxK, which requires a total of 26 ring
elements and 10 rounds. Instead, we propose a better
solution that requires 18` ring elements and 5 rounds
in total. We can view the equation for bit insertion as
follows:

µbx = (µb ⊕ σb) · (µx − σx) + σbx

= (µb′ + σb′ − 2µb′σb′ ) · (µx − σx) + σbx

= γb′x − µb′σx + (µx − 2γb′x)σb′ + (2µb′ − 1)δb′x + σbx

= γb′x + (−µ1
b′σx + (µ1

x − 2γ1
b′x)σb′ + (2µ1

b′ − 1)δb′x + σbx)

+ (−µ2
b′σx + (µ2

x − 2γ2
b′x)σb′ + (2µ2

b′ − 1)δb′x)

= γb′x + (A1 + A2) + (B1 + B2)

where γb′x = µb′µx, δb′x = σb′σx and µb′ , σb′ represent
µb and σb over Z2` respectively. In the above equation,
we observe that, given the [·]-shares of µb′ , σb′ , γb′x and
δb′x, parties can robustly compute J·K-sharing of µbx.

The protocol proceeds as follows: Parties begin by gen-
erating [·]-shares of µb′ , γb′x towards set V and σb′ , δb′x
towards set E, so that parties can compute A1, A2, B1
and B2. This is followed by parties executing Πbic pro-
tocol for each Ai and Bi, so that E1 and E2 are able to
compute µbx. The formal details appear in Fig 11.

• Input: Parties input their JbKB and JxK shares.
• Output: Parties obtain JbxK as the output.

– Parties in V and E1 collectively sample random σ1
bx ∈ Z2` ,

while parties in V and E2 together sample random σ2
bx.

– Parties in V and E1 collectively sample random σ1
b′ fol-

lowed by V1 and V2 setting σ2
b′ = σb′ − σ1

b′ . Parties then
execute Πbic(V1,V2, σ2

b′ ,E2,E1), such that E2 receives σ2
b′ .

The same procedure is used for E2 to receive δ2
b′x.

– Parties in E and V1 collectively sample random µ1
b′ fol-

lowed by E1 and E2 setting µ2
b′ = µb′ − µ1

b′ . Parties then
execute Πbic(E1,E2, µ2

b′ ,V2,V1), such that V2 receives µ2
b′ .

The same procedure is used for V2 to receive γ2
b′x.

– Parties in V and E1 collectively sample ∆1. Parties V1
and E1 compute A1 = −µ1

b′σ
1
x + (µ1

x − 2γ1
b′x)σ1

b′ + (2µ1
b′ −

1)δ1
b′x + σ1

bx + ∆1 and invoke Πbic(V1,E1,A1,E2,V2).
– Similarly, parties in V and E2 collectively sample ∆2. Par-
ties V1 and E2 compute A2 = −µ1

b′σ
2
x + (µ1

x − 2γ1
b′x)σ2

b′ +
(2µ1

b′−1)δ2
b′x+σ2

bx+∆2 and invoke Πbic(V1,E2,A2,E1,V2).
– Parties V2 and E1 compute B1 = −µ2

b′σ
1
x +

(µ2
x − 2γ2

b′x)σ1
b′ + (2µ2

b′ − 1)δ1
b′x − ∆1 and invoke

Πbic(V2,E1,B1,E2,V1) . Similarly, V2 and E2 compute
B2 = −µ2

b′σ
2
x + (µ2

x − 2γ2
b′x)σ2

b′ + (2µ2
b′ − 1)δ2

b′x −∆2 and
invoke Πbic(V2,E2,B2,E1,V1).

– Evaluators compute µb′x = A1 + A2 + B1 + B2 + γb′x
locally. Parties in E and V1 collectively sample µ1

b′x fol-
lowed by evaluators setting µ2

b′x = µb′x−µ1
b′x and invoking

Πbic(E1,E2, µ2
b′x,V2,V1).

Fig. 11. Πbin(JbKB, JxK): Insertion of bit b in a value

6 Secure Prediction
In this section, we provide detailed protocols for the pre-
diction phase of the following ML algorithms – i) Lin-
ear Regression, ii) Logistic Regression, iii) Deep Neural
Network and iv) Binarized Neural Network, using the
building blocks constructed earlier in Section 5.

6.1 Our Model

We consider a server-aided setting where both model
ownerM and client C outsource their trained model pa-
rameters and query to a set of four non-colluding servers
{V1,V2,E1,E2}, in a J·K-shared fashion. The servers then
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compute the function using our 4PC protocol and fi-
nally reconstruct the result towards C. We assume the
existence of a malicious adversary A, who can corrupt
either M or C and at most one among {V1,V2,E1,E2}.
Recall that E and V denote the set of servers {E1,E2}
and {V1,V2} respectively. We begin with the assump-
tion that both M and C have already outsourced their
input vectors to {V1,V2,E1,E2}.

Notations: We use bold smalls to denote a vector.
Given a vector ~a, the ith element in the vector is denoted
by ai. Model Owner M holds a vector of trained model
parameters denoted by ~w. C’s query is denoted by ~z.
Both ~w and ~z are vectors of size d, where d denotes the
number of features.

6.2 Linear Regression

In case of linear regression model, the output of the
prediction phase for a query ~z is given by ~w � ~z =∑d
i=1 wizi. Thus the prediction phase boils down to

servers executing Πdp protocol with inputs as J~wK and
J~zK, to obtain J·K shares of ~w� ~z.

6.3 Logistic Regression

The prediction phase of logistic regression model for a
query ~z is given by sig(w̃� z̃) , where sig(·) denotes
the sigmoid function. The sigmoid function is defined
as sig(u) = 1

1+e−u . SecureML [MZ17] showed the draw-
backs of using sigmoid function for a general MPC set-
ting and proposed a MPC friendly approximation, de-
fined as follows :

sigx(u) =


0 u < −1

2
u + 1

2 −1
2 ≤ u ≤ 1

2
1 u > 1

2

The above equation can also be viewed as, sigx(u) =
b1b2(u + 1/2) + b2, where bit b1 = 1 if u + 1/2 < 0, bit
b2 = 1 if u − 1/2 < 0. Servers execute Πmsb(u + 1/2)
and Πmsb(u− 1/2) to generate Jb1K

B and Jb2K
B respec-

tively. Servers can locally compute JbiK
B from JbiK

B. Af-
ter this, ΠB

mult(Jb1K, Jb2K) is executed to generate JbKB,
where b = b1b2. Servers then invoke Πbin on JbKB and
J(u + 1/2)K to generate Jb1b2(u + 1/2)K, and Πbtr(Jb2K

B)
to generate Jb2K. Servers then locally add their shares
to obtain Jsigx(u)K. Thus the cost for one query predic-
tion in a logistic regression model is the same as the
cost of linear regression, plus the additional overhead of
computing sigx(~w ◦ ~z).

6.4 Deep Neural Networks (DNN)

All the techniques used to tackle the above models can
be easily extended to support neural network predic-
tion. We follow a similar procedure as ABY3, where
each node across all layers, use ReLU (rel(·)) as its
activation function. It comprises of computation of ac-
tivation vectors for all the layers of the network. The
activation vector for a given layer i of the network is
defined as ~ai = rel(~ui), where ~ui = Wi × ~ai−1 is a
matrix multiplication of weight matrix Wi with the
activation vector of the previous layer. Weight matrix
Wi ∈ Rni×ni−1 contains all the weights connecting the
nodes between layers i and i − 1, where ni represents
the number nodes in layer i. We set matrix ~a0 = ~z,
where ~z is the input query of the client. All the above
operations, that are needed for prediction, are simply
a composition of several multiplications, dot products
along with the evaluation of many ReLU functions. We
now define the ReLU function below and also explain
how to tackle it in our setting.

ReLU: The ReLU function is given as max(0, u).
We view it as rel(u) = bu, where bit b = 1 if u < 0, and
b is the complement of b. Servers execute Πmsb(u) to
generate JbKB. Servers locally compute JbK

B from JbKB,
followed by executing Πbin on JbK

B and JuK to generate
JbuK.

6.5 Binarized Neural Network (BNN)

MOBIUS [KCY+18] proposed a secure prediction pro-
tocol for BNN in two party setting with one semi-
honest corruption over Z2` . In the original work of
BNN [HCS+16], a batch normalization operation is per-
formed at the output of every hidden layer of the bina-
rized network, which requires bit-shifting mechanism.
Performing bit-shifting in two party setting is very ex-
pensive. As a countermeasure, MOBIUS proposed an al-
ternate solution for batch normalization with cost equal
to that of one multiplication. The alternate solution is
as follows: Suppose xil be the output of node i in the lth
hidden layer, instead of using bit-shifting to normalize
xil, they perform x′il = pilx

i
l+qil , where x′il is the normal-

ized output and pil , q
i
l are the normalization batch pa-

rameters for node i of hidden layer l, which are provided
byM . MOBIUS also showed that this method drops the
accuracy by a negligible amount. Inspired from the ideas
of MOBIUS, we now provide a secure prediction proto-
col for our setting. Note that, J·K-shares of the weight
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matrices Wl ∈ {−1, 1}nl×nl−1 , batch normalization pa-
rameters ~pl, ~ql, ∀l ∈ {1, . . . , lfinal} and the query ~z are
already available among the servers.

We describe our protocol layer by layer. We use nl to
denote the number of nodes in layer l. The computation
in each layer l consists of three stages: i) The first stage
comprises of matrix multiplication ~xl = Wl × f(~x′l−1),
where ~x′l−1 denotes an nl−1-sized vector and f(~x′l−1) de-
notes the vector obtained by applying activation func-
tion f on it. The activation function for a given value a
is defined as

f(a) =
{
−1 a < 0
1 a ≥ 0

The matrix multiplication can be viewed as nl dot prod-
uct (protocol Πdp) computations. ii) Servers, then per-
form batch normalization process on vector ~xl to obtain
~x′l = ~pl◦~xl+~ql, where ◦ denotes element wise multiplica-
tion. As evident, we use nl multiplications and additions
to compute the J·K-sharing of ~x′l. iii) This stage consists
of passing the ~x′l through the activation function f to
obtain f(~x′l). To compute the activation function f(a)
in a J·K-shared fashion, servers execute Πmsb on JaK to
extract the MSB msb(a), followed by executing Πbtr on
Jmsb(a)KB to generate Jmsb(a)K. Finally, the servers lo-
cally compute Jf(a)K = 2Jmsb(a)K−1. For the input layer
(l = 0), servers set f(~x′0) = ~z. Note that stage three is
not required at the output layer.

