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Abstract—Protection against active physical attacks is of seri-
ous concerns of cryptographic hardware designers. Introduction
of SIFA invalidating several previously-thought-effective counter-
measures, made this challenge even harder. Here in this work
we deal with error correction, and introduce a methodology
which shows, depending on the selected adversary model, how
to correctly embed error-correcting codes in a cryptographic
implementation. Our construction guarantees the correction of
faults, in any location of the circuit and at any clock cycle, as
long as they fit into the underlying adversary model. Based on
case studies evaluated by open-source fault diagnostic tools, we
claim protection against SIFA.

I. INTRODUCTION

Internet of things (IoT) increasingly become popular and
create values and concerns in our daily life by connecting
various kind of devices and transferring data over such a
network. Small embedded devices have vital role in these
systems, highlighting the significance of their security. The
crux of the matter is an attacker who may have physical
access to an embedded device enabling him to mount all
sorts of physical attacks. Thus, the device not only should
fulfill mathematical security requirements but should also be
physically secure. The focus of this paper is on fault-injection
attacks, where the adversary forces the device to operate in
non-regular conditions by injecting faults. Changing the clock
frequency [2], altering the supply voltage [26], disturbing
the circuit by means of a electromagnetic pulse [22] or
laser beam(s) [27] are the most common techniques for such
maliciously-injected faults.

After the introduction of the seminal work [11], extensive
research has been conducted on fault-injection attacks. Differ-
ential Fault Analysis (DFA) attacks [9] which make use of the
faulty and fault-free outputs, have targeted the implementation
of several (mainly) symmetric ciphers. Furthermore, Statistical
Fault Attack (SFA) [16] boosts the performance of DFA by
statistically analyzing the faulty outputs. Another category of
attacks makes no use of the faulty outputs; they instead only
need to know whether a fault injection led to a faulty output or
not. Examples include Fault Sensitivity Analysis (FSA) [19],
Ineffective Fault Attack (IFA) [13], and Statistical Ineffective
Fault Attack (SIFA) [15]. The later ones utilize fault-free
outputs even though the fault is injected, i.e., ineffective. In
an IFA the adversary needs to know the position and impact
of the injected fault, while SIFA relaxes this requirement.
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Several schemes have been considered to counteract fault-
injection attacks, all of which are common in making use
of some sort of timing-, area-, and/or information-based re-
dundancy. Application of Concurrent Error Detection (CED)
schemes to detect the faults has been widely discussed in
open literature. The computation (e.g., encryption) can trivially
be repeated allowing to check the results [21]. Checking
the consistency of an operation by adding its inverse to the
design [18] and even merging the encryption and decryption
data paths [24] are well-known techniques. Parity, as a naive
Error Detecting Code (EDC), as well as more sophisticated
linear codes have been considered in cryptographic implemen-
tations [4], [8]. Private Circuits II [17] provided provably-
secure solution against both active and passive adversaries.
An improved construction is given in [25], whose lack of any
implementation results makes it hard to evaluate its practical
efficiency. In [1], a robust and practical implementation of
code-based CED schemes is presented. The authors considered
the propagation of faults into the combinatorial logic and
introduced a methodology to restrict its negative effects. They
also guarantee the detection of any fault injected in any
location of the circuit (data path, control logic, etc.) as long
as the injected faults fit into the considered adversary model.
Notably, none of the aforementioned countermeasures is able
to protect cryptographic implementations against SIFA.

Our Contributions. In this paper, we introduce a methodology
leading to secure implementation of error-correcting code-
based schemes in the presence of fault propagation. Indeed, we
extend the error-detection facility of Impeccable Circuits [1] to
error correction by keeping almost the same adversary model.
Our goal is to guarantee the correction of any faults injected in-
side the circuit as long as they fit into the considered bounded
model. We cover every cell belonging to data path, finite state
machine, and control signals at any time of computation.

