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Abstract. There have been notable improvements in discrete logarithm
computations in finite fields since 2015 and the introduction of the
Tower Number Field Sieve (TNFS) algorithm for extension fields. The
Special TNFS is very efficient in finite fields that are target groups of
pairings on elliptic curves, where the characteristic is special (e.g. sparse).
The key sizes for pairings should be increased, and alternative pairing-
friendly curves can be considered. We revisit the Special variant of TNFS
for pairing-friendly curves. In this case the characteristic is given by a
polynomial of moderate degree (between 4 and 38) and tiny coefficients,
evaluated at an integer (a seed). We present a polynomial selection
with a new practical trade-off between degree and coefficient size. As a
consequence, the security of curves computed by Barbulescu, El Mrabet
and Ghammam should be revised: we obtain a smaller estimated cost
of STNFS for all curves except BLS12 and BN. To obtain TNFS-secure
curves, we reconsider the Brezing-Weng generic construction of families
of pairing-friendly curves and estimate the cost of our new Special TNFS
algorithm for these curves. This improves on the work of Fotiadis and
Konstantinou, Fotiadis and Martindale, and Barbulescu, El Mrabet and
Ghammam. We obtain a short-list of interesting families of curves that
are resistant to the Special TNFS algorithm, of embedding degrees 10 to
16 for the 128-bit security level. We conclude that at the 128-bit security
level, a BLS-12 curve over a 440 to 448-bit prime seems to be the best
choice for pairing efficiency. We also give a brief overview of the 192-bit
security level.

1 Introduction

A cryptographic pairing is a bilinear non-degenerate map from two groups G1

and G2 to a target group GT , where the three groups share a common prime
order r. The first two groups are distinct subgroups of the group of points E(Fpk)
of an elliptic curve E defined over a prime field Fp, and the third group is a
multiplicative subgroup of order r of a finite field Fpk , where k is the minimal
integer such that r | pk − 1, and is called the embedding degree. Pairing-friendly
curves such that k is small (between 1 and 20 for example) should be designed
on purpose, as the embedding degree is usually very large, of the magnitude of r.

Freeman, Scott and Teske presented a taxonomy of pairing-friendly curves
in [21]. At that time, the size of the target finite field Fpk was chosen to be



the same as a prime field Fq offering the desired security, that is, a 3072-bit
(or 3200-bit) finite field for a 128-bit security level. The size of Fq is deduced
from the asymptotic complexity of the Number Field Sieve Lp(1/3, c) = exp((c+
o(1))(ln p)1/3(ln ln p)2/3), where c = (64/9)1/3 ≈ 1.923 for general prime fields
and c = (32/9)1/3 ≈ 1.526 for special primes having a very sparse representation.
Barreto-Naehrig (BN) curves became very popular. A BN curve defined over a
prime field has prime order and embedding degree 12, hence choosing p and r
of 256 bits gives 128 bits of security one the curve, then pk is about 3072-bit
long, as desired to match the 128-bit security level in Fpk . But it turned out that
prime fields and extension fields of the same total size q and pk do not offer the
same security, and the state of affairs for extension fields is complicated, with
many different cases.

In 2015 and 2016, Barbulescu, Gaudry and Kleinjung, followed by Kim
and Barbulescu and Kim and Jeong [5,27,28] revisited Schirokauer’s Tower
Number Field Sieve algorithm (TNFS) and applied this new setting to finite
fields of composite extension degrees. The asymptotic complexity of this new
algorithm decreased significantly, from LQ(1/3, 2.201) to LQ(1/3, 1.526) and in
particular, below the complexity of a generic DL computation in a prime field,
in LQ(1/3, 1.923). This makes mandatory to revisit the sizes and choices of
pairing-friendly curves.

Fotiadis and Konstantinou [18] revisited the Brezing-Weng method to generate
families of pairing-friendly curves and identified a list of interesting choices of
moderate embedding degrees to match the 128-bit security level. However, they
considered the asymptotic complexity of STNFS to deduce the security offered by
the curves. It gives a first hint on the sizes of finite fields to choose but is not precise
enough. Later Menezes, Sarkar and Singh [30], then Barbulescu and Duquesne [3]
and more recently Guillevic and Singh [23] refined the analysis of STNFS to
obtain more precise sizes of finite fields to match a given security level. Fotiadis
and Martindale [19] focus on composite embedding degrees (k ∈ {8, 9, 10, 12}
for the 128-bit security level), Guillevic, Masson and Thomé [22] consider a
modification of the Cocks-Pinch method for k ∈ {5, 6, 7, 8}, and Barbulescu, El
Mrabet and Ghammam span embedding degrees from 9 to 53.

This is an active topic: the standardisation of pairings is under discussions at
IETF [33] and at ISO for updating the standard on pairing-friendly curves [24].
Particular pairing-friendly curves (e.g. cycles of curves [13]) are also needed in
zero-knowledge proofs and blockchains (ZCash uses a BLS12-381 curve [8,35],
Ethereum a BN-256 curve [16], and Zexe a BLS12-377 curve and a Cocks-Pinch
curve of embedding degree 6 [9, Table 16]).

Our Contributions

We introduce a practical variant of special polynomial selection for STNFS that
applies to target finite fields of pairing-friendly curves. It does not change the
asymptotic complexity of STNFS but it changes the estimated cost of STNFS as
computed by Barbulescu and Duquesne.
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We extend the work of Fotiadis and Konstantinou [18], and identify another
criterion to be resistant to STNFS: the polynomial p(x) defining the field charac-
teristic should have no automorphism. Then we build on the work of Guillevic
and Singh [23] to estimate finely the cost of a discrete logarithm computation
with STNFS. We write a SageMath script to automatically and systematically
compare many polynomial selections, and in particular, change of variables on
p(x). We consider embedding degrees from 9 to 17. This is a complement to the
work of Fotiadis and Martindale [19], where embedding degrees 8, 9, 10 and 12
are considered for the 128-bit security level. We also identify some non-optimal
parameter choices in the recent preprint of Barbulescu, El Mrabet and Gham-
mam [4], resulting in over-estimated cost of STNFS and under-estimated finite
field size. We conclude with a short-list of STNFS-secure pairing-friendly curves
of embedding degrees from 10 to 16.

The work in [22] showed that a pairing-friendly curve over a non-special prime,
and with a prime embedding degree k = 5, 7 gives a slow pairing computation,
about three times slower than the best candidate: a BLS12-curve over a 446-bit
prime field. Here we foresee that a curve of prime embedding degree k with
a special prime will not provide a competitive pairing computation, despite a
smaller prime p, of 333 bits for k = 11 and 310 bits for k = 13, compared to a
446-bit prime p for BLS12 curves.

Organisation of the paper. In Section 2 we recall briefly the special tower number
field sieve algorithm and the approximation of running-time made in [23]. We
present our variant of special polynomial selection for pairing-friendly curves. In
Section 3 we recall the Brezing-Weng construction for pairing-friendly curves,
then we list the possible curves for the 128-bit security level, and we present
the results of simulation of STNFS for each curve. We select a short-list of nine
secure curves. In Section 4 we roughly estimate the cost of the Miller loop for
an optimal ate pairing computation on the curves of the short-list that do not
appear in previous works. In Section 5 we estimate the cost of STNFS for curves
in [4] at the 192-bit security level. This is more complex than the 128-bit security
level. We identify underestimated sizes for many embedding degrees from 9 to
22, and in particular, for k = 14, 15. We conclude in Section 6.

2 The Special Tower Number Field Sieve

In this section, we sketch the TNFS algorithm. We refer to [5,23] for an extended
description of TNFS. The TNFS algorithm falls in the broader Number Field
Sieve algorithms. To compute a discrete logarithm in a finite field, one first
computes a large amount of precomputed data. A first important ingredient is
the factor basis. A finite field Fpk has no factorisation of elements into irreducible
elements or prime elements. However a number field has a ring of integers, and
factorisation of ideals in prime ideals. Equipped with a map from a (sub)ring
of integers of a number field to a finite field, one can factor ideals in prime
ideals, then map each prime factor to the finite field to obtain a factorisation
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in Fpk . (There are now well-defined procedures to handle non-principal ideals
and non-torsion units). The factor basis is made of the prime ideals (usually
of degree one) of small norm, bounded by the smoothness bound B. The first
step of the algorithm is to define two non-isomorphic number fields with two
irreducible polynomials f and g, which share a common irreducible factor of
degree k modulo p (a common root if one targets a prime field Fp), so that one
has two maps from the ring of integers of number fields defined by f and g, to
the same finite field Fpk .

The next step is to collect a large number of relations involving the primes of
the factor basis. We will say that an algebraic integer is B-smooth if it factors in
prime ideals of degree one and norm bounded by B (B is an integer). Once enough
relations are collected, taking the logarithm of the multiplicative relations, one
obtains a large set of linear equations whose unknown are the discrete logarithms
of the prime ideals of the factor basis. Solving the system, one obtains the discrete
logarithms of the factor basis elements. Finally, to compute the discrete logarithm
of a given target in the finite field, one lifts the target in the number field, and
try to find a smooth decomposition of this target over the prime ideals whose
logarithms are known.

In the Number Field Sieve setting, two distinct number fields are needed, so
that their ring of integers can be mapped to the finite field Fpk . In the Tower
NFS setting, one consider two extensions of a same number field. Let k be the
extension degree, and k = ηκ where η, κ are integers (η = k and κ = 1 if k is
prime). One chooses an irreducible monic polynomial h(Y ) ∈ Z[Y ] of degree η
and small coefficients. Define the number field Kh = Q[Y ]/(h(Y )), and let y
denotes a root of h in Kh. Let Oh denotes the ring of integers of Kh, and let Zy
be a subring of Oh (we take the same notations as [23]). Let p = (p, h(Y )) be
a prime ideal of Oh above p. One selects a pair of polynomials fy(X), gy(X) so
that reduced modulo (p, h(Y )), they share a common irreducible factor ψy(X)
of degree κ. Let Ky,f and Ky,g the number fields defined above Kh by fy(X)
and gy(X) respectively, and Oy,f , Oy,g their ring of algebraic integers. Let αy,f
a root of fy(X) in Ky,f and αy,g a root of gy(X) in Ky,g. We have the following
setting (Figure 1) and commutative diagram (Figure 2).

Q

Kh = Q[y]/(h(y))

deg h = η

Ky,f = Kh[x]/(fy(x)) Kh[x]/(gy(x)) = Ky,g

deg fy ≥ κ deg gy ≥ κ

Fig. 1. Extensions of number field for TNFS
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Zy[X]

Zy[X]/(fy(X)) Zy[X]/(gy(X))

Fpn

modp modp

Fig. 2. Commutative diagram for TNFS.

In the relation collection step, one enumerates all a = a0 + a1Y + . . . +
aη−1Y

η−1, b = b0 + b1Y + . . .+ bη−1Y
η−1 such that |ai|, |bi| are bounded by the

relation collection bound A. The aim is to compute the norms of a + bX in Ky,f

and Ky,g and keep the (a, b) whose norms are B-smooth. Assuming h(Y ), fY (X)
are monic, the norm is

Nf = NormKy,f/Q(a + bX) = ResY (ResX(a + bX, fY (X)), h(Y )) . (1)

and for a non-monic gy(X) of leading coefficient lc(gy),

Ng = NormKy,g/Q(a + bX)| lc(gy)|n = ResY (ResX(a + bX, gY (X)), h(Y )) .

The schedule of TNFS can be summarised in four important steps.