7 Implementation & Benchmarks
We show the practicality of our framework by provid-
ing implementation results and compare with ABY3, in
their respective settings over a ring of Z264 .

i) Experimental Setup: Our experiments have
been carried out both in the LAN and WAN setting.
In the LAN setting, our machines are equipped with
Intel Core i7-7790 CPU with 3.6 GHz processor speed
and 32 GB RAM. Each of the four cores were able to
handle eight threads, resulting in a total of 32 threads.
We had a bandwidth of 1Gbps and an average round-
trip time (rtt) of ≈ 0.26ms. In the WAN setting, we use
Microsoft Azure Cloud Services (Standard D8s v3, 2.4
GHz Intel Xeon® E5-2673 v3 (Haswell), 32GB RAM, 8
vcpus) with machines located in North Central US (S1),
South East Asia (S2), Australia East (S3) and West
Europe (S4). Each of the eight cores was capable of
handling 16 threads resulting in a total of 128 threads.
The bandwidth was limited to 20Mbps and the average
rtt times are as follows:

S1-S2 S1-S3 S1-S4 S2-S3 S2-S4 S3-S4

161.76ms 197.03ms 97.32ms 116.36ms 225.34ms 236.56ms

We build on the ENCRYPTO library [CaTD17], follow-
ing the standards of C++11. Due to the unavailability
of the code of ABY3 [MR18], we implement their frame-
work for comparison. For our executions, we report the
average values over a run of 15 times.

ii) Parameters for Comparison: We consider
three parameters for comparison– a) Latency (calcu-
lated as the maximum runtime of the servers), b) Com-
munication complexity and c) Throughput (number of
operations per unit time). The latency and through-
put are evaluated over both LAN and WAN settings.
The communication complexity is measured indepen-
dent of the network. For the aforementioned algorithms,
the throughput is calculated as the number of queries
that can be computed per second and min in LAN and
WAN respectively.

iii) Server Assignment: We assign the roles to
the servers to maximize the performance of each of the
frameworks, that we use for benchmarking. The table
below provides the assignment of roles to the corre-
sponding servers. For the 4PC setting, V1,V2 represent
the set of verifiers while E1,E2 represent the set of eval-
uators. P0, P1, P2 represent the parties, in the 3PC set-
ting. we omit comparison with ASTRA framework as
ABY3 outperforms ASTRA in terms of total communi-
cation (ref. Table 1).

Work S1 S2 S3 S4

FLASH E1 E2 V1 V2

ABY3 P1 P2 P3 −

Table 3. Server Assignment for FLASH and ABY3 frameworks

iv) Datasets: We pick real-world datasets to
measure the throughput for the prediction phase. The
datasets we pick have features ranging from 13 to 784,
which cover a range of feature sizes for a wide span of
commonly used datasets.

ML Algorithm Dataset #features #samples

Linear Reg. Boston Housing Prices [HR78] 14 ≈500
Weather Conditions [NOA17] 31 ≈119000

Logistic Reg. Candy Power Ranking [Hic17] 13 ≈85
Food Recipes [Dar17] 680 ≈20000

DNN & BNN MNIST [LC10] 784 ≈70000

Table 4. Real World datasets for Comparison
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For Linear Regression, we use Boston Housing
Prices Dataset (Boston) [HR78] and the dataset ob-
tained from [NOA17] about the Weather Conditions
in World War Two (Weather). The Boston dataset has
≈ 500 samples, each with 14 features, while the Weather
dataset has ≈ 119, 000 samples with 31 features.

For Logistic Regression we use the dataset from
[Dar17] which categorizes and gives the rating for
recipes (Recipes) and Candy Power Ranking (Candy)
dataset from [Hic17] which predicts the most popu-
lar Halloween candy. The Candy dataset is small with
only 13 features and ≈ 85 samples whereas the Recipe
dataset is large with 680 features and ≈ 20, 000 samples.

For Deep Neural Network and Binarized Neural
Network, we use MNIST [LC10] which contains 784
pixel images of handwritten numbers, each of size 28×
28. We also use synthetic datasets as it provides freedom
to tune the number of features parameter and showcase
the improvement with increasing feature size.

7.1 ML Building Blocks

We begin by comparing our protocols for some of the
crucial ML building blocks, namely i) Dot Product, ii)
MSB Extraction and iii) Truncation, against the state
of the art protocols of ABY3 [MR18]. The comparison is
mainly to show the substantial improvement we achieve
in each building block when we shift from 3PC to 4PC
setting, along with robustness guarantee. Later in Sec-
tion 7.2 and 7.3 we show how the improvement in these
blocks help us achieve massive improvements (Table.2)
for our ML algorithms.

i) Dot Product: Dot Product is one of the vital
building blocks for many machine learning algorithms
like Linear Regression, Logistic Regression and Neural
Network to name a few.

Work LAN Latency (ms) WAN Latency (s)

ABY3 3.55 1.10

FLASH 1.51 1.08

Table 5. Latency of 1 dot product computation for 784 features

Table 5 gives the comparison of our work with
ABY3 with respect to the completion of one dot prod-
uct computation for d = 784 features. We observe that
for the LAN setting, even though the number of rounds
required for completion of one dot product execution
for both frameworks is 5 rounds, the latency of ABY3
is still twice of our FLASH. This discrepancy happens
because the rtt of the network varies drastically with

increase in the size of communication. In case of ABY3,
due to their dot product protocol being dependent on
the number of features the per party communication
turns out to be 42.8KB, whereas our protocol incurs a
tiny cost of 0.09KB. Such a discrepancy is not observed
in WAN as the communication threshold to vary the rtt
is very high, under which all our protocols operate. We
also plot the number of dot product computations that
can be performed per sec, for varying feature sizes.
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Fig. 12. # of dot product computations with increasing features.

It is clear from Figure.12 that varying the number of
features has minimal impact on our throughput, since
the communication cost of ours is independent of the
feature size, while ABY3 suffers with increase in num-
ber of features. Thus for any machine learning algorithm
which is heavily dependent on dot product computa-
tions, our protocol outperforms ABY3.

ii) MSB Extraction: MSB Extraction is the crux
for many classification algorithms. Deep Neural Net-
work and Binarized Neural Network where a large num-
ber of sequential comparisons are required. Table 6 gives
the comparison of our work with ABY3, with respect to
the completion of one MSB Extraction.

Work LAN Latency (ms) WAN Latency (s)

ABY3 3.53 2.29

FLASH 1.77 1.31

Table 6. Latency for single execution of MSB Extraction protocol

We also provide a latency graph with respect to
the number of sequential comparisons to emphasize the
effect of having a constant round protocol as opposed
to a non-constant one.

We observe from Figure 13 that our protocol out-
performs ABY3 by a large margin with the increase in
sequential comparisons. This is because our protocol re-
quires only 6 rounds per comparison as opposed to 11
rounds for ABY3, when instantiated over a 64 bit ring.
For the prediction phase of an ML algorithm like Deep
Neural Network, the gap will keep growing bigger with
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Fig. 13. Latency with increasing sequential comparisons

the increase in depth (# hidden layers) of the neural
network.

iii) Truncation: To showcase the effect of our
efficient truncation protocol, we compare our protocol
with that of ABY3. Table 7 gives the comparison with
respect to the completion of a single execution of the
protocol.

Work LAN Latency (ms) WAN Latency (s)

ABY3 1.52 1.11

FLASH 1.51 1.07

Table 7. Latency for a single execution of Truncation protocol

In the case of ABY3, though the truncation protocol
takes 2`− 1 rounds, the latency of both the frameworks
in Table.7 are almost identical. This is because the goal
of ABY3 was to have a high throughput framework,
thus they compute ≈ 220 parallel instances of ([r], JrtK)
pairs so that the amortized time for a single execution
of truncation protocol reduces. If we consider only a sin-
gle instance of ([r], JrtK) pair, then the cost blows up to
≈ 760ms in the LAN and ≈ 26 sec in the WAN setting.
On the flip side, we do not have any such restriction on
the number of ([r], JrtK) pair instances and the latency
remains the same even if only one pair is required. Ta-
ble 8 provides the throughput, measured as the number
of multiplications with truncation performed, over both
LAN (#mult/sec) and WAN (#mult/min) settings.

Work LAN WAN

#mult/sec Improv. #mult/min Improv.

ABY3 0.45M
8.8×

4.76M
8.81×

FLASH 3.97M 0.54M

Table 8. Throughput Comparison wrt # multiplications with
truncation

We observe a minimum improvement of 8.8× over
ABY3. The improvement comes from the fact that
ABY3 requires ≈ 6300 bits per truncation as compared
to 896 bits for our case, when instantiated over a 64 bit
ring. Our protocol will outperform ABY3 for all the ML

algorithms that require repeated multiplications in the
prediction phase.

7.2 Linear and Logistic Regression

In this section, we compare the concrete improve-
ment of our framework against ABY3, for Linear and
Logistic Regression. The performance is reported in
terms of throughput of the protocol, the units being
# queries/sec over LAN and # queries/min over WAN.
We begin by comparing our framework with ABY3 over
synthesized datasets as it provides us the freedom to
tune the number of features parameter and showcase
the improvement with the increase in #features. Ta-
ble 9 provides a throughput comparison for #features
d = 10, 100 and 1000.

Setting # Features Ref.
Linear
Reg.

Logistic
Reg.

LAN
(ms)

10 ABY3 1.68 5.59
FLASH 1.51 3.26

100 ABY3 2.03 5.94
FLASH 1.51 3.26

1000 ABY3 3.63 7.54
FLASH 1.52 3.27

WAN
(sec)

10/100/1000 ABY3 1.11 3.78
FLASH 1.08 2.46

Table 9. Latency of frameworks for Linear and Logistic Reg.

As mentioned earlier in Section.7.1, the increase
in feature size changes the LAN latency for ABY3
from 1.68ms to 3.63ms and 5.59ms to 7.54ms for Linear
and Logistic regression respectively, whereas our latency
stays stable to ≈ 1.5ms and ≈ 3.26ms for the same. The
reason for the stability in our latency is the underlying
dot product which is independent of the feature size. We
now test on real-world datasets as mentioned in Table
4 for Linear and Logistic Regression. Figures 14 and 15
provide a comparison with ABY3 in terms of the num-
ber of queries computed per second and minute in LAN
and WAN setting respectively. For Linear Regression,
we observe a minimum throughput gain of ≈ 38×. The
improvement primarily comes from the underlying Πdp
protocol and its independence of feature size property.
Similarly, for Logistic Regression, we observe a through-
put gain of around ≈ 48×, where protocols Πdp and Πmsb
become the prime contributors for the improvements in
Logistic Regression.
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7.3 Deep and Binarized Neural Network

In this section, we compare our framework with ABY3,
for DNN and BNN. The accuracy of our predictions
has the same bit-error that ABY3 mentions due to
the similarity in the approach to truncation. We begin
by comparing (Table 10) over synthesized datasets and
show the improvement in terms of latency for #features
d = 10, 100 and 1000.

Setting # Features Ref. DNN BNN

LAN
(ms)

10 ABY3 59.71 59.73
FLASH 18.65 23.37

100 ABY3 67.78 67.77
FLASH 18.74 23.69

1000 ABY3 146.37 147.36
FLASH 19.06 23.80

WAN
(sec)

10/100/1000 ABY3 13.56 13.56
FLASH 11.24 13.68

Table 10. Latency of frameworks for DNN and BNN

Figure 16 also shows how the depth of the neural
network affects the throughput of the two frameworks.
We consider a neural network with each hidden layer
having 128 nodes and the final output layer having 10

nodes. The network is tested on MNIST dataset with
d = 784 features.

