
A Scalable Post-quantum Hash-Based Group Signature

Masoumeh Shafieinejad1, Navid Nasr Esfahani1, and Reihaneh Safavi-Naini2

1 University of Waterloo, Canada
Masoumeh@uwaterloo.ca, navid.nasresfahani@uwaterloo.ca

2 University of Calgary, Canada
rei@ucalgary.ca

Abstract. We present a construction for hash-based one-time group signature schemes, and develop
a traceable post-quantum multi-time group signature upon it. A group signature scheme allows group
members to anonymously sign a message on behalf of the whole group. The signatures are unforgeable
and the scheme enables authorized openers to trace the signature back to the original signer when
needed. Our construction utilizes three nested layers to build the group signature scheme. The first
layer is key management; it deploys a transversal design to assign keys to the group members and the
openers, providing the construction with traceability. The second layer utilizes hash pools to build the
group public verification key, to connect group members together, and to provide anonymity. The final
layer is a post-quantum hash-based signature scheme, that adds unforgeability to our construction. We
extend our scheme to multi-time signatures by using Merkle trees, and show that this process keeps
the scalability property of Merkle-based signatures, while it supports the group members signing any
number of messages.

Keywords: Post Quantum Signatures, Hash Based Signatures, Group Signatures, Transversal Designs,
τ−traceability

1 Introduction

A group signature scheme — first introduced by Chaum and van Heyst [13] — allows group members to
sign messages on behalf of a group. The scheme consists of the following entities: key issuing authority,
verifier, opener(s), and users (members). The key issuing authority assigns keys to users to sign messages.
The verifier validates whether the signature is a legitimate group signature. The verification process does so
without revealing the identity of the signer. Users’ anonymity is achieved by generating a public key that is
shared by all group members. The scheme should also provide an opening procedure in which openers has
the power to renounce the anonymity of a legitimate group signature and determine the respective signer
(traceability). Note that no other person can trace a signature back to the signer (anonymity). Moreover,
no entity other than group members is able to generate valid signatures (unforgeability). The scheme by
Chaum and van Heyst [13] was followed by many schemes who proposed introducing more requirements
such as unlinkability, unforgeability, collusion resistance [19], exculpability [19], and framing resistance [20].
Bellare et al. [8] presented formal definitions of security for group signatures which form the standard security
model, capturing all the requirements in full-anonymity and full-traceability. Bellare et al. [14] extended the
notions of [8] to dynamic groups as well. Dynamic groups have had several proposals to support adding new
members and revoking memberships [15,26,27,30].

1.1 Related Work

There has been several proposals for group signatures schemes, however they are mainly not post-quantum
schemes [13,19,20,8,15,26,27,30,16,17,18]. There are three main categories of post-quantum signatures: i)
Lattice-based signatures [31,32], ii) Code-based signatures [33], iii) Hash based signatures [1,2,3]. The first
two categories rely on computational assumptions that do not have an efficient quantum algorithm, while
the third one is an extension of Lamport’s [4] one-time signature (OTS) scheme and relies on the one-
wayness of hash functions. The first post-quantum group signature scheme was a lattice-based construction
proposed by Gordon et al. [12], and continued with the schemes that use lattice structures as in [21] and
[22], achieving the shortest signature size in O(logN), in [23] and [24], where N is the group size. The
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post-quantum group signatures rarely include code-based schemes [25]. Hash functions are advantageous
over other post-quantum proposals as they provide a simple yet strong tool for one-time signature schemes
[6,5]. The security of these schemes is undebateable, since it solely relies on the security of hash functions;
which motivated NIST to consider hash-based signatures XMSS [1] and LM-HSS [3] as candidates for post-
quantum signature standards. Hash-based OTS’s are as well easily expandable to multi-time signatures such
as SPHINCS [2], XMSS [1], or LM-HSS [3] using Merkle binary tree [5], with no additional requirement. In
the structures based on Merkle tree, each leaf is mapped to a one-time signature. The tree root authenticates
the signatures generated by all leaves. Despite the fact that hash functions provide strong one-time and
multi-time signatures, it is hard to develop a group signature that solely relies on them due to their carrying
less structure than other post-quantum primitives. To the best of our knowledge, there has been just one
other proposed construction for hash-based group signature, G-Merkle [34]. To overcome the difficulty of
extending a single user hash-based signature to a group signature, G-Merkle exploits the structure of Merkle
trees. While in a regular Merkle-based signature the leaves only represent the signatures generated for
distinct messages, in G-Merkle the leaves represent signatures generated for distinct messages and distinct
group members. Hence if the modified tree can support signing B messages for a group of size N , each
group member can sign at most bB/Nc messages, this prevents the scheme to be compatible with group
signatures where the number of messages each user needs to sign changes on-the-fly. In addition, in G-Merkle
assigning keys (and their indices in the tree) to group members is done by a group manager, introducing a
randomized structure of Merkle tree. This modification results in two drawbacks. First, the scheme requires
an additional computationally secure element, i.e., a block cipher, to shuffle the key indexes among group
members. Second, this fixed structure of Merkle tree does not allow extending the tree or using various
methods of authentication path computation. Authors leave this issue as an open problem.

1.2 Our Contributions

To introduce a hash based group signature scheme: i) We deploy an information theoretically secure structure
namely transversal designs to turn a single-user hash-based one-time signature scheme to a multi-user (group)
one-time signature. This structure enables group member to sign messages of behalf of the group and remain
anonymous. ii) Relying on information theoretically secure structures and hash functions, our scheme remains
post-quantum secure. iii) It is common in signature schemes literature to depend on a powerful group
manager who is in charge of issuing keys to the members capable of opening the signatures. However we
believe in the context of hash-based signatures, this dependence introduces a single point of failure to the
scheme. To prevent this issue, we separate the key issuing entity from opening authorities. We introduce τ -
traceability to distributes the tracing power among multiple openers, where opening a signature σM requires
τ of the O openers to collaborate together. iv) We extend our construction to a multi-time group signature by
deploying a Merkle tree. Our group signature does not induce any changes in the Merkle tree structure. Hence,
it does not encounter any impediment in benefiting from the state-of-the-art advances in authentication path
computations. Some of these benefits are shown in standard hash-based signature schemes [1,3]. In summary,
we propose a scalable post-quantum group signature scheme that provides a group of non-colluding members
with signature unforgeability, anonymity, and traceability.

Paper Organization- Section 2 introduces the requirements of a group signature and the building blocks
of our construction. Section 3 presents our construction for hash-based one-time group signature followed
by its extension to a multi-time group signature. Section 4 describes the security metrics and evaluates the
schemes security correspondingly. In section 5 we evaluate the performance of the construction, measured in
time and memory complexity.

2 Preliminaries

We proposes a construction for hash-based group signatures. In this section we introduce group signatures and
the blocks we use for our construction; namely i) hash-based signatures, ii) hash pools, and iii) transversal
designs.
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2.1 Group Signature

We introduce the definitions and security notions associated to group signature schemes following the work of
Bellare et al. [8], which describes a comprehensive set of properties. However, we slightly adapt the definitions
and the security notions to match a hash-based group signature scheme. The group signature GS = (GKg,
GSig, GV f, Open) is a scheme composed of the following polynomial-time algorithms:

1. GKg(1
s, 1n, 1t): The group key generation algorithm is a randomized algorithm that takes as input the

security parameter s, the number of openers t, and the parameter n (the group size is N = n2) in
unary representation. The GKg algorithm generates and outputs a group public key gpk, the collection
of signing key sets {gski|i ∈ [N ]} and the set of opening key sets {gokj |j ∈ [t]}, associated to respectively
the ith group member and to the jth opener.

2. GSig(gski, M): The group signing algorithm takes as input a set of signing keys gski, a message M ∈
{0, 1}l, and outputs a group signature σM on the message.

3. GVf(gpk, M, σM ): The deterministic group verification algorithm takes as input the group public key
gpk, a message m and a group signature σM . It outputs True if the signature is valid and False otherwise.

