
Alzette: a 64-bit ARX-box

(feat. CRAX and TRAX)

Christof Beierle2, Alex Biryukov1, Luan Cardoso dos Santos1,
Johann Großschädl1, Léo Perrin3, Aleksei Udovenko4, Vesselin Velichkov5, and

Qingju Wang1

1 SnT and DCS, University of Luxembourg, Luxembourg
(first-name.last-name@uni.lu)

2 Ruhr University Bochum, Germany (christof.beierle@rub.de)
3 Inria, France (leo.perrin@inria.fr)

4 CryptoExperts, France (aleksei@affine.group)
5 University of Edinburgh, U.K. (vvelichk@ed.ac.uk)

sparklegrupp@googlegroups.com

Abstract. S-boxes are the only source of non-linearity in many symmet-
ric primitives. While they are often defined as being functions operating
on a small space, some recent designs propose the use of much larger ones
(e.g., 32 bits). In this context, an S-box is then defined as a subfunction
whose cryptographic properties can be estimated precisely.
We present a 64-bit ARX-based S-box called Alzette, which can be eval-
uated in constant time using only 12 instructions on modern CPUs. Its
parallel application can also leverage vector (SIMD) instructions. One
iteration of Alzette has differential and linear properties comparable to
those of the AES S-box, and two are at least as secure as the AES super
S-box. As the state size is much larger than the typical 4 or 8 bits, the
study of the relevant cryptographic properties of Alzette is not trivial.
We further discuss how such wide S-boxes could be used to construct
round functions of 64-, 128- and 256-bit (tweakable) block ciphers with
good cryptographic properties that are guaranteed even in the related-
tweak setting. We use these structures to design a very lightweight 64-bit
block cipher (Crax) which outperforms SPECK-64/128 for short mes-
sages on micro-controllers, and a 256-bit tweakable block cipher (Trax)
which can be used to obtain strong security guarantees against powerful
adversaries (nonce misuse, quantum attacks).
Keywords: (tweakable) block cipher, related-tweak setting, long trail
strategy, Alzette, MEDCP, MELCC

1 Introduction

It is well known that symmetric cryptographic primitives need to be non-linear.
It is common to rely on so-called S-boxes to obtain this property. Typically

c©IACR 2020. This article is an extended version of the paper to appear at CRYPTO
2020.

these are functions S mapping Fn2 to Fm2 for a value of n small enough that it is
possible to specify S using its lookup table. They are applied in parallel to the
whole state as part of the round function of the primitive.

This common definition of S-boxes is being challenged by the recent use of
larger S-boxes in some designs. First, the designers of the hash function WHIRL-
WIND [5] used a 16-bit S-box based on the multiplicative inverse in the finite
field F216 . In this case, the intention of the implementers was not to use the
217-byte lookup table of the permutation but instead to rewrite the permutation
using tower fields. More recently, large S-boxes have been proposed in Sparx [19]
and in the NIST lightweight candidate Saturnin [15]. In the latter case, a 16-bit
S-box is constructed using a classical Substitution-Permutation Network (SPN):
four 4-bit S-boxes are applied to a 16-bit word in parallel, followed by an MDS
matrix, and another application of the 4-bit S-box layer. While there is no closed
formula for the differential and linear properties of such a structure (unlike for
the multiplicative inverse used in WHIRLWIND), 16-bit remains small enough
that a direct computation is possible.

This is not the case for the 32-bit S-box of Sparx. In this cipher, the S-
box consists of an Addition, Rotation, XOR (ARX) network operating on two
16-bit branches, and it is key-dependent. Furthermore, while the properties of
the S-box are usually sufficient1 to prove that the cipher meets some security
criteria, it is not the case for the ARX-box of Sparx. Indeed, in order to achieve
the security goals by its designers (following the long trail security argument),
it was necessary to study several “S-boxes”, namely A, A ◦A, A ◦A ◦A, etc.

Another significant difference between the 32-bit ARX-box of Sparx and
16-bit S-boxes is the fact that it is not possible to evaluate its cryptographic
properties directly because the complexity of the algorithms involved is usually
proportional to 22n, where n is the block size. Thus, the authors of Sparx
instead considered their ARX-box like a small block cipher and used techniques
borrowed from block cipher analysis [14] to investigate their ARX-box.

Our Contribution. In this paper, we present a new 64-bit S-box called Alzette
(pronounced [alzEt]) that satisfies a similar scope statement to that of the Sparx
ARX-box: it is also an ARX-based S-box, and we analyze both A and A ◦ A.
Alzette is parameterized by a constant c ∈ F32

2 and is defined for each such c as
a permutation of F32

2 × F32
2 . The algorithm evaluating this permutation is given

in Algorithm 1 and depicted in Figure 1. Alzette has the following advantages:

– it relies on 32-bit rather than 16-bit operations, meaning that (according to
[18, Sect. 5]) it is suitable for a larger number of architectures;

– it makes better use of barrel shift registers (when available) and has more
efficient rotation constants (for platforms on which they have different costs);

– its differential and linear properties are superior to those of a scaled-up
Sparx ARX-box;

– our analysis takes more attacks into account, and is confirmed experimentally
whenever possible;

1 Along with some conditions on the linear layer, in particular its branching number.

2

After providing a detailed design rationale of Alzette, we investigate its secu-
rity against cryptanalytic attacks in more detail. Besides using state-of-the-art
methods to conduct the analysis, we also developed new methods. In particular,
to analyze the security against generalized integral attacks, we describe a new
encoding of the bit-based division property [41] for modular addition.

Note that in some attack scenarios, the security of Alzette needs to be ana-
lyzed for the precise choice of round constants c used in the actual primitive. In
this work, we provide experimental analysis for the round constants employed
in the permutation Sparkle, submitted to the NIST lightweight cryptography
standardization process [8]. However, our methods can easily be applied for an
arbitrary choice of round constants.

Large parts of the experimental analysis have been carried out on the UL
HPC cluster [42]. The source code for our experimental analysis can be found
at https://github.com/cryptolu/sparkle.

We provide software implementations of Alzette on 8-bit AVR and 32-bit
ARM processors. To summarize, Alzette can be executed in only 12 cycles on a
32-bit ARM Cortex-M3 and 122 cycles on an 8-bit AVR ATmega128 processor.
Besides, the code size is low: respectively 24 and 176 bytes on those platforms.

Finally, we discuss the suitability of Alzette as a building block in crypto-
graphic primitives. Since we already know how to use Alzette to design a crypto-
graphic permutation, i.e., Sparkle, we show in this paper how it can be applied
to design (tweakable) block ciphers operating on a variety of block lengths. In a
nutshell, those ciphers use Alzette in a Feistel construction and interleave it with
xoring the round keys. In a tweakable block cipher, the tweak will be xored
only to half the state and only every second round. Similar to how the long-trail
strategy was applied to take into account cancellations of differences within the
absorption phase in a cryptographic sponge construction [8], we use the same
technique to provide security arguments against related-tweak attacks, by taking
cancellations of differences through tweak injection into account.

Besides describing this more general design idea, we provide two concrete
cipher instances Crax and Trax.

Crax is a 64-bit block cipher that uses a 128-bit secret key. Since its key
schedule is very simple and does not have to be precomputed, it is one of the
fastest 64-bit lightweight block ciphers in software, beaten only for messages
longer than 72 bytes by the NSA cipher Speck [6]. Due to this simple key
schedule, it consumes lower RAM than Speck. While the family of tweakable
block ciphers Skinny [9] can be considered as an academic alternative to the
NSA cipher Simon [6] in terms of hardware efficiency, Crax can be seen as an
academic alternative to Speck in terms of software efficiency.

Trax is a tweakable block cipher operating on a larger state of 256-bit blocks.
It applies a 256-bit key and 128-bit tweak. To the best of our knowledge, the only
other large tweakable block cipher is Threefish which was used as a building for
the SHA-3 candidate Skein [33]. Unlike this cipher, Trax uses 32-bit words that
are better suited for vectorized implementation as well as on micro-controllers.
Another improvement of Trax over Threefish is the fact that we provide strong

3

https://github.com/cryptolu/sparkle

bounds for the probability of all linear trails and all (related-tweak) differen-
tial trails. Because of its Substitution-Permutation Network structure, Trax is
indeed inherently easier to analyze. Such a large tweakable block cipher can pro-
vide robust authenticated encryption, meaning that it can retain a high security
level even in case of nonce misuse or in the presence of quantum adversaries, as
argued in [15]. The performance penalty of such guarantees can be minimized
using vectorization and/or parallelism.

Algorithm 1 Ac
Input/Output: (x, y) ∈ F32

2 × F32
2

x← x+ (y≫ 31)
y ← y ⊕ (x≫ 24)
x← x⊕ c
x← x+ (y≫ 17)
y ← y ⊕ (x≫ 17)
x← x⊕ c
x← x+ (y≫ 0)
y ← y ⊕ (x≫ 31)
x← x⊕ c
x← x+ (y≫ 24)
y ← y ⊕ (x≫ 16)
x← x⊕ c
return (x, y)

≫ 31

≫ 24

≫ 17

≫ 17

≫ 0

≫ 31

≫ 24

≫ 16

x y

u v

c

c

c

c

Fig. 1. The Alzette instance Ac.

Outline. The design process that we used to construct Alzette is explained in
Section 2. In particular, we show that it offers resilience against a large variety of
attacks. This analysis is confirmed experimentally in Section 3. We also discuss
the efficiency of Alzette in Section 4. The discussion on the usage of Alzette as a
building block, together with the specification of our (tweakable) block ciphers
is given in Section 5.

Notation. By F2, we denote the finite field with two elements and by Fn2 the set
of bitstrings of length n. We denote the set {0, 1, . . . , n− 1} by Zn. We use + to
denote the addition modulo 232 and ⊕ to denote the XOR of two bitstrings of
the same size. The symbol & denotes the bit-wise AND. Further, by x≫ r, we
denote the cyclic rotation of the 32-bit word x to the right by the offset r.

Let E be a key alternating block cipher with r rounds, and round function
R. In a differential attack [12] against Ek, an attacker exploits differences δ and
∆ such that the probability that Ek(x⊕ δ)⊕ Ek(x) = ∆ is significantly higher
than 2−n (for an n-bit block cipher). For typical values of n (64, 128 or 256)
the exact computation of this probability is infeasible. Instead, the common
practise is to approximate this quantity by the maximum probability of a differ-
ential trail/characteristic averaged over all round keys. A differential trail is a

4

sequence of differences {δ0, δ1, ..., δr} that specifies not only the input and output
differences to the block cipher, but also the intermediate differences between the
rounds such that R(δi ⊕ x) ⊕ R(x) = δi+1. The approximated probability (av-
eraged over all round keys) is derived as the product of the probabilities of the
transitions occurring in each round2. The maximum probability (across all trails)
computed in this way is denoted Maximum Expected Differential Characteristic
Probability (MEDCP). An upper bound on the MEDCP is an approximation of
the maximum differential probability and is called a differential bound.

By analogy to the differential case, for linear attacks [31] the aim is to find
masks α and β such that β · Ek(x) = α · x + f(k), where “·” denotes the usual
scalar product over Fn2 and where f is a function of the key bits. In practice, we
look for a sequence of input, output and intermediate masks {α0, ..., αr} called a
linear trail/characteristic that has high absolute correlation, where αi+1 ·R(x) =
αi · x+ fi(k)). Analogously to MEDCP and the differential bound, in the linear
case we define a Maximum Expected Linear Characteristic Correlation (MELCC)
and a linear bound.

2 The Design of Alzette

We now present both the design process and the main properties of Alzette. These
are verified experimentally later in Section 3, and summarized in Section 3.6.

2.1 Block and Word Sizes

Our S-box should be efficient on a wide variety of platforms, while allowing a
practical analysis of its relevant cryptographic properties. What would be the
best word and block sizes in this context?

Word size. In Sparx, the S-box operates on 32 bits, which are split into two
16-bit words. This word size allows a computationally cheap analysis of its cryp-
tographic properties while facilitating efficient implementations on 8 and 16-bit
micro-controllers. However, 16-bit words hamper performance on 32-bit plat-
forms, simply because only half of their 32-bit registers and datapath can be
used. The same holds when 16-bit operations are executed on a 64-bit processor.
Furthermore, 16-bit operations can also incur a performance penalty on 8-bit
micro-controllers; for example, rotating two 16-bit operands by n bits on an 8-
bit AVR device is usually slower than rotating a single 32-bit operand by n bits
(see e.g. [17, Appendix A, B, C] for details).

While 16-bit words are suboptimal because they are too small, it can also be
argued that 64-bit word are too large. To establish why, we have to separately
discuss the performance of 64-bit operations on 8/16/32-bit micro-controllers
and on 64-bit processors. We start with three arguments for why 64-bit opera-
tions may not be a good choice on small micro-controllers.

2 Under the Markov assumption which allows to treat the rounds as independent from
each other.

5

1. 32-bit ARM micro-controllers allow one to perform a rotation “for free” since
it can be executed together with another arithmetic/logical instruction.3

Still, a 32-bit ARM processor can only perform rotations of 32-bit operands
for free, but not rotations of 64-bit words.