It is clear from Figure 16, that we achieve impressive
throughput gains of ≈ 200× and ≈ 18× for LAN and
WAN setting, even when the depth of the neural net-
work goes up to 8 hidden layers. Such massive improve-
ments primarily come from amalgamation of the im-
provements observed in the underlying building blocks
(Section 7.1). Similar to DNN, we also achieve simi-
lar massive improvements for the case of BNN due to
the aforementioned reasons. When tested on MNIST
dataset (d = 784 features) for a BNN having 2 hidden
layers, we observed throughput gains of ≈ 277× in LAN
and ≈ 23.8× in WAN setting.
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Fig. 16. Throughput Comparison for DNN with increasing num-
ber of hidden layers.

Acknowledgment: We thank Ananth Raghunathan,
Yupeng Zhang and the anonymous reviewers of PETS
2020 for their valuable comments, which helped us im-
prove the paper.

References
[ABF+16] T. Araki, A. Barak, J. Furukawa, Y. Lindell, A. Nof,

and K. Ohara. DEMO: high-throughput secure three-
party computation of kerberos ticket generation. In
ACM CCS, 2016.

[ABF+17] T. Araki, A. Barak, J. Furukawa, T. Lichter, Y. Lin-
dell, A. Nof, K. Ohara, A. Watzman, and O. Wein-
stein. Optimized Honest-Majority MPC for Malicious
Adversaries - Breaking the 1 Billion-Gate Per Second
Barrier. In IEEE S&P, 2017.

[ADAM19] A.Barak, D.Escudero, A.P.K.Dalskov, and M.Keller.
Secure evaluation of quantized neural networks.
IACR Cryptology ePrint Archive, 2019.

[AFL+16] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and
K. Ohara. High-Throughput Semi-Honest Secure
Three-Party Computation with an Honest Majority.
In ACM CCS, 2016.

[AFS19] A.Tueno, F.Kerschbaum, and S.Katzenbeisser. Pri-
vate evaluation of decision trees using sublinear cost.
In PoPETs, 2019.



FLASH Framework 17

[ÁMJ+18] Á.Kiss, M.Naderpour, J.Liu, N. Asokan, and
T.Schneider. Sok: Modular and efficient private
decision tree evaluation. In PoPETs, 2018.

[BBC+19] D. Boneh, E. Boyle, H. Corrigan-Gibbs, N. Gilboa,
and Y. Ishai. How to prove a secret: Zero-knowledge
proofs on distributed data via fully linear pcps.
CRYPTO, 2019.

[BCD+09] P. Bogetoft, D. L. Christensen, I. Damgård,
M. Geisler, T. P. Jakobsen, M. Krøigaard, J. D.
Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. I.
Schwartzbach, and T. Toft. Secure Multiparty Com-
putation Goes Live. In FC, 2009.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Com-
pleteness Theorems for Non-Cryptographic Fault-
Tolerant Distributed Computation (Extended Ab-
stract). In ACM STOC, 1988.

[BHPS19] M. Byali, C. Hazay, A. Patra, and S. Singla. Fast
actively secure five-party computation with security
beyond abort. In ACM CCS, 2019.

[BJPR18] M. Byali, A. Joseph, A. Patra, and D. Ravi. Fast
secure computation for small population over the
internet. ACM CCS, 2018.

[BLW08] D. Bogdanov, S. Laur, and J. Willemson. Sharemind:
A framework for fast privacy-preserving computa-
tions. In ESORICS, 2008.

[BNP08] A. Ben-David, N. Nisan, and B. Pinkas. Fairplaymp:
a system for secure multi-party computation. In
ACM CCS, 2008.

[CaTD17] Cryptography and Privacy Engineering Group
at TU Darmstadt. ENCRYPTO Utils. https:
//github.com/encryptogroup/ENCRYPTO_utils,
2017.

[CCPS19] H. Chaudhari, A. Choudhury, A. Patra, and
A. Suresh. ASTRA: High-throughput 3PC over
Rings with Application to Secure Prediction. In ACM
CCSW, 2019.

[CGH+18] K. Chida, D. Genkin, K. Hamada, D. Ikarashi,
R. Kikuchi, Y. Lindell, and A. Nof. Fast large-scale
honest-majority MPC for malicious adversaries. In
CRYPTO, 2018.

[CL14] R. Cohen and Y. Lindell. Fairness versus guaranteed
output delivery in secure multiparty computation. In
ASIACRYPT, 2014.

[Cle86] R. Cleve. Limits on the security of coin flips when
half the processors are faulty (extended abstract). In
ACM STOC, 1986.

[Dar17] H. Darwood. Epicurious - recipes with rating and
nutrition. 2017.

[DKL+13] I. Damgård, M. Keller, E. Larraia, V. Pastro,
P. Scholl, and N. P. Smart. Practical covertly se-
cure MPC for dishonest majority - or: Breaking the
SPDZ limits. In ESORICS, 2013.

[DOS18] I. Damgård, C. Orlandi, and M. Simkin. Yet another
compiler for active security or: Efficient MPC over
arbitrary rings. CRYPTO, 2018.

[DPSZ12] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias.
Multiparty Computation from Somewhat Homomor-
phic Encryption. In CRYPTO, 2012.

[DSZ15] D. Demmler, T. Schneider, and M. Zohner. ABY
- A Framework for Efficient Mixed-Protocol Secure

Two-Party Computation. In NDSS, 2015.
[EKN+17] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M.

Swetter, H. M. Blau, and S. Thrun. Dermatologist-
level classification of skin cancer with deep neural
networks. Nature, 2017.

[EOP+19] H. Eerikson, C. Orlandi, P. Pullonen, J. Puura, and
M. Simkin. Use your brain! arithmetic 3pc for any
modulus with active security. IACR Cryptology
ePrint Archive, 2019.

[FLNW17] J. Furukawa, Y. Lindell, A. Nof, and O. Weinstein.
High-Throughput Secure Three-Party Computation
for Malicious Adversaries and an Honest Majority. In
EUROCRYPT, 2017.

[Gei07] M. Geisler. Viff: Virtual ideal functionality frame-
work, 2007.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to
Play any Mental Game or A Completeness Theorem
for Protocols with Honest Majority. In STOC, 1987.

[GRW18] S. D. Gordon, S. Ranellucci, and X. Wang. Secure
computation with low communication from cross-
checking. In ASIACRYPT, 2018.

[HCS+16] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv,
and Y. Bengio. Binarized neural networks. In NIPS,
2016.

[Hic17] W. Hickey. The ultimate halloween candy power
ranking. 2017.

[HR78] D. Harrison and D. L Rubinfeld. Hedonic housing
prices and the demand for clean air. Journal of
Environmental Economics and Management, 1978.

[IKKPC15] Y. Ishai, R. Kumaresan, E. Kushilevitz, and
A. Paskin-Cherniavsky. Secure computation with
minimal interaction, revisited. In CRYPTO, 2015.

[IKNP03] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Ex-
tending Oblivious Transfers Efficiently. In CRYPTO,
2003.

[JBAP19] J.So, B.Guler, A.S.Avestimehr, and P.Mohassel.
Codedprivateml: A fast and privacy-preserving frame-
work for distributed machine learning. CoRR, 2019.

[JVC18] C. Juvekar, V. Vaikuntanathan, and A. Chan-
drakasan. GAZELLE: A low latency framework for
secure neural network inference. In USENIX, 2018.

[KCY+18] H. Kitai, J. P. Cruz, N. Yanai, N. Nishida, T. Oba,
Y. Unagami, T. Teruya, N. Attrapadung, T. Mat-
suda, and G. Hanaoka. MOBIUS: model-oblivious
binarized neural networks. CoRR, 2018.

[LC10] Yann LeCun and Corinna Cortes. MNIST handwrit-
ten digit database. 2010.

[Lin16] Y. Lindell. Fast cut-and-choose-based protocols for
malicious and covert adversaries. J. Cryptology,
2016.

[LP07] Y. Lindell and B. Pinkas. An efficient protocol for
secure two-party computation in the presence of
malicious adversaries. In EUROCRYPT, 2007.

[MF06] P. Mohassel and M. K. Franklin. Efficiency tradeoffs
for malicious two-party computation. In PKC, 2006.

[MMH+19] M.S.Riazi, M.Samragh, H.Chen, K.Laine,
K.E.Lauter, and F.Koushanfar. XONN: xnor-based
oblivious deep neural network inference. 2019.

[MR18] P. Mohassel and P. Rindal. ABY3: A Mixed Protocol
Framework for Machine Learning. In ACM CCS,

https://github.com/encryptogroup/ENCRYPTO_utils
https://github.com/encryptogroup/ENCRYPTO_utils


FLASH Framework 18

2018.
[MRSV18] E. Makri, D. Rotaru, N. P. Smart, and F. Ver-

cauteren. EPIC: efficient private image classification
(or: Learning from the masters). CT-RSA, 2018.

[MRZ15] P. Mohassel, M. Rosulek, and Y. Zhang. Fast and
Secure Three-party Computation: Garbled Circuit
Approach. In CCS, 2015.

[MZ17] P. Mohassel and Y. Zhang. Secureml: A system for
scalable privacy-preserving machine learning. In IEEE
S&P, 2017.

[NO16] J. B. Nielsen and C. Orlandi. Cross and clean: Amor-
tized garbled circuits with constant overhead. In
TCC, 2016.

[NOA17] NOAA. Weather conditions in world war two. 2017.
[NV18] P. S. Nordholt and M. Veeningen. Minimising Com-

munication in Honest-Majority MPC by Batchwise
Multiplication Verification. In ACNS, 2018.

[PR18] A. Patra and D. Ravi. On the exact round complex-
ity of secure three-party computation. CRYPTO,
2018.

[RWT+18] M. S. Riazi, C. Weinert, O. Tkachenko, E. M.
Songhori, T. Schneider, and F. Koushanfar.
Chameleon: A hybrid secure computation frame-
work for machine learning applications. In AsiaCCS,
2018.

[SKP15] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet:
A unified embedding for face recognition and cluster-
ing. In IEEE CVPR, 2015.

[WGC19] S. Wagh, D. Gupta, and N. Chandran. Securenn:
Efficient and private neural network training. 19th
Privacy Enhancing Technologies Symposium, 2019.

[Yao82] A. C. Yao. Protocols for Secure Computations. In
FOCS, 1982.

A Comparison with [GRW18]
In this section we compare our work with state-of-the-
art 4PC protocol of [GRW18] in detail for the Abort
scenario.