4. Open(gok, gpk, M , σM ): The group opening algorithm is a deterministic algorithm that on inputs the
opener’s sets of keys, the group’s public verification key, the message M and its signature σM , outputs
the identity of σM ’s signer.

For the scheme to work properly, two conditions must hold: i) The verification must be correct, and ii)
the opening procedure for all honestly generated signatures must be correct. In other words, for any group
member i ∈ [N ], the following two expressions have to hold. The first requirement implies that all honestly
generated group signatures must be valid, while the second expression allows the openers to recover the
identity of a correctly generated signature.

GV f(gpk,m,GSig(gski,m)) = True,Open(gok, gpk,m,GSig(gski,m)) = i (1)

Security in Group Signatures The main three security definitions for a group signature scheme are
unforgeablility, anonymity and traceablity. Some other desired security features of a group signature scheme
are: exculpability, coalition and framing resistance, and outsider-/insider- unlinkability. Section 4 provides
an explanation for these properties.

2.2 Hash-based Signature

Constructing digital signatures from a one-way function was first introduced by Lamport [4]. The scheme
proceeds as follows to sign a 1-bit message b. Two secrets, sk0, sk1, are chosen randomly as signing keys,
and their corresponding images, computed under the one way, e.g. hash, function f , pk0 = f(sk0) and
pk1 = f(sk1), form the public verification keys. The signature for message b is then skb. Any party can verify
the signature by evaluating f on skb and comparing the result with pkb in the public verification key. The
scheme is secure, fast and simple; however, it requires long signatures and twice secret/public keys as the
message length in bits. There are two main categories of hash-based signatures that provide space efficiency
for Lamport’s proposal; i) Winternitz-based schemes, and ii) schemes based on 1-cover free families. We
introduce a representative of each category in this paper, and later show the compatibility of our design with
either of these schemes.

The Winternitz One-Time Signature Scheme The Winternitz scheme that was first introduced by
Merkle [44], is a one-time signature that allows a trade-off between the signature cost and size, depending
on the scheme parameter w. Winternitz one-time signature (W-OTS) iteratively applies a hash function on
a secret input, whereas the number of iterations is defined by the message to be signed. The scheme works
as follows [46,47], to sign an l-bit message digest.

1. Key pair generation. First we choose the Winternitz parameter w ∈ N , w > 1, defining the trade off
between signature size and signing time. The signature key consists of t random value of length s bits
chosen uniformly with the random distribution,

sk = (sk1, · · · , skt)
$←− {0, 1}(s,t) (2)
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where l is computed as:

t1 = dt/we, t2 = d(blog2(dt/we)c+ 1 + w)/we, t = t1 + t2 (3)

The verification key is

pk = (pk1, · · · , pkt) = (H2w−1(sk1), · · · ,H2w−1(skt)) (4)

2. Signature generation. To sign an l-bit message M = (M1 · · · ,Mt1) given in base w representation,
i.e. Mi ∈ {0, · · · , w−1} for i = 1, · · · , t1, W-OTS first calculates the checksum: C =

∑t
i=1(2w−1−Mi)

which in base w is C = (C1, · · · , Ct2). The length of the base w representation of C is at most t2 since
C ≤ t1(2w − 1). Then it sets B = (b1, · · · , bt) = M ||C. The signature of message M is computed as
σ = (σ1, · · · , σt) = (Hb1(sk1), · · · ,Hbt(skt)).

3. Signature verification. The verifier first computes the base-w string B = (b1, · · · , bt) as the signer does.
Then it checks whether (H2w−1−b1(σ1), · · · ,H2w−1−bt(σt)) = (pk1, · · · , pkt). The signature is accepted
iff the comparison holds.

In this work, we use the original version of W-OTS that requires application of a collision-resistant hash
function; since the main focus of this paper is to show how the group signature scheme works, not to optimize
the underlying schemes. However for implementation, we recommend variants of W-OTS that alleviate the
collision resistance requirement [45] and the optimized versions that provide shorter signatures [46].

Signature schemes based on 1-Cover Free Families A w-Cover-Free Family (w-CFF) is a collection of
subsets of a set X , such that any subset X in the collection is not a subset of the union of any w subsets that
does not include X [32]. 1-CFF is a particular case of a w-CFF, where each subset in the collection is not
a superset of another one. To use a w-CFF in a signature scheme, first, a set X of secret keys is generated.
Then a w-CFF over X is fixed. Next, a mapping from the set of possible messages to the w-CFF is defined.
Finally, the hash values of the secret keys is released. In order to sign a message m, a signer releases the
message and the subset of secret keys corresponding to m. Zaverucha and Stinson [32] prove that using w
1-CFF based signature schemes to sign w messages requires less storage than using a w-CFF based signature
scheme. Therefore, in this document, we only focus on 1-CFF based signatures. The authors also mention
Lamport scheme [4], Bos and Chuam’s scheme [41], and Reyzin and Reyzin’s scheme [6] as examples of
1-CFF based signature schemes. The following example illustrates this process.

Example 1. Consider a 1-CFF formed by the 2-subsets of a set of size t. Figure 1 depicts the mapping
between messages m1, . . . ,mB and the 1-CFF over the set X = {sk1, sk2, . . . , skt}.

X sk1 sk2 sk3 · · · skt
m1 • • · · ·
m2 • • · · ·
...

...
...

...
. . .

...

mB • · · · •

PK
pk1 =
H(sk1)

pk2 =
H(sk2)

pk3 =
H(sk3)

· · · pkt =
H(skt)

Fig. 1: Assigning key subsets to sign messages m1 to m2l in 1-CFF based signature scheme

The public key is then defined as PK = (pk1, pk2, . . . , pkt), wherepki = H(ski), i ∈ [k], and published
publicly. To sign m2, the signer will publish m2 together with sk2 and sk3. To verify the signature, one
needs to verify that m2 is mapped to {2, 3}, then calculate their hash values and compare them to the
corresponding public keys, i.e., verifying H(sk2) = pk2, and H(sk3) = pk3,
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2.3 Hash Pools

In order to provide users with anonymity, we use hash pools. A hash pool is a set of hash values, i.e.,
HP = {H?(xi)| xi ∈ {0, 1}s

′
, i ∈ [N ]}, where H? is a derivation of H that generates the public key from

the private signing key in the underlying OTS; e.g., in W-OTS, H?(·) = H(2w−1)(·) which is the (2w − 1)-th
iteration of applying H(·) on an input. Knowing a private key required to calculate any of the public keys
in the the hash pool is a proof of authenticity. Each user should prove its authenticity for all/a subset of the
hash pools in the scheme, to anonymously gain verification for its produced signature.

2.4 Transversal Design

This work is inspired by Lee and Stinson’s TDKPS proposal of a key pre-distribution schemes. This proposal
is based on a combinatorial structure known as a transversal design, whose parameters can be chosen to
vary the resilience, connectivity, and storage requirements of the key pre-distribution in sensor networks. We
start with a definition of τ -transversal designs from [7].

Definition 1. Let t, τ ≥ 2 and n ≥ 1. A transversal design τ -TD(t,n) is a triple (X ,G,B) such that the
following properties are satisfied:

– X is a set of tn elements called points,
– G is a partition of X into t subsets of size n called design groups,
– B is a set of t-subsets of X called blocks,
– Any group and any block contain exactly one common point, and
– Every τ−tuple of points from τ distinct groups is contained in exactly one block.

We use the following 2-transversal design throughout this paper to provide the use with a more tangible
understanding of the scheme.

