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Abstract. Given the links between nonlinearity properties and the related tables such
as LAT, DDT, BCT and ACT that have appeared in the literature, the boomerang
connectivity table BCT seems to be an outlier as it cannot be derived from the others
using Walsh-Hadamard transform. In this paper, a brief unified summary of the
existing links for general Boolean vectorial functions is given first and then a link
between the autocorrelation and boomerang connectivity tables is established.
Keywords: linear approximation, differential, differential-linear approximation,
boomerang, autocorrelation, vectorial Boolean functions

1 Introduction
Since the introduction of differential and linear cryptanalysis, the DDT and LAT tables
that capture the probabilities of differentials and correlations of linear approximations have
provided useful tools for evaluating the resistance or vulnerability of a block cipher against
these attacks. They have also been used in the context of more convoluted attack variants
such as the differential-linear and boomerang attacks under assumptions of independence
between rounds of the cipher. In particular the boomerang attack requires an independence
assumption which is stronger than the usual assumption on independendence of differentials.
Almost twenty years after the invention of the boomerang attack, Cid et al. introduced a
dedicated tool to evaluate the vulnerability of a cryptographic function against boomerang
attacks. Inspired by the boomerang connectivity table, Bar-On et al. presented a similar
tool to capture the differential-linear biases and demonstrated it in practice in the context
of previously presented differential-linear attacks.

The new tables and the related nonlinearity properties attracted the interest of experts
in Boolean functions. A number of new papers on the properties and bounds of boomerang
and differential-linear connectivity values for various classes of highly nonlinear Boolean
functions and optimal Sboxes has appeared recently. Also some links between the new
tables and the known ones have been established. The connections between probabilities of
differentials, correlations of linear approximations and biases of differential-linear approx-
imations are fully understood. What is less studied is the boomerang probabilities and
their links to the corresponding strength measures of the other attacks. While interesting
from the theory point of view such links can be useful also for establishing nonlinearity
bounds and evaluating computational complexity.

In this short paper we will give a summary of the tables related to differential, linear,
differential-linear attacks for general vectorial Boolean functions. To capture also the
boomerang connectivity tables we will introduce a generalization of autocorrelation. This
new nonlinearity concept is not only of theoretical interest, since it is closely related to
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differential-linear cryptanalysis and can potentially be used to strengthen differential-linear
approximations. Further, an extension of boomerang connectivity is introduced and its
link to the generalized autocorrelation is established.

We will start by definitions of the known nonlinearity properties and the related tables
and also give the references omitted in this introductory section. After establishing the
known links in Section 3 we will present the new concept of extended autocorrelation in
Section 4.

2 Nonlinearity properties
Let n and m be positive integers. Throughout this paper we consider F to be a function
which maps n-bit strings to m-bit strings. We denote the linear space of dimension n over
the field F2 by Fn2 . Then F is a vectorial Boolean function from Fn2 to Fm2 . We use “⊕ ”
to denote the sum operation and “ · ” to denote the canonical inner product operation
between two vectors in Fn2 .

Differential Given a ∈ Fn2 and b ∈ Fm2 a differential of F is defined as

F (x)⊕ F (x⊕ a) = b, , for x ∈ Fn2 ,

where a and b are called differences. The number of x ∈ Fn2 that satisfy this relation is
denoted by DDTF (a, b). The table

DDTF (a, b), a ∈ Fn2 , b ∈ Fm2 ,

is called the difference distribution table DDT of F .

Linear approximation Given u ∈ Fn2 and v ∈ Fm2 a linear approximation of F is the
following relation

u · x = v · F (x), for x ∈ Fn2 ,

where u and v are called masks. The number of x ∈ Fn2 that satisfy this relation subtracted
by the number of x that do not satisfy it, is denoted by LATF (u, v). The table

LATF (u, v), u ∈ Fn2 , v ∈ Fm2 ,

is called the linear approximation table LAT of F .

Boomerang Given a ∈ Fn2 and b ∈ Fm2 a boomerang of F is defined by the following two
relations

F (x)⊕ F (y) = b and F (x⊕ a)⊕ F (y ⊕ a) = b, for x, y ∈ Fn2 .

The number of pairs (x, y) ∈ Fn2 × Fn2 that satisfy this relation is denoted by BCTF (a, b).
The table

BCTF (a, b), a ∈ Fn2 , b ∈ Fm2 ,

is called the boomerang connectivity table BCT of F .

Autocorrelation Given a ∈ Fn2 and v ∈ Fm2 an autocorrelation relation of F is defined as

v · (F (x)⊕ F (x⊕ a)) , for x ∈ Fn2 .

Then the autocorrelation ACTF (a, v) is defined as the number of x ∈ Fn2 for which the
autocorrelation relation equals 0 subtracted by the number of x for which the relation
equals 1. The table

ACTF (a, v), a ∈ Fn2 , v ∈ Fm2 ,
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is called the autocorrelation table ACT of F .
In the description of the nonlinearity properties above we are using the letters a, b, c

from the beginning of the alphabet to denote difference vectors. The letters u, v, w towards
the end of the alphabet are used to denote masks of linear approximations. We omit the
symbol F of the function unless it is not the same for all tables under consideration.