A.1 4PC with Abort:

All the aforementioned robust protocols can be eas-
ily converted to the abort variant by tweaking the Bi-
convey primitive (Section 4.1). In case of abort setting,
parties S1 and S2 in the Bi-Convey primitive send x

and H(x) respectively to R, who accepts x if the hashes
match else aborts. Thus by swapping with the abort
variant of the primitive, all the building blocks achieve
security with abort. Table 11 provides round and com-
munication complexity comparison of both the variants
of the protocols.

Protocol Equation
FLASH (Abort) FLASH (Robust)

Rounds Comm. Rounds Comm.

Multiplication JxK.JyK→ Jx.yK 2 6` 5 12`

Dot Product J~x� ~yK = J
∑d

i=1 xiyiK 2 6` 5 12`

MSB Extraction JxK→ Jmsb(x)KB 4 8`+ 2 6 16`+ 4

Truncation JxK.JyK→ J(xy)tK 2 7` 5 14`

Bit Conversion JbKB → JbK 2 7` 5 14`

Bit Insertion JbKBJxK→ JbxK 2 9` 5 18`

Table 11. Comparison of Abort and Robust variants in FLASH.

As observed in Table 11, for the abort setting our
cost of multiplication protocol is 6 elements which turns
out to be the same as [GRW18]. But from a practical
viewpoint, if we cast ours and GRW18 multiplication
protocol into the offline-online paradigm, where the of-
fline phase generates the necessary offline values in order
for a fast online phase to be executed when the client
query becomes available, our protocol requires only 3
parties to be active (V2, E1 and E2) in the online phase,
whereas [GRW18] needs all parties to be active through-
out the entire execution. This is helpful, because now
the server associated with party V1 is only needed to
generate offline values and can be shut down for the en-
tirety of the online phase which will, in turn, save a lot
in terms of monetary cost for running the server on the
cloud (WAN) setting. Hence, even though the commu-
nication and round complexity of both the works turns
out to be the same with respect to a single multiplica-
tion, our work has better practical efficiency in terms of
the number of servers required in the online phase.
Table 12 provides a concrete comparison of our frame-
work with [GRW18] below.

Work Equation
Offline Phase Online Phase

Rounds Comm. Rounds Comm.

[GRW18]
JxK.JyK→ Jx.yK

1 2` 1 4`

Ours 1 3` 1 3`

Table 12. Comparison of FLASH with [GRW18] for the Abort
setting.

B Building Blocks and Security

B.1 Building Blocks

i) Collision Resistant Hash: Consider a hash func-
tion family H = K × L → Y. The hash function H
is said to be collision resistant if for all probabilis-
tic polynomial-time adversaries A, given the descrip-
tion of Hk where k ∈R K, there exists a negligible
function negl() such that Pr[(x1, x2) ← A(k) : (x1 6=
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x2) ∧ Hk(x1) = Hk(x2)] ≤ negl(κ), where m = poly(κ)
and x1, x2 ∈R {0, 1}m.

ii) Commitment Scheme: We use com(x) to
denote commitment of a value x. The commitment
scheme (com()) possess two properties, namely – i) hid-
ing, which ensures the privacy of value x given just
the commitment, and ii) binding, which prevents a cor-
rupt party from opening the commitment to a different
value x′ 6= x. The commitment scheme can be imple-
mented via a hash function H(), whose security can be
proved in the random-oracle model (ROM). For exam-
ple, (c, o) = (H(x||r), x||r) = Com(x; r).

B.2 Ideal World Functionalities
We prove the security of our protocols in the standard
real/ideal world paradigm where we compare the view
of the adversary in the real world and ideal world. In an
ideal world execution, each party sends its input to an
incorruptible trusted third party (TTP), who computes
the given function f() using the inputs received and
sends back the respective output to each party.

Fig 17 denotes the ideal functionality Fsetup that
establishes the shared randomness among the parties.

Fsetup interacts with the parties in P and the adver-
sary S. Fsetup picks random keys kE, kV, kE,V1 , kE,V2 , kV,E1 ,

kV,E2 , kP ∈ {0, 1}κ. Let yi denote the keys corresponding to
party Pi. Then
– yi = (kV, kE,V1 , kV,E1 , kV,E2 , kP ) when Pi = V1.
– yi = (kV, kE,V2 , kV,E1 , kV,E2 , kP ) when Pi = V2.
– yi = (kE, kV,E1 , kE,V1 , kE,V2 , kP ) when Pi = E1.
– yi = (kE, kV,E2 , kE,V1 , kE,V2 , kP ) when Pi = E2.

Output: Fsetup sends the keys yi to party Pi.

Fig. 17. Functionality Fsetup

B.3 4PC Protocol

We present the 4PC protocol in Fig 18 and the corre-
sponding ideal functionality appears in Fig 19.

Input Sharing: For each input value x, parties execute
Πsh(D, x), where D is the owner of value x.
Addition gate: For every addition gate z = x + y in the ckt,
parties execute Πadd(x, y, z).
Multiplication gate: For every multiplication gate (z = xy)
in the ckt, parties execute Πmult(x, y, z).

Output Computation: For every output value z, parties
execute Πoc.

Fig. 18. Π4PC: A 4PC Robust Protocol

Frobust receives input (Input, x) from party P ∈ {V1,V2,E1,

E2}. While honest parties send their input correctly, corrupt
parties may send arbitrary inputs as instructed by the adver-
sary A.

– For every party P , Frobust sets x to some pre-determined
value if either x = ∗ or x is outside the domain of values
allowed for input of P .

–Frobust computes output y = f(x′
1, x

′
2, x

′
3, x

′
4) and sends

(Output, y) to all the parties in {V1,V2,E1,E2}.

Fig. 19. Functionality Frobust for 4PC protocol

C Lemmas and Proofs

C.1 4PC

Lemma C.1. The designated receiver R either receives
a given value x correctly in Πbic or receiver R and helper
T mutually exchange all their internal randomness.

Proof. The case of R and T (who act as pair of honest
parties) mutually exchanging their internal randomness
occurs when when one of the senders (S1, S2) are cor-
rupt and copies of x received by R and the hashes H(x)
received by T mismatch. In all the other cases there al-
ways exists a majority among the copies of x received by
R. Thus R is able to correctly obtain x in the remaining
cases.

Lemma C.2. Πbic protocol requires a communication
cost (amortized) of 2` bits and at most 2 rounds.

Proof. For a given value x, the communication cost is
equal to 2` bits as the senders S1, S2 send x to the des-
ignated party R. Round complexity wise, in case of a
corrupt sender, he/she can delay party R from receiv-
ing x by atmost 2 rounds. This case occurs when in the
first round the copies of x received by R mismatch and
the hashes H(x) received by party T match. The sec-
ond round simply involves party T sending H(x) to R
who accepts the copy which matches with the received
hash. The case when R or T is corrupt, Πbic will take ex-
actly 1 round as S1 and S2 will always send the correct
copies.
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Lemma C.3. For a gate g = (x, y, z), given the J·K-
shares of inputs x and y, protocols Πadd and Πmult com-
pute J·K-share of the output wire z.

Proof. By linearity property of J·K-sharing, the addition
gates preserve the J·K-sharing of their inputs. For every
multiplication gate g = (z = xy), the evaluators robustly
compute µz, after which they set µ2

z = µz − µ1
z( µ1

z cho-
sen non-interactively) for consistent J·K-sharing of z to
preserve the invariant. The share µ2

z for every multipli-
cation gate is later robuslty communicated to the veri-
fier V2 to maintain a consistent J·K-sharing for the entire
circuit.

Lemma C.4. Πmult protocol requires a communication
cost (amortized) of 12` bits and at most 5 rounds.

Proof. Πbic of δ2
xy,A1, A2, B1 and B2 takes 10` bits fol-

lowed by Πbic of µ2
z takes another 2` bits. Round com-

plexity wise, in case of a corrupt verifier, Πbic of δ2
xy

takes atmost 2 rounds. Πbic of A1, A2, B1 and B2 also
takes atmost 2 rounds followed by evaluators executing
Πbic of µ2

z consumes 1 round. A similar argument can
be made when one of the evaluator is corrupt.

Lemma C.5. Each party either commits to his/her in-
put in Πsh or is identified to be corrupt.

Proof. In Πsh, the mirrored sharing of inputs by each
party is as in Πsh with an additional step of identifying
the adversary in case of mismatch. The step of elim-
inating the adversary uses the computation of honest
majority on the dispersed shares. Since only, one cor-
ruption can occur, an honest party’s input always gets
committed irrespective of the behaviour of the adver-
sary. However, the case of no honest majority can occur
only when the dealer is corrupt. Hence only a corrupt
party is eliminated if she does not commit to her in-
put and a default value is taken. The uniqueness of the
share also follows from collision resistant hash. Else, the
chosen input is committed.

Lemma C.6. The protocol Πoc is correct.

Proof. The correctness for output computation follows
from the fact that each party receives 2 copies and a
corresponding hash for its missing share from the re-
maining parties. Thus each party correctly reconstructs
the output as a majority always exists.

Lemma C.7. The protocol Π4PC is correct.

Proof. We argue that the computed z corresponds to
unique set of inputs. By Lemma C.5, a corrupt party
either commits to its input in which case, we proceed
to evaluation or is identified to be corrupt and elimi-
nated in which case, the output is computed on default
input of the corrupt party. In the evaluation step, the
computation of addition gates is local by the linearity
property. For a multiplication gate Πmult(x, y, z), the cor-
rectness of A1,A2,B1,B2 and δ2

xy sharing follows from
the correctness of Πbic protocol. Hence evaluators cor-
rectly compute µz, and set µ2

z = µz − µ1
z. Verifier V2

also correctly receives µ2
z, from the underlying correct-

ness of Πbic protocol. The protocol Π4PC, relies on the
the routines Πsh,Πmult and Πoc and thus its correctness
follows from their correctness.

C.2 Privacy-Preserving Machine Learning

C.2.1 Arithmetic/Boolean Couple Sharing

C.2.1.1 i) Parties in E couple share
Lemma C.8. ΠcSh protocol requires a communication
cost (amortized) of 2` bits and atmost 2 rounds.

Proof. The communication cost of 2` bits comes directly
from the cost of Πbic protocol as the rest of the steps are
local, which includes collectively sampling µ1

x. Round
complexity argument also follow from Πbic protocol.

C.2.1.2 ii) Parties in V couple share
Lemma C.9. ΠcSh protocol requires a communication
cost (amortized) of 2` bits and atmost 2 rounds.

Proof. The communication cost of 2` bits comes directly
from the cost of Πbic protocol as the rest of the steps are
local, which includes collectively sampling σ1

x. Round
complexity argument also follow from Πbic protocol.

C.2.2 4PC Truncation

Lemma C.10. ΠmulTr protocol requires a communica-
tion cost (amortized) of 14` bits and atmost 5 rounds.

Proof. ΠcSh of JrtK and δxy takes 4` bits in total. Πbic
of A1, A2, B1 and B2 takes 8` bits followed by ΠcSh of
(z− r)t takes another 2` bits. Round complexity wise,
in case of a corrupt verifier, ΠcSh of JrtK and δxy takes
atmost 2 rounds. Πbic of A1, A2, B1 and B2 also takes



FLASH Framework 21

atmost 2 rounds followed by ΠcSh of (z− r)t consumes
1 round. A similar argument can be made when one of
the evaluator is corrupt.