1. Polynomial selection: choosing h(Y ), fy(X), gy(X) so as to minimise the
norms Nf and Ng;

2. Relation collection: obtaining many a(y) + b(y)X whose absolute norms in
Ky,f and Ky,g w.r.t. Q are B-smooth. The coefficients ai, bi have absolute
value bounded by A, where a = a0 + a1y + . . .+ aiy

η−1, b = b0 + b1y + . . .+
biy

η−1;
3. Linear algebra: each relation encodes a row of a large sparse matrix. After a

filtering step (preprocessing of the matrix to remove the singletons and small
cliques) the right kernel is computed with the Block-Wiedemann algorithm;

4. Individual discrete logarithm computation: obtain the database of discrete
logarithms of the prime ideals of factor basis. Then given a target in Fpn , lift in
one of the number fields, Ky,f or Ky,g, and obtain a smooth decomposition.
Sum the discrete logarithms of the factor basis involved in the smooth
decomposition to obtain the logarithm of the target.

2.1 Estimation of TNFS cost

This is an important concern to know the finite field size needed to match
a security level such as 128 bits. Lenstra and Verheul designed an approach
to extrapolate prime field sizes from the asymptotic complexity of NFS [29].
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Unfortunately this cannot be applied straightforward for extension fields [30] as
the asymptotic complexity assumes a ratio of the extension degree n = ηκ as
pn = Q tends to infinity (see [27, Table 4] for the Kim–Barbulescu variants of
TNFS: with Conjugation, κ = (lnQ/(12 ln lnQ))1/3 is required, and for STNFS,
one needs p to be d-SNFS (i.e. p = P (u) and P is a polynomial of degree d and
very small coefficients) with d = ((2/3)1/3 + o(1))(lnQ/(ln lnQ))1/3/κ), but in
practice, n is fixed to a small integer an p ranges (roughly) from 256 to 512 bits.

To circumvent this theoretical limitation, Menezes, Sarkar and Singh bounded
the size of norms for a given input. later Barbulescu and Duquesne averaged the
size of norms over a sample of about 26000 random inputs. Then Guillevic and
Singh computed the smoothness bias of the resultants with respect to integers
of the same size (α value of polynomials), simulated the relation collection of
TNFS, and averaged the smoothness probability over random samples, as a TNFS
variant of the Murphy E function. This estimate should be done for each set of
parameters (p(x), u). We build on these two previous works [3,23]. In particular,
we model the relation collection cost as [23, Eq. 6.3] and the linear algebra cost
as [23, Eq. 6.5].

Cost of relation collection =
(2A+ 1)2·η · log(log(B))

2 · (# aut(h) gcd(deg(f),deg(g)))
(2)

where A is the bound on the coefficients ai, bi in the relation collection. The
a = a0 + a1y + . . .+ aη−1y

η−1 and b have η coefficients each in [−A,A], there
are (2A+ 1)2η such pairs (a, b). For each pair, one computes the norms Nf , Ng
and test for B-smoothness, this is estimated as costing log logB. The process can
be speeded-up for specific choices of h, fy, gy where automorphisms are available,
hence the denominator.

Cost of Linear Algebra = cnst · wt · (#B ÷ flt)2 (3)

where cnst is a constant representing the cost of a multiplication modulo `, wt
is the weight per row (number of non-zero entries), #B is the total size of the
factor basis (f -side and g-side), and flt is the reducing factor of the filtering
step. Following [23], cnst = b`/64c is the machine-word size of `, wt = 200 and
flt = 20.

For each pairing-friendly curve parameters (p(x), u) we run Algorithm 2.1 to
estimate the number of relations obtained for given inputs A,B. The Dickman-ρ
function is denoted by Dρ. We write a SageMath code to automatically adjust
the parameters A,B so that enough relations are obtained and the cost of linear
algebra and relation collection are finely balanced, in order to minimise the total
estimated cost of TNFS.

2.2 Special Polynomial Selection

We refine the special polynomial selection introduced in [5] and present a variant
particularly suited for certain families of pairing-friendly curves that appear in
the recent preprint [4].
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Algorithm 2.1: Monte-Carlo approximation of Murphy’s E for TNFS [23,
Alg. 6.1] (computes an estimation of the number of relations)
Input: Valid polynomials fy, gy, h, αf , αg, parameter A ∈ N, smoothness bound B,

N ≈ 105

Output: Yield estimate (number of relations)
1 Pf ← 0; Pg ← 0
2 for n := 1 to N do

3 a← random vector in {−A,A}2 deg h

4 b← random vector in {−A,A}2 deg h−1 × {0, A}
5 if gcd(a, b) 6= 1 then gcd of an array of integers
6 continue
7 a← aOh, b← bOh
8 if the ideals a, b are not coprime (a + b 6= 1) then
9 continue

10 Nf ← |Res(h,Res(fy,a− bx))|
11 Ng ← |Res(h,Res(gy,a− bx))|
12 uf ← (lnNf + αf )/ lnB ; pf ← Dρ(uf ) + (1− γ)Dρ(u− 1)/ lnNf
13 ug ← (lnNg + αg)/ lnB ; pg ← Dρ(ug) + (1− γ)Dρ(u− 1)/ lnNg
14 Pfg ← Pfg + pfpg
15 Pfg ← Pfg/N
16 w ← index of group of torsion units of Oh
17 V ← (2A+ 1)2 deg h/(2wζKh(2))
18 return V × Pfg

Pairing-friendly curves have a special characteristic p, given by a polynomial
p(x) of small degree evaluated at an integer u. For BLS12 curves, we have
p(x) = (x6−2x5+2x3+x+1)/3, and for a 381-bit prime p, u = −(263+262+260+
257 + 248 + 216) [8]. Joux and Pierrot introduced a dedicated polynomial selection
that takes advantage of the polynomial form p = p(u) [25]. The adaptation to
the Tower setting is the following.

Joux–Pierrot polynomial selection for TNFS. Assume there exists an
integer u ≈ p1/d and a polynomial P (U) of degree d and small coefficients
(‖P (U)‖∞ = O(1)) such that P (u) = 0 mod p. Select a monic polynomial Sy(X)
of degree κ and small coefficients (‖Sy(X)‖∞ = O(1)) such that gy(X) = Sy(X)−
u and fy(X) = P (Sy(X)) are irreducible. Finally select a monic irreducible h(Y ).
Then (h(Y ), fy(X), gy(X)) are STNFS polynomials.

Joux–Pierrot polynomial selection for TNFS with automorphism. We
recall a variant of the Joux–Pierrot method to obtain a pair of polynomials
(fy, gy) admitting an automorphism, when k is not prime. First select an auxiliary
polynomial with automorphism, for example from the list in [17].

– κ = 2: ct(X) = X2 − tX + 1, σ : X 7→ 1/X; ct(X) = X2 + t, σ : X 7→ −X;
– κ = 3: ct(X) = X3 − tX2 − (t+ 3)X − 1, σ : X 7→ −(X + 1)/X;
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– κ = 4: ct(X) = X4 − tX3 − 6X2 + tX + 1, σ : X 7→ −(X + 1)/(X − 1);

– κ = 6: ct(X) = X6 − 2tX5 − (5t+ 15)X4 − 20X3 + 5tX2 + (2t+ 6)X + 1,
σ : X 7→ −(2X + 1)/(X − 1).

If gcd(κ, η) = 1, define fy(X) = ResU (cU (X), P (U)) and gy(X) = cu(X). If
gcd(κ, η) > 1, define fy(X) = ResU (cUy(X), P (U)) and gy(X) = cuy(X), or
alternatively, fy(X) = ResU (cU+y(X), P (U)) and gy(X) = cu+y(X). If fy, gy
are irreducible, select a monic irreducible h(Y ). Then (h(Y ), fy(X), gy(X)) are
STNFS polynomials.

Example 1 ([23, Table 7]). To minimise the size of norms and the total estimated
cost of STNFS for BLS12-381 curves, one chooses h of degree 6, and fy, gy
share a common irreducible factor of degree 2 modulo (p, h(Y )). The prime p of
BLS12 curves satisfies p = P (u)/3, where P (x) = x6 − 2x5 + 2x3 + x+ 1. The
polynomials selected in [23, Table 7] are h = Y 6−Y 2 +1, fy = ResU (P (U), X2−
UY ) mod h(Y ) = X12 − 2yX10 + 2y3X6 + y5X2 + y2 − 1 and gy = X2 − uy =
X2 + 15132376222941642752y.

Improvements on the Joux–Pierrot method. The pairing-friendly curves
of Section 3 all have a characteristic of a polynomial form p = p(u) for a seed
u, where p(x) has very small coefficients and degree from 4 (BN curves) to 46
(Construction 6.7 for k = 9, Table 2). We observed that when the degree of
p(x) is larger than 12, the average size of norms obtained with Algorithm 2.1
is not satisfying. In other words, for a same size of finite field Fpk but different
families of curves with p(x) of very different degrees, one obtain very different
estimated costs of STNFS. We explain in the following our method to obtain
a lower estimated cost of STNFS when the degree of p(x) is too large and the
Joux–Pierrot method does not give good enough results.

In [5, §5.2] and in the SageMath script provided with [4], one observes that
when it is possible, the degree of the polynomial P is divided by two without
increasing the size of the coefficients. We name it Variant 1.

Variant 1 (Even polynomial p(x)) When p(x) is an even polynomial (that
is, with only even degree monomials, and one has p(x) = p(−x)), then one
defines P (x) such that P (x2) = p(x), and P has degree deg(p(x))/2. The pair of
polynomials (for TNFS) (P (x), x− u2) satisfies Resx(P (x), x− u2) = P (u2) =
p(u) = p as desired.

We adapt this technique to palindrome polynomials (also mentioned in [5, §5.2]).

Variant 2 (Palindrome polynomial p(x)) When p(x) = p(1/x)xdeg p(x), then
we define P (x) to be the minimal polynomial of α+ 1/α in the number field de-
fined by p(x), K = Q[x]/(p(x)) = Q(α). Then P (x) has degree deg(p(x))/2
and small coefficients (as long as p(x) has small coefficients). The pair of
polynomials (for TNFS) is (P (x), ux − (u2 + 1) = u(x − (u + 1/u))), and
Resx(P (x), x− (u+ 1/u)) = P (u+ 1/u) ≡ 0 mod p(u) as desired.
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Variant 3 (Polynomial p(x) with automorphism) More generally when there
is an automorphism available for p(x), say σ, of order two i.e. σ2(a) = a, then
we define P (x) to be the minimal polynomial of a+ σ(a) (the trace of the auto-
morphism is invariant). Then P (x) has degree deg(p(x))/2 and small coefficients
(as long as p(x) has small coefficients). The second polynomial for TNFS is
x − (u + σ(u)). If a + σ(a) does not have a good expression (a fraction of lin-
ear polynomials in a), then one computes a half-extended GCD of p(x) and
x + σ(x) to obtain x + σ(x) = s1(x)/s2(x). If the degrees of s1 and s2 are
small, one can define s2(u)x− s1(x) as the second polynomial for NFS. We have
Resx(P (x), x− s1(u)/s2(u)) = P (u+ σ(u)) ≡ 0 mod p(u).

These three variants already allow more possibility of trade-off between f and g
in terms of degrees and coefficient size: one divides the degree of f by two and
increases the coefficient size of g by a factor two (‖gy‖∞ ≈ u2 instead of u).

Variant 4 When p(x) has tiny coefficients and a high degree, it might be worth

doing the following transformation, knowing the seed u. Write p(x) =
∑d
i=0 pix

i

where d = deg p(x). Then for an integer 2 ≤ l ≤ d/2, define P (x) =
∑d
i=0 piu

i mod lxi÷l.
Then P (x) has degree d ÷ l and coefficients at most ul−1, and P (ul) = p(u).
The pair of polynomials (for TNFS) is (P (x), x− ul), and Resx(P (x), x− ul) =
P (ul) ≡ 0 mod p(u) as desired.