2. As discussed later, we will use word-wise modular additions. Some 32-bit
architectures, most notably RISC-V and MIPS32, do not have an add-with-
carry instruction. Adding two 64-bit operands on these platforms requires to
first add the lower 32-bit parts of the operands and then compare the 32-bit
sum with any of the operands to find out whether an overflow happened
(i.e. to obtain a carry bit). Then, the two upper 32-bit words are added up
together with the carry bit. A 64-bit addition requires at least four instruc-
tions (i.e. four cycles) on these platforms, whereas two 32-bit additions take
only two instructions (i.e. two cycles).

3. Compilers for 8 and 16-bit micro-controllers are notoriously bad at handling
64-bit words, especially rotations of 64-bit words. The reason is simple: out-
side of cryptography, 64-bit words are of little to no use on an 8- or 16-bit
platform, and therefore compiler designers have no incentive to optimize
64-bit operations.

A word size of 64 bits is naturally a good choice for 64-bit processors. For
example, the authors of [21] established that SHA512 (which operates in 64-bit
words) reaches much higher throughput on 64-bit Intel processors than SHA256
(operating on 32-bit words). However, this does not necessarily imply that ARX
designs using 32-bit words are inferior to 64-bit variants on 64-bit processors.
This can be justified with the fact that the best way to implement an ARX
cipher on a 64-bit Intel or a 64-bit ARM processor is to use the vector (SIMD)
extensions they provide, e.g. Intel SSE, AVX or ARM NEON. Most high-end
64-bit processors have such vector instruction sets, and all of them can execute
additions, rotations and XORs on 32-bit words. The fact that a 32-bit word size
allows peak performance on 64-bit processors was already used for instance by
the designers of Gimli [11].

As a consequence, we chose to design an S-box that operates on 32-bit words
as those offer the best performances across the board.

Block size. Our S-box could a priori operate on any block size that is a multiple
of 32. However, two criteria significantly narrow down the design space.

First, we need to be able to investigate the cryptographic properties of our S-
box. We are not aware of any efficient combination of simple operations (AND,
addition, rotation, XOR, etc.) on a single word that would allow us to give
strong bounds on the differential and linear probabilities. On the other hand,
computational technique that find such bounds tend to be less efficient if the
state size is large as it implies a greater number of potential branches to explore
in a tree. Our ability to find bounds thus imposes a number of words which is
at least equal to 2 and as small as possible.

3 We exploit this property to design Alzette, as explained in Section 2.2.

6

Second, in order to use vector instruction sets to their fullest extent, it is
better to have a larger number of S-boxes that can be applied in parallel in each
call to the round function. On smaller micro-controllers, limiting the block size
makes it easier for implementers to keep one full S-box state (or maybe even
several full S-box states) in the register file, thereby reducing the number of
memory accesses. Finally, in order to build primitives with a small state size,
it is necessary that the S-box size is at most equal to said state size. However,
as mentioned before, it makes sense to aim for the smallest possible number of
branches (and, consequently, a large number of S-boxes) to leverage SIMD-style
parallelism.

Because of these requirements, we settled for the use of two words. Given
that our discussion above set a 32-bit word size, our S-box operates on 64 bits.

2.2 Round Structure and Number of Rounds

We decided to build an ARX-box out of the operations XOR of rotation and
ADD of rotation, i.e., x ⊕ (y ≫ s) and x + (y ≫ r), because they can be
executed in a single clock cycle on ARM processors and thus provide extremely
good diffusion per cycle. As the ARX-boxes could be implemented with their
rounds unrolled, we allowed the use of different rotations in every round. We
observed that one can obtain much better resistance against differential and
linear attacks in this case compared to having identical rounds.

In particular, we aimed for designing an ARX-box consisting of the compo-
sition of t rounds of the form

Ti :

{
F32

2 × F32
2 → F32

2 × F32
2

(x, y) 7→
(
x+ (y≪ ri), y ⊕

(
(x+ (y≪ ri))≪ si

))
⊕ (γLi , γ

R
j) ,

where i-th round is defined by the rotation amounts (ri, si) ∈ Z32 × Z32 and
the round constant (γLi , γ

R
i) ∈ F32

2 × F32
2 . It is computed in three steps: x ←

x+ (y≪ ri), y ← y ⊕ (x≪ si), and finally (x, y)← (x⊕ γLi , y ⊕ γRi).
In our final design, we decided to use t = 4 rounds. The reason is that, when

it comes to designing primitives, for r-round ARX-boxes, usable bounds from
the long-trail strategy can be obtained from the 2r-round bounds of the ARX
structure by concatenating two ARX-boxes. The complexity of deriving upper
bounds on the differential trail probability or absolute linear trail correlation
depends on the number of rounds considered. For 8 rounds, i.e., 2 times a 4-
round ARX-box, it is feasible to compute strong bounds in reasonable time (i.e.,
several days up to few weeks on a single CPU). For 3-round ARX-boxes, the 6-
round bounds of the best ARX-boxes we found seem not strong enough to build
a secure cipher with a small number of iterations. Since we cannot arbitrarily
reduce the number of round (step) iterations in a cryptographic function because
of structural attacks, using ARX-boxes with more than four rounds would lead
to worse efficiency overall. In other words, we think that four-round ARX-boxes
provide the best balance between the number of ARX-box layers needed and
rounds per ARX-box in order to build a secure primitive.

7

2.3 Criteria for Choosing the Rotation Amounts

We aimed for choosing the rotations (ri, si) in Alzette in a way that maximizes
security and efficiency. For efficiency reasons, we want to minimize the cost of
the rotations, where we use the cost metric as given in Table 1. While each
rotation has the same cost in 32-bit ARM processors (i.e., 0 because rotation is
for free on top of XOR, resp., AND), we further aimed for minimizing the cost
with regard to 8-bit and 16-bit architectures. Therefore, we restricted ourselves
to rotations from the set {0, 1, 7, 8, 9, 15, 16, 17, 23, 24, 25, 31}, as those are the
most efficient when implemented on 8 and 16-bit micro-controllers. We define
the cost of a collection of rotation amounts (that is needed to define all the
rounds of an ARX-box) as the sum of the costs of its contained rotations.

Table 1. For each rotation in {0, 1, 7, 8, 9, 15, 16, 17, 23, 24, 25, 31}, the table shows an
estimation of the number of clock cycles needed to implement the rotation on top of
XOR, resp. ADD. We associate the mean of those values for the three platforms to be
the cost of a rotation.

rot (mod 32) 8-bit AVR 16-bit MSP 32-bit ARM cost

0 0 0 0 0.00

±1 5 3 0 2.66

±7 5 9 0 4.66

8 0 6 0 2.00

±9 5 9 0 4.66

±15 5 3 0 2.66

16 0 0 0 0.00

For security reasons, we aim to minimize the provable upper bound on the
expected differential trail probability (resp. expected absolute linear trail cor-
relation) of a differential (resp. linear) trail. More precisely, our target was to
obtain strong bounds, preferably at least as good as those of the round structure
of the 64-bit block cipher Speck, i.e., an 8-round differential bound of 2−29 and
an 8-round linear bound of 2−17. If possible, we aimed for improving upon those
bounds. Note that for r > 4, the term r-round bound refers to the differential
(resp. linear) bound for r rounds of an iterated ARX-box. As explained above,
at the same time we aimed for choosing an ARX-box with a low cost. In order
to reduce the search space, we relied on the following criteria as a heuristic for
selecting the final choice for Alzette:

– The candidate ARX-box must fulfill the differential bounds (− log2) of 0,
1, 2, 6, and 10 for 1, 2, 3, 4 and 5 rounds respectively, for all four possible
offsets. We conjecture that those bounds are optimal for up to 5 rounds.

– The candidate must fulfill a differential bound of at least 16 for 6 rounds,
also for all offsets.

8

– The 8-round linear bound (− log2) of the candidate ARX-box should be at
least 17.

By the term offset we refer to the round index of the starting round of
a differential trail. Note that we are considering all offsets for the differential
criteria because the bounds are computed using Matsui’s branch and bound
algorithm, which needs to use the (r − 1)-round bound of the differential trail
with starting round index 1 (second round) in order to compute the r-round
bound of the trail.

We tested all rotation sets with a cost below 12 for the above conditions.
None of those fulfilled the above criteria. For a cost below 15, we found the
ARX-box with the following rotations:

(r0, r1, r2, r3, s0, s1, s2, s3) = (31, 17, 0, 24, 24, 17, 31, 16) .

This rotation set fulfills all the criteria. The differential and linear bounds for
the respective ARX-box are summarized in Table 2.

Table 2. Differential and linear bounds for several rotation parameters. For each offset,
the first line shows the differential bound and the second shows the linear one. The
value set in parenthesis is the maximum absolute correlation of the linear hull taking
clustering into account (see Section 3.2). The bounds [14,20,28,29,30] for SPECK are
given for comparison.

(r0, r1, r2, r3, s0, s1, s2, s3) 1 2 3 4 5 6 7 8 9 10 11 12

(31, 17, 0, 24, 24, 17, 31, 16) 0 1 2 6 10 18 ≥ 24 ≥ 32 ≥ 36 ≥ 42 ≥ 46 ≥ 52
0 0 1 2 5 8 13 (11.64) 17 (15.79) – – – –

(17, 0, 24, 31, 17, 31, 16, 24) 0 1 2 6 10 17 ≥ 25 ≥ 31 ≥ 37 ≥ 41 ≥ 47 –
0 0 1 2 5 9 13 16 – – – –

(0, 24, 31, 17, 31, 16, 24, 17) 0 1 2 6 10 18 ≥ 24 ≥ 32 ≥ 36 ≥ 42 – –
0 0 1 2 6 8 13 15 – – – –

(24, 31, 17, 0, 16, 24, 17, 31) 0 1 2 6 10 17 ≥ 25 ≥ 31 ≥ 37 – – –
0 0 1 2 5 9 12 16 – – – –

Speck64 0 1 3 6 10 15 21 29 34 38 42 46
0 0 1 3 6 9 13 17 19 21 24 27

2.4 On the Round Constants

The purpose of round constant additions, i.e., the XORs with γLi , γ
R
i in the

general ARX-box structure, is to ensure some independence between the rounds.
They also break additive patterns that could arise on the left branch due to the
chain of modular addition it would have without said constant additions. Perhaps
even more importantly, they should also ensure that the Alzette instances called
in parallel are different from one another to avoid symmetries.

For efficiency reasons, we decided to use the same round constant in every
round of the ARX-box, i.e., ∀i : γLi = c. As the rounds themselves are different

9

from one another, we do not rely on γLi or γRi to prevent slide-style patterns.
Thus, using the same constant in each round is not a problem. Moreover, we chose
γRi = 0 for all i. It is important to note that the experimental verification of
the differential probabilities and absolute linear correlations we conducted (see
Sections 3.1 and 3.2 respectively) did not lead to significant differences when
changing to a more complex round constant schedule. In other words, even for
random choices of all γLi and γRi , we did not observe significantly different results
that would justify the use of a more complex constant schedule (which would of
course lead to worse efficiency in the implementation).

The analysis provided in the next section is dependent on the actual choice
of round constants c. We conducted this analysis for the constants of Sparkle:

c0 = b7e15162, c1 = bf715880, c2 = 38b4da56, c3 = 324e7738,
c4 = bb1185eb, c5 = 4f7c7b57, c6 = cfbfa1c8, c7 = c2b3293d .

(1)

3 Analysis of Alzette

In this section, we study cryptographic properties of the ARX-box Alzette. The
analysis is done for the round constants used in Sparkle, except for analysis
of differential/linear characteristic bounds and division property propagation,
which are independent of the choice of the constants. All described methods can
easily be applied to arbitrary choices of constants.

3.1 On the Differential Properties

Bounding the Maximum Expected Differential Trail Probability. We used the
Algorithm 1 in [14] and adapted it to our round structure to compute the bounds
on the maximum expected differential trail probabilities of the ARX-boxes which
use the constants given in Equation (1). The algorithm is basically a refined
variant of Matsui’s well-known branch and bound algorithm [32]. While the latter
has been originally proposed for ciphers that have S-boxes (in particular the
DES), the former is targeted at ARX-based designs that use modular addition,
rather than an S-box, as a source of non-linearity.

Algorithm 1 [14] exploits the differential properties of modular addition to
efficiently search for characteristics in a bitwise manner. Upon termination, it
outputs a trail (characteristic) with the maximum expected differential trail
probability (MEDCP). For Alzette, we obtain such trails for up to six rounds,
where the 6-round bound is 2−18. We further collected all trails corresponding
to the maximum expected differential probability for 4 and 5 rounds and exper-
imentally checked the actual probabilities of the differentials (for the constants
used in Sparkle), see below.

Note that for 7 and 8 rounds, we could not get a tight bound due to the
high complexity of the search. In other words, the algorithm did not terminate
in reasonable time. However, the algorithm exhaustively searched the range up
to − log2(p) = 24 and − log2(p) = 32 for 7 and 8 rounds respectively, which

10

proves that there are no valid differential trails with an expected differential
trail probability larger than 2−24 and 2−32, respectively. We evaluated similar
bounds for up to 12 rounds.

Experiments on the Fixed-Key Differential Probabilities. As in virtually all block
cipher designs, the security arguments against differential attacks are only aver-
age results when averaging over all keys of the primitive. When leveraging such
arguments for a cryptographic permutation, i.e., a block cipher with a fixed
key, it might be possible in theory that the actual fixed-key maximum differen-
tial probability is higher than the expected maximum differential probability. In
particular, the variance of the distribution of the maximum fixed-key differential
probabilities might be high.