3 Links between nonlinearity tables
All links described in this paper are based on the Walsh-Hadamard transform. Let
f : Fn2 → R be a real-valued function of bit strings of length n. The Walsh-Hadamard
transform f̂ of f at y ∈ Fn2 is defined as

f̂(y) =
∑
x∈Fn

2

f(x)(−1)y·x.

where the sum is the addition of real numbers. The Walsh-Hadamard transform can
be inverted. To compute the inverse Walsh-Hadamard transform one applies the Walsh-
Hadamard transform and multiplies the result by the factor 2−n̂̂

f(x) = 2−n
∑
y∈Fn

2

f̂(y)(−1)x·y

= f(x).

3.1 Link between DDT and LAT
The connection between the differential distribution and linear approximation tables was
established by Chabaud and Vaudenay in 1994 [CV94]. Using this link the DDT can be
computed from the LAT as follows

DDT(a, b) = 2−(n+m)
∑
u

(−1)u·a
∑
v

(−1)v·b LAT(u, v)2 (1)

using the inverse Walsh-Hadamard transform over Fn2×Fm2 . Similarly, the values LAT(u, v)2

can be computed from the DDT using the Walsh-Hadamard transform.

3.2 Linking ACT to DDT and LAT
The concept of autocorrelation originates from the theory of sequences. In the context of
nonlinearity properties of Boolean functions autocorrelation was defined by Zhang and
Zheng in late 1990s, see e.g. [ZZ96]. In a subsequent work by Zhang et al. the concept of
autocorrelation table of vectorial Boolean functions was introduced [ZZI00].

It seems that autocorrelation was not connected to differential-linear cryptanalysis
until 2019 when Bar-On et al. defined the differential-linear connectivity table DLCT,
comprising the differential-linear biases of the function [BDKW19], and Canteaut et al.
noticed the connection between DLCT and ACT [CKL+19]. Indeed,

DLCT(a, v) = 1
2ACT(a, v),

for all a ∈ Fn2 , v ∈ Fm2 .
Previously, partial links had been established. For example, the following link between

differential-linear biases and differential probabilities∑
v

(2DLCT(a, v))2 = 2m
∑
b

DDT(a, b)2
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had been mentioned by Nyberg [Nyb15].
By [ZZI00] and Equation (1) we now have

ACT(a, v) = 2−n
∑
u

(−1)u·a LAT(u, v)2 and

ACT(a, v) =
∑
b

(−1)v·b DDT(a, b).

Accordingly, ACT entries are computed from squared LAT entries by applying the
inverse Walsh-Hadamard transform at the input side. Alternatively, ACT entries can be
computed from the DDT entries by applying the Walsh-Hadamard transform at the output
side as used by Bar-On et al. in [BDKW19].

Ifm = n and F is bijective, we have LATF−1(v, u) = LATF (u, v) and also DDTF−1(b, a) =
DDTF (a, b). It follows that the ACT of F−1 can be computed from the ACT of F by
applying the inverse Walsh-Hadamard transform at the output side of F and the Walsh-
Hadamard transform at the input side of F (output side of F−1) as follows

2−n
∑
a,v

(−1)u·a⊕v·b ACTF (a, v) =
∑
a

(−1)u·a DDTF (a, b)

=
∑
a

(−1)u·a DDTF−1(b, a)

= ACTF−1(b, u),

if the transform is applied first on the output side. If the transform is applied first on the
input side, then the derivation goes via the squared LAT entries.

Note that there is a typo in [CKL+19] on the left side of Equation (7), which should
read ACF−1(v, u), that is, v in their notation is the input difference to F−1 and u is the
linear mask of the autocorrelation function of F−1.

3.3 Linking BCT to DDT, LAT, and ACT
Cid et al. gave the definition of BCT table for bijective functions and showed that it can
be an efficient tool in estimating the boomerang probability [CHP+18]. Recently, the
definition was generalized for arbitrary vectorial Boolean functions by Li et al. to the form
given above in Section 2 [LQSL19]. From this definition, we get immediately the following
link.

Proposition 1. Let F : Fn2 → Fm2 be a Boolean function and a ∈ Fn2 and b ∈ Fm2 . Then∑
b

BCT(a, b) =
∑
b

DDT(a, b)2.

Proof. Using the definition of BCT we get∑
b

BCT(a, b) = #{ (x, y) ∈ Fn2 × Fn2 |F (x)⊕ F (y) = F (x⊕ a)⊕ F (y ⊕ a) }

= #{ (x, y) ∈ Fn2 × Fn2 |F (x)⊕ F (x⊕ a) = F (y)⊕ F (y ⊕ a) }.

For bijective functions, this link was previously given by Nyberg [Nyb15] and by
Mesnager et al. [MTX19].