Example 2. In this example, we list the design groups, and the blocks of the transversal design 2−TD(4, 3).
Such a design has twelve points; we label the points by the elements of the set:

X = {α1, α2, α3 β1, β2, β3, γ1, γ2, γ3, δ1, δ2, δ3}

The partition G, outputs four design groups of size three each, as:

Design group [1]= {α1, α2, α3}
Design group [2]= {β1, β2, β3}
Design group [3]= {γ1, γ2, γ3}
Design group [4]= {δ1, δ2, δ3}

And eventually, the transversal design delivers the set B of nine blocks each of size four as follows:

B1 = (α1, β1, γ1, δ1)
B2 = (α1, β2, γ2, δ2)
B3 = (α1, β3, γ3, δ3)
B4 = (α2, β1, γ2, δ3)
B5 = (α2, β2, γ3, δ1)
B6 = (α2, β3, γ1, δ2)
B7 = (α3, β1, γ3, δ2)
B8 = (α3, β2, γ1, δ3)
B9 = (α3, β3, γ2, δ1)

It is important to note the followings about transversal designs. First, the groups in a transversal design
are just subsets of points. Second, the number of produced blocks in a TD(t,n) is n2 as stated in Lemma 1.
Theorems 1 and 2 from [7] prove that it is possible to construct the transversal design for almost any desired
group signature. More precisely, if n is a prime power and t < n, there exists a TD(t,n). This result provides
assurance regarding the applicability of the proposed scheme in various setups.

Lemma 1. A τ -TD(t,n) has nτ blocks. [7]
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Transversal designs are closely related to orthogonal arrays. An orthogonal array is defined as follows.

Definition 2. An OAλ(s, k, v) is an N × k array, such that for any t coordinates, all possible combinations
of values for those are repeated exactly λ times.

Theorem 1. “Suppose q is a prime power and 2 ≤ t ≤ q. Then there exists an OA(t, q).”[7]

Theorem 2. “Suppose that n ≥ 2 and t ≥ 3. Then the existence of any one of the followinflexivilityg designs
implies the existence of the other two designs: A t− 2MOLS(n), an OA(t, n) and a TD(t,n)”.[7]

3 Our Scheme:

We start with the procedure of turning a hash-based OTS scheme into a one-time group signature scheme; we
explain the high level idea accompanied by an example. Next, we discuss approaches to provide the scheme
with more flexibility, e.g., in the number of openers. Finally, we demonstrate how we extend our scheme to
a multi-time group signature scheme.

3.1 One-Time Signature’s High Level Idea

To build a one-time group signature of the form GS = (GKg, GSig, GVf, Open) that satisfies traceability,
anonymity, and unforgeability, we utilize three nested layers in our construction: i) assigning keys using
transversal designs, ii) generating a public verification key for the group through utilizing hash pools, and
iii) signing messages using a one-time hash-based signature scheme. However, the ordering on layers does
not represent their precedence during the process. Conceptually, we start with the hash-based OTS and
turn it into a τ -traceable group signature scheme, through using hash pools and transversal designs. As
Fig. 2 shows that the core of our scheme is a signature scheme, which provides unforgeability. The hash
pools in the second layer provide anonymity. Finally, the transversal design in the outer layer of our scheme
provides traceability. We give a high level description of the algorithms in the group signature scheme GS
= (GKg, GSig, GVf, Open)and show where in the algorithms the mentioned layers are embedded and how
they contribute to security.

In this scheme, we consider N > 1 to be the number of users in the group, i.e., potential signers, t to
be the total number of keys assigned to a user, τ to be the number of openers needed to identify a signer,
o to be the total number of openers, and H(·) to be a cryptographic hash function with collision-resistance
property.

Hash-Based
Signature

Hash Pools

Transversal Design

Fig. 2: Three nested layers forming our scheme

One-time Hash-based Signature Scheme- To guarantee unforgeability, our scheme uses an underlying
hash-based OTS scheme. The only constraint in the signature scheme is that the signer reveals at least τ
secret keys to sign the message M . In this paper, we will show the compatibility of our group signature with
two schemes of two main categories of one-time signatures: i) 1-CFF OTS, and ii) Winternitz signature
scheme [5].
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Group Verification Key- The hash-based signature scheme generates a set of secret keys gskj and a set
of corresponding public verification keys gpkj for each user uj . We collect the public verification keys of all
users — gpkj , 1 ≤ j ≤ N — in hash pools to form the group verification key. In what follows, we explain
how we use transversal designs to form our hash pools as shown in Figure 3, HPi = {H(gskij) | j ∈ [N ]}.
For a message to be verified, the OTS public keys required for its verification should be valid members of
their corresponding hash pools.

Fig. 3: Using Hash Pools to generate group verification key, HPi stores the ith elements from each gski in
gpki for 1 ≤ i ≤ t

Transversal Design To make a hash-based signature scheme traceable, we need a structure to enable the
openers to link a signature to the key sets of a group member. We utilize transversal designs to provide this
structure. As the first step in our construction, we utilize transversal design in the key generation algorithm
to assign sets of keys to group members and openers. As described in Section 2.4, a transversal design
applies to a set of tn points X , and delivers t design groups and nτ blocks. We associate the points of a
transversal design with the secret keys, the blocks with the group members’ keys, and the design groups with
the openers’ keys in our group signature construction. Hence, the transversal design in Example 2, turns
into the following example in a group signature: to distribute keys based on a transversal design, we consider
private signing keys to be the points in X . Suppose a hash-based OTS scheme, S, requires a signer to have
t private signing keys, and there are N = nτ users, then X needs tn points in total:

SK = X = {sk11, sk21, . . . , skn1 , sk12, . . . , skn2 , sk13, sk23, . . . , sk1t , sk2t , . . . , sknt } = {skji | i ∈ [t], j ∈ [n]}.

As we discussed in Section 2.4, each design group has exactly n elements. Without loss of generality, we
assume the partition G of X is as follows:

G = {Gi = {skji | j ∈ [n]} | i ∈ [t]}.

Given this setup, each user u receives the block Bu as the set of private signing keys, gsku, and the public
key is the collection of t hash pools:

gpk = (pk1, pk2, . . . , pkt), pki = HPi = {H?(skji )|j ∈ [n]}, i ∈ [t],
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Recall that H?(·) is a derivation of H(·) that generates the public key from the private signing key in the
underlying OTS; e.g., in W-OTS, H? = H(2w−1)(·) which is the (2w − 1)-th iteration of applying H(·) on an
input. Each opener Oi, i ∈ [t] receives a set of n pairs, where the first element of a pair is the corresponding
public key to skji from the design group Gi, and the second element is a set of users who have skji among
their keys. The opening key for Oi is goki:

GOK = {goki | i ∈ [t]}, goki = {(H?(skji ), {u | sk
j
i ∈ Bu, u ∈ [N ]}) | j ∈ [n]}.

The following example demonstrates the key distribution stage for the one-time group signature scheme.
We correspond the set of points, X , to the keys we wish to distribute among the openers and the group
members in our signature construction. We consider each transversal design group as a set of keys assigned
to an opener in our group signature. Subsequently, we associate the blocks to the set of keys assigned to
each member of the group in the group signature.

Example 3. In this example, we apply a transversal design 2-TD(4, 3) to generate secret keys in the group
signature. The design then, outputs the set of keys for the openers and the group members.

SK = X = {α1, α2, α3, β1, β2, β3, γ1, γ2, γ3, δ1, δ2, δ3}

The partition G, outputs four design groups of size three each, which we map to a collection of key sets,
GOK, owned by the openers as follows:

Opener[1]: {(H?(α1), {1, 2, 3}), (H?(α2), {4, 5, 6}), (H?(α3), {7, 8, 9})} = gok1
Opener[2]: {(H?(β1), {1, 4, 7}), (H?(β2), {2, 5, 8}), (H?(β3), {3, 6, 9})} = gok2
Opener[3]: {(H?(γ1), {1, 6, 8}), (H?(γ2), {2, 4, 9}), (H?(γ3), {3, 5, 7})} = gok3
Opener[4]: {(H?(δ1), {1, 5, 9}), (H?(δ2), {2, 6, 7}), (H?(δ3), {3, 4, 8})} = gok4

And eventually, the transversal design delivers the set B of nine blocks each of size four which we map to a
vector of key sets, gsk, owned by the group members as follows:

gsk1 = (α1, β1, γ1, δ1)
gsk2 = (α1, β2, γ2, δ2)
gsk3 = (α1, β3, γ3, δ3)
gsk4 = (α2, β1, γ2, δ3)
gsk5 = (α2, β2, γ3, δ1)
gsk6 = (α2, β3, γ1, δ2)
gsk7 = (α3, β1, γ3, δ2)
gsk8 = (α3, β2, γ1, δ3)
gsk9 = (α3, β3, γ2, δ1)

pk1 = HP1 = {H?(αj)|j ∈ [3]}
pk2 = HP2 = {H?(βj)|j ∈ [3]}
pk3 = HP3 = {H?(γj)|j ∈ [3]}
pk4 = HP4 = {H?(δj)|j ∈ [3]}

The transversal design TD(t, n), provides our group signature construction with two interesting properties:
i) Any opener has the index of each user and the public key corresponding to one of that user’s keys exactly
once. ii) Every pair of group opener keys from distinct openers corresponds to the key set owned by exactly
one group member. Subsequently, there is a group of τ openers that can identify the signer correctly.