As a case study, we consider symmetric cipher CRAFT [7]
to show the application of our methodology and to assess
the strategy. To this end, we made use of the open-source
fault-diagnostics tool VerFI [3] and verified the ability of our
constructions in correcting the faults. In short, it confirms
our claim achieving 100% correction rate. Moreover, by em-
ploying simulated data we show that the circuits equipped
with error-detection are trivially vulnerable to SIFA, while the
opposite is demonstrated here when error-correction is applied.
Overall, we give a formal guideline of how error-correcting
code-based schemes should be implemented to guarantee the
maximum level of security against sophisticated attacks (e.g.,



SIFA) making use of up to a certain number of faulty cells.

Related Works. Recently, a couple of techniques have been
proposed to protect against SIFA. Binary repetition code
(a basic error-correcting code) is used in [12], where the
correction is performed in the non-linear (S-box) Layer. The
paper does not include any full design (cipher) evaluation.
Further, no area- and/or latency-overhead using standard ASIC
libraries has been reported, making the comparisons difficult.
A two-phase approach is introduced in [23], where masking is
suggested for the one phase, and repetition code for the other
phase. Each S-box output bit is instantiated multiple times,
and then fed into a majority voting circuitry. While the authors
validated their design by simulation, they did not report the
overhead either in software or hardware. In [14], a combined
countermeasure against Side-Channel Analysis (SCA) and
single-fault SIFA has been proposed, in which the nonlinear
functions are implemented by Toffoli gates, and the whole
design must be masked. While the theoretical foundations
are well discussed, it does not include any implementation
to assess the practical efficiency or any simulation to check
the consistency of the proposed strategy. In comparison, our
methodology deals with error correction and does not force
the designer to apply masking. In fact, the application of our
methodology does not increase the difficulty of equipping the
design with a masking countermeasure, as the algebraic degree
of the underlying functions stay unchanged.

II. BACKGROUND

Unlike SFA and IFA, SIFA does not rely on a specific fault
model and is applicable in a broader range of models specially
in the presence of countermeasures. It simply requires some
dependency between the output and the intermediate value on
which the injected fault has no effect. However, the attacker
does not need to know this dependency. Indeed, the probability
of changing an intermediate value x by a fault injection (like
stuck-at-0/1) is not the same for all values of x. This bias is
the only necessary requirement of SIFA.

To thwart fault-injection attacks, some form of redundancy
(either in time and/or area) should be used to detect or correct
the errors. It is shown in [15] that countermeasures against
SFA and DFA cannot provide protection against SIFA. In fact,
countermeasures based on effective faults are ideal targets for
SIFA, because such countermeasures permit the attacker to
collect observations with ineffective faults. A trivial solution
to protect against SIFA is correction of errors to avoid any
bias in the aforementioned distribution of the intermediate
values. Therefore, the attacker cannot distinguish between
the corrected errors and ineffective ones, hence defeating the
attack. Majority voting and Error Correcting Codes (ECCs)
are among such techniques. It is stated in [15] that faults can
be injected on multiple instances of majority voting with less
complications, leading to successful attacks. We also present
successful SIFAs on different variants of majority voting in
Section IV. In this work, we instead deal with ECCs, where
data is encoded and the redundancy allows the decoder to
correct a limited number of faults.

A. Error Correcting Code (ECC)

Below, we restate some notions related to linear ECCs used
in our work borrowed from [20].

Definition 1 (Linear Code). A binary linear [n, k]-code C is
defined as a vector subspace over Fn

2 which maps messages
x ∈ Fk

2 to codewords c ∈ C, where n and k are refereed as
the length and rank of the [n, k]-code C.

Since most of CEDs rely on binary linear codes due to
performance efficiency in symmetric cryptography, we only
focus on such codes.

Definition 2 (Generator Matrix). A k × n-matrix G is a
generator matrix of a linear [n, k]-code C iff it is formed
by k basis vectors of C with length n. It can be used to
map any message x ∈ Fk

2 to its corresponding codeword with
x ·G = c ∈ C.