C.2.3 Dot Product

Lemma C.11. Πdp protocol requires a communication
cost (amortized) of 12` bits and atmost 5 rounds.

Proof. The communication cost of 12` bits comes di-
rectly from the cost of Πmult protocol as the rest of the
steps are local. Round complexity argument also follow
from Πmult protocol.

C.2.4 Bit Conversion

Lemma C.12. Πbtr protocol requires a communication
cost (amortized) of 14` bits and atmost 5 rounds.

Proof. Firstly, the protocol ΠcSh used to generate the
arithmetic equivalent J·K-sharing of bit σb and µb con-
sumes 4` bits in total. The optimized multiplication of
µb′ .σb′ consumes 10` bits in total as δµb′σb′ = 0 so ΠcSh is
not required the same. In case of a corrupt verifier ΠcSh
of σb can take atmost 2 rounds, followed by 3 rounds for
optimized multiplication (as δµb′σb′ = 0) making the to-
tal rounds equal to 5. A similar argument can be made
for the case when one of the evaluator is corrupt.

C.2.5 Bit Insertion

Lemma C.13. Πbin protocol requires a communication
cost (amortized) of 18` bits and atmost 5 rounds.

Proof. Four calls to Πbic for σ2
b′ , µ

2
b′ , γb′x and δb′x con-

sumes 8` bits in total. Again four calls to Πbic each for
A1, A2, B1 and B2 consumes another 8` bits followed
by evaluators invoking Πbic of µ2

b′x which consumes 2`
bits. Round complexity wise, in case of a corrupt veri-
fier, Πbic for σ2

b′ , µ
2
b′ , γb′x and δb′x takes atmost 2 rounds,

followed by Πbic of A1, A2, B1 and B2 which consumes
atmost 2 more rounds. Finally, Πbic of µ2

b′x which re-
quires 1 round. A similar argument can be made when
one of the evaluator is corrupt.

C.2.6 MSB Extraction

Lemma C.14. Πmsb protocol requires a communica-
tion cost (amortized) of 16`+4 bits and atmost 6 rounds.

Proof. The protocols ΠcSh(E, r) and ΠB
cSh(E, p) to gener-

ate JrK and JpKB consume 2` bits and 2 bits respectively.
As a consequence of ΠcSh(E, r), δra = 0 and thus Πmult
of ra consumes 10` bits in total. The reconstruction of
ra towards V1,V2 requires 4` bits. As ΠB

cSh(V, q) con-
sumes 2 bits, thus making a total communication equal
to 16` + 4 bits. Round complexity wise, in case of a
corrupt evaluator, ΠcSh(E, r) can take atmost 2 rounds
followed by Πmult of ra which will take atmost 3 rounds.
Reconstruction of ra towards V1,V2 can be clubbed with
Πbic of µ2

ra followed by ΠB
cSh(V, q) which consumes 1

round. A similar argument can be made when one of
the verifier is corrupt.

D Security Proofs
In this section, we provide detailed security proofs for all
our aforementioned building blocks. We first discuss the
general strategy of simulation for the entire circuit to
tackle the corrupt party and then later provide the cor-
responding functionality and detailed simulation proof
for each of the building block.

The simulator S for the entire circuit begins by sim-
ulating the Fsetup functionality and giving the keys to
the adversary. This way the keys used in the PRF setup
by the corrupt party during the course of circuit eval-
uation is also known to the simulator. During the in-
put sharing phase the simulator on receiving the input
shares from the corrupt party, on behalf of the honest
parties, is able to extract the adversary’s input using the
keys given to him. This is possible because the inputs of
each party are shared in mirrored sharing format. Ad-
ditionally the simulator, on behalf of the honest parties
set their inputs as 0. The simulator S now knows the
inputs of all the parties and can compute all the inter-
mediate values of each one of the building block in the
circuit as well as the final output of the circuit in clear.
Additionally the corrupt party receives only the input
shares of the honest parties and hence cannot distin-
guish if the underlying value was 0 (received from the
simulator) or the true values of the honest parties.
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D.1 Security of Input Sharing

In this section, we first describe the ideal functionality
followed by a detailed security proof for our Input Shar-
ing Phase. The ideal functionality for the Input Sharing
phase appears in Figure 20.

– Fsh receives x from party/ dealer D who wants to generate
J·K-sharing of x. Other parties input ⊥ to the functionality.

– Fsh randomly samples σ1
x, σ

2
x and µ1

x ∈ Z2` and set µ2
x =

x+ σ1
x + σ2

x − µ1
x.

– The output shares sent by Fmul are as follows:
V1: (σ1

x, σ
2
x, µ

1
x), V2: (σ1

x, σ
2
x, µ

2
x)

E1: (σ1
x, µ

1
x, µ

2
x), E2: (σ2

x, µ
1
x, µ

2
x)

Fig. 20. Functionality Fsh: Ideal Functionality for Input Shar-
ing of value x

We now describe the simulator for the case of a cor-
rupt V1 and a corrupt E1. Other cases are similar to
these and hence can be worked out in a similar way.

– If D = E1, SV1
Πsh

samples σ1
x on behalf of V2 and E1 and sam-

ples σ2
x on behalf of all honest parties respectively to compute

σx = σ1
x + σ2

x. Similar steps are done for D = E2.
– If D = V1, SV1

Πsh
samples σ1

x and σ2
x on behalf of V2,E1 and

V2,E2 respectively to compute σx = σ1
x + σ2

x. Similar steps
are done for D = V2.
– If D = V1, SV1

Πsh
samples µ1

x on behalf of E1,E2. Receive µ2
x

from V1 on behalf of all honest parties. If the received copies
have no majority, set flag = 1.
– If flag = 1 : SV1

Πsh
sets the input of V1 as x = 0 (default

value) and executes a semihonest 3PC on behalf of the
remaining three honest parties. SV1

Πsh
then sends the final

output to V1.
– Else If flag = 0 : SV1

Πsh
extracts the input of V1 by comput-

ing x = µx−σx and invokes Fsh with input as x on behalf
of V1.

– If D = V2, locally sample µ1
x on behalf of parties in E and

V2. Send com(µ2
x) to V1 on behalf of V2,E1,E2 on a random

µ2
x. Similar steps are done for D = Ei, i ∈ {1, 2}.

Fig. 21. SV1
Πsh

: Simulator for corrupt V1 in Πsh

This completes the simulation for the case of a cor-
rupt V1. We now describe the simulator for the case of
a corrupt E1.

– If D = E1, SE1
Πsh

samples σ1
x on behalf of verifiers and sam-

ples σ2
x on behalf of verifiers and E2 to compute σx = σ1

x+σ2
x.

Similar steps are done for D = E2.
– If D = Vi, i ∈ [2], sample σ1

x and σ2
x on behalf of verifiers

and E2 to compute σx = σ1
x + σ2

x.
– If D = E1, SE1

Πsh
samples µ1

x on behalf of V1,E2 and receives
µ2
x from E1 on behalf of V2,E2 and com(µ2

x) on behalf of V1.
If there exists no majority, set flag = 1.

– If flag = 1 : SE1
Πsh

sets the input of E1 as x = 0 (default
value) and executes a semihonest 3PC on behalf of the
remaining three honest parties. SE1

Πsh
then sends the final

output to E1.
– Else if flag = 0 : SE1

Πsh
extracts the input of E1 by computing

x = µx−σx and invokes Fsh with input x on behalf of E1.
– If D = E2, locally sample µ1

x on behalf of parties in E2 and
V2. Send µ2

x to E1 on behalf of E2 on a random µ2
x. Also, send

com(µ2
x) to E1 on behalf of V2,V1. Similar steps are done for

D = Vi, i ∈ {1, 2}.

Fig. 22. SE1
Πsh

: Simulator for corrupt E1 in Πsh

D.2 Security of Bi-Convey

In this section, we provide a detailed security proof for
our Bi-Convey Primitive (Πbic), which forms the back-
bone for most of our constructions, in the stand-alone
model. SPΠbic

denotes the simulator for the case of a cor-
rupt party P ∈ {V1,V2,E1,E2}.

We begin with case of a corrupt S1. Since party S1 is
not receiving any messages in the protocol Πbic, there is
no need for SS1

Πbic
to simulate any messages. Based on the

messages received from S1, simulator prepares the input
value of corrupt S1 and invoke the ideal functionality
Fbic. A detailed description of SS1

Πbic
is given in Fig 23.

Note that, SS1
Πbic

has the knowledge of input value x, since
it plays the role of an honest S2.

– SS1
Πbic

receives x′ and com(x′′) from S1 on behalf of parties
R and T respectively.

– If x′ 6= x or com(x′′) 6= com(x), SS1
Πbic

sets the input mes-
sage of S1 as xS1 = ⊥. Else it sets xS1 = x.

– SS1
Πbic

invokes the ideal functionality Fbic on behalf of S1
with input xS1 .

Fig. 23. SS1
Πbic

: Simulator for the case of corrupt S1

It is easy to see that the view of the adversary A
in the real and simulated worlds are indistinguishable.
The case for a corrupt S2 follows similarly.

We now consider the case of a corrupt R. For this,
SRΠbic

(Fig 24) samples a random value x on behalf of
S1, S2 and prepares the commitment of x honestly. This
is followed by sending the values x, x and com(x) to R
on behalf of S1, S2 and T respectively.

– SRΠbic
samples a random value x on behalf of S1, S2. It

then prepares the commitment com(x) using a randomness
shared with R.

– SRΠbic
sends x, x and com(x) to R on behalf of S1, S2 and

T respectively.
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– SRΠbic
invokes the simulator for ideal functionality Fsetup

and obtains the internal randomness of R, IR. SRΠbic
invokes

the ideal functionality Fbic on behalf of R with IR as the
input.

Fig. 24. SRΠbic
: Simulator for the case of corrupt R

For the case of a corrupt T , STΠbic
(Fig 25) pro-

ceeds as follows: STΠbic
samples a random value x

on behalf of S1, S2 and prepares the commitment of
x honestly. This is followed by sending the values
com(x), com(x) and ⊥ to T on behalf of S1, S2 and R

respectively.

– STΠbic
samples a random value x on behalf of S1, S2. It then

prepares the commitment com(x).
– STΠbic

sends com(x), com(x) and continue to T on behalf
of S1, S2 and R respectively.

– STΠbic
invokes the simulator for ideal functionality Fsetup

and obtains the internal randomness of T , IT . STΠbic
invokes

the ideal functionality Fbic on behalf of T with IT as the
input.

Fig. 25. STΠbic
: Simulator for the case of corrupt T

In each of the cases, since the simulator behaves
entirely as an honest party in the protocol simulation,
the view of the adversary A in the real and simulated
worlds are indistinguishable in a very straightforward
manner. This concludes the proof.