For all of the 8 Alzette instances corresponding to the constants in Equa-
tion (1), we conducted experiments in order to see if the expected maximum
differential trail probabilities derived by Matsui’s search are close to the actual
differential probabilities of the fixed ARX-boxes. Our results are as follows.

By Matsui’s search we found 7 differential trails for Alzette4 that correspond
to the maximum expected differential trail probability of 2−6 for 4 rounds, see
Table 3. For any Alzette instance Aci and any such trails with input difference
α and output difference β, we experimentally computed the actual differential
probability of the differential α→ β by

|{x ∈ S|Aci(x)⊕Aci(x⊕ α) = β}|
|S|

,

where S is a set of 224 inputs sampled uniformly at random. Our results show that
the expected differential trail probabilities approximate the actual differential
probabilities very well, i.e., all of the probabilities computed experimentally are
in the range [2−6 − 10−4, 2−6 + 10−4] for a sample size of 224.

For 5 rounds, i.e., one full Alzette instance and one additional first round of
Alzette, there is only one trail with maximum expected differential trail proba-
bility p = 2−10. In the case of Sparkle, for all combinations of round constants
that can occur in 5 rounds (one Alzette instance plus one round) that do not go
into the addition of a step counter, i.e., corresponding to the twelve compositions

Ac2 ◦Ac0 Ac3 ◦Ac1 Ac3 ◦Ac0 Ac4 ◦Ac1 Ac5 ◦Ac2 Ac4 ◦Ac0
Ac5 ◦Ac1 Ac6 ◦Ac2 Ac7 ◦Ac3 Ac2 ◦Ac3 Ac3 ◦Ac4 Ac2 ◦Ac7 ,

we checked whether the actual differential probabilities are close to the maximum
expected differential trail probability. We found that all of the so computed
probabilities are in the range [2−10− 10−5, 2−10 + 10−5] for a sample size of 228.

4 Note that those are independent of the actual round constants as the probability
corresponds to the average probability over all keys when analyzing Alzette as a
block cipher where independent subkeys are used instead of round constants.

11

Table 3. The input and output differences α, β (in hex) of all differential trails over
Alzette corresponding to maximum expected differential trail probability p = 2−6 and
p = 2−10 for four and five rounds, respectively.

rounds α β − log2(p)

4

8000010000000080 8040410041004041 6
8000010000000080 80c04100410040c1 6
0080400180400000 8000018081808001 6
0080400180400000 8000008080808001 6
a0008140000040a0 8000010001008001 6
8002010000010080 0101000000030101 6
8002010000010080 0301000000030301 6

5 a0008140000040a0 8201010200018283 10

3.2 On the Linear Properties

Bounding Maximum Expected Absolute Linear Trail Correlation. We used the
Mixed-Integer Linear Programming approach described in [20] and the Boolean
satisfiability problem (SAT) approach in [28] in order to get bounds on the
maximum expected absolute linear trail correlation. It was feasible to get tight
bounds even for 8 rounds, where the 8-round bound of our final choice for Alzette
is 2−17. We were able to collect all linear trails that correspond to the maximum
expected absolute linear trail correlation for 4 up to to 8 rounds and experimen-
tally checked the actual correlations of the corresponding linear approximations
for the Alzette instances using the constants in Equation (1), see below.

Experiments on the Fixed-Key Linear Correlations. Similarly as for the case of
differentials, for all of the 8 Alzette instances used in Sparkle, we conducted
experiments in order to see whether the maximum expected absolute linear trail
correlations derived by MILP and presented in Table 2 are close to the actual ab-
solute correlations of the linear approximations over the fixed Alzette instances.
Our results are as follows, and presented in Table 12 in Appendix A.

For a full Alzette instance, there are 4 trails with a maximum expected ab-
solute trail correlation of 2−2. For all of the eight Alzette instances, the actual
absolute correlations are very close to the theoretical values and we did not
observe any clustering. For more than four rounds (i.e., one full instance plus
additional rounds), we again checked all combinations of ARX-boxes that do
not get a step counter in Sparkle. For five rounds, there are 16 trails with
a maximum expected absolute trail correlation of 2−5. In our experiments, we
can observe a slight clustering. The observed absolute correlations based on 224

samples can also be found in Table 12. The minimum and maximum refers to
the minimum, resp., maximum observed absolute correlations over all the com-
binations of Alzette instances that do not get a step counter, similar as tested for
differentials. In fact, we chose the round constants ci of Sparkle such that, for
all combinations of Alzette that occur over the linear layer, the linear hull effect

12

is to our favor, i.e., the actual correlation tends to be lower than the theoretical
value.5

This tendency also holds for the correlations over six rounds. There are 48
trails with a maximum expected absolute linear trail correlation of 2−8. The
results of our experiments for 228 random samples are shown in Table 13 in
Appendix A.

For seven rounds, there are 2992 trails with a maximum expected absolute
linear trail correlation of 2−13. Over all the twelve combinations that do not add
a step counter in Sparkle and all of the 2992 approximations, the maximum
absolute correlation we observed was 2−11.64 using a sample size of 232 plaintexts
chosen uniformly at random.

For eight rounds, there are 3892 trails with a maximum expected absolute
linear trail correlation of 2−17. Over all the twelve combinations that do not
add a step counter and all of the 3892 approximations, the maximum absolute
correlation we observed was 2−15.79 using a sample size of 240 plaintexts chosen
uniformly at random.

Overall, our correlation estimates based on linear trails seem to closely ap-
proximate the actual absolute correlations since our estimate is only 21.21 times
lower than the actual absolute correlation.

3.3 On the Algebraic Properties

Integral cryptanalysis exploits low algebraic degree or a more fine-grained alge-
braic degeneracy of the cryptographic primitive under attack. An integral dis-
tinguisher defines an input set X such that the analyzed function sums to zero
over this set (at least in some bits) for any value of the secret key involved.
In the case of a keyless permutation, such as an ARX-box, such distinguishers
are trivial to find and are meaningless. However, an analysis of the growth of
the algebraic degree (and the evolution of the algebraic structure in general)
provides a useful information about the permutation. When the permutation is
plugged into, for example, a block cipher, this information directly translates
into information about integral distinguishers.

Division property is a technique introduced by Todo [39] to find integral char-
acteristics. Originally, it was applied to substitution-permutation networks and
Feistel networks. Later, bit-based division property was proposed by Todo and
Morii [41] and applied to the Simon block cipher with 32-bit blocks. Due to the
high computation complexity of the search algorithm, it is infeasible to apply the
technique to ciphers with larger block sizes. However, Xiang et al. [43] discovered
that the bit-based division property propagation can be efficiently encoded as
an mixed-integer linear programming instance (MILP), and, surprisingly, can be
solved on practice using modern optimization software (Gurobi Optimizer [22])

5 The constants in Sparkle were derived from the fractional digits of e, excluding
some blocks. For the excluded blocks, the actual absolute correlations are slightly
higher than the theoretical bound, but all smaller than 2−8.

13

for practically all known block ciphers. Sun et al. [38] described a way to en-
code the modular addition operation using MILP inequalities, extending the
framework to ARX-based primitives.

We briefly recall the MILP-aided bit-based division property framework.

Definition 1 (Block-Based Division Property). Let n be an integer and let
X be a set of n-bit vectors. Let k be an integer, 0 ≤ k ≤ n. The set S satisfies
division property Dnk if and only if for all u ∈ Fn2 with wt(u) < k, we have⊕

x∈X x
u = 0, where xu is a shorthand for xu0

0 . . . x
un−1

n−1 .

Definition 2 (Bit-Based Division Property). Let n be an integer and let
X,K be two sets of n-bit vectors, 0 /∈ K. The set X satisfies division property
DK if and only if for all u ∈ Fn2 such that u ≺ k for all k ∈ K⊕

x∈X
xu = 0 ,

where u ≺ k if and only if u 6= k and ui ≤ ki for all i, 0 ≤ i < n.

Remark 1. For any j, 0 ≤ j < n, if the j-th unit vector does not belong to K,
then

⊕
x∈S xj = 0, and the j-th bit of the set X is said to be balanced.

The division property can be used to find integral characteristics in the fol-
lowing way. First, a particular initial division property DK is chosen. Typically,
K consists of a single vector of Hamming weight d for some integer d. The
minimum size of a set satisfying DK is then 2d (for instance, a particular cube
of dimension d). Then, the division property is propagated through the rounds
of the analyzed primitive using rules specific for each bit operation (copy, xor,
and); for propagation through an S-Box, a special propagation table is generated.
Finally, Remark 1 is used to check if an integral distinguisher is found.

For further information on division property propagation and its encoding
using MILP inequalities, we refer to [43]. However, we describe briefly a new
technique for encoding division property propagation through the modular ad-
dition. Our technique is simpler and more compact than the one proposed by
Sun et al. [38].

Addition modulo 232. The method by Sun et al. is based on expressing the
modular addition as a Boolean circuit and applying the standard known encoding
for xor and and operations. As a result, for each bit of a word at least 12 bit
operations are produced. We propose a new simple method which requires only
2 inequalities per bit.

Our key idea is to compute the carry bits and the output bits in pairs using a
3× 2 bit look-up table. The division property propagation through this look-up
table can be encoded using only 2 inequalities.

Consider an addition of two n-bit words a, b ∈ Fn2 and let y = a� b mod 2n

(recall that a0 denotes the most significant bit of a, an−1 denotes the least
significant bit of a, etc.). Define carry bits ci, 0 ≤ i < n as follows: cn−1 = 0 and

14

ci = Maj(ai+1, bi+1, ci+1) for −1 ≤ i < n − 1, where Maj is the 3-bit majority
function. Then it is easy to verify that yi = ai ⊕ bi ⊕ ci for all 0 ≤ i < n. Full
modular addition can be computed sequentially from i = n − 1 to i = 0. Let
f : F3

2 → F2
2 be such that f(a, b, c) = (Maj(a, b, c), a⊕ b⊕ c), then we can write

(ci−1, yi) = f(ai, bi, ci),

for all 0 ≤ i < n. Note that no bits are copied in the sequential computation
process. It follows that the division property propagation can be encoded directly
by encoding n sequential applications of f (using the S-Box encoding methods
by Xiang et al. [43]). Finally, an additional constraint is needed to ensure that
the resulting division property is not active in the bit c−1.

The division property propagation table is given in Table 5. This table can
be characterized by the two following integer inequalities:{

−a− b− c+ 2c′ + y ≥ 0,

a+ b+ c− 2c′ − 2y ≥ −1,

where a, b, c ∈ Z2 correspond to the values of the input division property and
c′, y ∈ Z2 correspond to the values of the output division property. In our ex-
periments, these two inequalities applied for each bit position generate precisely
the correct division property propagation table of the addition modulo 2n for n
up to 7. There are a few redundant transitions, but they do not affect the result.

Table 4. Look-up table of f .

input output input output

000 00 100 01
001 01 101 10
010 01 110 10
011 10 111 11

Table 5. Division property propagation table of f .

input outputs input outputs

000 {00} 100 {01, 10}
001 {01, 10} 101 {10}
010 {01, 10} 110 {10}
011 {10} 111 {11}

An alternative to MILP-solvers that is used for division property analysis
are SMT-solvers. To facilitate this alternative method, we characterize the divi-
sion property propagation table of f by four Boolean propositions (obtained by
enumerating all possible outputs and constraining respective inputs):

c′ ∧ y ⇒ a ∧ b ∧ c, . a = b = c = 1
¬c′ ∧ ¬y ⇒ ¬a ∧ ¬b ∧ ¬c, . a = b = c = 0
¬c′ ∧ y ⇒ (a⊕ b⊕ c) ∧ (¬a ∨ ¬b), . a+ b+ c = 1
c′ ∧ ¬y ⇒ (a ∨ b ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c). . 1 ≤ a+ b+ c ≤ 2

We used this representation together with the Boolector SMT-solver [34] (version
3.1.0) to verify our results.

Finally, we note that subtraction modulo 2n, used in the inverse of Alzette,
is equivalent to the addition with respect to the division property propagation

15

in our method. Indeed, let f ′ : F3
2 → F2

2,

f ′(a, b, c) = (c′, y) = ([a− b− c < 0], a⊕ b⊕ c),

where the first coordinate of f ′ computes the subtraction carry bit. It is in fact
equivalent to the first coordinate of f (the majority function) up to xor with
constants:

[a− b− c < 0] = [a+ (1− b) + (1− c) < 2]

= 1− [a+ (1− b) + (1− c) ≥ 2] = 1⊕ f0(a, 1⊕ b, 1⊕ c).

We conclude that f ′ has the same division property propagation table as f and
thus division property propagation using our method is the same for modular
addition and subtraction.

Division Property Propagation in Alzette. First, we evaluated the general alge-
braic degree of the ARX-box structure based on the division property. The 5th

and 6th rounds rotation constants were chosen as the 1st and 2nd rounds rota-
tion constants respectively, as this will happen when two Alzette instances will
be chained. The inverse ARX-box structure starts with 4th round rotation con-
stants, then 3rd, 2nd, 1st, 4th, etc. The minimum and maximum degree among
coordinates of the ARX-box structure and its inverse are given in Table 6. Even

Table 6. The upper bounds on the minimum and maximum degree of the coordinates
of Alzette and its inverse.

Rounds 1 2 3 4 Inverse rounds 1 2 3 4

min 1 10 42 63 min 1 2 32 46
max 32 62 63 63 max 32 62 63 63

though these are just upper bounds, we expect that they are close to the actual
values, as the division property was shown to be rather precise [41]. Thus, the
Alzette structure may have full degree in all its coordinates, but the inverse of
an Alzette instance has a coordinate of degree 46.