Definition 3 (Minimum Distance). The minimum distance d
of an [n, k]-code C is defined as

d = min
{
wt (c1 ⊕ c2) | ∀c1, c2 ∈ C , c1 6= c2

}
,

where wt : Fn
2 7→ N denotes the number of ‘1’s in the binary

representation. Such a code is denoted by [n, k, d].

Indeed, the error detection and correction capability of a linear
code depends on its minimum distance, i.e., larger d allows
more errors to be detected or corrected.

Lemma 1. A linear [n, k, d]-code can detect all erroneous
codewords c′ = c⊕ e with wt(e) < d.

Lemma 2. A linear [n, k, d]-code can correct all erroneous
codewords c′ = c⊕ e with wt(e) < d/2.

In other words, a linear [n, k, d]-code can detect errors up to
(d− 1) bits, or correct errors up to (d− 1)/2 bits.

Definition 4 (Systematic Code). A code in which the message
x is embedded in the codeword c is called a systematic code.

The generator matrix G of a linear systematic [n, k]-code is
of the form G = [Ik|P ] with Ik the identity matrix of size
k. Thus, each codeword c contains message x padded with
check bits (redundancy) x′, i.e., c = 〈x|x′〉, while the check
bits are generated using the matrix P as x′ = x · P . This
property enables a separation between the message and check
bits; hence, the systematic codes do not require extra logic to
recover the message from the codeword. This implementation
advantage justifies why most of the the CEDs make use of
systematic codes, as we do in this work. As noted in [10], the
focus on systematic linear codes does not make any restric-
tions, since any linear non-systematic code can be transformed
to a systematic code with the same minimum distance.

Syndrome Decoding is an efficient method of error correction,
originating from the linearity of the code. Since x′ ⊕ x · P =
0, for an erroneous codeword 〈x ⊕ e|x′ ⊕ e′〉 we can write
(x′⊕e′)⊕ (x⊕e) ·P = e′⊕e ·P which is called a syndrome.
Using a proper look-up table, one can map all syndrome values
to corresponding error vectors 〈e|e′〉 with wt(e) + wt(e′) <
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Fig. 1. Correction point using an ECC.

d/2 and thus, correct the erroneous codeword. Such a look-up
table (e′ ⊕ e · P ) 7→ 〈e|e′〉 is called a syndrome decoder.

III. METHODOLOGY

A. Definitions

Adversary Model. Borrowed from [1], we define a slightly
stronger adversary model. The attacker is able to inject fault
at t arbitrarily cells (either a register or a gate), which means
flipping the output of the cell or setting it to a certain value.
As a consequence, every cell driven by faulty cell(s) can be
faulty as well.

Definition 5 (Univariate Adversary Model Mt). In a given
sub-circuit, the adversary is able to make up to t cells faulty
in the entire operation of the algorithm, e.g., a full encryption.
t can be split into various clock cycles.

Definition 6 (Multivariate Adversary Model M∗t [1]). Here,
the adversary can target up to t cells at every clock cycle.

Fault Propagation and Independence Property. When the
attacker induces fault in t cells, more than t faulty bits can be
present at the sub-circuit output due to fault propagation. In
other words, anMt-bounded attacker can target t certain cells
in such a way that more than t faults appear at the sub-circuit
output avoiding the underlying code to detect or correct it.
To thwart fault propagation, independence property has been
defined in [1]. It means that no cell should be shared between
functions which generate different output wires. Hence, by
inducing fault in one cell, the fault can only affect one output.

Correction Point. In order to correct a faulty codeword, we
use the typical ECC construction shown in Fig. 1. We refer to
the application of matrix P on x to derive x′ by F : Fk

2 7→ Fm
2

as F (x) = x · P , where m = n − k denotes the redundancy
bit-length. As discussed in Section II-A, using an [n, k, 2t+1]-
code, there exist a syndrome decoder to correct all faults with
Hamming weight of at most t. Assume a faulty input 〈x|x′〉
with the injected fault being 〈e|e′〉. At the correction point,
the syndrome decoder is fed by F (x)⊕x′; hence, the injected
fault 〈ê|ê′〉 is predicted. If wt(e) + wt(e′) ≤ t, the predicted
fault is the same as the injected one. If so, XORing 〈ê|ê′〉 to
the input word omits the injected fault. Note that in Figure 1
we split the syndrome decoder to two parts with SD1 and
SD2 predicting ê and ê′, respectively.