D.3 Security of Multiplication

In this section, we describe the ideal functionality fol-
lowed by a detailed security proof for our Multiplication
phase and prove security in the standard model. The
ideal functionality for the Multiplication phase appears
in Figure 26.

Functionality Fmul receives the inputs from the parties as fol-
lows:

– V1: JxKV1 , JyKV1 and internal randomness IV1 .
– V2: JxKV2 , JyKV2 and internal randomness IV2 .
– E1: JxKE1 , JyKE1 and internal randomness IE1 .
– E2: JxKE2 , JyKE2 and internal randomness IE2 .

On receiving the inputs Fmul performs the following steps:

– Fmul sets flag = 1, if the copies σ1
x received from V1,V2 and

E1 mismatch. Fmul also performs similar checks for σ2
x, µ

1
x, µ2

x

and the shares of JyK.

– If flag = 1 :
– Fmul uses the internal randomness of the parties, computes
all the inputs i1, . . . , in of the circuit in clear.

– Fmul computes O = f(i1, . . . , in) locally, where O denotes
the output of the entire circuit evaluation.

– Fmul sends the final output O to all the parties.
– Else If flag = 0 :
– Fmul computes x = µ1

x+µ2
x−σ1

x−σ2
x, y = µ1

y+µ2
y−σ1

y−σ2
y

and sets z = xy.
– Fmul randomly samples σ1

z , σ
2
z and µ1

z ∈ Z2` and sets µ2
z =

z + σ1
z + σ2

z − µ1
z .

– The output shares sent by Fmul are as follows:
V1: (σ1

z , σ
2
z , µ

1
z), V2: (σ1

z , σ
2
z , µ

2
z)

E1: (σ1
z , µ

1
z , µ

2
z), E2: (σ2

z , µ
1
z , µ

2
z)

Fig. 26. Fmul: Ideal Functionality for multiplication of two
values x and y

We first begin by describing the simulator for the case
of a corrupt V1. Note that, SV1

Πmult
already has the knowl-

edge of IV1 , δ2
xy, A1 and A2. Without loss of generality,

we observe that only for the case of when V1 acts as a
sender in the Πbic protocol, the output of Πbic can lead
to pair of honest parties exchanging their internal ran-
domness with each other. Thus SV1

Πmult
emulates the Fbic

functionality on behalf of V1 for each of δ2
xy, A1 and A2.

The simulator then checks if any of the output leads to
exchange of internal randomness among two pair of hon-
est parties, in which case SV1

Πmult
sets JxKV1 = (⊥,⊥,⊥)

and JyKV1 = (⊥,⊥,⊥) and invokes the Fmul functionality
on behalf of V1. This will ensure that Fmul, on receiving
the inputs, will find a mismatch in the copies of shares
received and will directly compute the output of the en-
tire circuit. A similar strategy is used in most of the
other simulation proofs.

1) SV1
Πmult

emulates Fbic on behalf of V1 acting as the sender,
for δ2

xy. If the internal flag variable of Fbic set to 1, simulator
SV1

Πmult
sets flag = 1 and goes to step 3). Similar steps are

followed for the case of A1 and A2.
2) If flag = 0:
– SV1

Πmult
emulates Fbic on behalf of V1 acting as the helper

T . The simulator also invokes Fmul on behalf of V1, with
inputs as JxKV1 , JyKV1 and IV1 .

3) Else If flag = 1 :
– SV1

Πmult
sets JxKV1 = (⊥,⊥,⊥), JyKV1 = (⊥,⊥,⊥) and

invokes the ideal functionality Fmul on behalf of V1 .
– SV1

Πmult
sends the final circuit output O to V1 on behalf

of the pair of honest parties and discards any incoming
message from V1.

Fig. 27. SV1
Πmult

: Simulator for the case of corrupt V1

This completes the simulation for the case of a cor-
rupt V1. We now describe the simulator for the case of
a corrupt V2. Simulator SV2

Πmult
already has knowledge of

δ2
xy, B1 and B2.
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1) SV2
Πmult

emulates Fbic on behalf of V2 acting as the sender,
for δ2

xy. If the internal flag variable of Fbic set to 1, simulator
SV2

Πmult
sets flag = 1 and goes to step 3). Similar steps are

followed for the case of B1 and B2.
2) If flag = 0:
– SV2

Πmult
emulates Fbic on behalf of V2 acting as the re-

ceiver R. The simulator also invokes the ideal function-
ality Fmul on behalf of V2, with inputs as JxKV2 , JyKV2
and IV2 .

3) Else If flag = 1 :
– SV2

Πmult
sets JxKV2 = (⊥,⊥,⊥), JyKV2 = (⊥,⊥,⊥) and

invokes the ideal functionality Fmul on behalf of V2 .
– SV2

Πmult
sends the final circuit output O to V2 on behalf

of the pair of honest parties and discards any incoming
message from V2.

Fig. 28. SV2
Πmult

: Simulator for the case of corrupt V2

We describe the simulator for the case of a corrupt
E1. The case of a corrupt E2 is similar to this case and
hence can be worked out in a similar way. Note that,
SE1

Πmult
has knowledge of A1, B1 and µ2

z .

1) SE1
Πmult

emulates Fbic on behalf of E1 acting as the sender,
for each A1 and B1.If the internal flag variable of Fbic set
to 1, simulator SE1

Πmult
sets flag = 1 and goes to step 3).

2) If flag = 0:
– SE1

Πmult
emulates Fbic on behalf of E1, for the case of µ2

z ,
where z = xy.If the internal flag variable of Fbic set to 1,
simulator SE1

Πmult
sets flag = 1 and goes to step 3). Else

the simulator invokes Fmul, with inputs as JxKE1 , JyKE1
and IE1 .

3) Else If flag = 1 :
– SE1

Πmult
sets JxKE1 = (⊥,⊥,⊥), JyKE1 = (⊥,⊥,⊥) shares

and invokes Fmul on behalf of E1.
– SE1

Πmult
sends the final circuit output O to E1 on behalf

of the pair of honest parties and discards any incoming
message from E1.

Fig. 29. SE1
Πmult

: Simulator for the case of corrupt E1

D.4 Security of Dot Product

In this section, we describe the ideal functionality fol-
lowed by a detailed security proof for our Dot Product
Protocol and prove security in the standard model. The
ideal functionality for the Dot product protocol appears
in Figure 30.

Functionality Fdp receives the inputs from the parties as fol-
lows:

– V1: J~xKV1 , J~yKV1 and internal randomness IV1 .
– V2: J~xKV2 , J~yKV2 and internal randomness IV2 .
– E1: J~xKE1 , J~yKE1 and internal randomness IE1 .

– E2: J~xKE2 , J~yKE2 and internal randomness IE2 .

On receiving the inputs Fdp performs the following steps:

– If for any σ1
xi
∈ σ1

~x, the copies of σ1
xi

received from V1,V2
and E1 mismatch, Fdp sets flag = 1. Fdp also performs similar
checks for σ2

~x, µ
1
~x, µ

2
~x and the shares of J~yK.

– If flag = 1 :
– Fdp uses the internal randomness of the parties, computes
all the inputs i1, . . . , in of the circuit in clear.

– Fdp computes O = f(i1, . . . , in) locally, where O denotes
the output of the entire circuit evaluation.

– Fdp sends the final output O to all the parties.
– Else If flag = 0 :
– Fmul computes ∀i, xi = µ1

xi
+ µ2

xi
− σ1

xi
− σ2

xi
, yi = µ1

yi
+

µ2
yi
− σ1

yi
− σ2

yi
and set z = Σdi=1xiyi.

– Fmul randomly samples σ1
z , σ

2
z and µ1

z ∈ Z2` and set µ2
z =

z + σ1
z + σ2

z − µ1
z .

– The output shares sent by Fmul are as follows:
V1: (σ1

z , σ
2
z , µ

1
z), V2: (σ1

z , σ
2
z , µ

2
z)

E1: (σ1
z , µ

1
z , µ

2
z), E2: (σ2

z , µ
1
z , µ

2
z)

Fig. 30. Fdp: Ideal Functionality for dot product of two values
x and y

We first begin by describing the simulator for the
case of a corrupt V1. Thus SV1

Πdp
emulates the Fbic func-

tionality on behalf of V1 for each of δ2
xy, A1 and A2. The

simulator then checks if any of the output leads to ex-
change of internal randomness among two pair of hon-
est parties, in which case SV1

Πdp
sets J~xKV1 = (⊥,⊥,⊥),

J~yKV1 = (⊥,⊥,⊥) and invokes the Fdp functionality on
behalf of V1.

1) SV1
Πdp

emulates Fbic on behalf of V1 acting as the sender,
for δ2

xy. If the internal flag variable of Fbic set to 1, simulator
SV1

Πdp
sets flag = 1 and goes to step 3). Similar steps are

followed for the case of A1 and A2.
2) If flag = 0:
– SV1

Πdp
emulates Fbic on behalf of V1 acting as the helper

T . The simulator also invokes the ideal functionality Fdp
on behalf of V1, with inputs as J~xKV1 , J~yKV1 and IV1 .

3) Else If flag = 1 :
– SV1

Πdp
sets J~xKV1 = (⊥,⊥,⊥), J~yKV1 = (⊥,⊥,⊥) shares

and invokes the ideal functionality Fdp on behalf of V1
.

– SV1
Πdp

sends the final circuit output O to V1 on behalf
of the pair of honest parties and discards any incoming
message from V1.

Fig. 31. SV1
Πdp

: Simulator for the case of corrupt V1

This completes the simulation for the case of a cor-
rupt V1. We now describe the simulator for the case of
a corrupt V2.
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1) SV2
Πdp

emulates Fbic on behalf of V2 acting as the sender,
for δ2

xy. If the internal flag variable of Fbic set to 1, simulator
SV2

Πdp
sets flag = 1 and goes to step 3). Similar steps are

followed for the case of B1 and B2.
2) If flag = 0:
– SV2

Πdp
emulates Fbic on behalf of V2 acting as the receiver

R. The simulator also invokes the ideal functionality Fdp
on behalf of V2, with inputs as J~xKV2 , J~yKV2 and IV2 .

3) Else If flag = 1 :
– SV2

Πdp
sets J~xKV2 = (⊥,⊥,⊥), J~yKV2 = (⊥,⊥,⊥) shares

and invokes the ideal functionality Fdp on behalf of V2
.

– SV2
Πdp

sends the final circuit output O to V2 on behalf
of the pair of honest parties and discards any incoming
message from V2.

Fig. 32. SV2
Πdp

: Simulator for the case of corrupt V2

We describe the simulator for the case of a corrupt
a corrupt E1. The case of a corrupt E2 is similar to this
case and hence can be worked out in a similar way.

1) SE1
Πdp

emulates Fbic on behalf of E1 acting as the sender,
for each A1 and B1.If the internal flag variable of Fbic set
to 1, simulator SE1

Πdp
sets flag = 1 and goes to step 3).