Signing, Verification, and Opening- To sign a message M , a group member follows the general signing
algorithm for the underlying OTS, and publishes the message and its signature (σi1 , σi2 , . . . , σit). In single
signer OTS without the anonymity property, the public verification values are calculated for each of the t
secret keys. In group signature however, those public verification values of all users are presented in hash pools
and are shared among all group members to provide anonymity. Without loss of generality, let gskiu, i ∈ [t]
be the set of secret keys given to user u to sign a message M . To verify a signature (σi1 , σi2 , . . . , σit) on M ,
the verifier evaluates whether or not the elements of the signature (σi1 , σi2 , . . . , σit) have corresponding hash
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values in the hash pools, H?(gski1u ) ∈ HPi1 ,H?(gski1u ) ∈ HPi2 , . . . ,H?(gski1u ) ∈ HPit , or not. To represent
the relationship between the signatures and elements of the corresponding hash pool, we introduce new

notation. If a signature element σj , signed using a private signing key gskj
′

i′ , can be verified by H?(gskj
′

i′ ) in

the underlying scheme, we write σj ./ H?(gskj
′

i′ ). Finally, to open a signature, i.e., to identify the signer, the

openers need to use the function Iden : SK × GOK → ∅ ∪
(
[nτ ]
n

)
. This function takes a private signing key

skj
′

i′ and an opening key set goki, and outputs either the ∅ or a set consisting of n values of u’s in [nτ ] such

that gsku contains gskj
′

i′ .

Iden(σi, goku) =

{
∅ if (H?(gskj

′

i′ ), ∗) /∈ goku, σi ./ H?(gskj
′

i′ )

{u1, . . . , un} if (H?(gskj
′

i′ ), {u1, . . . , un}) ∈ goku, σi ./ H?(gskj
′

i′ )

Consider α1 and gok1 in our Example 3. The function Iden(α1, gok1) returns {1, 2, 3}, which is a set of users
who share α1 with gok1, namely: 1, 2, 3. Note the following two properties of the function Iden(·, ·).

1. Since the group designs are disjoint, it is only one goki that contains skji . Hence, the output of this
function will be ∅ for all other goki’s.

2. Let gsk1u, gsk
2
u, . . . , gsk

τ
u be τ secret keys from user u’s group secret key set, gsku. For any choice of

i1, i2, . . . , iτ ∈ [t], there are exactly τ instances of gokih , h ∈ [τ ] such that each gokih intersect with one
secret keys gskiu. For such group opener keys, we have

⋂τ
h=1 Iden(gskhu, gokih) = u. If at least one key is

not a member of the corresponding group opener key set, the intersection would result in the empty set.
Therefore, this intersection is either the ∅ or u. We use this property of Iden(·, ·) function in opening
algorithm in our group signature construction. This shows that there exists at least a set of τ openers
who can trace the signature back to the signer.

all the openers (in the next subsection we will discuss the scenarios where it is possible to have only some
openers participate) evaluate the function at the released keys and their individual gokj .

Example 4. Consider the group key distribution from Example 3. Suppose we are using the family of 2-
subsets of [t] as the 1-CFF for our signature scheme, as in BC scheme [41]. The group member 1 owns gsk1,
namely, {α1, β1, γ1, δ1}. If an s′−bit message m is associated to the subset {1, 2} in the cover-free family, to
sign m using these keys, the group member publishes α1 and β1, together with m. To verify the signature,
any verifier can confirm that H?(α1) and H?(β1) are members of HP1 and HP2, respectively. To identify
the signer, any opener oi, i ∈ [t] computes Iden(α1, goki) and Iden(β1, goki). For the former calculation, the
first opener obtains {1, 2, 3} and every other opener obtains ∅; and the latter computation returns {1, 4, 7}
to the second opener and ∅ to all other openers. Opener 1 and opener 2 then find the intersection of their
results, which reveals the group member 1 is the signer.

3.2 Parameter Flexibility and Generalization

While we can change the value of τ in the transversal design so that the scheme requires cooperation of a
different number of openers to identify the signer, this scheme does not provide much flexibility with respect
to the total number of openers, and the number of openers needed to identify the signer of a message. Also,
despite the fact that, the scheme requires the cooperation of at least two openers to uniquely identify the
signer, one opener has enough information to reduce the size of the set of possible signers from nτ to nτ−1.
In the remainder of this section, we will discuss techniques from threshold cryptography that can provide
the scheme with more flexibility, in terms of parameters, and also prevents information leak to single opener.

Using Secret Sharing Scheme- Shamir’s secret sharing scheme (SSSS) [36] is a well-known method of
dividing a secret between members of a group such that no information can be obtained about the secret,
unless at least a certain number of members contribute their shares. For a group of n people and a threshold
of t, a (t, n)-SSSS can be achieved by constructing a random polynomial P(·) of degree t− 1 with constant
term equal to the secret. Then, each member receives a distinct pair (x,P(x)), x 6= 0. To reconstruct the
secret, t shares are used to find the polynomial P(·) using Lagrange interpolation. Finally, the secret is
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Algorithm 1 Group OTS Scheme GS = (GKg, GSig,GV f, Open) based on Transversal Design

Algorithm GKg(1s, 1n, 1t)
for l← 1 to t× n do

skl
$← {0, 1}s

SK = {sk1, . . . , sktn}
(gsk,gok) = TD(t,n)(SK)
for i← 1 to t do

HPi = {H?(skn(i−1)+1),H?(skn(i−1)+2), . . . ,H?(skn(i−1)+n)}
gpk = {HP1, HP2, · · · , HPt}

return (gsk,gpk,gok)

Key generation algorithm takes the security parameter, number of openers, and square root of the number of group
members, and outputs t × n random secret keys SK. The algorithm then applies TD(t,n) on SK to obtain the key
sets for group members gski’s for 1 ≤ i ≤ n2, the key sets for openers gokj ’s for 1 ≤ j ≤ t, and the group public key
gpk is generated.

Algorithm GSig(gski,M)
(M)w = (M1 · · · ,Ml1)
Checksum: C =

∑l1
i=1(2w − 1−Mi), (C)w = (C1, · · · , Cl2)

B = (b1, · · · , bl) = M ||C
σ = (σ1, · · · , σl) = (Hb1(gsk1i ), · · · , Hbl(gskli))

return σM

Member i, calculates the message M and its checksum C in base-w. Then calculates the signature σ.

Algorithm GVf(gpk,M, σM )
Flag = True
(M)w = (M1 · · · ,Ml1)
Checksum: C =

∑l
i=1(2w − 1−Mi), (C)w = (C1, · · · , Cl2)

B = (b1, · · · , bl) = M ||C
for x← 1 to t do

Flag= Flag ∧((H2w−1−b1(σ1), · · · , H2w−1−bl(σl)) == (pk1, · · · , pkl))
return Flag

The verifier first computes the message M and its checksum C in base-w, to obtain B = (b1, · · · , bl). Then it returns
True iff (H2w−1−b1(σ1), · · · , H2w−1−bl(σl)) = (pk1, · · · , pkl).