B. Application

In order to apply our strategy, we consider a general
algorithm that is realized by a sequential circuit depicted in
Figure 2(a). It consists of a register which loads the INPUT
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Fig. 2. Our construction with respect to application of an ECC.

at the beginning (triggered by rst signal) and performs the
function T repeatedly until the OUTPUT is taken from the
register. Note that any sequential circuit can be represented
by such a construction. For the sake of simplicity suppose
that the bit-length of INPUT, register, and input and output of
T is a multiple of k bits. The application of an [n, k]-code
would lead to transforming every k-bit chunk x to an n-bit
codeword c = 〈x|x′〉. In the following, considering only a
univariate adversary model and also two different cases for F ,
we explain how the underlying ECC is applied.

Injective F . In this case which necessities the redundancy to
be at least as large as the message size (e.g., n ≥ 2k), the
redundant part of the circuit can operate on x′ independent of
x, as shown in Figure 2(b). The redundant function T ′ can
also be achieved as T ′ = F ◦T ◦F−1. It is necessary to put a
correction point at the input of each operation. Otherwise, the
faults injected at the register cells would potentially propagate
to multiple output bits of T/T ′. All output bits (dashed
boxes in Figure 2(b)) must be implemented fulfilling the
independence property which may necessitate to implement
several instances of F , SD1 and SD2. Note that, in the a
code with distance d = 2t + 1, the output of SD1 does not
change if up to t faults are injected at its input. In other words,
SD1 does not propagate faults e with wt(e) < t. Thus, F
and the corresponding XOR can be instantiated separately,
while it does not hold for SD2 (see Figure 2(b)). Since the
multiplexer and the register operate on each bit of the T
output independently, they fulfill the independence property
automatically. Hence, any fault injected on T/T ′ fitting to the
adversary model is corrected at the correction point in the next
clock cycle.

Non-Injective F . Here, T ′ needs to receive the original data
x to compute T ′(x) = F ◦ T (x). This means that we only
need to correct x. The corresponding construction is shown in
Figure 2(c), where the independence property can be divided
in two parts (two dashed boxes). It is indeed the same as the
left part of Figure 2(b) with a different T ′.

Optimization. In symmetric ciphers, often T is a composition
of some sub-functions, for instance T = T2◦T1 where usually
one is a nonlinear function and the other ones linear. Due



to the diffusion properties of T , implementing T fulfilling
the independence property can be area-wise expensive. The
area overhead might be reduced by implementing T1 and T2

independently with their corresponding correction points, and
fulfilling the independence property for each part. It is worth
to mention that the benefit might be marginal since more
correction points are required (it depends on the diffusion of
T1 and/or T2).

In several block ciphers including CRAFT [7], Midori [5]
and Skinny [6], the linear layer can be represented as a binary
matrix over elements of F2k . It is proven in [1] that such sub-
functions do not propagate the injected faults. Hence, they do
not need an extra correction point if implemented following
the aforementioned decomposition form.

FSM and Control Signals. Finite-State Machine (FSM) is a
vital part of the algorithm because the attacker can manipulate
the FSM and control the flow to obtain critical outputs, like
middle value of the cipher easily exploiting the secrets. Every
FSM can be implemented by a set of registers called STATE,
initialized by INIT and updated every clock cycle by means
of an update function U . The statements given for different
constructions depending on F (injective/non-injective) hold for
the FSM as well. It should be implemented following Fig 2
replacing T by the update function U and INPUT by INIT.
Each function Gi which generates a control signal si, receives
the corrected STATE, where its redundant counterpart s′i =
F ({0}k−1|si). In other words, every single-bit control signal
is padded with zero to form a k-bit chunk; the encoded chunk
s′i is of m bits.
• Injective F : Here, the redundant part of each control signal

is made as s′i = G′i(STATE′) with G′i = F ◦Gi ◦ F−1.
• Non-Injective F : Each control signal si is mapped to
s′i = G′i(STATE) with G′i = F ◦ Gi. Note that, if there
is a G′i(.) satisfying G′i ◦ F = F ◦ Gi, it is possible to
generate s′i over STATE′.