The block-based division property of Alzette is such that, for any 1 ≤ k ≤ 62,
D64
k maps to D64

1 after two rounds, and D64
63 maps to D64

2 after two rounds and
to D64

1 after three rounds. The same holds for the inverse of an Alzette instance.
The longest integral characteristic found with bit-based division property is

for the 6-round ARX-box, where the input has 63 active bits and the inactive
bit is at the index 44 (i.e., there are 44 active bits from the left and 19 active
bits from the right), and in the output 16 bits are balanced:

input active bits:

11111111111111111111111111111111,11111111111101111111111111111111,

balanced bits after 6-round ARX-box (denoted by B):

????????????????????????BBBBBBBB,?????????BBBBBBBB???????????????.

16

The inactive bit can be moved to indexes 45, 46, 47, 48 as well, the balanced
property after 6 round stays the same. For the 7-round ARX-box we did not
find any integral distinguishers.

For the inverse ARX-box, the longest integral characteristic is for 5 rounds:

input active bits:

11111111111111111111111111101111,11111111111111111111111111111111,

balanced bits after 5-round ARX-box inverse:

???????????????????????????????B,???????BBBBBBBBB????????????????.

For the ARX-box inverse with 6-rounds we did not find any integral character-
istic.

As a conclusion, even though a single Alzette instance has integral character-
istics, for two chained Alzette instances there are no integral characteristics that
can be found using the state-of-the-art division property method.

Experimental Algebraic Degree Lower Bound. The modular addition is the only
non-linear operation in Alzette. Its algebraic degree is 31 and thus, in each 4-
round Alzette instance, there must exist some output bits of algebraic degree at
least 32.

We experimentally checked that, for each instance Aci with ci as in Equa-
tion (1), the algebraic degree of each output bit is at least 32. In particular,
for each output bit we found a monomial of degree 32 that occurs in its ANF.
Note that for checking whether the monomial

∏m−1
i=0 xim occurs in the ANF of

a Boolean function f one has to evaluate f on 2m inputs.

3.4 Invariant Subspaces

Invariant subspace attacks were considered in [27]. For the round constants used
in Sparkle, using a similar ”to and fro” method from [35,13], we searched for
an affine subspace that is mapped by an Alzette instance Aci to a (possibly
different) affine subspace of the same dimension. We could not find any such
subspace of nontrivial dimension.

Note that the search is randomized so it does not result in a proof. As an
evidence of the correctness of the algorithm, we found many such subspace trails
for all 2-round reduced ARX-boxes, with dimensions from 56 up to 63. For
example, let A denotes the first two rounds of Ac0 . Then for all l, r, l′, r′ ∈ F32

2

such that A(l, r) = (l′, r′), it holds that

(l29 + r21 + r30)(l30 + r31)(l31 + r0)(r22)(r23) =

(l′4 + r′21)(l′5 + r′22)(l′6 + r′23)(l′28 + l′30 + l′31 + r′13 + 1)(l′29 + l′31 + r′14).

This equation defines a subspace trail of constant dimension 59.

17

3.5 Nonlinear Invariants

Nonlinear invariant attacks were considered recently in [40] to attack lightweight
primitives. For the round constants used in Sparkle, using linear algebra, we
experimentally verified that for any ARX-box Aci and any non-constant Boolean
function f of degree at most 2, the compositions f ◦Aci and f ◦A−1

ci have degree
at least 10:

∀f : F64
2 → F2, 1 ≤ deg(f) ≤ 2, deg(f ◦Aci) ≥ 10,deg(f ◦A−1

ci) ≥ 10 ,

and for functions f of degree at most 3, the compositions have degree at least 4:

∀f : F64
2 → F2, 1 ≤ deg(f) ≤ 3, deg(f ◦Aci) ≥ 4,deg(f ◦A−1

ci) ≥ 4 .

In particular, any Aci has no cubic invariants. Indeed, a cubic invariant f would
imply that f ◦ Aci + ε = f is cubic (for a constant ε ∈ F2). The same holds for
the inverse of any ARX-box Aci .

By using the same method, we also verified that there are no quadratic
equations relating inputs and outputs of any Aci . However, there are quadratic
equations relating inputs and outputs of 3-round reduced versions of each Aci .

3.6 Summary of the Properties of Alzette

Our experimental results validate our theoretical analysis of the properties of
Alzette: in practice, the differential and linear trail probabilities (resp., absolute
correlations) are as predicted. In the case of differential probabilities, the clus-
tering is minimal. While it is not quite negligible in the linear case, our estimates
remain very close to the quantities we measured experimentally.

The diffusion is fast: all output bits depend on all input bits after a single
call of Alzette – though the dependency may be sometimes weak. After a double
call of Alzette, diffusion is of course complete. More formally, as evidenced by
our analysis of the division property, no integral distinguisher exist in this case.

While the two components have utterly different structures, Alzette has sim-
ilar properties to one round of AES and the double iteration of Alzette to the
AES super-S-box (see Table 7). The bounds for the (double) ARX-box come
from Table 2. For the AES, the bounds for a single rounds are derived from the
properties of its S-box, so its maximum differential probability is 4/256 = 2−6

and its maximum absolute linear correlation is 2−3. For two rounds, we raise
the quantities of the S-box to the power 5 because the branching number of the
MixColumn operation is 5,

These experimental verifications were enabled by our use of a key-less struc-
ture. For a block cipher, we would need to look at all possible keys to reach the
same level of confidence.

4 Implementation Aspects

4.1 Software Implementations

Alzette was designed to provide good security bounds, but also efficient imple-
mentation. The rotation amounts have been carefully chosen to be a multiple

18

Table 7. A comparison of the properties of Alzette with those of the AES with a fixed
key. MEDCP denotes the maximum expected differential trail probability and MELCC
denotes the maximum expected absolute linear trail correlation.

MEDCP MELCC

Alzette 2−6 2−2

AES S-box layer 2−6 2−3

Double Alzette ≤ 2−32 2−17

AES super S-box layer 2−30 2−15

of eight bits or one bit from it. On 8 or 16 bit architectures these rotations can
be efficiently implemented using move, swap, and 1-bit rotate instructions. On
ARM processors, operations of the form z ← x <op> (y ≪ `) can be executed
with a single instruction in a single clock cycle, irrespective of `.

Alzette itself operates over two 32-bit words of data, with an extra 32-bit
constant value. This allows the full computation to happen in-register in AVR,
MSP and ARM architectures, whereby the latter is able to hold at least 4 Alzette
instances entirely in registers. This in turn reduces load-store overheads and
contributes to the performance of a primitive calling Alzette.

The consistency of operations allows one to either focus on small code size
(by implementing the parallel Alzette instances in a substitution layer in a loop),
or on architectures with more registers, execute two or more instances to exploit
instruction pipelining. This consistency of operations also allows some degree of
parallelism, namely by using Single Instruction Multiple Data (SIMD) instruc-
tions. SIMD is a type of computational model that executes the same operation
on multiple operands. Due to the layout of Alzette, an SIMD implementation can
be created by packing x0 . . . xnb , y0 . . . ynb , and c0 . . . cnb each in a vector register.
That allows 128-bit SIMD architectures such as NEON to execute four Alzette
instances in parallel, or even eight instances when using x86 AVX2 instructions.

Table 8. Execution time (in clock cycles) and codes size (in bytes) of Alzette.

Platform Execution time Code size

8-bit AVR ATmega128 78 156
32-bit ARM Cortex-M3 12 24

Table 8 summarizes the execution time and code size of Alzette on an 8-
bit AVR and a 32-bit ARM Cortex-M3 micro-controller. The assembler imple-
mentation of Alzette for the latter architecture consists of 12 instructions (see
Appendix C), which take 12 clock cycles to execute. The actual code size of
Alzette may be less than 48 bytes since the Cortex-M3 supports Thumb2, which
means some simple instructions can be only 16 bits long. However, whether an
instruction is 16 or 32 bits long depends, among other things, on the register
allocation. Our ARM implementation assumes that the two 32-bit branches of

19

Alzette and the round constant are already in registers and not in memory, which
is a reasonable assumption since the register file of a Cortex-M3 is big enough
to accommodate a few instances of Alzette together with a few round constants.

The situation is a bit different for 8-bit AVR. The arithmetic/logical oper-
ations of Alzette amount to 78 instructions altogether, each of which executes
in a single cycle, i.e. 78 clock cycles in total. Each of the used instructions has
a length of 2 bytes, yielding a code size of 156 bytes. However, in contrast to
ARM, we can not take it for granted that the whole state of a cipher fits into
the register file of an AVR micro-controller, which means the load and store
operations should be considered when evaluating the execution time. Loading
a byte from RAM takes 2 cycles, while loading a byte from flash (e.g. for the
round constants) requires 3 cycles. Storing a byte in RAM takes also 2 cycles.
Consequently, when taking all loads/stores into account (including the loading
of a round constant from flash), the execution time increases from 78 to 122
cycles and the code size from 156 to 196 bytes.

4.2 Hardware Implementations

A hardware implementation can, for example, use a 32-bit ALU that is able to
execute the following set of basic arithmetic/logical operations: 32-bit XOR, ad-
dition of 32-bit words, and rotations of a 32-bit word by four different amounts,
namely 16, 17, 24, and 31 bits. Since there are only four different rotation
amounts, the rotations can be simply implemented by a collection of 32 4-to-1
multiplexers. There exist a number of different design approaches for a 32-bit
adder; the simplest variant is a conventional Ripple-Carry Adder (RCA) com-
posed of 32 Full Adder (FA) cells. RCAs are very efficient in terms of area
requirements, but their delay increases linearly with the bit-length of the adder.
Alternatively, if an implementation requires a short critical path, the adder can
also take the form of a Carry-Lookahead Adder (CLA) or Carry-Skip Adder
(CSA), both of which have a delay that grows logarithmically with the word
size. On the other hand, when reaching small silicon area is the main goal, one
can “re-use” the adder for performing XOR operations. Namely, an RCA can
output the XOR of its two inputs by simply suppressing the propagation of car-
ries, which requires an ensemble of 32 AND gates. In summary, a minimalist
ALU consists of 32 FA cells, 32 AND gates (to suppress the carries if needed),
and 32 4-to-1 multiplexers (for the rotations). To minimize execution time, it
makes sense to combine the addition (resp. XOR) with a rotation into a single
operation that can be executed in a single clock cycle.

5 Alzette as a Building Block

Alzette is at the core of two families of lightweight algorithms that are among the
second round candidates of the NIST lightweight cryptography standardization
process, namely the hash functions Esch and the authenticated ciphers with
associated data Schwaemm (submission Sparkle [8]). In this section, we show

20

that it can also be used to easily construct block ciphers. This approach is
flexible: combining Alzette with simple linear layers, we can simply build step
functions operating on 64-, 128- and 256-bit blocks. We explain this approach
and analyze the security of its result in Section 5.1. Specific instances are then
given in Section 5.2, namely the 64-bit lightweight block cipher Crax, and the
256-bit tweakable block cipher Trax.

5.1 Skeletons for a Family of (Tweakable) Block Ciphers

Our approach relies on the long trail strategy pioneered by the designers of
Sparx [19], and which was then used to build sLiSCP [3], sLiSCP-light [4]
as well as the NIST lightweight candidates using them (SPIX [2], SPOC [1],
Sparkle [8]). Provided that the round function allows its use, this method pro-
vides a simple algorithm for bounding the probability of differential and linear
trails. To achieve this, we loop over all possible truncated trails, and bound the
probability of all differential (resp. linear) trails that conform to the truncated
trail using the differential (resp. linear) bounds of the employed S-box, including
those for multiple iterations when relevant. In all the algorithms listed above,
variants of the Feistel structure have been applied because such round functions
lend themselves well to such an analysis.

It is simple to adapt this framework to the design of Alzette-based block
ciphers. Furthermore, the structure of a long trail argument allows for an efficient
algorithm bounding the probability of related-tweak differentials.6 Indeed, in our
case, the S-box used is 64 bit wide. Thus, the number of bits needed to describe
a truncated differential in a given internal state is very small, only 4 suffice for a
block size of 256 bits. Besides, the use of a Feistel structure implies that half of
these bits are mere copies of the ones in the previous round. As a consequence,
the total number of truncated trails that must be considered is low.

It also implies that the impact of a tweak difference is manageable: if the
tweak difference activates a previously inactive S-box then its presence does
not increase the number of truncated trails. On the other hand, a possible can-
cellation merely multiplies the number of possible trails by 2. An algorithm
enumerating all related-tweak truncated trails such that the probability of all
differential trails that conform to them is below a given threshold, is therefore
easy to write and is efficient. In fact, our straight-forward Python implementa-
tion returned all the results needed for this paper in a matter of seconds at worst.
Large S-boxes such as Alzette are therefore very convenient building blocks to
construct tweakable block ciphers with strong security arguments.

Below, we present three Alzette-based (tweakable) block cipher structures for
which we provide upper bounds on the probability of the best differential trail in

6 Note that, in a related-tweak differential, we allow non-zero input differences not only
in the plaintext, but also in the tweak value. This is because the attacker can choose
the tweak, i.e., he has access to an encryption oracle for the cipher instantiated
with a tweak T and a (random) key K and to an encryption oracle for a cipher
instantiated with tweak T ⊕∆ and key K, where ∆ can be freely chosen.