Algorithm Open(gok,gpk,M, σM )
if GVf(gpk,M, σM ) = False then

return ⊥
else

for x← 1 to t do
Opener Oi calculates Xi = Iden(σj , gok[i])
if Xi 6= ∅ then

Oi shares Xi with other openers

Compute the intersection of shared Xi’s and call the result u
return u

Opening algorithm, receives a message and its verified signature. By applying the Iden(·, ·) function on any τ secret
keys in the signature, the algorithm can identify the signer. The (Iden(σ[jx], gok[jx]) function, returns the identity
of all group members who share the secret key σ[j] with the opener Oi.
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recovered by the evaluation of the polynomial P(·) at x = 0. In this scheme, any subset of t − 1 or fewer
shares does not reveal any information regarding the secret. One important requirement of this scheme is
that each share is of the same length of the secret.

To use SSSS in conjunction with our OTGS, one simply applies a (τ, o)−secret sharing scheme to share G
between o openers, such that any τ openers can recover the group designs and identify the signer; while any
group of openers with less than τ members cannot learn anything about the signer. When G is recovered,
two group designs are chosen to identify the signer. As it can be seen this method removes the limits on the
total number of openers, o instead of t, and on number of openers needed to identify the signer, τ instead
of 2. Also, collusion of up to τ − 1 openers does not reduce the size of potential signers because they cannot
obtain any information about G. This method requires o|G|, total storage.

Using t-AONTs t-all-or-nothing transforms (t-AONTs) were introduced by D’Arco et al. [28], as a general-
ization of Rivest [37] and Stinson [38] work on all-or-nothing transforms. An unconditionally secure t-AONT
is a mapping from s input blocks to s output blocks such that the mapping and its inverse can be calculated
in polynomial time, and if any t output blocks are missing, no information can be obtained about any subset
of t input blocks. Existence of these structures have been studied by Esfahani et al. [29] and Wang et al.
[35]. In this scheme, the length of each output block is equal to that of each input block. If we apply a
t-AONT on G, it will result in o output blocks, such that any subset of o− t of these blocks does not reveal
any information about any pair of the group designs, yielding no information about the signer. This method
leaves the limit on the total number of openers, increases the number of openers required to identify the
signer, from t to o− t. The advantage of this method to secret sharing is that it does not require any extra
storage, and the total storage cost is |G|.

3.3 From One-time Signature to Multi-time Signature

We described our one-time signature construction in previous sections. However, as an OTS, its restrain
in signing just one message securely, limits its practical use. Therefore, it is also essential to introduce a
method to tie our OTS scheme to a multi-time signature (MTS). The common approach for turning a one-
time signature scheme to a multi-time one in hash-based signatures literature is using Merkle trees [5] or its
variants, as deployed in SPHINCS [2], XMSS [1], or LM-HSS [3]. Hence, we use Merkle trees to extend our
scheme as well, keeping the same notation as [1] and [2] in the following elaborations. The Merkle tree, as
illustrated in Fig. 4, is a binary tree of height h, with leaves on level 0 that can all be verified by a single
value R in level h. We indicate the nodes on level j, 0 ≤ j ≤ h, by Nodei,j , 0 ≤ i < 2h−j . The non-leaf

Fig. 4: Merkle tree with authentication path(black nodes) for the ith leaf

nodes, on levels 1 to h, are computed as:

Nodei,j = H′(Node2i,j−1||Node2i+1,j−1) (5)

where H′(·) is a collision resistant hash function. However, there are methods to alleviate this requirement;
e.g., Buchmann et al. [1] proposes xor-ing public bitmasks with the node values prior to applying the hash
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function, which reduces the hash function requirement from collision-resistance to pre-image resistance.
To verify a group OTS root in level 0, e.g., Node0,i, its authentication path is required. For Node0,i,the
authentication path is the sequence Auth = (Auth0, . . . , Authh−1) of the siblings of all nodes on the path
from Node0,i to the root, as shown by black boxes in Figure 4. In what follows we show how we calculate
the group OTS root from the OTS public veification keys.

Fig. 5: The Go tree utilized to calculate the value of leaf i in Merkle tree

Grouped One-time Signature (GO) Tree Each leaf in Merkle tree corresponds to a one-time Winternitz
signature scheme used to sign a distinct message, e.g., the leaf i in Fig. 5 signs the ith message. To map the
group public key in our W-OTS scheme to a single group verification value in node i we use grouped-OTS
(GO) tree. As described in our OTS algorithm, the secret key in a one-time group signature is a set of tn
random values, i.e., SK = {skji |i ∈ [t], j ∈ [n]}. The corresponding hash values of these random values are

organized in t hash pools of size n to form the group public key, i.e. gpk = {HPi = {H?(skji )|j ∈ [n]}|i ∈ [t]}.
The GO tree is a Merkle tree, storing all users’ public verification keys H?(skji ), j ∈ [n], i ∈ [t] in level 0
as leaves. The nodes in the higher levels are hash values of the concatenation of their children according to
Equation 5. Finally, the public key of the GO tree is placed at GO root and is the node i in the Merkle
tree. This approach turns the public key size of the OTS to be just a single hash value. The authentication
path for each leaf, similar to in Merkle tree approach, is the path from the leaf to the tree root including
the siblings. To be authenticated, the OTS signature needs to include the authentication path per signature
element as well as the t elements in σM , enabling the root computation given a signature.

Multi-time Signature Scheme Now, we can describe how the signing and verification in the signature
with Merkle tree works:

– Sign. To sign the ith message, we use the ith GO key pair. The signature SIG = (i, σ, Auth), con-
tains the message index i, the GO signature3 σ, and the Merkle tree authentication path Auth =
(Auth0, · · · , Authh−1), which is the sibling nodes in the path from the leaf Nodei,j to the root R, as
shown in Fig. 4.

3 Recall that the Go signature itself consists of the t signing elements as described in GSig(gski,M) in Algorithm 1
and the authentication path of each of them.
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– Verify. To verify the signature for the ith message, SIG = (i, σ, Auth), the leaf Node0,i of the multi-
time signature tree is constructed by building a GO tree on the received W-OTS public keys included in
the σ; as described earlier Node0,i is the root of the GO tree. The verifier then computes the sequence
Auth∗ = (Auth∗0, · · · , Auth∗h). The first node in Auth∗ is Node0,i and the rest of the path is calculated
using the formula: Authj = H′(Auth∗j−1||Authj−1), for 0 ≤ j ≤ h. The verifier accepts the signature, if
and only if the final node, Authh, matches the root R received from the SIG.

Implementation Remarks For an efficient implementation, the dealer gives the GO-tree path to each user,
instead of users calculating the path by themselves. It is important that the dealer uses a random permutation
of the public keys for each message, so that the pattern of key assigning does not leak information about the
signers’ identity. Furthermore, as the Merkle tree is the same for each of 2h messages, each user can calculate
the Merkle tree once and store it for its future signing tasks.

4 Security

We first present the definition and description of common security requirements for group signatures, while
mentioning the modifications (if needed) to adjust the requirements to our scheme. Next, we prove how our
scheme satisfies those requirements.

4.1 Security Evaluation

The main security measurements in group signatures are unforgeability, traceability, and anonymity as Bellare
et al. mention in their paper on Foundations of Group Signatures[8]. They provide formal definitions for full-
anonymity and full-traceability and prove that these two security requirements cover some other security
notions as exculpability, coalition and framing resistance, and outsider-/insider- unlinkability. However, we
analyze the performance of the proposed scheme separately in each of the aforementioned security categories,
since full-anonymity and full-traceability are not applicable in our hash-based signature. The descriptions of
the following security requirements are from Katz and Lindell [9], and Bellare et al. [8].
Notation and Terminology. The scheme is designed for security parameter s, the group size N = nτ ,
and the number of openers t. The parameters n and t are used in the transversal design, TD(t,n). Another
notation used in the experiments is st (for statement), which is the knowledge the adversary A obtains from
one stage (choose) of the experiments and stores to use in another one (guess).