2) If flag = 0:
– SE1

Πdp
emulates Fbic on behalf of E1, for the case of µ2

z ,
where z = Σdi=1xiyi. If the internal flag variable of
Fbic set to 1, simulator SE1

Πdp
sets flag′ = 1 and goes

to step 3). Else the simulator invokes Fdp, with inputs
as J~xKE1 , J~yKE1 and IE1 .

3) Else If flag = 1 :
– SE1

Πdp
sets J~xKE1 = (⊥,⊥,⊥), J~yKE1 = (⊥,⊥,⊥) shares

and invokes Fdp on behalf of E1.
– SE1

Πdp
sends the final circuit output O to E1 on behalf

of the pair of honest parties and discards any incoming
message from E1.

Fig. 33. SE1
Πdp

: Simulator for the case of corrupt E1

D.5 Security of Truncation

In this section, we describe the ideal functionality fol-
lowed by a detailed security proof for our Truncation
protocol and prove security in the standard model. The
ideal functionality for the Truncation protocol appears
in Figure 34.

Functionality FmulTr receives the inputs from the parties as
follows:

– V1: JxKV1 , JyKV1 and internal randomness IV1 .
– V2: JxKV2 , JyKV2 and internal randomness IV2 .
– E1: JxKE1 , JyKE1 and internal randomness IE1 .

– E2: JxKE2 , JyKE2 and internal randomness IE2 .

On receiving the inputs FmulTr performs the following steps:

– FmulTr computes δxy = σxσy using the shares of V1. Similarly,
FmulTr computes another copy δ′

xy using the shares of V2. If
δxy 6= δ′

xy, FmulTr sets flag = 1 else FmulTr samples δ1
xy ∈ Z2`

and sets δ2
xy = δxy − δ1

xy.

– FmulTr computes A1 = −µ1
xσ

1
y − µ1

yσ
1
x + δ1

xy + σ1
z + ∆1 using

the shares of V1. Similarly, FmulTr computes another copy A′
1

using the shares of E1. If A1 6= A′
1, FmulTr sets flag = 1. Similar

steps are performed for the case of A2, B1 and B2.

– If flag = 1 :
– FmulTr uses the internal randomness of the parties, com-
putes all the inputs i1, . . . , in of the circuit in clear.

– FmulTr computes O = f(i1, . . . , in) locally, where O de-
notes the output of the entire circuit evaluation.

– FmulTr sends the final output O to all the parties.
– Else If flag = 0 :
– FmulTr computes x = µ1

x + µ2
x − σ1

x − σ2
x, y = µ1

y + µ2
y −

σ1
y − σ2

y and set z = (xy)t, where value xy is truncated by
d bits.

– FmulTr randomly samples σ1
z , σ

2
z and µ1

z ∈ Z2` and set
µ2
z = z + σ1

z + σ2
z − µ1

z .
– The output shares sent by FmulTr are as follows:

V1: (σ1
z , σ

2
z , µ

1
z), V2: (σ1

z , σ
2
z , µ

2
z)

E1: (σ1
z , µ

1
z , µ

2
z), E2: (σ2

z , µ
1
z , µ

2
z)

Fig. 34. FmulTr: Ideal Functionality for truncation of two val-
ues x and y

We first begin by describing the simulator for the case of
a corrupt V1. Note that, SV1

ΠmulTr
already has the knowl-

edge of IV1 , δ2
xy, A1, A2 and rt. Note that only for the

case of when V1 acts as a sender in the Πbic protocol,
the output of Πbic can lead to pair of honest parties
exchanging their internal randomness with each other.
Thus SV1

ΠmulTr
emulates the Fbic functionality on behalf of

V1 for each of δ2
xy, σ2

rt A1 and A2. The simulator then
checks if any of the output leads to exchange of internal
randomness among two pair of honest parties, in which
case SV1

ΠmulTr
sets JxKV1 = (⊥,⊥,⊥), JyKV1 = (⊥,⊥,⊥)

shares and invoke the FmulTr functionality on behalf of
V1.

1) SV1
ΠmulTr

emulates Fbic on behalf of V1 acting as the sender,
for σ2

rt . If the internal flag variable of Fbic set to 1, simulator
SV1

ΠmulTr
sets flag = 1 and goes to step 3). Similar steps are

followed for the case of δ2
xy, A1 and A2.

2) If flag = 0:
– SV1

ΠmulTr
emulates Fbic on behalf of V1 acting as the helper

T . The simulator also invokes the ideal functionality
FmulTr on behalf of V1, with inputs as JxKV1 , JyKV1 and
IV1 .

3) Else If flag = 1 :
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– SV1
ΠmulTr

sets JxKV1 = (⊥,⊥,⊥), JyKV1 = (⊥,⊥,⊥) shares
and invokes FmulTr on behalf of V1 .

– SV1
ΠmulTr

sends the final circuit output O to V1 on behalf
of the pair of honest parties and discards any incoming
message from V1.

Fig. 35. SV1
ΠmulTr

: Simulator for the case of corrupt V1

This completes the simulation for the case of a cor-
rupt V1. We now describe the simulator for the case of
a corrupt V2.

1) SV2
ΠmulTr

emulates Fbic on behalf of V2 acting as the sender,
for σ2

rt . If the internal flag variable of Fbic set to 1, simulator
SV2

Πmult
sets flag = 1 and goes to step 3). Similar steps are

followed for the case of δ2
xy, B1 and B2.

2) If flag = 0:
– SV2

ΠmulTr
emulates Fbic on behalf of V2 acting as the re-

ceiver R. The simulator also invokes the ideal function-
ality Fmul on behalf of V2, with inputs as JxKV2 , JyKV2
and IV2 .

3) Else If flag = 1 :
– SV2

ΠmulTr
sets JxKV2 = (⊥,⊥,⊥), JyKV2 = (⊥,⊥,⊥) shares

and invokes FmulTr on behalf of V2 .
– SV2

ΠmulTr
sends the final circuit output O to V2 on behalf

of the pair of honest parties and discards any incoming
message from V2.

Fig. 36. SV2
ΠmulTr

: Simulator for the case of corrupt V2

We describe the simulator for the case of a corrupt
a corrupt E1. The case of a corrupt E2 is similar to this
case and hence can be worked out in a similar way.

1) SE1
ΠmulTr

emulates Fbic on behalf of E1 acting as the sender,
for each A1 and B1.If the internal flag variable of Fbic set
to 1, simulator SE1

ΠmulTr
sets flag = 1 and goes to step 3).

2) If flag = 0:
– SE1

ΠmulTr
emulates Fbic on behalf of E1, for the case of µ2

z ,
where z = xy.If the internal flag variable of Fbic set to 1,
simulator SE1

ΠmulTr
sets flag′ = 1 and goes to step 3). Else

the simulator invokes FmulTr, with inputs as JxKE1 , JyKE1
and IE1 .

3) Else If flag = 1 :
– SE1

ΠmulTr
sets JxKE1 = (⊥,⊥,⊥), JyKE1 = (⊥,⊥,⊥) shares

and invokes FmulTr on behalf of E1.
– SE1

ΠmulTr
sends the final circuit output O to E1 on behalf

of the pair of honest parties and discards any incoming
message from E1.

Fig. 37. SE1
ΠmulTr

: Simulator for the case of corrupt E1

D.6 Security of MSB Extraction

In this section, we describe the ideal functionality fol-
lowed by a detailed security proof for our MSB Extrac-
tion protocol and prove security in the standard model.
The ideal functionality for the MSB Extraction protocol
appears in Figure 38.

Functionality Fbin receives the inputs from the parties as fol-
lows:

– V1: JxKV1 and internal randomness IV1 .
– V2: JxKV2 and internal randomness IV2 .
– E1: JxKE1 and internal randomness IE1 .
– E2: JxKE2 and internal randomness IE2 .

On receiving the inputs Fmsb performs the following steps:

– Fmsb sets flag = 1, if the copies σ1
x received from V1,V2 and

E1 mismatch. Fmsb also performs similar checks for σ2
x, µ

1
x and

µ2
x.

– If flag = 1 :
– Fmsb uses the internal randomness of the parties, computes
all the inputs i1, . . . , in of the circuit in clear.

– Fmsb computes O = f(i1, . . . , in) locally, where O denotes
the output of the entire circuit evaluation.

– Fmsb sends the final output O to all the parties.

– Else If flag = 0 :
– Fmsb computes x = µ1

x+µ2
x−σ1

x−σ2
x and set b = msb(x).

– Fmsb randomly samples σ1
b , σ

2
b and µ1

b ∈ Z21 and set µ2
b =

b⊕ σ1
b ⊕ σ

2
b ⊕ µ

1
b .

– The output shares sent by Fbin are as follows:
V1: (σ1

b , σ
2
b , µ

1
b), V2: (σ1

b , σ
2
b , µ

2
b)

E1: (σ1
b , µ

1
b , µ

2
b), E2: (σ2

b , µ
1
b , µ

2
b)

Fig. 38. Fbin: Ideal Functionality for bit insertion of bit b into
value x

We first begin by describing the simulator for the case
of a corrupt V1. The case of a corrupt V2 is similar to
this case and hence can be worked out in a similar way.

1) SV1
Πmsb

emulates Fbic on behalf of V1 acting as the helper,
for µ2

r and µ2
p . Simulator SV1

Πmsb
then simulates the steps of

SV1
Πmult

(Fig 27) on behalf of V1 for the product ra.

2) SV1
Πmsb

emulates Fbic on behalf of V1 acting as the helper,
for µ1

ra and acting as the receiver for the case of µ2
ra.

3) SV1
Πmsb

reconstructs ra, sets q = msb(ra) and computes
σ2

q = q⊕ σ1
q , where σ1

q is sampled using IV1 .

4) SV1
Πmsb

emulates Fbic on behalf of V1 acting as the sender,
for σ2

q . If the internal flag variable of Fbic set to 1, simulator
SV1

Πmsb
sets flag = 1 and goes to step 6).

5) If flag = 0:
– The simulator also invokes the ideal functionality Fmsb

on behalf of V1, with inputs as JaKV1 and IV1 .
6) Else If flag = 1 :
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– SV1
Πmsb

sets JaKV1 = (⊥,⊥,⊥) shares and invokes the
ideal functionality Fmsb on behalf of V1 .

– SV1
Πmsb

sends the final circuit output O to V1 on behalf
of the pair of honest parties and discards any incoming
message from V1.

Fig. 39. SV1
Πmsb

: Simulator for the case of corrupt V1

We now describe the simulator for the case of a cor-
rupt a corrupt E1. The case of a corrupt E2 is similar to
this case and hence can be worked out in a similar way.

1) SE1
Πmsb

emulates Fbic on behalf of E1 acting as the sender,
for µ2

r and µ2
p . If the internal flag variable of Fbic is set to

1, simulator SV1
Πbin

sets flag′ = 1 and goes to step 7).

2) SE1
Πmsb

simulates the steps of SE1
Πmult

(Fig 29) on behalf of
E1 for the product ra.