21

Aci Aci+1Aci

`′

(x, y) (x0, y0) (x1, y1) (x0, y0) (x1, y1) (x2, y2) (x3, y3)

Aci Aci+1
Aci+2

Aci+3

T T T0 T1

Fig. 2. The round functions of Trax-S, Trax-M, and Trax-L, respectively.
`′(z1, z2, z3, z4) = (z4, z3 ⊕ z4, z2, z1 ⊕ z2), where zi are 16-bit words. The tweak is
added only in odd steps.

both the single-key and the related-tweak setting. Of course, we also investigate
other attacks. The “S”, “M” and “L” versions operate on 64, 128 and 256 bits
respectively and their round functions are depicted in Figure 2 (pseudo-code is
provided in Appendix B). Their properties are summarized in Table 9:

– re(c) rounds are needed to prevent the existence of known single-key distin-
guishers with a data complexity upper bounded by 2c in total,

– rTe (c) rounds are needed to prevent the existence of known related-tweak
distinguishers with a data complexity upper bounded by 2c in total (possibly
spread across multiple tweak values), and

– rd rounds are needed in order for all the bits of the state to depend on all
the bits of the key.

For example, if the best single-key differential trail with a probability above 2−n

covers r rounds, then re ≥ r + 1. It is assumed that n-bit subkeys are used.
It is assumed that there is no tweak schedule, i.e. that the tweak is simply

xored in the same part of the state each time it is added. As discussed below,
we found that the security level was higher when this addition occurred every
second step. The motivation for this simple tweak-schedule is simple: the tweak is
expected to change far more often than the key, so using a trivial tweak-schedule
will improve the performances of our algorithms.

Of course, we can set the tweak to a constant (e.g. 0) and obtain a tweak-
less “regular” block cipher.7 For the skeleton structures, we do not specify key
schedules and leave it to cipher designers to come up with appropriate ones for
their use cases. Related-key and related-tweak security will of course depend on
the specifics of the key schedule chosen. We present concrete ciphers using these
structures in Section 5.2 (along with their key schedules). Our best distinguish-
ers against the various versions of our step function are summarized in Table 10.
Details about related-tweak integral distinguishers are given in Appendix E. In

7 We do not consider related-cipher attacks between the obtained block cipher and
the corresponding tweakable block cipher.

22

order to evaluate rTe for such distinguishers, we used best integral distinguishers
for forward and backward direction (ignoring the difference in the input pattern),
summed the rounds and increased/rounded up by one step. The distinguishers
use full tweak and all but one plaintext bits, and have data complexity 2n+|T |−1.
Though it is possible that some active bits are not necessary for the distinguisher
and can be set inactive, we expect that such distinguishers provide very loose
bounds.

Table 9. The properties of the different (tweakable) round functions. The results
include the full-data RT integral distinguishers.

Version n |T | rd re rTe (n) rTe (n/2)

S 64 64 2 5 8 8

M 128 64 2 7 11 11

L 256 128 3 10 16 14

Table 10. The number of steps re(i) needed for the S, M and L step functions to
prevent various distinguishers with a data complexity of at most 2i. “RT” stands for
“related-tweak” where the tweak is added in every odd step. As re(n/2) ≤ re(n), we
use the latter if the former is not known and use “†”. For comparison, we give re(i) for
the AES using thatit achieves 25 active S-boxes in any non-trivial 4-round (differential
or linear) trail and plugging in the bounds for its S-box provided in Table 7.

Distinguisher Differential Linear Imp. diff. RT differential RT integral

S
re(n) 4 5 2 8 8

re(n/2) 2 3 2† 4 8†

M
re(n) 7 7 4 11 11

re(n/2) 4 4 4 6 11†

AES-128
re(n) 4 4 5 – –

re(n/2) 4 4 5† – –

L
re(n) 10 10 4 16 14

re(n/2) 5 6 4 9 14†

The S Version. It operates on 64 bits, meaning that it simply consists in iterating
Alzette, interleaving it with key additions. The tweak is xored every second step
as it allows to ensure that at least one double Alzette is active during 4 steps.
Thus, 8 steps are sufficient to prevent related-tweak differential distinguishers
with a data complexity of 264. If we remove the tweak then we need 4 steps to
argue the absence of differential distinguishers.

We start adding the tweak at the beginning of step 1 and not step 0 as it
could otherwise trivially be cancelled out with chosen plaintexts.

As we saw in Section 3.2, linear distinguishers are in practice less predictable
than differential ones. In particular, they exhibit some key-sensitivity that we

23

did not observe in the differential case. As our bound for 4 steps is at the edge
of being exploitable (2−34)), a small key-dependent deviation may allow 4-step
distinguishers. As a consequence, we consider that 5 steps are needed to prevent
linear distinguishers. Note that, allowing related tweaks does not give an advan-
tage when looking for linear distinguisher, as established by Kranz et al. [25].

The security against integral attacks and other attacks that would exploit
a slow diffusion (like impossible differential attacks) also follows directly from
our analysis of Alzette: our best integral distinguisher relies on the bit-based
division property and covers only 6 rounds of Alzette, i.e. 1.5 steps. Extending it
backwards, we can obtain at most an 11-round zero-sum distinguisher, i.e. one
that covers 2.75 steps. Thus, 3 steps are sufficient to prevent them. Since we
have full diffusion in one step, there cannot be an impossible differential found
via a miss-in-the-middle that covers 2 steps.

Assuming that the key schedule uses statistically independent key bits in even
and odd steps, we need only rd = 2 steps to ensure that all bits depend (although
possibly weakly) on all key bits. This result, along with all the distinguishers we
investigated for this step function, are summarized in Table 10.

The M Version. In order to operate on 128 bits, we use a simple Feistel round as
the linear layer that maps (x, y) to (y⊕ x, x). This structure ensures long trails.
To further foster the existence of long trails, we only XOR the tweak on half of
the state, namely at the input of the Alzette instance which is always doubled
due to the structure of the linear layer.

We have found using our long trail argument implementation that the best
frequency for adding a tweak corresponds to an addition every second round (as
for the S version). A smaller or larger number of steps between tweak additions
would lead to worse differential bounds. As in the S version, we start adding the
tweak at the beginning of step 1.

A long trail argument shows that differential and linear distinguishers become
infeasible when the number of steps is at least equal to 7. Unlike in the S version,
trail clustering is less of a concern here. Indeed, we observed the clustering within
one Alzette to be minimal, and unlike in the S version, the linear masks are
constrained in each step by the presence of the linear layer. It is not sufficient
for the input and output masks of a double Alzette to be identical: in order to
leverage clustering, we now need that the mask at the end of the first Alzette
call is the same in all trails as well.

In the related-tweak setting, there could exist differential trail covering more
than 7 steps with usable probabilities but none covering 11 steps (or more). If
we restrict ourselves to attack with a data complexity at most equal to 264 then
no useful related-tweak trail can cover more than 6 steps.

This step function employs a Feistel structure with a bijective Feistel func-
tion but the well known 5-round impossible differential identified by Knudsen [24]
cannot be used here. Indeed, our non-linear permutation (Alzette) is applied on
both branches in each round, thus breaking the pattern used by this distin-
guisher. In fact, the best impossible differential we can find only covers 4 steps:

24

the probability of the transition (0, δ) (∆,∆) is equal to 0 for any non-zero
64-bit differences δ and ∆. It needs about 232 chosen plaintexts to be exploited.

Since the key is of the same size as the block, the number of rounds needed
for diffusion of the key material is the number of rounds needed all state bits to
impact the whole state. In this case, it is rd = 2.

The L Version. This round function operates on 256-bit using 4 Alzette instances
in parallel. The round key is added in the full state. The best frequency for adding
the tweak is every second step, for the same reason as for the M version: changing
this frequency leads to worse differential bounds in the related-tweak setting.

This round function is similar to the one of Sparkle: a lot of the cryptanal-
ysis performed for this algorithm directly carries over (see [8]). In particular, the
type of attacks for which we need the largest number of steps to prevent the
existence of distinguishers is indeed the linear one in the single-tweak setting.

As for the M version, the number of rounds needed for diffusion of the key is
the number needed for all state bits to impact the whole state. Here, it is rd = 3.

5.2 Recommended Instances

Choosing the Number of Steps. In order to evaluate the number of steps needed to
build a secure cipher, we observed that attacks against block ciphers are usually
constructed using a specific distinguisher against a round-reduced version of the
algorithm. Then, rounds are added at the top and at the bottom using key
guesses. As a consequence, we used the following heuristic.

Heuristic (Number of rounds). Suppose that a block cipher round function
is such that:

– re rounds are needed to prevent the existence of known (and relevant) dis-
tinguishers, and

– rd rounds are needed in order for all the bits of the state to depend on all
the bits of the key.

Then, we suggest using a number of rounds equal to Hη = d2rd + (1 + η)ree,
where η is a security factor intended to take into account possible improvements
of the relevant distinguishers.

This method is heuristic as it is impossible to foresee how the best distin-
guishers will be improved, if at all. At the same time, we think it makes more
sense than an approach based e.g. on simply doubling the number of rounds
needed to prevent known distinguisher since it takes into account the actual
structure of the attacks known. Our restriction to “relevant” distinguisher al-
lows for example designers to discard related-key distinguisher if those are not
relevant for their design. On the other hand, in our case, we consider related-
tweak distinguishers to be relevant. In our definition of rd, we assume that the
diffusion is equally fast in the forward and in the backward direction.

25

A Lightweight Block Cipher. We can use our round function to build Crax-S-
10, a lightweight block cipher operating on 64-bit using a 128-bit key intended
for the most constrained micro-controllers. We claim that it provides 128 bits
of security in the single-key setting. A reference implementation is provided in
Appendix D.1. We used a security factor η = 0.2, so that the total number steps
corresponds to 10 = d2 + 2 + re × 1.2e.

Our cipher uses a tweakless instance of the S step function described above.
Since the step function has good diffusion and since we do not aim for related-
key security, we use a very simple key schedule: the 64-bit round key ki used
at the beginning of step i is simply ki = Ki mod 2 ⊕ i, where the master key is
(K0,K1). As there is no tweak, we do not need to worry about a bad interaction
between tweak and key.

In order to prevent slide properties, we use the step counter in combination
with a reduction of the number of round constants: instead of using all 8 of
them, we only use 5. That way, in the first half of the cipher the steps involve ci
and Ki mod 2 while in the second half they use ci and K(i+1) mod 2. For other
attacks, the security of Crax-S-10 follows directly from our analysis of Alzette.

Crax-S-10 is a very lightweight block cipher, arguably one of the the lightest
ever reported in the literature when it comes to micro-controller implementa-
tions. The code size, RAM consumption, and execution time of Crax-S-10 on
an 8-bit AVR and a 32-bit ARM Cortex-M3 micro-controller are summarized in
Table 11, along with those of five other lightweight block ciphers, namely Speck-
64/128 [7], Simon-64/128 [7], Rectangle [44], Sparx [19], and Hight [23]. We
took the results for the five ciphers from the best implementations contained in
the FELICS project [18], which is in the case of Speck the implementation “03”
for ARM Cortex-M3 and the implementation “06” for the AVR architecture.8

Since all these ciphers have a block size of 64 bits and a key size of 128 bits, they
serve as good references for comparison.

The ARM implementation of Crax we benchmarked is exactly the optimized
C code included in Appendix D.1. Encrypting a single 64-bit block on a Cortex-
M3 takes 239 cycles (including function-call overhead), and the decryption has
exactly the same execution time. The only serious competitor of Crax is Speck;
all other ciphers given in Table 11 are much slower. Speck-64/128 encrypts
and decrypts at a rate of 184 and 254 cycles per block, respectively. However,
since Speck needs first to run its key schedule, Crax-S-10 encryption is faster
than Speck for short messages of up to 9 blocks (i.e. 72 bytes). The Speck
implementation occupies significantly more RAM than that of Crax (mostly
because of the round keys) and has a much larger binary code size.

The results for the 8-bit AVR platform in Table 11 were all obtained with
hand-written assembler implementations. The overall picture is similar to ARM,
namely Speck and Crax clearly outperform the other four ciphers. When ex-
ecuted on an ATmega128 micro-controller, Crax-S-10 is slightly slower than

8 The source code of these implementations and the complete benchmarking results
are available on the CryptoLux wiki at http://www.cryptolux.org/index.php/

FELICS_Block_Ciphers_Detailed_Results (“Scenario 0”).

26

http://www.cryptolux.org/index.php/FELICS_Block_Ciphers_Detailed_Results
http://www.cryptolux.org/index.php/FELICS_Block_Ciphers_Detailed_Results

Table 11. A comparison of the implementation results of Crax-S-10 and five other
lightweight ciphers with a block size of 64 bits and a key size of 128 bits. RAM and
ROM consumption are measured in bytes and the time for processing a 64-bit block is
given in clock cycles.