This is possible to combine Variant 4 with one of Variants 1, 2 or 3. With
these alternative pairs of polynomials, we can have more balanced size of norms,
hence a higher smoothness probability, and a lower DL cost estimation. Our
results are given in the right-most column of Table 3. It has direct impact on
many curves of embedding degrees 9, 10, 11, 13, 14, 17, in particular, the curves
whose polynomial p(x) has a high degree.

Example 2. Let us consider a curve of embedding degree k = 13, discriminant
D = 3, following Construction 6.6. The polynomial defining the characteristic is
p(x) = (x28+x27+x26+x15−2x14+x13+x2−2x+1)/3. It has no automorphism.
We define P (x) = (u+ 1)x9 + u2x8 + x5 + u(1− 2u)x4 + u2 − 2u+ 1 such that
P (u3) = 3p(u), and u is a seed for a particular curve. A degree 13 irreducible
polynomial h(Y ) and the pair (f, g) = (P (x), x− u3) can be used for polynomial
selection with STNFS.

Example 3. Consider a curve of embedding degree 17, named Construction 6.6
in Section 3. It has p(x) = (x36 + x35 + x34 + x19 + 4x18 + x17 + x2 + x+ 1)/3
and automorphism σ : x 7→ 1/x. Variant 2 gives P (x) = x18 + x17 − 17x16 −
17x15 + 119x14 + 119x13− 442x12− 442x11 + 935x10 + 935x9− 1122x8− 1122x7 +
714x6 + 714x5−204x4−204x3 + 17x2 + 18x+ 4 such that P (x+ 1/x)x18 = 3p(x).
Applying Variant 4, we obtain P (x) = u(x9 +(v−17)x8−(17v−119)x7 +(119v−
442)x6− (442v− 935)x5 + (935v− 1122)x4− (1122v− 714)x3 + (714v− 204)x2−
(204v − 17)x+ 18v + 4), where v = (u+ 1/u) = (u2 + 1)/u (we multiply by u to
get integer coefficients). The pair (P (x), u2x− (u2 + 1)2) can be used for STNFS.
Since deg p(x) = 36, the seed u will be very small, and the coefficients of P in u2

are small.
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3 Complete Families of Pairing-Friendly Curves

We will apply our new special polynomial selection to paring-friendly curves
whose parameters are given by polynomials, such as BN and BLS12 curves.
We recall the generic Brezing-Weng construction of families of pairing-friendly
curves. A family will be encoded by three parameters: the embedding degree k,
the discriminant D, and a choice e0 to compute the trace. It allows to capture
all cyclotomic constructions of pairing-friendly curves with three parameters.
The BN curves, KSS curves and Fotiadis-Konstantinou and Fotiadis-Martindale
curves [7,26,18,19] do not fall in the cyclotomic framework because r(x) is not a
cyclotomic polynomial.

3.1 Brezing-Weng constructions of pairing-friendly curves

A set of the complete families presented in the Freeman, Scott and Teske paper [21]
are special instances of the generic Brezing-Weng construction [10] that we recall
in Algorithm 3.1. In this framework, r(x) is chosen to be a cyclotomic polynomial,
and we name it a cyclotomic construction. For BN curves, r(x) is one factor of
an Aurifeuillean factorisation of a cyclotomic polynomial. For KSS curves, r(x)
is a minimal polynomial of an algebraic element of a cyclotomic field. Freeman,

Algorithm 3.1: Cyclo(k,D, e0) – Cyclotomic construction of pairing-friendly
curves

1 if D = 1 then m← 4/ gcd(4, k)
2 else if D = 2 then m← 8/ gcd(8, k)
3 else if D = 3 then m← 3/ gcd(3, k)
4 else m← 1
5 rx ← Φkm(x)
6 if −D is not a square mod rx then return ⊥
7 if gcd(e0, k) 6= 1 then return ⊥
8 tx ← xe0m + 1 mod rx

9 yx ← Polynomial((tx − 2)
√
−D/D) mod rx

10 px = (t2x +Dy2x)/4
11 if px is not irreducible then return ⊥
12 if px does not represent primes then return ⊥
13 return (px, rx, tx, yx, D)

Scott and Teske [21] obtain complete families that correspond to specific choices
of trace in Algorithm 3.1. We recall the BLS construction [6], with D = 3. The
construction is generalised in [21] as Construction 6.6, and gives polynomial
families for any k such that 18 - k, and D = 3. Constructions 6.2, 6.3 and
6.4 in [21] are polynomial families with D = 1 and k = 1 mod 2, k = 2 mod 4
and k = 4 mod 8 respectively. We report the construction number from [21] in
Table 2.
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k = 3i

r(x) = Φ3i(x)/3 = (x2·3
i−1

+ x3
i−1

+ 1)/3
t(x) = x+ 1
c(x) = (x− 1)2

y(x) = (x− 1)(2x3
i−1

+ 1)/3

p(x) = (t2(x) + 3y2(x))/4 = (x2 + x+ 1 + (x− 1)2x3
i−1

(x3
i−1

+ 1))/3

k = 2i · 3
r(x) = Φ2i·3(x) = (x2

i

− x2
i−1

+ 1)
t(x) = x+ 1
c(x) = (x− 1)2/3

y(x) = (x− 1)(2x2
i−1

− 1)/3

p(x) = (t2(x) + 3y2(x))/4 = (x2 + x+ 1 + (x− 1)2x2
i−1

(x2
i−1

− 1))/3

Table 1. Polynomials of the BLS families for k = 3i and k = 2i · 3 (for example
k ∈ {6, 9, 12, 24, 27, 48}). In practice, it is very popular for k = 12.

Unfortunately, [4] does not consider cyclotomic methods with small discrimi-
nants other than 1, 2 and 3. In [10, p.137], Brezing and Weng give alternatives
such as D = 5 for k = 10. Recently, Fotiadis and Konstantinou used the Brezing-
Weng method with small discriminants D to generate other pairing-friendly
curves whose ρ-value is slightly larger but that are more resistant to TNFS [18].
For k = 10, Fotiadis and Konstantinou list alternatives with D = 5 and D = 15,
for k = 11, with D = 11, for k = 13, with D = 13. For smaller embedding degrees,
between 5 and 8, the ρ value is larger than 2. We refer to [22] for TNFS-resistant
curves in this case with a modification of the Cocks-Pinch method.

3.2 Reducing the possibilities

For BLS12 and BN curves, the finite field size identified as secure for 128 bits of
security is about 12× 448 = 5376. The arithmetic on these curves is already very
well optimised. Hence we decided to reduce the investigation of other families of
curves to those where pk is smaller than 5376 bits.

The minimum size of r is 256 bits to ensure the security on the curve, and
the size of p is given by the ρ-value defined as the ratio between the degree of
p(x) and r(x). We choose the sharp constraint (at the 128-bit security level)

3072 ≤ 256ρk ≤ 5376 (4)

to reduce the number of families to consider. If ρ = 1 we obtain the upper bound
k ≤ 21, and if ρ = 2 then we obtain the lower bound k ≥ 6. We obtain candidates
with 9 ≤ k ≤ 17, in Table 2.

Small embedding degrees up to 8. Embedding degree 1 is considered in [11].
Embedding degrees 2 and 3 are obtained with supersingular curves. Embedding
degrees 3, 4, and 6 are obtained with MNT curves. Embedding degrees 5 to 8
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were compared in [22]. We focus on embedding degrees 9 to 17 for the 128-bit
security level.

Embedding degree 9. There are three families of pairing-friendly curves of em-
bedding degree k = 9, discriminant D = 3 and ρ = 4/3. We focus on D = 3 to
have a twist of order three since 3 | k. Alternatives are D = 1 and ρ = 11/6,
D = 2 and ρ = 23/12. Another family with D = 3 is given in [34, §4.4] from the
Aurifeuillean factorisation of Φ9(−3x2).

Embedding degree 10. We will consider three additional families for k = 10: with
D = 1 and trace t = x18 + 1 mod r(x) (in [10, p.137] and [21, Construction 6.5]),
withD = 5, r(x) = Φ20(x) and t = x18+1 mod r(x) ([18, Table 2 and Example 5]),
and with D = 15, r(x) = Φ30(x) and t(x) = x3 + 1 [18, Table 2]. With D = 3, no
cyclotomic construction is valid, we consider the ρ = 2 option in [4]. With D = 2,
the construction is not interesting: the polynomial p(x) has degree 30 and the
choices of seeds u are very limited. There were no choice of u to get a pair of
primes (p, r) such that r is 256-bit long or more, and p is at most 512-bit long.

Embedding degree 11. With D = 1, r(x) = Φ44(x) and t(x) = x24 + 1 mod r(x),
the family has ρ = 1.3, this is Construction 6.2 in [4]. The other possibilities
of t(x) = x4e0 + 1 mod r(x) are e0 ∈ {1, 2, 7}. We discard e0 = 2 since no seed
u was found so that pk ≤ 5376. With D = 3, e0 = 4 is Construction 6.6, and
e0 ∈ {8, 1} gives two other valid families of curves. With D = 11, we obtain two
families of curves with e0 ∈ {4, 8} (e0 = 8 appears in [18, Table 4]).

Embedding degree 12. For embedding degree 12, we concentrate on D = 3 to
maximise the twist. The BLS12 and BN curves are the most popular curves of
embedding degree 12, and recently Fotiadis and Martindale suggested a third
interesting family in [19]. Curves of discriminant D = 1 have a twist of degree
4. Construction 6.4 from [21] produces a family with ρ = 2, the size of p is not
suited. Applying the Brezing-Weng method, we do not obtain other families
(p(x) does not produce primes). With D = 2 there is one family of curves and
ρ = 7/4. Note that in this case, only a quadratic twist is available, the pairing
computation will be slower compared to BLS12 curves with D = 3 and sextic
twists.

Embedding degree 13. Since −13 is not a square in Q(ζ13), we concentrate on
D = 1 with r(x) = Φ4×13(x) and D = 3 with r(x) = Φ3×13(x). For D = 1,
the trace is x4e0 + 1 where e0 ∈ {1, 7} give valid families of curves, and e0 = 7
corresponds to Construction 6.2. For D = 3, the trace is t(x) = x3e0 + 1 and
e0 = 9 corresponds to Construction 6.6. We also consider e0 ∈ {1, 2, 10}.

Embedding degree 14. We concentrate on Construction 6.3 and 6.6. The other
choices of e0 in the Brezing-Weng construction do not produce families of curves
satisfying the bounds on the size of pk. In particular, D = −7 produces an
alternative family whose ρ-value is too large.
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Embedding degree 17. In addition to Construction 6.2 and 6.6, we consider D = 3
and trace t(x) = x3×12 + 1 mod r(x) where r(x) = Φ3×17. Actually because of
the very large degree of p(x) (36 and 38), it was not possible to find a seed u so
that pk is smaller than 5376 bits. However for a comparison to [4], we include
the three families of curves in our security estimate.

Other embedding degrees. Embedding degrees 15 and above 17 do not satisfy the
conditions (4).

For 9 ≤ k ≤ 17, we list in Table 2 the available families satisfying Equation (4).
Moreover we will later restrict to D = 3 when 3 | k and D = 1 when 4 | 4 to
ensure the higher degree of twist.

3.3 Security estimate for the finite field

The next step is to determine the size of the finite field Fpk to ensure the required
security w.r.t. a DL computation with any variant of the NFS algorithm.