It is noteworthy that implementation of all functions should
follow the independence property.

Multiplexer. Suppose a k-bit multiplexer switching between
x and y controlled by the signal s. As stated before, the redun-
dant counterpart of s, x, and y are m-bit wide. To apply error
correction, the multiplexer is combined with its redundant
counterpart to form a k+m-bit multiplexer switching between
〈x|x′〉 and 〈y|y′〉 by an m+1-bit control signal 〈s|s′〉. The
combined multiplexer should be implemented by a multiplexer
tree in m+1 levels. The first row is controlled by the control
signal s, and the other rows by the corresponding bit of the
redundant control signal s′. The inputs vi∈{0,...,2k+m−1} of the
first multiplexer row are defined as follows:

vi =

 〈x|x
′〉 ; i = 〈0|F (0)〉 ⊕∆, wt(∆) < d/2

〈y|y′〉 ; i = 〈1|F (1)〉 ⊕∆, wt(∆) < d/2
0 ; else

If the functions generating the control signals and their redun-
dant part fulfill the independence property, this construction
guarantees the correction of t < d/2 faulty gates, since 〈s|s′〉
is a codeword with distance d.

Output. We suppose that the circuit contains a control signal
DONE indicating the termination of the computation. To avoid
sniffing intermediate results by injecting a fault into such a
signal, a construction similar to the multiplexer can be used. To
this end, DONE signal should be protected from faults turning it
from ‘0’ to ‘1’. The DONE signal is concatenated with its m-bit
redundancy and forms an m+1-bit signal controlling an m+1
levels multiplexer. The final result of the cipher should pass
through this multiplexer whose first row inputs are defined as:

vi =

{
OUTPUT ; i = 〈1|F (1)〉
0 ; else

Considering the independence property, this construction guar-
antees to prevent any sniffing with t < d faults on DONE and
its redundancy DONE′.

C. Extension to Multivariate

Suppose the circuits shown in Fig 2 with an [n, k, d]-code,
which under the Mt adversary model correct all t faults
when d = 2t + 1. To protect the circuit against the M∗t
adversary model, we need d/2 to be larger than the maximum
number of faults that the adversary can inject between two
consecutive correction points. For instance, in the circuits
shown in Figure 2, there is only one correction point in each
clock cycle; hence, the maximum number of faults that can be
injected between two consecutive correction points is 2t. To
protect this circuit against the M∗t adversary model, we need
to embed a code with d = 4t+ 1. It is noteworthy to mention
that for circuits which include more than one correction point
in one clock cycle, only changing the first correction point to
the one using a code with d = 4t + 1 is enough. While other
correction points can still use the code with d = 2t + 1.

IV. CASE STUDY

To evaluate our proposed methodology in terms of overhead
as well as fault correction, we investigated the block cipher
CRAFT designed with respect to efficient protection against
DFA [7]. Our analyses are base on Synopsys Design Compiler
with the NanGate 45 nm ASIC standard cell library.

A. Cipher

CRAFT operates on a 64-bit state, 64-bit tweak, and a 128-
bit key in 32 rounds. Each round consists of SubBox (SB),
MixColumn (MC), PermuteNibbles (PN), AddConstant (AC),
and AddTweakey (AT), while SB and PN are not applied
in the last round. Based on the given key and tweak, the
KeySchedule generates four 64-bit tweakeys, one of which
is selected depending on the round counter. After loading the
plaintext, MC is applied to each column; then the selected
tweakey and RoundConstants are XORed to the state, followed
by PN and SB.