Enc. 64-bit Dec. 64-bit Key schedule

ROM RAM Time ROM RAM Time ROM RAM Time

Speck 340 132 184 448 132 254 48 132 514

Crax-S 196 36 239 202 36 239 0 0 0

32-bit ARM Simon 100 200 557 120 200 596 244 200 864

(Cortex-M3) Rectangle 412 232 714 484 232 843 157 232 1106

Sparx 644 224 932 748 224 1065 756 224 620

Hight 442 160 2500 450 160 2644 352 160 740

Speck 542 132 997 706 132 1139 178 132 1401

Crax-S 584 20 1257 582 20 1249 0 0 0

8-bit AVR Simon 354 200 1973 364 200 1803 254 200 2911

(ATmega128) Rectangle 230 232 1823 230 232 1843 218 232 1832

Sparx 712 224 1529 790 224 1676 642 224 844

Hight 286 160 2770 288 160 2768 418 16ß 1191

Speck-64/128 when if we leave the key schedule aside, but is actually faster on
short messages (up to 5 blocks). Similar to ARM, the round keys make Speck
significantly more RAM-demanding than Crax. In terms of code size, the de-
cryption Crax is smaller than that of Speck, while the encryption is slightly
larger. However, when both functionalities are needed, Crax consumes less code
space than Speck (including key schedule).

In summary, we can say that Crax is at least as light as Speck (lighter on
ARM, comparable on AVR). Further, Crax shines for short messages, which
are common in real-world applications like simple challenge-response protocols
for the authentication of RFID tags and other IoT devices.

A Wide Tweakable Block Cipher. We can build an efficient software-oriented
256-bit tweakable block cipher with a 256-bit key and a 128-bit tweak using
Trax-L-17 (pronounced “T-rax”). We claim related-tweak security as long as
the total number of (x, T) queries to the encryption (or decryption) oracle for a
given key k is at most equal to 2128. We do not make any claim in the related-
key setting. A reference implementation of the whole encryption is provided in
Appendix D.2.

The motivation for this bound on the data complexity is simple: while an at-
tacker may have tremendous computing power, it is impossible that they obtain
this many plaintext/ciphertext pairs. Furthermore, the security of many modes
of operations drops when the amount of queries reaches the birthday bound—
2128 in our case. Combining the fact that the best distinguisher in the related-
tweak setting cannot cover 9 steps with the same security factor as Crax-S-10
(namely η = 0.2), we use d3 + 3 + 1.2× 9e = 17 steps.

For the key schedule, we use a simple generalized Feistel structure to update
the key state and thus derive ki+1 = Fi(ki), where k0 is the 256-bit master key

27

and where Pi is σ ◦ Fi, with σ(x0, ..., x7) = (x1, x2, x3, x4, x5, x6, x7, x0) and

Fi(x0, x1, x2, x3, x4, x5, x6, x7) =
(
x0 + x1 + c2i+1, x1, x2 ⊕ x3 ⊕ i, x3,
x4 + x5 + c2i, x5, x6 ⊕ x7 ⊕ (i� 16), x7

)
,

where the constant indices are taken modulo 8. This key schedule ensures that
the key material undergoes some transformation so as to break potential patterns
linking subkeys and tweak.

A tweakable block cipher lends itself well to a parallelizable mode of operation
such as ΘCB [26], a variant of OCB which saves its complex overhead needed to
turn a regular block cipher into a tweakable one. Since our block size is equal to
256 bits, attacks relying on collisions obtained via the birthday paradox are non-
issue with Trax-L-17. Some modes such as the Synthetic Counter-in-Tweak [37]
can retain a security level up to the birthday bound in case of nonce misuse. As
suggested in [15], using a 256-bit block cipher can also help providing post-
quantum security in cases where the attacker is given a lot of power (e.g. if the
primitive runs on a quantum computer).9

In summary, Trax-L-17 can be used in SCT mode to provide 128 bits of
security in case of nonce-misuse, and its large block size can frustrate some
quantum attacks when used in the same mode as Saturnin: it can be used to
offer a very robust authenticated encryption. On a Cortex-M3 microcontroller,
the generation of subkeys, encryption, and decryption has an execution time
of 925, 2435, and 2464 clock cycles, respectively. These results are based on a
standard C implementation, whereby we determined the execution times with
help of the cycle-accurate instruction set simulator of Keil Microvision v5.24.2
using a generic Cortex-M3 model as target device. For comparison, the currently
fastest implementation of Saturnin has a (simulated) encryption time of 5494
cycles and a decryption time of 5489 cycles on a generic Cortex-M3 device.10

Consequently, Trax-L-17 outperforms Saturnin by a factor of more than 2.2.
The use of 32-bit operations implies that it is possible to vectorize the com-

putation of several parallel Trax-L-17 instances on many platforms, meaning
that its speed can be multiplied whenever e.g. AVX instructions are available.

6 Conclusion

Alzette is a component of a new kind, a wide S-box operating on 64 bits that can
nevertheless be argued to provide strong security against many attacks. Because

9 We remark that in several modes of operations, like ΘCB, it is necessary to take
care of domain separation. For instance, a few bits of the tweak can be reserved for
this purpose. For example, the NIST lightweight AEAD candidate SKINNY-AEAD [10]
simply dedicates one byte of the tweak for domain separation. Therefore, if a full
256-bit tweak needs to be exploited, a tweakable block cipher with a (slightly) larger
tweak length of 256 + x would be beneficial.

10 The source code of this implementation was developed by Rhys Weatherley and
is available on GitHub at https://github.com/rweather/lightweight-crypto/

blob/master/src/individual/Saturnin/saturnin.c.

28

https://github.com/rweather/lightweight-crypto/blob/master/src/individual/Saturnin/saturnin.c
https://github.com/rweather/lightweight-crypto/blob/master/src/individual/Saturnin/saturnin.c

of its reliance on ARX operations with carefully chosen rotations, a constant-
time implementation is both easy to write and very efficient on a wide class of
processors and micro-controllers.

The NIST LWC submission Sparkle [8] provides the first application of the
Alzette S-box, but we showed that Alzette can also be used to design software-
efficient (tweakable) block ciphers on a variety of block lengths. A modified
long-trail argument allows us to estimate the number of rounds needed to pro-
vide security with regard to (related-tweak) differential and linear attacks. We
provided two concrete instances of this approach: the 64-bit block cipher Crax
and the 256-bit tweakable block cipher Trax. Due to its very simple key sched-
ule, Crax is competitive compared to the block cipher Speck: it consumes less
RAM and is faster for short messages consisting of up to nine 64-bit blocks. On
the other hand, the large block size of Trax can be used to obtain strong secu-
rity guarantees in settings where the attacker is quite powerful (nonce-misuse,
quantum computing) while its use of a tweak eases the use of parallelizable
modes of operation that can better leverage vector instructions.

Acknowledgements. Part of the work of Christof Beierle was funded by
Deutsche Forschungsgemeinschaft (DFG), project number 411879806, and part
of the work of Christof Beierle was performed while he was at the University
of Luxembourg and funded by the SnT CryptoLux RG budget. Luan Cardoso
dos Santos is supported by the Luxembourg National Research Fund through
grant PRIDE15/10621687/SPsquared. Part of the work of Aleksei Udovenko
was performed while he was at the University of Luxembourg and funded by
the Fonds National de la Recherche Luxembourg (project reference 9037104).
Part of the work by Vesselin Velichkov was performed while he was at the Uni-
versity of Luxembourg. The work of Qingju Wang is funded by the University
of Luxembourg Internal Research Project (IRP) FDISC. The experiments pre-
sented in this paper were carried out using the HPC facilities of the University
of Luxembourg [42] – see https://hpc.uni.lu.

References

1. AlTawy, R., Gong, G., He, M., Jha, A., Mandal, K., Nandi, M., Rohit, R.:
SpoC: An authenticated cipher. NIST round 2 lightweight candidate, see also
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/

documents/round-2/spec-doc-rnd2/spoc-spec-round2.pdf (2019)

2. AlTawy, R., Gong, G., He, M., Mandal, K., Rohit, R.: SPIX: An
authenticated cipher. NIST round 2 lightweight candidate, see also
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/

documents/round-2/spec-doc-rnd2/spix-spec-round2.pdf (2019)

3. AlTawy, R., Rohit, R., He, M., Mandal, K., Yang, G., Gong, G.: sLiSCP: Simeck-
based permutations for lightweight sponge cryptographic primitives. In: Adams,
C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 129–150. Springer, Hei-
delberg (Aug 2017)

29

https://hpc.uni.lu
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/spoc-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/spoc-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/spix-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/spix-spec-round2.pdf

4. Altawy, R., Rohit, R., He, M., Mandal, K., Yang, G., Gong, G.: SLISCP-light:
Towards hardware optimized sponge-specific cryptographic permutations. ACM
Trans. Embed. Comput. Syst. 17(4), 81:1–81:26 (Aug 2018)

5. Barreto, P., Nikov, V., Nikova, S., Rijmen, V., Tischhauser, E.: Whirlwind: a new
cryptographic hash function. Des. Codes Cryptogr. 56(2), 141–162 (2010)

6. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. IACR Cryptology
ePrint Archive 2013, 404 (2013), http://eprint.iacr.org/2013/404

7. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK block ciphers on AVR 8-bit microcontrollers. Cryptology
ePrint Archive, Report 2014/947 (2014), http://eprint.iacr.org/2014/947

8. Beierle, C., Biryukov, A., dos Santos, L.C., Großschädl, J., Perrin,
L., Udovenko, A., Velichkov, V., Wang, Q.: Schwaemm and Esch:
lightweight authenticated encryption and hashing using the Sparkle
permutation family. NIST round 2 lightweight candidate, see also
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/

documents/round-2/spec-doc-rnd2/sparkle-spec-round2.pdf (2019)
9. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,

Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS,
vol. 9815, pp. 123–153. Springer, Heidelberg (Aug 2016)

10. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki,
Y., Sasdrich, P., Sim, S.M.: SKINNY-AEAD and SKINNY-Hash. NIST
round 2 lightweight candidate, see also https://csrc.nist.gov/CSRC/media/

Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/

SKINNY-spec-round2.pdf (2019)
11. Bernstein, D.J., Kölbl, S., Lucks, S., Massolino, P.M.C., Mendel, F., Nawaz, K.,

Schneider, T., Schwabe, P., Standaert, F.X., Todo, Y., Viguier, B.: Gimli : A cross-
platform permutation. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol.
10529, pp. 299–320. Springer, Heidelberg (Sep 2017)

12. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO’90. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (Aug 1991)

13. Biryukov, A., De Canniére, C., Braeken, A., Preneel, B.: A toolbox for crypt-
analysis: Linear and affine equivalence algorithms. In: Biham, E. (ed.) EURO-
CRYPT 2003. LNCS, vol. 2656, pp. 33–50. Springer, Heidelberg (May 2003)

14. Biryukov, A., Velichkov, V., Corre, Y.L.: Automatic search for the best trails in
ARX: Application to block cipher speck. In: Peyrin [36], pp. 289–310

15. Canteaut, A., Duval, S., Leurent, G., Naya-Plasencia, M., Perrin, L., Pornin,
T., Schrottenloher, A.: Saturnin: a suite of lightweight symmetric algorithms
for post-quantum security. NIST round 2 lightweight candidate, see also
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/

documents/round-2/spec-doc-rnd2/saturnin-spec-round2.pdf (2019)
16. Cheon, J.H., Takagi, T. (eds.): ASIACRYPT 2016, Part I, LNCS, vol. 10031.

Springer, Heidelberg (Dec 2016)
17. Dinu, D.: Efficient and Secure Implementations of Lightweight Symmetric Crypto-

graphic Primitives. Ph.D. thesis, University of Luxembourg (2017), available online
at https://orbilu.uni.lu/handle/10993/33803

18. Dinu, D., Corre, Y.L., Khovratovich, D., Perrin, L., Großschädl, J., Biryukov,
A.: Triathlon of lightweight block ciphers for the internet of things. Journal of
Cryptographic Engineering 9(3), 283–302 (Sep 2019)

30

http://eprint.iacr.org/2013/404
http://eprint.iacr.org/2014/947
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/sparkle-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/sparkle-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SKINNY-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SKINNY-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SKINNY-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/saturnin-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/saturnin-spec-round2.pdf
https://orbilu.uni.lu/handle/10993/33803

19. Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Großschädl, J., Biryukov, A.:
Design strategies for ARX with provable bounds: Sparx and LAX. In: Cheon and
Takagi [16], pp. 484–513

20. Fu, K., Wang, M., Guo, Y., Sun, S., Hu, L.: MILP-based automatic search algo-
rithms for differential and linear trails for speck. In: Peyrin [36], pp. 268–288

21. Gueron, S., Johnson, S., Walker, J.: SHA-512/256. Cryptology ePrint Archive,
Report 2010/548 (2010), http://eprint.iacr.org/2010/548

22. Gurobi Optimization, L.: Gurobi optimizer reference manual (2018), http://www.
gurobi.com

23. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee,
J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A new block cipher suitable
for low-resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 46–59. Springer (Oct 2006)

24. Knudsen, L.: Deal - a 128-bit block cipher. NIST AES Proposal (1998)
25. Kranz, T., Leander, G., Wiemer, F.: Linear cryptanalysis: Key schedules and

tweakable block ciphers. IACR Trans. Symm. Cryptol. 2017(1), 474–505 (2017)
26. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption

modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (Feb 2011)

27. Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A cryptanalysis of
PRINTcipher: The invariant subspace attack. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 206–221. Springer, Heidelberg (Aug 2011)

28. Liu, Y., Wang, Q., Rijmen, V.: Automatic search of linear trails in ARX with
applications to SPECK and chaskey. In: Manulis, M., Sadeghi, A.R., Schneider, S.
(eds.) ACNS 16. LNCS, vol. 9696, pp. 485–499. Springer, Heidelberg (Jun 2016)

29. Liu, Z.: Automatic Tools for Differential and Linear Cryptanalysis of ARX Ciphers.
Ph.D. thesis, University of Chinese Academy of Science (2017), in Chinese

30. Liu, Z., Li, Y., Jiao, L., Wang, M.: A new method for Searching Optimal Differential
and Linear Trails in ARX Ciphers. Cryptology ePrint Archive, Report 2019/1438
(2019), https://eprint.iacr.org/2019/1438

31. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT’93. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (May 1994)

32. Matsui, M.: On correlation between the order of S-boxes and the strength of DES.
In: Santis, A.D. (ed.) EUROCRYPT’94. LNCS, vol. 950, pp. 366–375. Springer,
Heidelberg (May 1995)

33. Niels, F., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein hash function family. Submission to the NIST SHA-3
competition (round 3) (2010)

34. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0 system description. Journal
on Satisfiability, Boolean Modeling and Computation 9, 53–58 (2014 (published
2015)), https://github.com/boolector/boolector

35. Patarin, J., Goubin, L., Courtois, N.: Improved algorithms for isomorphisms of
polynomials. In: Nyberg, K. (ed.) EUROCRYPT’98. LNCS, vol. 1403, pp. 184–
200. Springer, Heidelberg (May / Jun 1998)

36. Peyrin, T. (ed.): FSE 2016, LNCS, vol. 9783. Springer, Heidelberg (Mar 2016)
37. Peyrin, T., Seurin, Y.: Counter-in-tweak: Authenticated encryption modes for

tweakable block ciphers. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I.
LNCS, vol. 9814, pp. 33–63. Springer, Heidelberg (Aug 2016)

38. Sun, L., Wang, W., Wang, M.: Automatic search of bit-based division property for
ARX ciphers and word-based division property. In: Takagi, T., Peyrin, T. (eds.)