Barbulescu–El Mrabet–Ghammam results. In the preprint [4], Barbulescu,
El Mrabet and Ghammam presented a consequent list of pairing-friendly curves
of embedding degrees 6 to 53 for the three common security levels of 128, 192
and 256 bits. There were about 150 distinct curves. We compare the curves of [4]
that are listed in Table 2.

We obtain lower DL cost estimates in the embedding field of these curves,
except for k = 9 construction LZZW (that we set in the BLS framework). Some-
times the cost for STNFS is not given in [4], we give our estimate. We investigated
these differences by running the scripts provided with [4] and developing a second
implementation based on the SageMath code available with [23,22]. We develop
the following improvements.

1. Given pk as input, for each possible decomposition k = ηκ with η > 1, we
generate many irreducible polynomials h of degree η and pairs of polynomials
(fy, gy).

2. For each set of polynomials (h, fy, gy), the code iterates and adjusts auto-
matically the parameters A, B (sieving bound, smoothness bound) in order
to find the best combination that balances the costs of relation collection
and linear algebra, so that the total cost is minimised. When plugging these
values into the former scripts and adding a tiny offset if needed, one obtains
the new results1.

3. We implement the improvements of the Special setting described in the
variants 1-4: automorphisms and changes of variables on p(x) to minimise
the average size of norms.

1 This improvement was suggested in [4, page 9]: “Instead of a blind program to guess
the polynomials automatically, we made all the choices manually using our experience
on computation records of discrete logarithms. It is a good research project to write a
program which reproduces our choices.”
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k Construction D m e0 ρ
deg
p(x)

σp(x) d256ρe d256ρke

9 Cyclo (BLS) 3 1 1 1.33 = 4/3 8 x4−x3−1
x2+x

342 3072

9 Cyclo 3 1 4 1.33 = 4/3 8 1/x 342 3072

9 Cyclo (6.6) 3 1 7 1.33 = 4/3 8 x4+x3+x2+x−1
1−x2 342 3072

9 Cyclo (6.2) 1 4 5 1.83 = 11/6 22 −x 470 4224
9 Cyclo (6.7) 2 8 1 1.92 = 23/12 46 −x 491 4416
9 Cyclo (FM10) 3 1 5 2.00 = 2 12 Id 512 4608

10 Cyclo (6.5) 1 2 9 1.50 = 3/2 12 −x 384 3840
10 Cyclo (6.3) (FM13) 1 2 1 1.75 = 7/4 14 −x 448 4480
10 Cyclo (FM16) 2 4 9 1.88 = 15/8 30 −x 480 4800
10 6.6 3 3 1 2.00 = 2 16 Id 512 5120
10 Cyclo (FM14) 5 2 9 1.75 = 7/4 14 −x 448 4480
10 Cyclo (FM15) 15 3 1 1.75 = 7/4 14 Id 448 4480

11 Cyclo (6.2) 1 4 6 1.30 = 13/10 26 −x 333 3661
11 Cyclo 1 4 1 1.50 = 3/2 30 −x 384 4224
11 Cyclo 1 4 7 1.70 = 17/10 34 −x 436 4788
11 Cyclo (6.6) 3 3 4 1.20 = 6/5 24 1/x 308 3380
11 Cyclo 3 3 8 1.30 = 13/10 26 Id 333 3661
11 Cyclo 3 3 1 1.40 = 7/5 28 Id 359 3943
11 Cyclo 11 1 4 1.60 = 8/5 16 Id 410 4506
11 Cyclo 11 1 8 1.60 = 8/5 16 1/x 410 4506

12 BN (6.8) 3 1 1 1.00 = 1 4 1/(6x) 256 3072
12 Cyclo (BLS) 3 1 1 1.50 = 3/2 6 Id 384 4608
12 FM17 3 1 – 1.50 = 3/2 6 Id 384 4608
12 FM19 3 1 – 1.50 = 3/2 6 Id 384 4608
12 FM20 3 1 – 1.50 = 3/2 6 Id 384 4608
12 Cyclo (6.7) (FM18) 2 2 1 1.75 = 7/4 14 −x 448 5376
12 6.4 1 1 1 2.00 = 2 8 −1/x 512 6144

13 Cyclo (6.2) 1 4 7 1.25 = 5/4 30 −x 320 4160
13 Cyclo 1 4 1 1.42 = 17/12 34 −x 363 4715
13 Cyclo (6.6) 3 3 9 1.17 = 7/6 28 Id 299 3883
13 Cyclo 3 3 1 1.33 = 4/3 32 Id 342 4438
13 Cyclo 3 3 10 1.42 = 17/12 34 Id 363 4715
13 Cyclo 3 3 2 1.58 = 19/12 38 Id 406 5270

14 Cyclo (6.3) 1 2 1 1.50 = 3/2 18 −x 384 5376
14 Cyclo (6.6) 3 3 5 1.33 = 4/3 16 Id 342 4779

15 Cyclo (BLS) 3 1 1 1.50 = 3/2 12 Id 384 5760
15 Cyclo (6.6) 3 1 11 1.50 = 3/2 12 Id 384 5760

16 KSS16 (6.11) 1 – – 1.25 = 5/4 10 Id 320 5120

17 Cyclo (6.2) 1 4 9 1.18 = 19/16 38 −x 304 5168
17 Cyclo (6.6) 3 3 6 1.12 = 9/8 36 1/x 288 4896
17 Cyclo 3 3 12 1.19 = 19/16 38 Id 304 5168

Table 2. Pairing-friendly Constructions for 9 ≤ k ≤ 17 such that 3072 ≤ 256ρk ≤ 5376.
The parameters m and e0 correspond to the parameters m and e0 in the Cyclo
construction of Algorithm 3.1. The value 256ρ is an approximation of the minimal
bit-size of p required to ensure r to be of 256 bits, so that the curve E(Fp) offers 128
bits of security. We include k = 12 Construction 6.4, and k = 15 although 256ρk is too
large, for they are refereed in Tables 3 and 4.

14



4. We compute the joint average size of norms and smoothness probabilities
for Ky,f and Ky,g simultaneously. This allows to compute the ratio of non-
coprime ideals aO, bO and validates the formula 1/ζKh

(2).

We obtain the results of Tables 3, 4 and 5. In Table 3, we reproduce the
results of Barbulescu, El Mrabet and Ghammam [4, §3.4]. We hereafter make
the following remarks.

Remark 1.

– We do not consider even embedding degrees k with Construction 6.2. As
explained in [21], 6.2 is valid for odd embedding degrees, 6.3 is for k = 2 mod 4,
and 6.4 for k = 4 mod 8. Hence we do not report even k with 6.2 in Table 3.

– For k = 10 and construction 6.3, we obtained a lower DL cost with η = 10
instead of η = 5. We obtained 2122 instead of 2134.

– For all curves but BN and BLS12, we obtain a lower estimated cost with
optimised parameters A,B.

– When the degree of p(x) is large, we apply one of the variants using auto-
morphisms 1, 2 or 3 if applicable, so that degP = 1/2 deg p(x). We compared
without the polynomial variants and observed a lower DL cost estimate with
variants 1 or 2 when the degree of p(x) is more than 12. Note that the
variant 2 is commented in the Python script of [4] for k = 17(6.6).

– We observed that when the degree of P is more than 12 (after applying
variants 1, 2 or 3 if applicable), applying our improvement 4 reduces further
the estimated complexity of STNFS. We obtained the smallest cost with P
of degree between 4 and 12. This case is reported in the right-most column
of Tables 3 and 4. The curves involved with this improvement are k = 9(6.7),
k = 10(6.6), k = 11(6.2), k = 13(6.2) and k = 13(6.6), k = 14(6.6) and
k = 17(6.2), k = 17(6.6).

Moreover, we applied our work to the parameter seeds of [4]. The previous
remarks apply: we do not consider the seeds of [4, Table 10]. We identified five
seeds that produce insecure curves because the STNFS estimated cost in Fpk is
below 2128: these are k = 9 BLS (denoted LZZW in [4, Table 23]), k = 9(6.2),
k = 10(6.3), k = 11(6.2) and k = 11(6.6). Our DL security estimate is given in
bold coloured font in Table 4.

For k = 10(6.3), the size of u is smaller than the minimum size recommended
in [4, §3.4] (p(u) is 433-bit long instead of 446, and r(u) is 249-bit long, smaller
than 256 bits). For k13(6.2), the minimum size recommended in [4, §3.4] is p(u)
of 329 bits, but the seed produces a 599-bit prime p. The security is much larger
than 2128. These two cases are reported in italic coloured font in Table 4.

In Table 5 we present our estimations of STNFS security. For each curve
family in Table 2, we first generate seeds and parameters so that r is a 256-bit
prime. Then we run our estimation of STNFS, trying many combinations of
degrees of h(Y ) and of P (x). When the cost is smaller than 2128, we increase the
size of the seed u and generate larger parameters r(u) and p(u). We report the
minimum size of p so that r is at least 256-bit long, and the security in Fpk is at
least 2128.
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For each embedding degree k, we highlight in coloured background the family
that has no automorphism available in p(x) so that the variants 1, 2 and 3 do not
apply, and so that p(u) has minimal possible size. We eliminate the embedding
degree k = 17. Since p(x) has large degree of 36 or 38, it was not possible to
find a seed u so that p(u) and r(u) are prime, and pk(u) is less than 5376 bits
(constrain of Eq. (4)). We eliminate embedding degree k = 9: the curves whose
p(x) has no automorphism do not satisfy pk(u) ≤ 5376.

There are eleven highlighted families in Table 5. The families of Fotiadis and
Martindale [19] with k = 12 and D = 3 (denoted FM17, FM19 and FM20) have
very similar properties and like in [19], we only include FM17 in our final short
list (for the same bitsize of p(u), FM17 produces r(u) one bit larger than FM19
and four bits larger than FM20).

k Construction,D,m, e0
deg
p(x)

p
bits

pk

bits
η,

STNFS
variant [4]

deg
P (x)

DL cost
Fpk [4]

DL cost
newA,B

DL cost
new P

deg
P (x)

our variant

9 Cyclo (BLS) 3,1,1 8 591 5314 9, P (x) = 3p(x) 8 128 128
9 Cyclo (6.6) 3,1,7 8 535 4810 9, P (x) = 3p(x) 8 129 123
9 Cyclo (6.2) 1,4,5 22 484 4356 9, P (x2) = 4p(x) 11 134 116
9 Cyclo (6.7) 2,8,1 46 520 4672 9, P (x2) = 8p(x) 23 266 220 140 11 P (u4) = 8p(u)

10 Cyclo (6.3) 1,2,1 14 446 4460 5, P (x2) = 4p(x) 7 134 122 η = 10
10 6.6 3,3,1 16 511 5104 10, P (x) = 3p(x) 16 166 152 145 8 P (u2) = 3p(u)

11 Cyclo (6.2) 1,4,6 26 337 3697 11, P (x2) = 4p(x) 13 173 123 121 6 P (u4) = 4p(u)
11 Cyclo (6.6) 3,3,4 24 311 3421 11, P (x) = 3p(x) 24 ∅ 232 114 12 x12P (x+1/x)=3p(x)

12 BN (6.8) 3,–,– 4 462 5534 6, P (x) = p(x) 4 128 135
12 Cyclo (BLS) 3,1,1 6 461 5525 6, P (x) = 3p(x) 6 128 135
12 6.7 2,2,1 14 448 5340 12, P (x2) = 8p(x) 7 148 134
12 6.4 1,1,1 6 510 6120 12, P (x) = 4p(x) 6 ∅ 138

13 Cyclo (6.2) 1,4,7 30 329 4265 13, P (x2) = 4p(x) 15 325 143 140 7 P (u4) = 4p(u)
13 Cyclo (6.6) 3,3,9 28 309 4008 13, P (x) = 3p(x) 28 ∅ 288 140 9 P (u3) = 3p(u)

14 Cyclo (6.3) 1,2,1 18 394 5516 14, P (x2) = 4p(x) 9 148 130
14 Cyclo (6.6) 3,3,5 16 351 4906 14, P (x) = 3p(x) 16 175 151 151 8 P (u2) = 3p(u)

15 Cyclo (6.6) 3,1,11 12 383 5736 15, P (x) = 3p(x) 12 175 137
15 Cyclo (BLS) 3,1,1 12 383 5745 15, P (x) = 3p(x) 12 286 137

16 KSS16 (6.11) 1,–,– 10 331 5281 16, P (x)=980p(x−1) 10 154 140

17 Cyclo (6.2) 1,4,9 38 304 5152 17, P (x2) = 4p(x) 19 254 189 155 9 P (u4) = 4p(u)
17 Cyclo (6.6) 3,3,6 36 348 5914 17, P(x+1/x)x18=3p(x) 18 ∅ 186 168 9 u36P ((u+1/u)2)=3p(u)

Table 3. Pairing-friendly Constructions for 9 ≤ k ≤ 17 from Table 2 and their security
estimate in [4]. The parameter η is the degree of the base extension in TNFS, and η
divides k. In several cases the data in [4] was missing or unexpected (it seems that the
parameters A,B were not optimised).