Unforgeability- A basic requirement of any digital signature scheme is that signatures cannot be forged,
i.e., it is computationally infeasible to produce message signature pairs (M,σM ) that are accepted by the ver-
ification algorithm, without the knowledge of the secret key(s). In order to define unforgeability, we restrict
the adversary so that it does not ask for any secret keys, the adversary can make one query to obtain a digital
signature of its choice. In this case a successful attack is producing a valid message signature pair (M,σM )
such that message M was not queried to the signing oracle [9]. The signature in our construction, consisting
of t secret keys, is verified if the keys pass the membership test according to the corresponding hash pools.
Thus, for an adversary to forge a signature, it needs to make at least one successful guess on an element of
a hash pool. However, due to the security of hash functions, the success chance of a forgery attack is negligible.

Definition. (Unforgeability)A group signature scheme GS = (GKg, GSig,GVf, Open) is called un-
forgeable, if for all probabilistic polynomial adversaries A and all polynomially bounded n and t the following
advantage of the adversary in the experiment Expunforg−cmaGS,A (s, n, t) is negligible:
(shown in Algorithm.2)

Advunforg−cmaGS,A (s, n, t) = P [Expunforg−cmaGS,A (s, n, t) = 1]
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Algorithm 2 Unforgeability Experiment

Experiment Expunforg−cma
GS,A (s, n, t)

(gpk,gok,gsk)← GKg(1s, 1n, 1t)
(st,M1, σM1)← AGsig−1(··· ,M)(choose, gpk)
(M,σM )← AGSig−1(··· ,M)(guess, st,M1, σM1)
if GVf(gpk, (M,σM )) = 1 ∧M 6= M1 then return 1
else return 0

In unforgeability experiment, the adversary A runs in two stages: choose and guess. In choose, The adversary A can
query the scheme for the signature of a message (M1, σM1) of its choice, but not more than once, as it is a one time
signature. Then in guess, A attempts a forgery by producing a signature σM for an arbitrary (but different from M1)
message M . If the signature by A passes the verification, A wins the game.

Anonymity- We use the CCA-selfless anonymity definition for our construction as defined in [15]. In this
security definition, the adversary has access to the opening oracle, and also to the members’ secret keys,
with the exception of two group members. These two members are initially chosen by adversary and are
used for challenging the adversary later. We use a slightly different version of the CCA-selfless anonymity
notion to adjust it with the OTS. We grant the adversary the access to all members’ secret keys, except
for two identities i1 and i2 chosen by the adversary itself. However, regarding querying the opening oracle,
we allow the adversary to make queries if not for opening a message signed by i1 or i2. This limitation is
set due to the fact that a secret key should not be used twice, which is a fundamental property of hash-
based signatures. This property makes the signature different from the conventional signatures which rely
on public key encryption that is not post-quantum. We denote the adjusted algorithm by CCA− selfless∗
and the adversary’s access to the opening oracle by Open∗. For evaluating anonymity of the scheme, an
indistinguishability based method is used. In the method the adversary produces a message and a pair of
group-member identities (in “choose” stage), then receives a target signature of the given message under a
random one of the two identities. The adversary should have negligible advantage over one-half in determin-
ing under which of the two identities the target signature was produced (in “guess” stage). The information
passed by the adversary between stages is showed by st in the Algorithm 3.
Definition. (CCA Self-less Anonymity) To provide anonymity, a group signature scheme defined by the
algorithms GS = (GKg, GSig,GVf, Open) the following condition should hold: For all probabilistic polyno-
mial adversaries A and all polynomially bounded by n, t, the advantage of the adversary in the experiment
ExpCPA,anon−bGS,A (s, n, t) is negligible: (shown in Algorithm 3)

Advanon−bGS,A (s, n, t) = |P [ExpCCA−Selfless
∗,anon−2

GS,A (s, n, t) = 1]− P [ExpCCA−Selfless
∗,anon−1

GS,A (s, n, t) = 1]|

Algorithm 3 Anonymity Experiment

Experiment ExpCCA−Selfless∗,anon−b
GS,A (s, n, t)

(gpk, gok, gsk)← GKg(1s, 1n, 1t)
(St, i1, i2,M)← AOpen∗(gok,gpk,·,·)(choose, gpk, (gski2 , · · · , gskiN ))
σM ← GSig(gskib ,M)

d← AOpen∗(gok,gpk,·,·)(guess, St, σM )
if A did not query its oracle with m, σM , i1, i2 in the guess stage then return d
else return 0

The adversary runs in two stages; choose and guess. Choose stage: the adversary A is given the access to all gksi’s
except gski1 and gski2(selfless anonymity[15]), A can also query opening any signature except the ones generated
by i1 and i2(CCA adjustment to our scheme). These two identities are chosen by A. Guess stage: to challenge the
adversary, one of these two identities is chosen randomly, ib. A is challenged by m, σM generated by ib. A should
guess b. St is the knowledge A obtains from Choose and stores to use in Guess.
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Traceability- Traceability enforces that it is not possible to produce signatures which can not be traced to
the group member who has produced the signature.
Definition. (Traceability) A group signature scheme GS = (GKg, GSig,GV f,Open) is called traceable,
if for all probabilistic polynomial adversaries A and all polynomially bounded n and t the following advantage
of the adversary in the experiment ExptraceGS,A(s, n, t) is negligible:
(Shown in Algorithm 4)

AdvtraceGS,A(s, n, t) = P [ExptraceGS,A(s, n, t) = 1]

Algorithm 4 Traceability Experiment

Experiment ExptraceGS,A(s, n, t)
(gpk, gok, gsk)← GKg(1s, 1n, 1t)
(st, gski)← AGSig(gsk·,·)(choose, gpk)
(m,σM )← AGSig(gsk·,·)(guess, st)
if GVf(gpk, (M,σM )) = 0 then return 0
else if Open(gok, gpk,M, σM ) = ⊥ then return 1
else if ∃u ∈ [N ] s.t. {Open(gok, gpk,M, σM ) = j} ∧ {u 6= i} then return 1
else return 0

In traceability experiment, adversary A runs in two stages: choose and guess. In the choose stage, A chooses an
identity i and is given the access to gski. As our scheme is not resistant to members’ collusion, we just grant A that
the access to one gski. In the guess stage, A produces a signature σM for a message of its choice, M . If the generated
σM is traced back to a group member u 6= i, or if it is not traced back to a valid group member, A wins the game.

Other Security Notions

– Exculpability Exculpability is the property that no member of the group and not even an opener can
produce signatures on behalf of other group members. Exculpability by group members is covered by
our definition of traceability. If a member wants to be identifies as another group member, it must have
access to at least two secret keys of the other group member that are from different openers. This is
a contradiction with our design, as in the underlying transversal design, any two keys from different
openers is owned by exactly one group member. Similar proof takes place for an opener who wants to
sign on behalf of a group member. The signature property is it has at least two elements from distinct
openers. So, an opener being able to sign on behalf of a group member makes a contradiction again, as
the opener should have access to one key from another opener as well to do the job, the probability of
which is not more than a negligible guess.

– Coalition Resistance This is the possibility of a group of signers colluding together to generate
signatures that cannot be traced to any of them. The proposed scheme is designed for applications
with non-colluding signers though. As a result, two group members can collude together and generate a
signature that gets verifies but cannot be traced back to any of them.

– Framing Framing is a version of coalition resistance, in which a set of group members combine their
keys to produce a valid signatures in such a way that the opening algorithm will attribute the signature
to a different member of the group. A strong formalization for framing is the following: consider an
experiment in which a group member’s identity u is chosen at random from the set of all members, and
all group secret keys, except the secret key of u, together with the secret key of the opener are given to
the adversary. The adversary wins if it manages to produce a signature which will open as group member
u, and a scheme is called secure against framing if no efficient adversary can win with non-negligible
probability. Again, as the proposed scheme is designed for applications with non-colluding signers. So,
we do not consider this attack in security evaluation.

– Outsider/Insider Unlinkablility The intuition is that a party after seeing a list of signatures, can
not relate two signatures together as being produced by the same group member. It is necessary to
consider distinct security notions for the two cases where the attacker is a group member or it is not, i.e.