B. Implementation Details

We focused on a round-based implementation of CRAFT.
Since CRAFT uses a 4-bit S-box, we fixed k = 4 in [n, k, d]
codes, while the distance d (hence the code length n) are
defined by the considered adversary model. We examined two
codes with distance 3 and 5 to be able to correct 1-bit and



2-bit faults, respectively. Thus, we used [7, 4, 3]-code for 1-bit
and [11, 4, 5]-code for 2-bit corrections in our implementation.

[7,4,3]-code: Here, F (.) cannot be injective; therefore, the
architecture shown in Figure 2(c) should be followed by the
following generator matrix.

G[7,4,3] =

 1 0 0 0 0 1 1
0 1 0 0 1 1 1
0 0 1 0 1 0 1
0 0 0 1 1 1 0

 = (I4 | P)

In such cases, the MC, PN, and XORs can operate solely on
redundant part of the cipher. For FSM and S-box, F ◦UFSM

and F ◦ S should be implemented respectively.

Optimization. As mentioned in Section III-B, the select signal
of the multiplexers is a concatenation of the single-bit s and
its redundancy s′. Hence, 〈s|s′〉 can be 〈0|F (0) = 0000〉 or
〈1|F (1) = 1111〉. The distance of these two codewords is 4
while it is possible to correct single-bit faults with a distance
of 3. Thus, by selecting only 3 bits of 〈s|s′〉 (including s), we
can achieve the same goal with less area overhead.

[11,4,5]-code: Since here F (.) is injective, the structure shown
in Figure 2(b) is followed with the following generator matrix.

G[11,4,5] =

 1 0 0 0 1 1 1 1 0 0 0
0 1 0 0 1 1 0 0 1 1 0
0 0 1 0 1 0 1 0 1 0 1
0 0 0 1 0 1 0 1 0 1 1


Since the MC matrix consists only of zero and one and
as stated in [1], the same MC matrix can be used for the
redundant counterpart. The same holds for the PN module,
while the redundant part of the S-box is derived by F ◦S◦F−1,
as given in Section III-B.

Similar to the data path, all key nibbles are also encoded,
so all XORs (AC and AT) are straightforward in the redundant
part. The permutation of the tweak is also done trivially
due to its nibble-wise structure. Two LFSRs are used in this
block cipher to generate RoundConstants. We followed the
same implementation styles as in [7] to encode them. The
DONE, derived from the LFSR states, is a 7-bit coordinate
function, while the redundant counterpart contains seven 14-
bit coordinate functions (due to the independence property and
the code length n = 4 + 7).

Optimization. The output of syndrome decoders is “don’t-
care” for some inputs which helped us to reduce the area
overhead. The select signal of the multiplexers (which select
the tweakeys) can take 〈0|F (0) = 00000000〉 or 〈1|F (1) =
10001111〉. By removing the bits tied to ‘0’, we further
reduced the area while achieving the same level of protection.

Majority Voting. We have also implemented the same design
equipped with Majority Voting (MV), where the cipher is
instantiated 2t+1 number of times to correct up to t bit faults.
To this end, we instantiated the cipher 3 and 5 times, followed
by the corresponding voting circuitry. Different approaches can
be used to realize the voting module, we employed a variant
where the entire 65-bit outputs are compared (64-bit ciphertext
concatenated by the DONE signal). The area and latency of our

TABLE I
AREA AND LATENCY COMPARISON OF CRAFT IMPLEMENTATIONS,

USING NANGATE 45 NM ASIC LIBRARY.

Plain 1-bit Correction 2-bit Correction
MV [7,4,3] MV [11,4,5]

Area (GE) 1097 4502 5187 7711 21617
Latency (ns) 0.55 1.00 0.87 1.03 1.08

implementations are summarized in Table I. It can be seen that
our designs has almost no performance benefits compared to
the classical MV variants. However, in the following we show
the pitfalls of MV designs and advantages of our constructions
with respect to protection against SIFA.