We are left with a final short-list of nine STNFS-secure pairing-friendly
curves that we summarise in Table 6. We give the polynomials p(x), r(x), t(x) as
Curves 1, 2, 3, 4, 5. We add the modified Cocks-Pinch curve with k = 8 from [22]
as it looks quite promising in terms of pairing efficiency [1].
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k family
min p

bits [4]
seed u, Table number in [4]

r(u)
bits

p(u)
bits

pk(u)
bits

DL cost
estim.

η, STNFS variant

9 BLS 535 [4, Tab.23] 274 + 235 − 222 + 2 443 591 5314 128 9 P (x) = 3p(x)
9 BLS 535 [20, §8.1] 270 + 259 + 246 + 241 + 1 419 559 5026 126 9 P (x) = 3p(x)
9 6.2 483 [4, Tab.6] −1 + 23 + 24 + 25 + 29 + 210 + 222 265 483 4339 116 9 P (x2) = 4p(x)
9 6.7 520 [4, Tab.19] −1− 24 + 26 + 29 + 211 = 0xa2f 273 520 4672 140 9 P (u4) = 8p(u)

10 6.3 446 [4, Tab.7] 1 + 23 − 25 + 210 + 213 + 231 249 433 4321 120 10 P (x2) = 4p(x)

11 6.2 337 [4, Tab.6] −1 + 28 + 214 281 363 3993 124 11 P (u4) = 4p(u)
11 6.6 311 [4, Tab.16] 24 + 26 + 27 + 29 + 210 + 214 283 338 3718 118 11 x12P (x+1/x)=3p(x)

12 BLS 461 [3] −277 + 250 + 233 308 461 5525 135 6 P (x) = p(x)
12 BN 462 [3] 2114 + 2101 − 214 − 1 462 462 5535 135 6 P (x) = 3p(x)
12 6.7 446 [4, Tab.18] 1 + 214 + 217 + 232 257 446 5341 134 12 P (x2) = 8p(x)
12 6.4 510 [4, Tab.8] 1 + 2 + 23 + 28 + 29 + 211 + 264 257 511 6121 138 12 P (x) = 4p(x)

13 6.2 329 [4, Tab.6] 1 + 2 + 23 + 24 + 28 + 210 + 214 + 220 481 599 7784 163 13 P (x2) = 4p(x)
13 6.6 309 [4, Tab.16] 24 + 27 + 210 + 211 + 213 = 0x2c90 324 376 4886 153 13 P (u3) = 3p(u)

14 6.3 394 [4, Tab.7] 1− 22 + 26 + 29 − 212 − 215 − 219 + 222 262 391 5464 130 14 P (x2) = 4p(x)
14 6.6 351 [4, Tab.15] −1 + 26 + 27 + 29 + 210 + 213 + 217 + 222 265 352 4917 151 14 P (u2) = 3p(u)

15 BLS 383 [20, §8.1] 22 + 25 + 219 + 231 249 371 5557 135 15 P (x) = 3p(x)
15 6.6 383 [4, Tab.14] 1 + 22 + 212 + 216 + 232 257 383 5737 137 15 P (x) = 3p(x)
15 BLS 383 [4, Tab.23] 2 + 210 + 216 + 219 + 232 257 383 5737 137 15 P (x) = 3p(x)

16 KSS 331 [3] −234 + 227 − 223 + 220 − 211 + 1 257 330 5280 140 16 P (x)=980p(x−1)

Table 4. Seeds provided in [4]. No seed is given for k = 9, k = 10 with 6.6, k = 17.
The seeds for k = 12, 16 are from [3].

Curve 1 A pairing-friendly curve y2 = x3 + ax+ b with k = 10, D = 15, m = 3,
e0 = 1, ρ = 7/4 = 1.75 ([18, Table 2]). The shortest Miller loop for optimal ate
pairing is x− p2 + x2p3.
r = Φ30(x) = x8 + x7 − x5 − x4 − x3 + x+ 1
p = (4x14 + 4x13 + x12 − 12x11 − 12x10 − 7x9 + 11x8

+ 17x7 + 15x6 − 3x5 − 11x4 + x3 − 2x2 + 3x+ 6)/15
t = x3 + 1
y = (x− 1)(4x6 + 6x5 + 6x4 − 3x2 − 5x− 3)/15
c = (x− 1)(2x2 + x+ 2)(2x2 + 3x+ 3)/15
u = 1, 3, 6, 13 mod 15

The Hilbert class polynomial is H(−15) = x2 + 191025x − 121287375 of dis-
criminant 5(33 · 5 · 72 · 13)2. For a root j0 of H(−15) modulo p, one has
a = −3j0/(j0 − 1728), b = 2j0/(j0 − 1728). Moreover if ω = j0/(j0 − 1728) is a
square modulo p, one can have a′ = −3, b′ = b/ω3/2. If the curve y2 = x3 +ax+b
is the quadratic twist (of order p+1+t instead of p+1−t), then y2 = x3+aν2x+bν3

is the curve we want, where ν is a non-square modulo p.

Curve 2 A pairing-friendly curve y2 = x3 + b with the Brezing-Weng method,
k = 11, D = 3, m = 3, e0 = 8, ρ = 13/10 = 1.30. The shortest Miller loop for
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k Construction, D,m, e0
deg
p(x)

p
bits

pk

bits
r

bits
η

STNFS
variant

degP , O(‖P‖∞), P
DL cost
in Fpk

9 Cyclo (BLS) 3,1,1 8 608 5472 456 9 8 1 P (x) = 3p(x) 130
9 Cyclo (6.2) 1,4,5 22 640 5752 350 9 (1) 11 1 P (x2) = 4p(x) 130
9 Cyclo (6.7) 2,8,1 46 520 4672 273+ 9 (1+4) 11 u2 P (u4) = 8p(u) 140
9 Cyclo (FM10) 3,1,5 12 608 5472 304 9 12 1 P (x) = 3p(x) 133

10 Cyclo (6.5) 1,2,9 12 480 4800 322 5 (1) 6 1 P (x2) = 3p(x) 128
10 Cyclo (6.3 FM13) 1,2,1 14 512 5120 294 10 (1) 7 1 P (x2) = 4p(x) 129
10 Cyclo (FM16) 2,4,9 30 488 4871 262+ 10 (1) 15 1 P (x2) = 8p(x) 141
10 6.6 3,3,1 16 511 5104 256 10 (4) 8 u P (u2) = 3p(u) 145
10 Cyclo (FM14) 5,2,9 14 480 4800 276 10 (1) 7 1 P (x2) = 20p(x) 128
10 Cyclo (FM15) 15,3,1 14 446 4460 256 10 14 1 P (x) = 15p(x) 133

11 Cyclo (6.2) 1,4,6 26 414 4554 320 11 (1) 13 1 P (x2) = 4p(x) 130
11 Cyclo 1,4,1 30 391 4297 262+ 11 (1+4) 7 u2 P (u4) = 4p(u) 136
11 Cyclo 1,4,7 34 444 4876 262+ 11 (1+4) 8 u2 P (u4) = 4p(u) 146
11 Cyclo (6.6) 3,3,4 24 446 4899 373 11 (2) 12 1 x12P (x+1/x)=3p(x) 128
11 Cyclo 3,3,8 26 333 3663 258+ 11 (4) 8 u2 P (u3) = 3p(u) 131
11 Cyclo 3,3,1 28 355 3901 255+ 11 (4) 9 u2 P (u3) = 3p(u) 135
11 Cyclo 3,3,1 28 373 4101 268+ 11 (4) 9 u2 P (u3) = 3p(u) 139
11 Cyclo 11,1,4 16 411 4521 256 11 (4) 8 u P (u2) = 11p(u) 145
11 Cyclo 11,1,8 16 480 4280 298 11 (2) 8 1 x8P (x+1/x)=11p(x) 130

12 BN (6.8) 3,–,– 4 446 5376 446 6 4 1 P (x) = p(x) 132
12 Cyclo (BLS) 3,1,1 6 446 5376 299 6 6 1 P (x) = 3p(x) 132
12 FM17 3,–,– 6 446 5352 296 6 6 1 P (6x+ 2) = 108p(x) 136
12 FM19 3,–,– 6 446 5352 295 6 6 1 P (x) = 225p(x) 135
12 FM20 3,–,– 6 446 5352 292 6 6 1 P (x+ 3) = 1425p(x) 137
12 Cyclo (6.7,FM18) 2,2,1 14 445 5329 256 12 (1) 7 1 P (x2) = 8p(x) 134

13 Cyclo (6.2) 1,4,7 30 339 4396 256∗ 13 (1+4) 7 u2 P (u4) = 4p(u) 142
13 Cyclo 1,4,1 34 380 4931 270+ 13 (1+4) 8 u2 P (u4) = 4p(u) 141
13 Cyclo (6.6) 3,3,9 28 310 4027 267+ 13 (4) 9 u2 P (u3) = 3p(u) 140
13 Cyclo 3,3,1 32 348 4512 262+ 13 (4) 10 u2 P (u3) = 3p(u) 139
13 Cyclo 3,3,10 34 388 5037 275+ 13 (4) 8 u2 P (u4) = 3p(u) 144
13 Cyclo 3,3,2 38 403 5233 256 13 (4) 6 u2 P (u6) = 3p(u) 150

14 Cyclo (6.3) 1,2,1 18 382 5376 256 14 (1) 9 1 P (x2) = 4p(x) 130
14 Cyclo (6.6) 3,3,5 16 340 4755 256 14 (4) 8 u P (u2) = 3p(u) 148

16 KSS16 (6.11) 1,–,– 10 330 5280 256 16 10 1 P (x) = 980p(x−1) 140

17 Cyclo (6.2) 1,4,9 38 382 6494 262∗ 17 (1+4) 9 u2 P (u4) = 4p(u) 167
17 Cyclo (6.2) 1,4,9 38 359 6087 254∗ 17 (1+4) 9 u2 P (u4) = 4p(u) 164
17 Cyclo (6.6) 3,3,6 36 374 6358 281∗ 17 (2+4) 9 u2 P ((u+1/u)2)u36=3p(u) 172
17 Cyclo 3,3,12 38 337 5718 255∗ 17 (4) 9 u3 P (u4) = 3p(u) 165