16 M. Shafieinejad et al.

insider/outsider unlinkability. This is not an applicable attack to one time signatures. As after signing a
message, the whole secrets will be updated; no insider/outsider can relate two signatures together.

4.2 Security of Our Construction

Unforgeability We show that in our construction, unforgeability is guaranteed by the utilized 1-CFF-based
signature and hash pools.

Theorem 3. If H(.) in the W-OTS signature is a collision resistant hash function, our multi-time signature
scheme introduced in Section 3.1 is existentially unforgeable under chosen message attacks.

Proof. We use the experiment in Algorithm.2 for evaluating unforgeability. According to the experiment,
the adversary can query the signature of one message of its choice in OTS. We extend the experiment to
multi-time scheme setup by granting adversary access to the scheme’s signing oracle 2h times. Note that the
oracle changes the keys after each signature according to our multi-time signature scheme. We first discuss
that the unforgeability of our one-time group signature reduces to collision resistance of the hash function in
W-OTS signature. Assume the adversary provides a signature for a message of its choice, M1, after querying
the scheme for the signature of a message M . In W-OTS each message is signed by a set of t keys, each
element in the signature is verified by the corresponding hash pool. Hence, in order to existentially forge
a signature on a new message the forger has to guess the corresponding signature element to at least one
elements stored in a hash pool correctly. Therefore, forging a signature in the group signature reduces to
forging a signature in the underlying W-OTS scheme which is not possible due to collision resistance of the
hash function in the scheme. Now we prove how the unforgeability of the OTS results in the unforgeability
of the multi-time signature scheme as well. Assume the attacker A queries the multi-time signing oracle
2h times and comes up with a valid signature for a new message of the type (i,Mi, σMi

, Auth). Then the
attacker breaks the unforgeability of the OTS. The reason for the claim is even it is assumed that the attacker
recovers all tree nodes’ values by 2h query responses, none of that information helps to recover the σ in the
OTS. Still the problem of forging the signature σ holds, unless the hash function in the Merkle tree, H′, is
not collision resistant. Since forging a signature in our multi-time signature scheme require H′ to not satisfy
collision resistance, or the underlying OTS to not be unforgeable, it is not a valid assumption. Therefore,
the multi-time signature is unforgeable.

Anonymity We show that in our construction, anonymity is provided by the utilized hash pools and its
adjustment with the transversal design.

Theorem 4. Let GS be the group signature construction as introduced in Section 3.1, with hash pools forming
the group public key and the TD(t,n) be the transversal design utilized in the key generation algorithm in GS.
GS is CCA−selfless anonymous.

Proof. We use the experiment in Algorithm 3 for evaluating anonymity. The adversary A provides the
challenger with a message M and the identities of two group members, u1 and u2. A has access to the secret
keys of other users, also it can query the opening oracle but for the signature produced by u1 or u2. The
challenger chooses one of the identities, u1 or u2, randomly, ub, and provides the signature of the message M
by ub; i.e. σM = (gski1ub , gsk

i2
ub
, · · · , gskitub). The adversary is challenged to guess the real identity of ub. There

are t secret keys in the signature which are not dependant to the b. Hence, no information about b could
leak from this step. Secondly, the adversary has access to the verification algorithm, which takes an element
gskiiubas the input, and checks whether it generates a valid element of the corresponding hash pool in gpk[j].
This function does not provide any information of other elements stored in the hash pool. The last reason
for anonymity is the correspondence of the key sets and the identities of the group members is not known to
any entity in the construction. We would like to mention here that even for an opener, the best guess for the
identity of the signer is n−(τ−1) instead of n−(τ). As described in 3.1, the Iden(gskju, gokij ) function outputs

a set of n−(τ−1) identities, and if not collaborated with another opener, it cannot identify the signer. Hence,
the opener cannot do any better than identifying a set of probable signers by observing the signature by
ib. Therefore, we call our construction nτ−anonymous to a general adversary, and n(τ−1)−anonymous to an
opener.
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Traceability We show that in our construction, traceability is provided by the utilized transversal design.

Theorem 5. Let GS be the group signature construction as introduced in Section 3.1, and TD(t,n) be the
transversal design deployed in the construction; GS is traceable.

Proof. Suppose there exists a PPT adversary for GS, who proposes a signature that is not traceable to
the signer. This translates to there are two secret keys in the signature that trace back to the wrong
group member or do not trace back to any group member at all. We prove the impossibility of both
cases. Let’s consider the signature σM = (gski1u , gsk

i2
u , · · · , gskitu ) by group member u for message M , with

gsk1u, gsk
2
u, · · · , gskτu being traced back to group member u′ rather than u or not being traced back to any

group member. The first case contradicts the transversal design’s properties, as any τ points from different
group designs(openers) exist in exactly on block(gsk). This is defined as the second property of the function
Iden(·, ·) in Section 3.1. Therefore, if there exists an algorithm, that breaks an essential property in the
underlying transversal design, it breaks the the second property of the function Iden(·, ·). Now, let’s con-
sider the case that adversary’s offered signature does not trace back to any group member. Again consider
the signature σM = (gski1u , gsk

i2
u , · · · , gskitu ) with gsk1u, gsk

2
u, · · · , gskτu tracing back to no group member.

According to GKg, each secret key assigned to the group member u is shared with a distinct opener. So,
gsk1u, gsk

2
u, · · · , gskτu are shared with the openers goki1 , goki2 , · · · , gokiτ respectively. Again, according to

Iden(·, ·) function of the transversal design,
⋂τ
h=1 Iden(gskhu, gokih) is an index of a block, i.e. the identity

of a group member. Hence an algorithm breaking the traceability of our construction by tracing back to no
group member’s identity, breaks the second property of the function Iden(·, ·) of the deployed transversal
design.

5 Performance Evaluation

We evaluate our scheme in space and time complexity, and compare it with G-Merkle [34]. Since G-Merkle
uses W-OTS, we use W-OTS as well as our underlying OTS to provide a fair comparison. Note that, G-Merkle
does not provide the features provided by our scheme, which enables it benefit from performance advantages
that our scheme cannot; nonetheless it is the only other hash-based group signature in the literature. We
start the construction with following four parameters: message length s′, security parameter s, number of
openers o and number of group members N . Each group member owns t secret keys and shares exactly one
secret key with each opener. To allow signing an s′ bit message with these t secret keys, a W-OTS schemes
with parameter w is used. We build a group signature on top of the OTS, by utilizing a transversal design
τ -TD(t, n). Note that as the signature scheme remains unchanged, the group signature size is the same
as the signature size for a single user scheme. However, group members use different sets of keys which is
assigned to them through a transversal design. The design delivers key sets to openers and group members
in a related way that satisfies the desired properties of a group signature construction. A TD(t, n) takes t×n
secret keys of size s as input, and delivers a key set of size n to each of the t openers. TD(t, n) also assigns
a key set of size t to each of nτ group members. Note that while the key sets of any two distinct openers
have no element in common, the sets given to different group members do. In fact, each secret key appears
in nτ−1 different key sets of group members, this is why t × n total number of keys can provide nτ group
members with t keys each. The final stage of the construction is to connect the group members together
by creating the group public key. Our group public verification key consists of t hash pool HP1, · · · , HPt
storing the group members’ key sets. There are nτ group members each owning t secret keys. The ith public
key of each group member is stored in HPi. Hence, we get nτ keys from group members to store in each
hash pool. However, these nτ keys contain only n distinct keys. So, each hash pool stores n elements. With
these parameters set, the construction is ready to use.