C. Simulation

In order to assess the effectiveness of our construction,
we made use of VerFI [3] the open-source fault-diagnostics
tool (ver 2 Beta) https://github.com/emsec/VerFI. It receives
the NanGate 45 net-list of the circuit and injects (bounded)
stuck-at or toggle faults at any cell at desired clock cycles.
We examined our CRAFT implementation with [7,4,3]-code
(containing 2729 cells) with all possible single-bit toggle faults
at a certain clock cycle, i.e.,Mt=1 adversary model. The tool
required a couple of seconds to report the correction of all
single-bit fault injections. For our implementation equipped
with [11,4,5]-code, we repeated this experiment for two sce-
narios: 1) injecting 2-bit faults on all cells at a clock cycle,
i.e., Mt=2 adversary model, and 2) injecting 2-bit faults
split in consecutive clock cycles, i.e., M∗t=1 model. The tool
confirmed the correction of all faults in both scenarios. Since
the design contains 14102 cells, the first scenario took 26 hours
and the second one 51 hours on a machine with two Intel Xeon
CPU (24 cores).

Attacks. We further used the same tool to inject stuck-at faults
to emulate SIFA. We first took the CRAFT implementations
with fault detection facility [7] (available at https://github.com/
emsec/ImpeccableCircuits/tree/master/CRAFT). We examined
3 versions of such implementations: with 1-, 2-, and 3-bit error
detection. Since only fault-free ciphertexts are used in SIFA,
recovering the secret is straightforward. We targeted an S-box
in the penultimate round with faults fitting into the underlying
error detection facility, i.e., 1-bit fault on 1-bit error detection
version, etc. We conducted the attack on the collected fault-
free ciphertexts by computing the target intermediate value
based on a key guess where the correct key guess is identified
by the highest Squared Euclidean Imbalance (SEI). The result
of the attacks (no. of required fault-free cipheretxts) are shown
in Figure 3.

We further conducted attacks on MV implementations. The
3-instance MV design (for 1-bit correction) can be easily
attacked by sniffing the output of a middle round by injecting a
single stuck-at fault at a part of the voting circuit responsible
for the DONE signal. In order to attack the 5-instance MV
design, we injected a single stuck-at fault on an S-box in the
penultimate round of one of the cipher instances. The second
single-bit stuck-at fault was injected on the voting circuit to

https://github.com/emsec/VerFI
https://github.com/emsec/ImpeccableCircuits/tree/master/CRAFT
https://github.com/emsec/ImpeccableCircuits/tree/master/CRAFT
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Fig. 3. Result of SIFA on various protected implementations.

let the output pass. This reveals whether the first injected
fault was ineffective or not. Such information was adequate to
successfully mount the SIFA (results in Figure 3). Note that in
these cases the injected faults should have been covered by the
underlying countermeasure (i.e., 1-bit fault on 1-bit correction,
etc.). However, as we examined our constructions with all
possible (1-/2-bit) faults exhaustively, no similar attacks is
possible on our constructions. The entire HDL codes and
analysis scripts used for this paper are available online1.

V. CONCLUSIONS

Sensitive information of any unprotected cryptographic im-
plementation can be easily revealed by fault attacks. This
necessitates to utilize proper countermeasures. In this work,
we demonstrated how to construct circuits which guarantee
the correction of faults in two circumstances: 1) when the
adversary can inject up to t faults per encryption and 2) when
t faults are injected at every clock cycle. Our constructions
cover every component of the design including the data path,
FSM, control signals, and even the modules responsible for
error correction. As a case study, we applied our methodology
on CRAFT block cipher and studied the overhead in terms
of area and latency. We further exhaustively evaluated our
constructions by VerFI which confirmed the 100% correction
of any possible faults fitting into the considered adversary
model. Last but not least, we mounted successful SIFA on
various designs equipped with fault detection as well as on
constructions making use of majority voting. This highlights
the advantage of our construction in counteracting such pow-
erful attacks that justifies its high area overhead.
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