3) SE1
Πmsb

emulates Fbic on behalf of V1 acting as the sender,
for µ1

ra and µ2
ra. If the internal flag variable of Fbic is set to

1, simulator SV1
Πbin

sets flag = 1 and goes to step 6).

4) SE1
Πmsb

emulates Fbic on behalf of E1 acting as the helper
for σ2

q , where q = msb(ra).
5) If flag = 0:
– The simulator also invokes the ideal functionality Fmsb

on behalf of E1, with inputs as JaKE1 and IE1 .
6) Else If flag = 1 :
– SE1

Πmsb
sets JaKE1 = (⊥,⊥,⊥) and invokes the ideal func-

tionality Fmsb on behalf of E1 .
– SE1

Πmsb
sends the final circuit output O to E1 on behalf

of the pair of honest parties and discards any incoming
message from E1.

Fig. 40. SE1
Πmsb

: Simulator for the case of corrupt E1

D.7 Security of Bit Conversion

In this section, we describe the ideal functionality fol-
lowed by a detailed security proof for our Bit Conver-
sion protocol and prove security in the standard model.
The ideal functionality for the Bit Conversion protocol
appears in Figure 41.

Functionality Fbin receives the inputs from the parties as fol-
lows:

– V1: JbKB
V1

and internal randomness IV1 .
– V2: JbKB

V2
and internal randomness IV2 .

– E1: JbKB
E1

and internal randomness IE1 .
– E2: JbKB

E2
and internal randomness IE2 .

On receiving the inputs Fbtr performs the following steps:

– Fbtr sets flag = 1, if the copies σ1
b received from V1,V2 and

E1 mismatch. Fbtr also performs similar checks for σ2
b , µ

1
b and

µ2
b .

– If flag = 1 :
– Fbtr uses the internal randomness of the parties, computes
all the inputs i1, . . . , in of the circuit in clear.

– Fbtr computes O = f(i1, . . . , in) locally, where O denotes
the output of the entire circuit evaluation.

– Fbtr sends the final output O to all the parties.

– Else If flag = 0 :
– Fbtr computes b = µ1

b ⊕ µ
2
b ⊕ σ

1
b ⊕ σ

2
b and set z = b.

– Fbin randomly samples σ1
z , σ

2
z and µ1

z ∈ Z2` and set µ2
z =

z + σ1
z + σ2

z − µ1
z .

– The output shares sent by Fbin are as follows:
V1: (σ1

z , σ
2
z , µ

1
z), V2: (σ1

z , σ
2
z , µ

2
z)

E1: (σ1
z , µ

1
z , µ

2
z), E2: (σ2

z , µ
1
z , µ

2
z)

Fig. 41. Fbtr: Ideal Functionality for conversion of bit b

We first begin by describing the simulator for the case
of a corrupt V1. The case of a corrupt V2 is similar to
this case and hence can be worked out in a similar way.

1) SV1
Πbtr

emulates Fbic on behalf of V1 acting as the helper
for µ2

µb′
and acting as the sender for σ2

σb′
. If the internal

flag variable of Fbic set to 1, simulator SV1
Πbtr

sets flag = 1
and goes to step 4).

2) Simulator SV1
Πmsb

then simulates the steps of SV1
Πmult

(Fig 27) on behalf of V1 for the product µb′σb′ .
3) If flag = 0:
– The simulator also invokes the ideal functionality Fbtr

on behalf of V1, with inputs as JbKB
V1

and IV1 .
4) Else If flag = 1 :
– SV1

Πbtr
sets JbKB

V1
= (⊥,⊥,⊥) and invokes Fbtr on behalf

of V1 .
– SV1

Πbtr
sends the final circuit output O to V1 on behalf

of the pair of honest parties and discards any incoming
message from V1.

Fig. 42. SV1
Πbtr

: Simulator for the case of corrupt V1

We now describe the simulator for the case of a cor-
rupt a corrupt E1. The case of a corrupt E2 is similar to
this case and hence can be worked out in a similar way.

1) SE1
Πbtr

emulates Fbic on behalf of E1 acting as the helper
for σ2

σb′
and acting as the sender for µ2

µb′
. If the internal

flag variable of Fbic set to 1, simulator SE1
Πbtr

sets flag = 1
and goes to step 4).

2) SE1
Πmsb

then simulates the steps of SE1
Πmult

(Fig 29) on behalf
of E1 for the product µb′σb′ .

3) If flag = 0:
– The simulator also invokes Fbtr on behalf of E1, with

inputs as JbKB
E1

and IE1 .
4) Else If flag = 1 :
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– SE1
Πbtr

sets JbKB
E1

= (⊥,⊥,⊥) and invokes Fbtr on behalf
of E1 .

– SE1
Πbtr

sends the final circuit output O to E1 on behalf
of the pair of honest parties and discards any incoming
message from E1.

Fig. 43. SE1
Πbtr

: Simulator for the case of corrupt E1

D.8 Security of Bit Insertion

In this section, we describe the ideal functionality fol-
lowed by a detailed security proof for our Bit Insertion
protocol and prove security in the standard model. The
ideal functionality for the Bit Insertion protocol appears
in Figure 44.

Functionality Fbin receives the inputs from the parties as fol-
lows:

– V1: JxKV1 , JbK
B
V1

and internal randomness IV1 .
– V2: JxKV2 , JbK

B
V2

and internal randomness IV2 .
– E1: JxKE1 , JbK

B
E1

and internal randomness IE1 .
– E2: JxKE2 , JbK

B
E2

and internal randomness IE2 .

On receiving the inputs Fbin performs the following steps:

– Fbin sets flag = 1, if the copies σ1
b received from V1,V2 and

E1 mismatch. Fbin also performs similar checks for σ2
b , µ

1
b and

µ2
b .

– A similar check is performed by Fbin for the shares of JxK.

– If flag = 1 :
– Fbin uses the internal randomness of the parties, computes
all the inputs i1, . . . , in of the circuit in clear.

– Fbin computes O = f(i1, . . . , in) locally, where O denotes
the output of the entire circuit evaluation.

– Fbin sends the final output O to all the parties.

– Else If flag = 0 :
– Fbin computes x = µ1

x+µ2
x−σ1

x−σ2
x, b = µ1

b⊕µ
2
b⊕σ

1
b⊕σ

2
b

and set z = bx, where z = x if b = 1 else z = 0.
– Fbin randomly samples σ1

z , σ
2
z and µ1

z ∈ Z2` and set µ2
z =

z + σ1
z + σ2

z − µ1
z .

– The output shares sent by Fbin are as follows:
V1: (σ1

z , σ
2
z , µ

1
z), V2: (σ1

z , σ
2
z , µ

2
z)

E1: (σ1
z , µ

1
z , µ

2
z), E2: (σ2

z , µ
1
z , µ

2
z)

Fig. 44. Fbin: Ideal Functionality for bit insertion of bit b into
value x

We first begin by describing the simulator for the case
of a corrupt V1. Note that, SV1

Πbin
already has the knowl-

edge of IV1 , σ2
b′ , δ2

xy, A1 and A2. SV1
Πbin

emulates the Fbic
functionality on behalf of V1 for each of σ2

b′ , δ2
xy, A1 and

A2. The simulator then checks if any of the output leads
to exchange of internal randomness among two pair of
honest parties, in which case SV1

Πbin
prepares incorrect

JxKV1 and JbKB
V1

shares and invoke the Fbin functionality
on behalf of V1.

1) SV1
Πbin

emulates Fbic on behalf of V1 acting as the sender,
for σ2

b′ . If the internal flag variable of Fbic is set to 1, sim-
ulator SV1

Πbin
sets flag = 1 and goes to step 4). Similar steps

are followed for the case of δ2
xy, A1 and A2.

2) SV1
Πbin

also emulates Fbic on behalf of V1 acting as the
helper, for µ2

b′ .
3) If flag = 0:
– SV1

Πbin
emulates Fbic on behalf of V1 acting as the helper

T . The simulator also invokes the ideal functionality
Fbin on behalf of V1, with inputs as JxKV1 , JbKB

V1
and

IV1 .
4) Else If flag = 1 :
– SV1

Πbin
sets JxKV1 = (⊥,⊥,⊥), JbKB

V1
= (⊥,⊥,⊥) and in-

vokes Fbin on behalf of V1 .
– SV1

Πbin
sends the final circuit output O to V1 on behalf

of the pair of honest parties and discards any incoming
message from V1.

Fig. 45. SV1
Πbin

: Simulator for the case of corrupt V1

This completes the simulation for the case of a cor-
rupt V1. We now describe the simulator for the case of
a corrupt V2.

1) SV2
Πbin

emulates Fbic on behalf of V2 acting as the sender,
for σ2

b′ . If the internal flag variable of Fbic is set to 1, sim-
ulator SV2

Πbin
sets flag = 1 and goes to step 4). Similar steps

are followed for the case of δ2
xy, B1 and B2.

2) SV2
Πbin

additionally emulates Fbic on behalf of V2 acting as
the receiver, for µ2

b′ .
3) If flag = 0:
– SV2

Πbin
emulates Fbic on behalf of V2 acting as the receiver

R. The simulator also invokes the ideal functionality
Fbin on behalf of V2, with inputs as JxKV2 , JbKB

V2
and

IV2 .
4) Else If flag = 1 :
– SV2

Πbin
sets JxKV2 = (⊥,⊥,⊥), JbKB

V2
= (⊥,⊥,⊥) and in-

vokes Fbin on behalf of V2 .
– SV2

Πbin
sends the final circuit output O to V2 on behalf

of the pair of honest parties and discards any incoming
message from V2.

Fig. 46. SV2
Πmult

: Simulator for the case of corrupt V2

We describe the simulator for the case of a corrupt
a corrupt E1. The case of a corrupt E2 is similar to this
case and hence can be worked out in a similar way.

1) SE1
Πbin

emulates Fbic on behalf of E1 acting as the sender,
for µ2

b′ . If the internal flag variable of Fbic is set to 1, sim-
ulator SE1

Πbin
sets flag = 1 and goes to step 3). Similar steps



FLASH Framework 29

are followed for the case of A1 and B1. Additionally, SE1
Πbin

emulates Fbic on behalf of E1 acting as the helper, for σ2
b′ .

2) If flag = 0:
– SE1

Πbin
emulates Fbic on behalf of E1, for the case of µ2

z ,
where z = b′x. If the internal flag variable of Fbic set to
1, simulator SE1

Πbin
sets flag′ = 1 and goes to step 3). Else

the simulator invokes Fbin, with inputs as JxKE1 , JbKB
E1

and IE1 .
3) Else If flag = 1 :
– SE1

Πbin
sets JxKE1 = (⊥,⊥,⊥), JbKB

E1
= (⊥,⊥,⊥) and in-

vokes Fbin on behalf of E1.
– SE1

Πbin
sends the final circuit output O to E1 on behalf

of the pair of honest parties and discards any incoming
message from E1.

Fig. 47. SE1
Πmult

: Simulator for the case of corrupt E1
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