31

http://eprint.iacr.org/2010/548
http://www.gurobi.com
http://www.gurobi.com
https://eprint.iacr.org/2019/1438
https://github.com/boolector/boolector

ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 128–157. Springer, Heidelberg
(Dec 2017)

39. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 287–314.
Springer, Heidelberg (Apr 2015)

40. Todo, Y., Leander, G., Sasaki, Y.: Nonlinear invariant attack - practical attack
on full SCREAM, iSCREAM, and Midori64. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 3–33. Springer, Heidelberg (Dec
2016)

41. Todo, Y., Morii, M.: Bit-based division property and application to simon family.
In: Peyrin [36], pp. 357–377

42. Varrette, S., Bouvry, P., Cartiaux, H., Georgatos, F.: Management of an academic
HPC cluster: The UL experience. In: Proc. of the 2014 Intl. Conf. on High Perfor-
mance Computing & Simulation (HPCS 2014). pp. 959–967. IEEE, Bologna, Italy
(July 2014)

43. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
Cheon and Takagi [16], pp. 648–678

44. Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: RECTANGLE:
a bit-slice lightweight block cipher suitable for multiple platforms. Sci. China Inf.
Sci. 58(12), 1–15 (2015)

32

A Linear Trails in Alzette

Table 12. The input and output masks α, β (in hex) of all linear trails over Alzette
corresponding to maximum expected absolute linear trail correlation c = 2−2 and
c = 2−5 for four and five rounds, respectively. The column max{− log2(c̃)} represents
the smallest observed correlations of the approximations taken over all (combinations
of) Alzette instances that can occur without a step counter addition in Sparkle. Sim-
ilarly, the column min{− log2(c̃)} represents the largest observed correlations of the
approximations. In all of the experiments, the sample size was 224.

rounds α β − log2(|c|) max{− log2(|c̃|)} min{− log2(|c̃|)}

4

0000030180020100 c001018101800001 2.00 2.00 2.00
0000030180020100 800101c101c00001 2.00 2.00 2.00
0000020180020180 800101c101c00001 2.00 2.00 2.00
0000020180020180 c001018101800001 2.00 2.00 2.00

5

0000020180020180 01c00181c1808081 5.00 5.62 5.49
0000030180020100 01c081c1c180c081 5.00 5.60 5.47
0000020180020180 01c081c1c180c081 5.00 5.59 5.51
0000030180020100 41c00101c18080c1 5.00 5.60 5.48
0000020180020180 41c00101c18080c1 5.00 5.60 5.48
0000020180020180 41c08141c180c0c1 5.00 5.61 5.48
0000020180020180 01e08141e180c0c1 5.00 5.59 5.49
0000030180020100 41c08141c180c0c1 5.00 5.61 5.49
0000030180020100 01e08141e180c0c1 5.00 5.60 5.47
0000020180020180 01e00101e18080c1 5.00 5.61 5.50
0000030180020100 41e00181e1808081 5.00 5.61 5.48
0000020180020180 41e081c1e180c081 5.00 5.61 5.49
0000030180020100 01e00101e18080c1 5.00 5.61 5.49
0000020180020180 41e00181e1808081 5.00 5.61 5.48
0000030180020100 41e081c1e180c081 5.00 5.61 5.50
0000030180020100 01c00181c1808081 5.00 5.61 5.49

33

Table 13. The input and output masks α, β (in hex) of all linear trails over Alzette
corresponding to maximum expected absolute linear trail correlation c = 2−8 for six
rounds. The column max{− log2(c̃)} represents the smallest observed correlations of the
approximations taken over all combinations of Alzette instances that can occur without
a step counter addition in Sparkle. Similarly, the column min{− log2(c̃)} represents
the largest observed correlations of the approximations. In all of the experiments, the
sample size was 228.

rounds α β − log2(|c|) max{− log2(|c̃|)} min{− log2(|c̃|)}

6

0000020180020180 05638604c3828201 8.00 9.61 8.50
0000030180020100 05638604c3828201 8.00 9.69 8.48
0000020180020180 05c38604c3828241 8.00 8.69 8.00
0000020180020180 04838604c3828281 8.00 9.20 8.22
0000020180020180 06038604c3828381 8.00 9.09 8.23
0000030180020100 05c38604c3828241 8.00 8.71 8.01
0000030180020100 04838604c3828281 8.00 9.08 8.25
0000030180020100 06038604c3828381 8.00 9.14 8.23
0000020180020180 05638484c2828201 8.00 9.69 8.48
0000020180020180 05c38484c2828241 8.00 8.69 8.01
0000020180020180 04838484c2828281 8.00 9.17 8.26
0000020180020180 06038484c2828381 8.00 9.10 8.21
0000020180020180 05c3c404e2828241 8.00 9.65 8.48
0000030180020100 07438604c3828301 8.00 9.12 8.24
0000020180020180 07438604c3828301 8.00 9.10 8.20
0000030180020100 05638484c2828201 8.00 9.59 8.49
0000030180020100 05c38484c2828241 8.00 8.74 8.03
0000030180020100 07e38484c2828301 8.00 9.69 8.47
0000030180020100 07438484c2828341 8.00 8.71 8.01
0000030180020100 04838484c2828281 8.00 9.08 8.23
0000030180020100 07438484c2828301 8.00 9.11 8.23
0000020180020180 07e38604c3828301 8.00 9.56 8.50
0000030180020100 05c3c404e2828241 8.00 9.74 8.48
0000020180020180 0563c404e2828201 8.00 8.70 8.02
0000030180020100 05c38484c2828201 8.00 9.05 8.25
0000030180020100 05c38604c3828201 8.00 9.12 8.25
0000030180020100 06038484c2828381 8.00 9.18 8.24
0000020180020180 05c3c684e3828241 8.00 9.67 8.51
0000030180020100 0743c404e2828341 8.00 9.63 8.50
0000030180020100 0563c404e2828201 8.00 8.73 8.02
0000030180020100 05c3c684e3828241 8.00 9.70 8.52
0000030180020100 07e38604c3828301 8.00 9.70 8.49
0000020180020180 07438484c2828341 8.00 8.69 8.03
0000020180020180 07438484c2828301 8.00 9.12 8.20
0000020180020180 05c38604c3828201 8.00 9.09 8.25
0000020180020180 0743c404e2828341 8.00 9.67 8.47
0000020180020180 07e3c404e2828301 8.00 8.72 8.01
0000030180020100 0743c684e3828341 8.00 9.54 8.51
0000030180020100 0563c684e3828201 8.00 8.76 8.01
0000030180020100 07e3c684e3828301 8.00 8.72 8.03
0000020180020180 07e38484c2828301 8.00 9.60 8.51
0000030180020100 07e3c404e2828301 8.00 8.68 8.01
0000020180020180 0743c684e3828341 8.00 9.61 8.47
0000020180020180 0563c684e3828201 8.00 8.74 8.02
0000020180020180 07438604c3828341 8.00 8.74 8.00
0000020180020180 05c38484c2828201 8.00 9.06 8.20
0000030180020100 07438604c3828341 8.00 8.65 8.00
0000020180020180 07e3c684e3828301 8.00 8.75 8.01

34

B Algorithms

Algorithm 2 Trax-Sns
In: (x, y) ∈ F32

2 × F32
2 , K ∈ (F64

2)ns+1, T ∈ F64
2

Out: (x, y) ∈ F32
2 × F32

2

(c0, c1, c2, c3)← (0xB7E15162,0xBF715880,0x38B4DA56,0x324E7738)
(c4, c5, c6, c7)← (0xBB1185EB,0x4F7C7B57,0xCFBFA1C8,0xC2B3293D)
for all s ∈ [0, ns − 1] do

if s = 1 mod 2 then
(x, y)← (x, y)⊕ T

end if
(x, y)← (x, y)⊕Ks
(x, y)← Acs mod 8

(x, y)
end for
(x, y)← (x, y)⊕Kns
return (x, y)

Algorithm 3 Trax-Mns

In:
(
(x0, y0), (x1, y1)

)
, xi, yi ∈ F32

2 , K ∈ (F128
2)ns+1, T ∈ F64

2

Out:
(
(x0, y0), (x1, y1)

)
, xi, yi ∈ F32

2

(c0, c1, c2, c3)← (0xB7E15162,0xBF715880,0x38B4DA56,0x324E7738)
(c4, c5, c6, c7)← (0xBB1185EB,0x4F7C7B57,0xCFBFA1C8,0xC2B3293D)
for all s ∈ [0, ns − 1] do

if s = 1 mod 2 then
(x0, y0)← (x0, y0)⊕ T

end if
(x0, y0, x1, y1)← (x0, y0, x1, y1)⊕Ks
(x0, y0)← Ac2s mod 8

(x0, y0)
(x1, y1)← Ac2s+1 mod 8

(x1, y1)

(x0, y0, x1, y1)← (x0 ⊕ x1, y0 ⊕ y1, x0, y0)
end for
(x0, y0, x1, y1)← (x0, y0, x1, y1)⊕Kns
return

(
(x0, y0), (x1, y1)

)

35

Algorithm 4 Trax-Lns
In:

(
(x0, y0), . . . , (x3, y3)

)
, xi, yi ∈ F32

2 , K ∈ (F256
2)ns+1, T ∈ F128

2

Out:
(
(x0, y0), . . . , (x3, y3)

)
, xi, yi ∈ F32

2

(c0, c1, c2, c3)← (0xB7E15162,0xBF715880,0x38B4DA56,0x324E7738)
(c4, c5, c6, c7)← (0xBB1185EB,0x4F7C7B57,0xCFBFA1C8,0xC2B3293D)
for all s ∈ [0, ns − 1] do

if s = 1 mod 2 then
(x0, y0, x1, y1)← (x0, y0, x1, y1)⊕ T

end if
((x0, y0), . . . , (x3, y3))← ((x0, y0), . . . , (x3, y3))⊕Ks
(x0, y0)← Ac4s mod 8

(x0, y0)
(x1, y1)← Ac4s+1 mod 8

(x1, y1)

(x2, y2)← Ac4s+2 mod 8
(x2, y2)

(x3, y3)← Ac4s+3 mod 8
(x3, y3)

((x0, y0), . . . , (x3, y3))← L4((x0, y0), . . . , (x3, y3))
end for
((x0, y0), . . . , (x3, y3))← ((x0, y0), . . . , (x3, y3))⊕Kns
return

(
(x0, y0), . . . , (x3, y3)

)

36

C Assembly Implementation

The ALZETTE macro in ARM assembler is shown below. It uses only 12 instruc-
tions and all rotations are performed together with either an add or an eor (i.e.
exclusive or) instruction. Consequently, no explicit rotation instructions have to
be executed.

.macro ALZETTE xi:req , yi:req , ci:req

add \xi , \xi , \yi , ror #31

eor \yi , \yi , \xi , ror #24

eor \xi , \xi , \ci

add \xi , \xi , \yi , ror #17

eor \yi , \yi , \xi , ror #17

eor \xi , \xi , \ci

add \xi , \xi , \yi

eor \yi , \yi , \xi , ror #31

eor \xi , \xi , \ci

add \xi , \xi , \yi , ror #24

eor \yi , \yi , \xi , ror #16

eor \xi , \xi , \ci

.endm

37

D Implementation Details

In this section, we provide basic C implementations of Crax-S-10 and Trax-L-
17. Both use the following macros for the computation of Alzette and its inverse.