5.1 Space Complexity

The space complexity in a signature scheme is defined by memory required to store the following three
parameters: secret keys (for each user and in total), public verification keys and the signature. In this
section, we only consider the space complexity of our primary scheme without the Shamir secret sharing
scheme or all-or-nothing transforms applied to the gok’s.
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a) Private singing key size per user for one message: According to W-OTS each signer needs t secret keys
to sign a message.

b) Group private singing key size for one message: Each group user stores t private signing keys, so t×N
keys are stored by group users. However, among these t × N keys, the number of distinct keys in our
scheme is t×

√
N .

c) Private singing key size per user for B messages: Each user requires a new set of keys per message.
Therefore, each user needs to store tB private signing keys.

d) Total private singing key size for B messages: The key sets for different messages are independent of
each other, and as we calculated before group members store the total number of t×N keys to sign one
message. Therefore, the group members need to store t×B×N private keys in total to sing B messages.
Note that, among these keys, t×B ×

√
N number of them are distinct keys.

e) Public signing key size for a message: As described in Section 3.3, each user stores all the nodes from the
whole Merkle tree, but stores just the authentication path corresponding to its signature in the Go-tree.
Therefore, in total there are 2B − 1 +Bt log

√
N hash values.

f) Verification key: The verifier is only required to have the root of the Merkle tree, i.e., R.
g) Signature size: For signing a message, a group member reveals a set of t keys corresponding to the

W-OTS scheme, each accompanied with a path of size log
√
N hash values in the Go-tree. The signature

of a message also includes the authentication path, h = logB nodes from the Merkle tree to the root R.
Hence, there is a total of t(1 + log

√
N) + logB hash values in a signature.

5.2 Time Complexity

Time complexity is calculated in 4 phases of a signature scheme: Key generation, Signing, and Verification.

a) Key generation and system setup: In order to create the keys for one message, the GKg generates t× n
nodes for the GO-tree secret keys, divides them into t design groups. Then, a random ordering of numbers
from 1 to n is fixed as the shuffling used for that message. Based on this shuffling, the keys are assigned
to the t openers, and the N group members through a transversal design, TD(t, n). Then, to create the
group public key gpk, t GO-Trees are utilized to implement the hash pools, each storing n hashed secret
keys. In the next step, each secret key is assigned to its authentication path in the GO-tree. Finally,
the private signing keys, opening keys, and public keys will be distributed among the group members,
openers, and publicly, respectively.
For a multi-signature scheme, we need to repeat the aforementioned steps once for each message to be
signed. Therefore, time complexity in the system setup includes generating tn keys, finding a random
permutation of n elements, , computing hash functions to obtain hashed parts of the public keys and
opening keys, constructing the GO-trees, and distributing the information among members, openers, and
publicly, each B times.

b) Signing: According to W-OTS scheme in Section 2.2, signing requires: i) Converting the message M

to base-w: M = (M1 · · · ,Ml1), ii) calculating the checksum: C =
∑l1
i=1(2w − 1 −Mi), iii) converting

the checksum to its base w representation: C = (C1, · · · , Cl2), and iv) computing σ = (σ1, · · · , σl) =
(Hb1(sk1), · · · ,Hbl(skl)), where B = (b1, · · · , bl) = M ||C. It also, requires adding the authentication
path for the Go-tree and the Merkle tree. However, this information is stored in the memory, it does not
impose any further processing time to signing.

c) Verification: In the verification phase, the verifier needs to calculate t hash values for GO-tree roots, each
requiring 1 + log

√
N hash value calculations, totalling to t(1 + log

√
N). Then t − 1 more hash values

should be calculated to obtain a leaf of the Merkle tree. Finally, logB hash values should be computed so
that the verifier can compare the final result against the root of the Merkle tree. Therefore, verification
requires logB + t(2 + log

√
N)− 1 hash calculation.

d) Opening:

5.3 Dealer-User Communication Overhead:

Our scheme provides each user with a copy of the overlaying Merkle tree, which consists of 2B−1 hash values.
For each message, a user receives t private signing keys and their corresponding GO-tree authentication paths,
each of length log

√
N . Hence, each user receives a total of Bt private keys and B(2 + t log

√
N) − 1 hash

values.
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5.4 Concrete Parameters and Comparison

To construct a B-time group signature scheme for a group of N members and t openers, we start with the
underlying signature scheme. Suppose B = 220 and the messages digests to be signed are of length 256 bits,
recall that the hash output size is twice the size of the security parameter, s′ = 2s, due to collision resistance
of the hash functions. Hence, we need a W-OTS scheme with w = 8 that generates t = 35 private/public keys
corresponding Equation 3. According to Theorem 1, we choose a prime n > t = 35, i.e., n = 37 to supports
N = n2 = 1369 number of group members. In this construction, we also consider H = H′ = SHA-256. Table
1 compares the performance of our scheme against G-Merkle scheme. Table 1 summarizes the comparison

Parametric Example

GOT G-Merkle GOT G-Merkle

Signature Size t(1 + log
√
N) + logB t+ logB 265× s′ 55× s′

Private
Key Size

Per user message t t 35× s′ 35× s′

For all messages tB tB 35× 220 × s′ 35× 220 × s′

Per Group message tN tN 47925× s′ 47925× s′

Total NtB tB 47915× 220 × s′ 35× 220 × s′

Average Public Key Size per
message

2 + t log
√
N logB + t 212× s′ 55× s′

Maximum Number of signatures
per user

B B
N

220 766

Table 1: Comparing our scheme with G-Merkle for messages of size 128 bits, N = 1369 and 220 messages

of the parameters of a group signature construction and the parameters of a single user signature scheme.
The security parameter s = 128, the message length s′ = 256 bits, the number of secret keys a single user
has t = 35 to sign one message. To match the two, number of openers in the group signature is t = 35, each
holding n = 37 secret keys resulting in a group of size N = 1369 members.

5.5 Discussion

We exhibited some properties of our scheme in comparison with G-Merkle in Table 1. Our scheme uses same
number of secret keys per user per message, t, as G-Merkle does. To enable a group to sign one message, the
group members need to store tN private signing keys in total in both schemes. Similarly, to sign B messages,
both schemes need the same number of used private signing keys, tB. However, the total number of private
signing keys stored in all group members is NtB in our scheme and tB in G-Merkle, since in our scheme each
member can sign any of the B messages. In signing time, both schemes perform equally as they both rely on
W-OTS scheme to generate the signature, and use a pre-stored path for authentication. Our scheme requires
longer signatures and more public keys per message on average than G-Merkle. The disadvantage in some
performance evaluations compared to G-Merkle is a result of the fact that our scheme provides more features:
i) our scheme is flexible in the number of messages each user can sign. A Merkle tree with B(= 2h) leaves,
can support signing any number of messages for group members as long as they add up to B. For G-Merkle
however, this structure is pre-defined, since the dealer fixes the nodes’ positions for each user and sends them
the corresponding keys and authentication paths. ii) our scheme utilizes multiple openers to distribute the
traceability power among multiple authorities. Note that the openers in our scheme are separate from the
key issuer to avoid forming a single point of failure in the scheme, while G-Merkle depends on a single opener
who is the key-issuer as well. iii) unlike G-Merkle our scheme is salable. Our transition from a one-time to
a multi-time signature, does not require any alteration in the deployed Merkle tree. Hence, our scheme can
benefit from any advancements that provides Merkle-tree based signatures with flexibility, e.g., as provided
by various traversal algorithms [40], or further scalability, e.g., multi-tree [39] approaches.
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6 Conclusion

We introduced a construction for a hash-based group signature scheme. Our construction utilizes a hash-
based digital signature scheme and turns it to a group signature by adding two layers prior to it. As for
the signature scheme that assures unforgeability, we used Winternitz one-time signature (W-OTS). The
procedure of adding layers prior to the hash-based signature to turn it to a group signature construction,
changes some parameters and preserves some others; The number of the keys a signer requires to sign a
message remains unchanged, while the signature size and the number of public keys changes to a greater size
to provide a verification tool for all group members. We utilize multiple hash pools in our construction to
form the group public key, connect the group members together and support anonymity. On the other hand,
the secret keys of the group members are connected to each other via a transversal design. The transversal
design takes the set of all group secret keys, and assigns key sets to the group members and the openers in a
way that it guarantees traceability for the openers. We provided the proofs for security claims in Section 4
and evaluated the construction in Section 5 using general and concrete parameters, to confirm our solution
is a scalable, flexible, group signature scheme that is post-quantum secure as it relies on hash functions and
information-theoretically secure structures.
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