Table 5. Pairing-friendly Constructions for 9 ≤ k ≤ 17 from Table 2 and our new
security estimate. For k = 17, r is a prime divisor of r(u) but r(u) itself is not prime,
there is a cofactor (symbol ∗). For many families with k = 11 and k = 13, it was not
possible to find a seed u such that r is 256-bit long (symbol +) because r(x) has a high
degree.
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k Construction, D,m, e0
deg
p(x)

seed u
p

bits
pk

bits
r

bits
DL cost
in Fpk

8 Cocks-Pinch 1,–,– 8 264 − 254 + 237 + 232 − 4[22] 544 4352 256 131[22]

10 Cyclo (FM15) 15,3,1 14 232 − 226 − 217 + 210 − 1, a = −3 446 4460 256 133
11 Cyclo 3,3,8 26 −213 + 210 − 28 − 25 − 23 − 2 = −0x1d2a, b = 13 333 3663 258+ 131
11 Cyclo 11,1,4 16 −226 + 221 + 219 − 211 − 29 − 1, a = 2 412 4522 256 145
12 BN (6.8) 3,–,– 4 2110 + 236 + 1, b = 257 [32] 446 5376 446 132[23]
12 Cyclo (BLS) 3,1,1 6 −(274 + 273 + 263 + 257 + 250 + 217 + 1), b = 1 [22,23] 446 5376 299 132[23]
12 FM17 3,–,– 6 −272 − 271 − 236, b = −2 [19, §4(b)] 446 5352 296 136
13 Cyclo (6.6) 3,3,9 28 211 + 28 − 26 − 24 = 0x8b0, b = −17 310 4027 267+ 140
14 Cyclo (6.6) 3,3,5 16 221 + 219 + 210 − 26, b = −4 340 4755 256 148
16 KSS16 (6.11) 1,–,– 10 −234 + 227 − 223 + 220 − 211 + 1, a = 1 [3] 330 5280 256 140[23]

Table 6. Our short-list of STNFS-secure pairing-friendly curves at the 128-bit security
level.

optimal ate pairing is x+ x2p5 + p6.
r = Φ33(x) = x20 − x19 + x17 − x16 + x14 − x13 + x11 − x10 + x9 − x7 + x6 − x4 + x3 − x+ 1
p = (x26 + x24 + x22 + x15 − 2x13 + x11 + x4 − 2x2 + 1)/3
t = x3×8 + 1 mod r = −x13 − x2 + 1
y = (x13 + 2x11 − x2 + 1)/3
c = (x2 − x+ 1)(x2 + x+ 1)2/3
u = 1, 2 mod 3

Curve 3 A pairing-friendly curve y2 = x3 + ax + b with the Brezing-Weng
method, k = 11, D = 11, m = 1, e0 = 4, ρ = 8/5 = 1.6. The shortest Miller loop
for optimal ate pairing is x− p3.
r = Φ11(x) = x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1
p = (x16 + 2x15 + x14 − x12 − 3x11 − x5 + 9x4 − x3 + x+ 3)/11
t = x4 + 1
y = (2x8 + 2x7 − x4 − 2x3 + 2x2 − 2x− 1)/11
c = (x− 1)2(x4 + 3x3 + 4x2 + 4x+ 3)
u = 1 mod 11

The j-invariant of a curve of discriminant −11 is −32768 = −215, and (a, b) =
(−264, 1694). Moreover if 22 is a square modulo p, one can define (a′, b′) =
(−3, 7

√
22/24).

Curve 4 A pairing-friendly curve y2 = x3 + b with the Brezing-Weng method,
k = 13, D = 3, m = 3, e0 = 9 (this is (6.6)), ρ = 7/6 = 1.17. The shortest Miller
loop for optimal ate pairing is x2 + xp+ p2.
r = Φ39(x) = x24 − x23 + x21 − x20 + x18 − x17 + x15 − x14 + x12 − x10 + x9

− x7 + x6 − x4 + x3 − x+ 1
p = (x28 + x27 + x26 + x15 − 2x14 + x13 + x2 − 2x+ 1)/3
t = (x3×9 + 1) mod r = −x14 − x+ 1
y = (x14 + 2x13 − x+ 1)/3
c = (x2 + x+ 1)2/3
u = 1 mod 3
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k curve
DoubleLine
and AddLine

Vertical
Line

Update1
and Update2

ref

Weierstrass model

any k y2 = x3 + ax+ b
5mk + 6sk + 2km

10mk + 3sk
km

4mk + 2sk
4mk

[22, Alg. 3,4,5]

any k y2 = x3 − 3x+ b
6mk + 4sk + 2km

10mk + 3sk
km

4mk + 2sk
4mk

[22, Alg. 3,4,5]

any k y2 = x3 + b
5mk + 5sk + 2km

10mk + 3sk
km

4mk + 2sk
4mk

[22, Alg. 3,4,5]

2 | k y2 = x3 + b
quadratic twist

2mk/2 + 7sk/2 + km
14mk/2 + 2sk/2 + km

0
mk + sk

mk
[14, §5,Tab.3]

2 | k y2 = x3 + ax+ b
quadratic twist

5mk/2 + 6sk/2 + km
10mk/2 + 3sk/2 + km

0
mk + sk

mk
[12]

2 | k y2 = x3 − 3x+ b
quadratic twist

6mk/2 + 4sk/2 + km
10mk/2 + 3sk/2 + km

0
mk + sk

mk
[12]

Table 7. Miller loop cost from [12,14,2,22].

Curve 5 A pairing-friendly curve y2 = x3 + b with the Brezing-Weng method,
k = 14, D = 3, m = 3, e0 = 5 (this is (6.6)), ρ = 4/3 = 1.33. The shortest Miller
loop for optimal ate pairing is x2 + xp+ p2.
r = Φ42(x) = x12 + x11 − x9 − x8 + x6 − x4 − x3 + x+ 1
p = (x16 + x15 + x14 − x9 + 2x8 − x7 + x2 − 2x+ 1)/3
t = (x3×5 + 1) mod r = x8 − x+ 1
y = (x8 + 2x7 + x− 1)/3
c = (x2 − x+ 1)(x2 + x+ 1)/3
u = 1 mod 3

4 Optimal Ate Pairing Computation

We left to future work to include a theoretical estimate of the number of mul-
tiplications in Fp required to compute an optimal ate pairing on the curves of
Table 6, to give a ranking of the curves in terms of pairing efficiency. We predict
that BLS12 curves over a 446-bit prime field will be the best option. We only
sketch a rough estimate below. In [22, Table 10], the Miller loop of optimal ate
pairing on a BLS12 curve over a 446-bit prime field costs 7805m (multiplications
in Fp), and for a KSS16 curve over a 339-bit prime field, the Miller loop costs
7691m.

For curves y2 = x3 + ax+ b with j-invariant 0 (a = 0) and 1728 (b = 0), we
reproduce the counts from [14]. For prime embedding degrees (k = 11, 13), we
apply the formulas from [22, Table 7] for prime embedding degree k = 5, 7. We
obtain Table 7.

The cost of optimal ate pairing computation is given by Eq. (5), where nbits
is the bitlength and HW2-NAF is the Hamming weight in 2-non-adjacent form,
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and ik an inversion in Fpk .

CostMillerLoop =(nbits(u)− 1) (CostDoubleLine + CostVerticalLine)

+ (nbits(u)− 2)CostUpdate1

+ (HW2-NAF(u)− 1)(CostAddLine + CostVerticalLine + CostUpdate2)

+ (only if k ∈ {11, 13})ik. (5)

4.1 Prime Embedding Degrees 11 and 13.

We give a first estimate of a pairing computation on the curves of prime embedding
degrees. Let mk denotes a multiplication in Fpk , m a multiplication in Fp, sk a
square in Fpk and s a square in Fp. We follow [22] where an estimate for k = 5, 7
is given with Eq. (5).

For Curve 2 (k = 11, D = 3), the optimal ate Miller loop has length
x+ x2p5 + p6. The main part has length x2. For u of 13 bits, u2 is 26-bit long
and has HW2-NAF(u2) = 11. Moreover, since D = 3, we have a = 0. No twist is
available. We obtain from Eq. (5) 25(5mk + 5sk + 2km + km) + 24(4mk + 2sk) +
10(10mk + 3sk + km + 4mk) + ik = 361mk + 203sk + 85km + ik. A schoolbook
implementation of multiplication and squaring would give mk = k2m = 121m
and sk = k(k − 1)m = 110m. We obtain the upper bound 66946m + ik. An
optimised Karatsuba multiplication in Fpk would require at least klog2 3m, that
is, 45m. Assuming that sk ≥ 45m, we obtain the lower bound 26315m + i. Note
that in [22, Table 10], the Miller loop on a KSS16 curve over a 339-bit prime p
costs 7691m: this is more than three times smaller.

For Curve 3 (k = 11, D = 11), The optimal ate Miller loop has length x− p3.
We have u of 26 bits, HW2-NAF(u) = 6, and a = 2. No twist is available. We
obtain from Eq. (5) 25(5mk + 6sk + 2km + km) + 24(4mk + 2sk) + 5(10mk +
3sk + km + 4mk) + ik = 291mk + 213sk + 80km + ik. With the upper bound
mk = k2m and sk = k(k− 1)m, the count is 59521m + ik. With the lower bound
m11 = s11 = 45m, the count is 23560m + ik. This is again three times more than
the count of 7805m for the Miller loop of a BLS12 curve over a 446-bit prime
field reported in [22, Table 10].

For Curve 4 (k = 13, D = 3), the optimal ate Miller loop has length x2+xp+p2.
We have u of 12 bits, u2 of 23 bits, HW2-NAF(u2) = 6, and a = 0, but no twist
is available. We obtain from Eq. (5) 22(5mk + 5sk + 2km + km) + 21(4mk +
2sk) + 5(10mk + 3sk + km + 4mk) + ik = 264mk + 167sk + 71km + ik. With the
upper bound m13 = k2m = 169m and s13 = k(k − 1)m = 156m, the count is
71591m + ik. With the lower bound m13 = s13 = 13log2 3m = 59m, the count
is 26352m + ik. Again this is not competitive compared to KSS16 and BLS12
curves.

4.2 Even embedding degrees 10 and 14.

For Curve 5 (k = 14, D = 3, (6.6)), the optimal ate Miller loop has length
x2 + xp+ p2. We have u of 22 bits, u2 of 43 bits, HW2-NAF(u2) = 10, a = 0, and
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a quadratic twist is available. We obtain from Eq. (5) 42(2mk/2 + 7sk/2 + km) +
41(mk+sk)+9(14mk/2+2sk/2+km+mk) = 50mk+41sk+210mk/2+312sk/2+
51km. From [31], we consider the lower (Karatsuba) bound m7 = s7 = 22m,
and m14 = 3m7 = 66m, s14 = 2m7 = 44m. We obtain 17312m, where m is
a multiplication in Fp of 340 bits. This is not competitive compared to KSS16
curves (over a 339-bit prime field).