1 #define ROT(x, n) (((x) >> (n)) | ((x) << (32-(n))))
2
3 #define ALZETTE(x, y, c) \
4 (x) += ROT((y), 31), (y) ^= ROT((x), 24), \
5 (x) ^= (c), \
6 (x) += ROT((y), 17), (y) ^= ROT((x), 17), \
7 (x) ^= (c), \
8 (x) += (y), (y) ^= ROT((x), 31), \
9 (x) ^= (c), \

10 (x) += ROT((y), 24), (y) ^= ROT((x), 16), \
11 (x) ^= (c)
12
13 #define ALZETTE_INV(x, y, c) \
14 (x) ^= (c), \
15 (y) ^= ROT((x), 16), (x) -= ROT((y), 24), \
16 (x) ^= (c), \
17 (y) ^= ROT((x), 31), (x) -= (y), \
18 (x) ^= (c), \
19 (y) ^= ROT((x), 17), (x) -= ROT((y), 17), \
20 (x) ^= (c), \
21 (y) ^= ROT((x), 24), (x) -= ROT((y), 31)

D.1 Reference and Optimized Implementation of Crax-S

The listing below shows a reference C implementation of the encryption function
of Crax-S-10 as described in Subsect. 5.2. Note that only the first 5 of the 8
round constants specified in Subsect. 2.4 are used by Crax-S.

1 #include "craxs10.h"
2
3 #define N_STEPS 10
4
5 static const uint32_t RCON [5] = { \
6 0xB7E15162 , 0xBF715880 , 0x38B4DA56 , 0x324E7738 , 0xBB1185EB };
7
8 void craxs10_enc_ref(uint32_t *xword , uint32_t *yword , const uint32_t *key)
9 {

10 int step;
11
12 for (step = 0; step < NSTEPS; step ++) {
13 xword [0] ^= step;
14 if ((step % 2) == 0) {
15 xword [0] ^= key [0];
16 yword [0] ^= key [1];
17 } else {
18 xword [0] ^= key [2];
19 yword [0] ^= key [3];
20 }
21 ALZETTE(xword [0], yword[0], RCON[step %5]);
22 }
23 xword [0] ^= key [0];
24 yword [0] ^= key [1];
25 }

38

The decryption performs the same operations as the encryption, but in re-
verse order, and uses the inverse of Alzette. A reference C implementation of the
decryption is given below.

1 void craxs10_dec_ref(uint32_t *xword , uint32_t *yword , const uint32_t *key)
2 {
3 int step;
4
5 xword [0] ^= key [0];
6 yword [0] ^= key [1];
7 for (step = NSTEPS -1; step >= 0; step --) {
8 ALZETTE_INV(xword[0], yword [0], RCON[step %5]);
9 if ((step % 2) == 0) {

10 xword [0] ^= key [0];
11 yword [0] ^= key [1];
12 } else {
13 xword [0] ^= key [2];
14 yword [0] ^= key [3];
15 }
16 xword [0] ^= step;
17 }
18 }

The optimized C implementation of the encryption function differs from its
reference counterpart in three main aspects to improve the execution time. First,
the optimized C code advises the compiler to keep the state words x, y and the
words of the key in registers. Second, the optimized code partially unrolls the
loop to eliminate the if-then-else clause of the reference implementation and
reduce the loop overhead. Third, it duplicates the five state words to avoid the
modulo-5 reduction in the calculation of the index through which the round
constant is loaded. These optimizations reduce the execution time significantly
at the expense of a slight increase of code size. The following listing contains the
optimized C code of the encryption function.

1 static const uint32_t RCON [10] = { \
2 0xB7E15162 , 0xBF715880 , 0x38B4DA56 , 0x324E7738 , 0xBB1185EB , \
3 0xB7E15162 , 0xBF715880 , 0x38B4DA56 , 0x324E7738 , 0xBB1185EB };
4
5 void craxs10_enc_opt(uint32_t *state , const uint32_t *key)
6 {
7 register uint32_t xw = state [0], yw = state [1];
8 register uint32_t k0 = key[0], k1 = key[1], k2 = key[2], k3 = key [3];
9 int step = 0;

10
11 while (step < NSTEPS) {
12 xw ^= (k0 ^ step);
13 yw ^= k1;
14 ALZETTE(xw, yw, RCON[step]);
15 step ++;
16 xw ^= (k2 ^ step);
17 yw ^= k3;
18 ALZETTE(xw, yw, RCON[step]);
19 step ++;
20 }
21 xw ^= k0;
22 yw ^= k1;
23 state [0] = xw;
24 state [1] = yw;
25 }

39

The decryption can be optimized in a very similar way as described above
for the encryption. The resulting C code is shown below.

1 void craxs10_dec_opt(uint32_t *state , const uint32_t *key)
2 {
3 register uint32_t xw = state [0], yw = state [1];
4 register uint32_t k0 = key[0], k1 = key[1], k2 = key[2], k3 = key [3];
5 int step = NSTEPS -1;
6
7 xw ^= k0;
8 yw ^= k1;
9 while (step > 0) {

10 ALZETTE_INV(xw , yw, RCON[step]);
11 xw ^= (k2 ^ step);
12 yw ^= k3;
13 step --;
14 ALZETTE_INV(xw , yw, RCON[step]);
15 xw ^= (k0 ^ step);
16 yw ^= k1;
17 step --;
18 }
19 state [0] = xw;
20 state [1] = yw;
21 }

D.2 Reference Implementation of Trax-L

The following listing shows the reference implementation of the Trax-L-17 func-
tions for the generation of subkeys, encryption, and decryption, respectively. The
macros for Alzette and its inverse are the same as for Crax-S-10.

1 #include "traxl17.h"
2
3 #define NSTEPS 17
4 #define ELL(x) (ROT(((x) ^ ((x) << 16)), 16))
5
6 static const uint32_t RCON [8] = { \
7 0xB7E15162 , 0xBF715880 , 0x38B4DA56 , 0x324E7738 , \
8 0xBB1185EB , 0x4F7C7B57 , 0xCFBFA1C8 , 0xC2B3293D };
9

10 void traxl17_genkeys_ref(uint32_t *subkeys , const uint32_t *key)
11 {
12 uint32_t key_[8], tmp;
13 int b, s; // branch and step counter
14
15 memcpy(key_ , key , 32);
16 for (s = 0; s < NSTEPS +1; s++) {
17 // assign 8 sub -keys
18 for (b = 0; b < 8; b++)
19 subkeys [8*s+b] = key_[b];
20 // update master -key
21 key_ [0] += key_ [1] + RCON [(2*s)%8];
22 key_ [2] ^= key_ [3] ^ s;
23 key_ [4] += key_ [5] + RCON [(2*s+1) %8];
24 key_ [6] ^= key_ [7] ^ ((uint32_t) (s << 16));
25 // rotate master -key
26 tmp = key_ [0];
27 for (b = 1; b < 8; b++)
28 key_[b-1] = key_[b];
29 key_ [7] = tmp;
30 }

40

31 }
32
33 void traxl17_enc_ref(uint32_t *x, uint32_t *y, const uint32_t *subkeys ,
34 const uint32_t *tweak)
35 {
36 uint32_t tmpx , tmpy;
37 int b, s; // branch and step counter
38
39 for (s = 0; s < NSTEPS; s++) {
40 // add tweak to state if step -counter is odd
41 if ((s % 2) == 1) {
42 x[0] ^= tweak [0]; y[0] ^= tweak [1];
43 x[1] ^= tweak [2]; y[1] ^= tweak [3];
44 }
45 // add subkeys to state and execute ALZETTEs
46 for (b = 0; b < 4; b++) {
47 x[b] ^= subkeys [8*s+2*b];
48 y[b] ^= subkeys [8*s+2*b+1];
49 ALZETTE(x[b], y[b], RCON [(4*s+b)%8]);
50 }
51 // linear layer (see Sparkle256 permutation)
52 tmpx = ELL(x[2] ^ x[3]); y[0] ^= tmpx; y[1] ^= tmpx;
53 tmpy = ELL(y[2] ^ y[3]); x[0] ^= tmpy; x[1] ^= tmpy;
54 tmpx = x[0]; x[0] = x[3]; x[3] = x[1]; x[1] = x[2]; x[2] = tmpx;
55 tmpy = y[0]; y[0] = y[3]; y[3] = y[1]; y[1] = y[2]; y[2] = tmpy;
56 }
57 // add subkeys to state for final key addition
58 for (b = 0; b < 4; b++) {
59 x[b] ^= subkeys [8* NSTEPS +2*b];
60 y[b] ^= subkeys [8* NSTEPS +2*b+1];
61 }
62 }
63
64 void traxl17_dec_ref(uint32_t *x, uint32_t *y, const uint32_t *subkeys ,
65 const uint32_t *tweak)
66 {
67 uint32_t tmpx , tmpy;
68 int b, s; // branch and step counter
69
70 // add subkeys to state for initial key addition
71 for (b = 0; b < 4; b++) {
72 y[b] ^= subkeys [8* NSTEPS +2*b+1];
73 x[b] ^= subkeys [8* NSTEPS +2*b];
74 }
75 for (s = NSTEPS -1; s >= 0; s--) {
76 // inverse linear layer (see Sparkle256 permutation)
77 tmpy = y[0]; y[0] = y[2]; y[2] = y[1]; y[1] = y[3]; y[3] = tmpy;
78 tmpx = x[0]; x[0] = x[2]; x[2] = x[1]; x[1] = x[3]; x[3] = tmpx;
79 tmpy = ELL(y[2] ^ y[3]); x[0] ^= tmpy; x[1] ^= tmpy;
80 tmpx = ELL(x[2] ^ x[3]); y[0] ^= tmpx; y[1] ^= tmpx;
81 // add subkeys to state and execute inverse ALZETTEs
82 for (b = 0; b < 4; b++) {
83 ALZETTE_INV(x[b], y[b], RCON [(4*s+b)%8]);
84 y[b] ^= subkeys [8*s+2*b+1];
85 x[b] ^= subkeys [8*s+2*b];
86 }
87 // add tweak to state if step -counter is odd
88 if ((s % 2) == 1) {
89 y[1] ^= tweak [3]; x[1] ^= tweak [2];
90 y[0] ^= tweak [1]; x[0] ^= tweak [0];
91
92 }
93 }
94 }

41

E Division Property Propagation in Trax Instances

We analyzed Trax-S, Trax-M, Trax-S structures using the bit-based division
property. We used both the Gurobi MILP-solver and the Boolector SMT-solver.

Finding best integral distinguishers with limited data is a difficult task due to
combinatorial complexity, namely, the amount of possible plaintext bit activation
patterns is very large. The situation worsens even more due to the tweak, which
we also include in our analysis. Therefore, we set to use the maximum possible
amount of data and activate all bits except one; this will also result in strongest
integral distinguishers.

Note that in a tweakable cipher the sum of all ciphertexts over all plaintexts
with a fixed tweak is zero, due to the fixed-tweak tweakable cipher being a
permutation. This does not contradict the security model of an ideal tweakable
block cipher. However, it means that, in order to ignore this trivial distinguisher,
we need to have at least one inactive bit in the plaintext. Then, even by activating
in addition the whole tweak no trivial distinguisher is obtained. We conclude
that such activation pattern - all but one plaintext bits and all tweak bits - leads
to the strongest division property-based related-tweak integral distinguishers.
Finally, we remark that the amount of data largely exceeds the amounts we
allow for cryptanalysis (see Section 5.1). As a result, we obtain a rather loose
upper bound on the number of rounds needed to prevent division property-based
related-tweak integral attacks.

We chose to deactivate the bit which leads to best integral attacks on the
keyless Alzette instance (see Section 3.3): the bit with index 44 for the forward
direction and the bit with index 27 for the inverse direction (note that such inte-
gral distinguishers can not be concatenated in order to mount the permutation
distinguisher, making the bounds even looser). We evaluated all possible choices
of the input ARX-box to put the inactive bit to. For the inverse instances, we
added the tweak after even-indexed inverse steps, so that if the normal instance
is composed with the inverse instance, the period of two steps between tweak
additions is maintained. Our results are summarized in Table 14.

It is worth noting that adding tweak to the attack surface results in about one
2 step improvement for 64-bit primitives: see Trax-S compared to pure Alzette
(see Section 3.3). Also it is clear that the best distinguishers on Trax-M and
Trax-L are structure-based (as opposed to bit-based), since whole 64-bit blocks
are balanced. This supports our claim that Alzette itself has strong resistance
against integral attacks.

42

Table 14. Best integral distinguishers for Trax structures. ? denotes possibly non-
balanced 32-bit word, B means all 32 bits balanced, b means some of 32 bits are bal-
anced. A step of Trax-M/Trax-L includes a layer of Alzette (4 rounds) and the linear
layer.

instance inactive bit number of rounds balanced pattern

Alzette 44 1 steps + 2 rounds bb

Alzette−1 27 1 steps + 1 rounds bb

Trax-S 44 3 steps + 2 rounds bb

Trax-S−1 27 3 steps + 3 rounds ?b

Trax-M
44 5 steps + 4 rounds ??BB

108 3 steps + 4 rounds ??BB

Trax-M−1 27 4 steps + 0 rounds BB??

91 4 steps + 0 rounds BB??

Trax-L

44 6 steps + 4 rounds ????BBBB

108 6 steps + 4 rounds ????BBBB

172 5 steps + 4 rounds ????BBBB

236 5 steps + 4 rounds ????BBBB

Trax-L−1

27 6 steps + 0 rounds BBBB????

91 6 steps + 0 rounds BBBB????

155 6 steps + 0 rounds BBBB????

219 6 steps + 0 rounds BBBB????

43

	Alzette: a 64-bit ARX-box