For Curve 1 (k = 10, D = 15), the optimal ate Miller loop has length
x−p2+x2p3. We have u of 32 bits, u2 of 64 bits, HW2-NAF(u2) = 13, a = −3, and
a quadratic twist is available. The optimisation of line and tangent computation
focused on curves with twists of degree 3,4 and 6 in [14]. We refer to the former
paper [12] for pairing formulas on curves with quadratic twists only. The Miller
loop of ate pairing, of length u2, costs 63(6mk/2 + 4sk/2 + km) + 62(mk + sk) +
12(10mk/2 + 3sk/2 + km) + 11(mk) = 498mk/2 + 288sk/2 + 73mk + 62sk + 75km.
We have mk/2 = m5, a schoolbook implementation of a multiplication in Fp5
would need m5 = k2m = 25m, and a square s5 = k(k − 1)m = 20m, then with
a quadratic extension, Fp10 would have m10 = 3m5 = 75m (with Karatsuba)
and s10 = 2m5 = 50m. The total count would be 27535m. With optimised
Karatsuba-like formulas [31], we would have the lower bound m5 = s5 = 13m,
and m10 = 39m, s10 = 26m, and the final count would be 15427m. Again, the
curve is not competitive (by a factor two) compared to KSS16 (over 339-bit field,
Miller loop in 7691m) and BLS12 (over 446-bit field, Miller loop in 7685m),
because it has only a quadratic twist, whereas KSS16 curves have a quartic twist
and BLS12 curves have a sextic twist.

5 Overview of the 192-bit security level

At the 192-bit security level, we set the constrain

7168 ≤ 384ρk ≤ 14336 (6)

With ρ = 1 we obtain k ≤ 37, and with ρ = 2 we obtain k ≥ 10. Curves like
Fotiadis-Konstantinou with exactly ρ = 2 satisfy (6) for 10 ≤ k ≤ 18. Table 8
lists the curves. No family of embedding degree above 32 satisfying (6) was found.

5.1 Security Estimate

We consider the families of [4, § 3.4]. These are families from Construction 6.2
(for odd k and D = 1), 6.3 (for k = 2 mod 4 and D = 1), 6.4 (for k = 4 mod 8
and D = 1), 6.6 (for 18 - k and D = 3), 6.7 (for D = 2). Curves with k =
9, 12, 15, 24, 27 and trace given by the linear polynomial t(x) = x+ 1 fall in the
BLS family [6]. We exclude the families that do not satisfy the constraint (6)
(embedding degrees above 32). For some families, it was not possible to generate
parameters such that r is a 384-bit prime (or larger prime), because the degree
of the polynomial giving the characteristic, p(x), is excessive, and there are too
few possible seeds u (this is the case in particular for k = 17, 19, 23, 25, 29, 31, 32).
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In that case, the security estimate is for parameters such that p is prime but r is
not prime, and the largest prime factor of r is smaller than 384 bits. For k = 26,
there is only one or two possibilities (u = 0x12407 with construction 6.3 (D = 1)
gives a 389-bit prime r and a 484-bit prime p, and u = -0xf527, u = 0x102a3

with construction 6.6 give a 383, resp. 385-bit prime r and 445, resp. 447-bit
prime p). We report in Table 9 the curves of [4, § 3.4], the size of pk, the required
size of p, and the lowest security estimate (sometimes from the online database
instead of the paper). Then we report our security estimates. We obtain three
levels of improvements on the previous work in [4]:

– We consider the same polynomials and optimise the parameters A,B to get
a (much) smaller security estimate ;

– We consider the same polynomial selection but with another parameter η
(the degree of h is k/η) and optimised A,B ;

– When the Conjugation-Tower method gives a lower security estimate, we
also try with the Sarkar-Singh-Tower method ;

– We consider alternative polynomials given by our improvements listed in
Section 2.2.

We highlight in blue in Table 9 our new lowest security estimate when it is
larger than 192. We highlight in orange bold our new security estimate when it
is lower than 192, and in that case we put in red the size of pk, which should be
increased. We stress that 7168 is the lower bound on the size of pk. It is the size
for prime fields, extrapolating from the NFS algorithm complexity Lp(1/3, 1.923).
Since all the pairing-friendly curves are special because p = p(u) has a special
sparse form, the Special variant of NFS and TNFS apply. No family will provide
192 bits of security with a finite field pk smaller than 7168 bits.

We list 53 families in Table 9. Our results show that 23 families (43%) from [4]
of embedding degree from 9 to 22 are insecure: the size of pk should be significantly
increased.

Remark 2. The numbers for k = 12(6.4) from [4] where unexpected. One reads
that a 24460-bit field p12 is needed to ensure 192 bits of security. This family has
p(x) = (x8 − 2x7 + x6 + x2 + 2x+ 1)/4 and r(x) = Φ12(x) = x4 − x2 + 1. The
polynomial p(x) has an automorphism σ(x) = −1/x and the minimal polynomial
of α+ σ(α) is m(x) = x4 − 2x3 + 5x2 − 6x+ 4. The pair (m(x), ux− u2 + 1 =
u(x− (u− 1/u)) can be used for a Special polynomial selection. In the Python
script, one reads x − 1/x, meaning the pair (m(x), x − (u − 1/u)) is used. We
were not able to reproduce the results.

Finally we estimate in Table 10 the security of the seeds recommended at the
192-bit security level in [4, Table 25].

Remark 3. In Table 10 we reproduce the seeds from [4, Table 25] recommended
at the 192-bit security level. The seed for k = 14 is not valid (it was generated
with Construction 6.2 which is not suited to even k), we give another one of same
size with Construction 6.3. The seeds for KSS16 and KSS18 do not give valid
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parameters (p(u) is not integer), we give alternative seeds of the same size. KSS16
curves require u = ±25 mod 70 and KSS18 curves require u = ±7 mod 21 for
p(u) being an integer. The seed for k = 24 and 6.6 is the seed of BLS24 from [3].
The seed for k = 27 does not give r(u) prime: we have r27 = 109 · 431947 · r0
where r0 is a 370-bit prime. The seed for k = 28 gives a 373-bit prime r, smaller
than the required length of 384 bits. The sizes of p for k = 14, 15, 16 are too
small, the fields Fpk do not offer 192 bits of security.

5.2 A short-list of STNFS-secure pairing-friendly curves

For BN, BLS12, BLS24, KSS16, KSS18, we reproduce in Table 11 the results of
Guillevic and Singh [23]: BN with a 1022-bit p, BLS12 with a 1150-bit p, KSS16
with a 766-bit prime p, KSS18 with a 638-bit prime p, BLS24 with a 509-bit
prime p. We list in Table 12 seeds for k ∈ {14, 15, 27, 28}. We also refer to [19]
for alternative curves with ρ = 2.

6 Conclusion

Because of the Special Tower Number Field Sieve algorithm, the security of
pairing-friendly curves should be reconsidered. We presented a new variant of
STNFS for pairing-friendly curves constructed with the Brezing-Weng method,
where the characteristic has a polynomial form. It does not apply to the modified
Cocks-Pinch curves of [22]. We refine the analysis of Barbulescu, El Mrabet and
Ghammam and present an updated short-list of secure pairing-friendly curves
at the 128-bit security level. For embedding degrees from 10 to 16, we obtain
curves so that the size of pk is at least 3663 bits (k = 11) and at most 5376
bits (for BLS12 curves). The estimated cost of a DL computation with STNFS
for these finite fields is between 2128 and 2148. The fastest pairings are obtained
with a BLS12 curve or a Fotiadis-Martindale curve of embedding degree 12,
discriminant 3 and twist of degree 6 over a 446-bit prime. The additional curves
of this paper have embedding degrees 10, 11, 13 and 14 and a twist of degree 2 for
even embedding degrees. It was not sure by how much a prime embedding degree
k allows to reduce the total size of pk: for k = 11 the smallest possible p is 333
bit long, and for k = 13 p is 310 bit long. Although p is smaller than 446 bits, no
twist is available with a prime embedding degree. For this reason, the efficiency of
pairings on prime embedding degree curves does not seem competitive compared
to BLS12 curves.
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k Construction D m e0 ρ
deg
p(x)

σp(x) d384ρe d384ρke

10 6.6 3 3 1 2.00 = 2 16 Id 768 7680

14 Cyclo (6.3) 1 2 1 1.50 = 3/2 18 −x 576 8064

15 Cyclo (BLS) 3 1 1 1.50 = 3/2 12 Id 576 8640
15 Cyclo (6.6) 3 1 11 1.50 = 3/2 12 Id 576 8640
15 Cyclo 1 4 7 1.87 = 15/8 30 −x 720 10800
15 Cyclo (6.2) 1 4 8 2.12 = 17/8 34 −x 816 12240
15 Cyclo 2 8 7 1.75 = 7/4 56 −x 672 10080
15 Cyclo (6.7) 2 8 8 2.06 = 33/16 66 −x 792 11880

16 KSS16 (6.11) 1 – – 1.25 = 5/4 10 Id 480 7680
16 Cyclo (6.6) 3 3 1 1.37 = 11/8 22 Id 528 8448

18 KSS18 (6.12) 3 – – 1.33 = 4/3 8 Id 512 9216
18 KSS [34] 3 – – 1.66 = 5/3 10 Id 640 11520
18 Cyclo (6.3) 1 2 1 1.83 = 11/6 22 −x 704 12672
18 Cyclo (6.7) 2 4 1 1.58 = 19/12 38 −x 608 10944

19 Cyclo (6.2) 1 4 10 1.16 = 7/6 42 −x 448 8512
19 Cyclo (6.6) 3 3 13 1.11 = 10/9 40 Id 427 8107

20 Cyclo (6.4,FM27) 1 1 1 1.50 = 3/2 12 −1/x 576 11520
20 Cyclo (6.6) 3 3 7 1.37 = 11/8 22 Id 528 10560

21 Cyclo (6.2) 1 4 11 1.92 = 23/12 46 −x 736 15456
21 Cyclo (6.6) 3 1 8 1.33 = 4/3 16 1/x 512 10752
21 Cyclo (6.7) 2 8 1 1.79 = 43/24 86 −x 688 14448

22 Cyclo (6.3) 1 2 1 1.30 = 13/10 26 −x 500 10982
22 Cyclo (6.6) 3 3 1 1.40 = 7/5 28 Id 537 11828

23 Cyclo (6.2) 1 4 12 1.13 = 25/22 50 −x 437 10037
23 Cyclo (6.6) 3 3 8 1.09 = 12/11 48 1/x 419 9635

24 Cyclo (6.7) 2 1 1 1.50 = 3/2 12 Id 576 13824
24 Cyclo (BLS,6.6) 3 1 1 1.25 = 5/4 10 Id 480 11520

25 Cyclo (6.2) 1 4 13 1.35 = 27/20 54 −x 519 12960
25 Cyclo (6.6) 3 3 17 1.30 = 13/10 52 Id 500 12480

26 Cyclo (6.3) 1 2 1 1.25 = 5/4 30 −x 480 12480
26 Cyclo (6.6) 3 3 9 1.16 = 7/6 28 Id 448 11648

27 Cyclo (BLS) 3 1 1 1.11 = 10/9 20 s0(x)/s1(x) 427 11520
27 Cyclo 3 1 10 1.11 = 10/9 20 1/x 427 11520
27 Cyclo (6.6) 3 1 19 1.11 = 10/9 20 s2(x)/s3(x) 427 11520

28 Cyclo (6.4) 1 1 1 1.33 = 4/3 16 −1/x 512 14336

29 Cyclo (6.2) 1 4 15 1.10 = 31/28 62 −x 426 12330
29 Cyclo (6.6) 3 3 10 1.07 = 15/14 60 1/x 412 11932

31 Cyclo (6.2) 1 4 16 1.10 = 11/10 66 −x 423 13095
31 Cyclo (6.6) 3 3 21 1.06 = 16/15 64 Id 410 12698

32 Cyclo (6.6) 3 3 11 1.06 = 17/16 34 Id 408 13056
Table 8. Pairing-friendly Constructions for 10 ≤ k ≤ 28 such that 7144 ≤ 384ρk ≤
14288. The parameters m and e0 correspond to the parameters m and e0 in the Cyclo
construction of Algorithm 3.1. The value 384ρ is an approximation of the minimal
bit-size of p required to ensure r to be of 384 bits, so that the curve E(Fp) offers 192
bits of security. We include the constructions referred in [4].
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k Construction, D,m, e0
deg
p(x)

p
bits

pk

bits
η,

(S)TNFS
variant [4]

deg
P (x)

DL cost
Fpk [4]

DL cost
newA,B

DL cost
this work

deg
P (x)

our polynomials, new η

9 Cyclo (BLS) 3,1,1 8 1279 11510 9, P (x) = 3p(x) 8 192 187
9 Cyclo (6.6) 3,1,7 8 687 6178 9, P (x) = 3p(x) 8 196 139
9 Cyclo (6.2) 1,4,5 22 1496 13460 9, P (x2) = 4p(x) 11 194 188
9 Cyclo (6.7) 2,8,1 46 734 6598 9, P (x2) = 8p(x) 23 ∅ 210 160 11 P (u4) = 8p(u)

10 Cyclo (6.3) 1,2,1 14 1258 12580 5, P (x2) = 4p(x) 7 192 188
10 6.6 3,3,1 16 1278 12780 10, P (x) = 3p(x) 16 192 192 227 8 P (u2) = 3p(u), η = 5

11 Cyclo (6.2) 1,4,6 26 648 7128 11, P (x2) = 4p(x) 13 192 148
11 Cyclo (6.6) 3,3,4 24 479 5263 11, P (x) = 3p(x) 24 ∅ 135 12 x12P (x+1/x)=3p(x)

12 BN (6.8) 3,–,– 4 1094 13120 4, P (x) = p(x) 4 192 195
12 Cyclo (BLS) 3,1,1 6 1200 14390 6, P (x) = 3p(x) 4 199 199
12 Cyclo (6.6) 3,1,11 6 1049 12580 6, P (x) = 3p(x) 4 192 187
12 6.7 2,2,1 14 669 8028 6, P (x2) = 8p(x) 7 199 160
12 6.4 1,1,1 8 2039 24460 6, P(x−1/x)x4=4p(x) 4 192

13 Cyclo (6.2) 1,4,7 30 479 6216 13, P (x2) = 4p(x) 15 210 152 167 7 P (u4) = 4p(u)
13 Cyclo (6.6) 3,3,9 28 447 5806 13, P (x) = 3p(x) 28 ∅ 165 9 P (u3) = 3p(u)

14 Cyclo (6.3) 1,2,1 18 574 8036 14, P (x2) = 4p(x) 9 206 155
14 Cyclo (6.6) 3,3,5 16 543 7594 14, P (x) = 3p(x) 16 ∅ 170 184 8 P (u2) = 3p(u)

15 Cyclo (6.6) 3,1,11 12 575 8616 15, P (x) = 3p(x) 12 192 160 178 Conj-Tower η = 3
15 Cyclo (BLS) 3,1,1 12 599 8985 15, P (x) = 3p(x) 12 ∅ 162
15 Cyclo (6.2) 1,4,8 34 814 12210 15, P (x2) = 4p(x) 17 263 200 205 Conj-Tower η = 3
15 Cyclo (6.7) 2,8,8 66 968 14520 15, P (x2) = 8p(x) 33 217 234 220 Conj-Tower η = 3

16 KSS16 (6.11) 1,–,– 10 511 8161 16, P (x)=980p(x−1) 10 192 165
16 Cyclo (6.6) 3,3,1 22 527 8422 4, Conj-Tower 202 175 186 11 P (u2) = 3p(u), η = 16

17 Cyclo (6.2) 1,4,9 38 458 7776 17, P (x2) = 4p(x) 19 291 181 9 P (u4) = 4p(u)
17 Cyclo (6.6) 3,3,6 36 437 7426 17, base-m-Tower 237 185 9 u36P ((u+1/u)2)=3p(u)

18 KSS18 (6.12) 3,–,– 10 652 11730 9, P (x)=21p(x−2) 8 195 196
18 Cyclo (6.3) 1,2,1 22 703 12640 18, P (x2) = 4p(x) 11 275 188
18 Cyclo (6.7) 2,4,1 38 606 10900 6, Conj-Tower 246 201 η = 3 211 9 P (u4) = 8p(u)

19 Cyclo (6.2) 1,4,10 42 460 8740 19, P (x2) = 4p(x) 21 329 192 10 P (u4) = 4p(u)
19 Cyclo (6.6) 3,3,13 40 442 8397 19, base-m-Tower 233 204 10 P (u4) = 3p(u)

20 Cyclo (6.4) 1,1,1 12 574 11480 20, P(x−1/x)x6=4p(x) 6 227 184 180 6 same P , η = 10
20 Cyclo (6.6) 3,3,7 22 703 14050 5, Conj-Tower 244 224 218 Conj-Tower η = 4

21 Cyclo (6.2) 1,4,11 46 735 15420 7, Conj-Tower 294 238 η=3
21 Cyclo (6.6) 3,1,8 16 511 10720 7, P (x) = 3p(x) 16 227 211 187 8 P (x+1/x)x8=3p(x), η=21
21 Cyclo (6.7) 2,8,1 86 724 15190 7, Conj-Tower 276 238 η=3

22 Cyclo (6.3) 1,2,1 26 519 11400 11, Conj-Tower 273 255 183 13 P (x2) = 4p(x), η = 11
22 Cyclo (6.6) 3,3,1 28 560 12320 11, Conj-Tower 269 266 222 14 P (u2) = 3p(u), η = 22

23 Cyclo (6.2) 1,4,12 50 451 10370 23, Base-m-Tower 289 209 12 P (u4) = 4p(u)
23 Cyclo (6.6) 3,3,8 48 486 11160 23, Base-m-Tower 293 225 12 P((u+1/u)2)u12=3p(u)

24 Cyclo (6.7) 2,1,1 12 573 13750 24, P (x) = 8p(x) 12 274 262 205 12 same P , η = 24
24 Cyclo (BLS,6.6) 3,1,1 10 519 12440 24, P (x) = 3p(x) 10 195 195

25 Cyclo (6.2) 1,4,13 54 540 13490 5, Conj-Tower 303 214 239 13 P (u4) = 4p(u), η = 25
25 Cyclo (6.6) 3,3,17 52 569 14220 5, Conj-Tower 257 219 233 10 P (u5) = 3p(u), η = 25

26 Cyclo (6.3) 1,2,1 30 479 12440 13, Conj-Tower 288 268 206 15 P (x2) = 4p(x), η = 26
26 Cyclo (6.6) 3,3,9 28 447 11610 13, Conj-Tower 267 259 232 14 P (u2) = 3p(u)

27 Cyclo (BLS) 3,1,1 20 427 11520 9, Conj-Tower ∅ 219 212 Sarkar-Singh-Tower η = 9
27 Cyclo (6.6) 3,1,19 20 439 11840 9, Conj-Tower 259 222 216 Sarkar-Singh-Tower η = 9

28 Cyclo (6.4) 1,1,1 16 510 14280 28, P(x−1/x)x8=4p(x) 8 306 218 208 8 same P , η = 14

29 Cyclo (6.2) 1,4,15 62 551 15960 29, Base-m-Tower 372 261 15 P (u4) = 4p(u)
29 Cyclo (6.6) 3,3,10 60 644 18650 29, Base-m-Tower 382 289 15 P (u4) = 3p(u)

31 Cyclo (6.2) 1,4,16 66 530 16430 31, Base-m-Tower 384 273 16 P (u4) = 4p(u)
31 Cyclo (6.6) 3,3,21 64 471 14600 31, Base-m-Tower 362 249 10 P (u6) = 3p(u)

32 Cyclo (6.6) 3,3,11 34 407 13010 16, Conj-Tower 414 216 η = 8 219 4 P (u8) = 3p(u), η = 16

Table 9. Pairing-friendly Constructions for 9 ≤ k ≤ 32 from Table 2 and their security
estimate in [4]. The parameter η is the degree of the base extension in TNFS, and η
divides k. In most of the cases the data in [4] was unexpected (and sometimes missing).
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k family
min p

bits [4]
seed u from [4, Tab. 25], [20,3]

r(u)
bits

p(u)
bits

pk(u)
bits

DL cost
estim.

η, STNFS variant

14 6.3 574 [4] 1−23+27+28+211+240, 0xffffffde6b 480 718 10052 172 14 P (x2) = 4p(x)

15 6.6 575 [4] 1 + 27 + 28 + 212 + 215 + 248 385 575 8617 160 15 P (x) = 3p(x)
15 BLS (DCC) 599 [4] 210 + 211 + 213 + 215 − 240 + 250 400 599 8976 162 15 P (x) = 3p(x)
15 BLS (DCC) 599 [20, §5.2] 248 + 241 + 29 + 28 + 1 385 575 8619 158 15 P (x) = 3p(x)
15 BLS (DCC) 599 [20, §8.2] 272 + 240 + 29 + 25 + 1 577 863 12937 188 15 P (x) = 3p(x)

16 KSS 511 [4] 22+25−29+222−223+251, −1+25−29−215−223−251 393 501 8002 164 10 P (x)=980p(x−1)

18 KSS 652 [4] 2−25+29+211+214+282, 22−24+27+29+211−282 484 652 11729 195 9 P (x)=21p(x−2)

24 BLS, 6.6 519 [3] −256 − 243 + 29 − 26 449 559 13403 202 24 P (x) = 3p(x)
24 6.7 573 [4] −248 + 242 + 212 + 1 384 573 13746 205 24 P (x) = 8p(x)

27 BLS (DCC) 427 [20, §8.2] 225+214+217+24+1, 0x1ffffbd 449 499 13458 229 9 Sarkar-Singh-Tower
27 BLS (DCC) 427 [4] 222 + 214 + 29 + 28 + 24 + 23 + 2 370 439 11841 216 9 Sarkar-Singh-Tower

28 6.4 510 [4] −231 − 213 − 2− 1 373 495 13833 200 14 P (x2) = 4p(x)

Table 10. Seeds provided in [4, Table 25] and alternatives in [20,3]. See Remark 3.

k curve r bits p bits pk bits seed u DL cost

12 BN 1022 1022 12255 −2254 + 233 + 26 191
12 BLS12 768 1150 13799 −2192 + 2188 − 2115 − 2110 − 244 − 1 193
16 KSS16 605 766 12255 278 − 276 − 228 + 214 + 27 + 1 194
18 KSS18 474 638 11477 280 + 277 + 276 − 261 − 253 − 214 193
24 BLS24 409 509 12202 −251 − 228 + 211 − 1 [15] 193

Table 11. Seeds at the 192-bit security level from [23].

k curve r bits p bits pk bits seed u DL cost

14 Cyclo 1,2,1 (6.3) 620 928 12979–12992 0xc382fe8f05eaf ≤ u ≤ 0xcb2ff529e85b5 194

15 Cyclo 3,1,1 (BLS) 620 928 13906–13920
-0x29b3f997f573d609c26f ≥ u ≥ -0x2c2ecd2df12c9d54ec07

0x29b3f997f573d6097e04 ≤ u ≤ 0x2c2ecd2df12c9d52b8c9
193

27 Cyclo 3,1,1 (BLS) 384 426–427 11496–11524
-0x29487b ≥ u ≥ -0x2ac5ea

0x2955f1 ≤ u ≤ 0x2ac66d
212

28 Cyclo 1,1,1 (6.2) 384 510 14243–14280 0xf1a202f1 ≤ u ≤ 0xffffd341 208

Table 12. Seeds at the 192-bit security level for k ∈ {14, 15, 27, 28}. For k = 14, 15 the
range of u is such that p is 928-bit long (a smaller p of 920 to 928 bits is possible). For
k = 27, 28, the range of u is such that r is 384-bit long.
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