Using the known links between DDT and ACT, we now have∑
b

BCT(a, b) =
∑
b

DDT(a, b)2 = 2−m
∑
v

ACT(a, v)2.
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Computing the boomerang connectivity table from the differential distribution or
autocorrelation table does not seem possible in general. Next we introduce a generalization
of the autocorrelation table. The new table is sufficiently large to capture information of
all nonlinearity tables discussed in this paper.

4 Extended autocorrelation table EACT
Let us consider the following Boolean expression

v · F (x)⊕ w · F (x⊕ a),

where F : Fn2 → Fm2 is a vectorial Boolean function, a ∈ Fn2 and v, w ∈ Fm2 and denote by
EACT(a; v, w) the number of x ∈ Fn2 for which this expression is equal to 0 subtracted by
the number of x such that the expression is equal to 1. That is,

EACTF (a; v, w) = 2#{x ∈ Fn2 | v · F (x)⊕ w · F (x⊕ a) = 0 } − 2n.

Let us call the table EACTF (a; v, w), a ∈ Fn2 and v, w ∈ Fm2 , extended autocorrelation
table EACT of F .

Clearly, EACT(a; v, v) = ACT(a, v), for all a ∈ Fn2 and v ∈ Fm2 . Hence, given the
EACT table, we have the ACT table and can compute the DDT and LAT tables.

4.1 Computing BCT from EACT
Computation of the boomerang connectivity table can be done using the link given by the
following proposition.

Proposition 2. For all vectorial Boolean functions F : Fn2 → Fm2 , vectors a ∈ Fn2 and
v, w ∈ Fm2 , the following holds:

BCT(a, b) = 2−2m
∑
v,w

(−1)(u+w)·bEACT(a; v, w)2. (2)

Proof.

BCT(a, b) = 2−2m
∑
x,y

∑
v

(−1)v·(F (x)⊕F (y)⊕b)
∑
w

(−1)w·(F (x⊕a)⊕F (y⊕a)⊕b)

= 2−2m
∑
v,w

(−1)b·(v⊕w)

(∑
x

(−1)v·F (x)⊕w·F (x⊕a)

)2

= 2−2m
∑
v,w

(−1)(v⊕w)·b EACT(a; v, w)2.

By changing the summation over w to summation over δ = v ⊕ w we obtain

BCT(a, b) = 2−2m
∑
v

∑
δ

(−1)δ·b EACT(a; v, v ⊕ δ)2.

Computing this expression takes one Walsh-Hadamard transform in dimension m for each
v ∈ Fm2 .
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4.2 Properties of EACT tables
The extended autocorrelation table is not interesting only due to the fact that the differential
distribution, linear approximation and boomerang tables can be computed from it. Entries
of EACT tables with large absolute value can be exploited in a differential-linear type
attack.

Let us start by the observation that for each fixed a ∈ Fn2 the table EACT(a; v, w)
is symmetric, that is EACT(a; v, w) = EACT(a;w, v) for all v, w ∈ Fm2 . It means that
if there is an entry EACT(a : v, w) with v 6= w such that EACT(a; v, w) = ±2n then
EACT(a;w, v) = ±2n and EACT(a; v ⊕ w, v ⊕ w) = ACT(a, v ⊕ w) = 2n. But in general
it is possible that maxv,w |EACT(a; v, w)| > maxv|ACT(a, v)|.

The extended autocorrelation expression relates to an attack which is very similar to
the differential-linear attack. In the online phase of the attack, it really does not matter if
the masks on F (x) and F (x⊕ a) are different or equal. In the offline phase, the extended
expression requires more computation, but on the other hand, offers more freedom in
choosing the masks to maximize the differential-linear biases.

To give a small example to motivate the importance of checking also the EACT of a
cryptographic function such as Sbox, let us consider the EACT of the following 4× 4 Sbox

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

which we denote by S.
We can see that given the input difference a = 1011 to S we have v·S(x) 6= w·S(x⊕a) for

all x, if v = 0100 and w = 0001. Thus EACT(a : v, w) = −16. Then also EACT(a : w, v) =
−16 and on the diagonal of EACT we have EACT(a : v⊕w, v⊕w) = ACT(a, v⊕w) = 16
where v ⊕ w is a two-bit mask. Moreover, the highest (absolute) value of ACT(a, v′) for a
single-bit mask v′ is 8 and is obtained for v′ = 1000.

Let us assume that single-bit output masks of the differential-linear approximation are
preferred. The reason for that can be, for example, the diffusion layer, which makes two
active bits from the previous round to activate two Sboxes at the next round. In such a
situation, using different masks v and w as given above may be advantageous.

4.3 Extended boomerang connectivity table
It is clear that the link (2) does not work backwards. In order to compute squared EACT
entries from boomerang table we need an extended boomerang connectivity table EBCT
defined as follows

EBCTF (a; b, c) = #{ (x, y) ∈ Fn2 × Fn2 |F (x)⊕ F (y) = b and F (x⊕ a)⊕ F (y ⊕ a) = c }.

It is straightforward to verify that

EACT(a; v, w)2 =
∑
b,c

(−1)v·b⊕w·c EBCT(a; b, c)

that is, for all fixed input differences a ∈ Fn2 , the table with squared EACT entries (denoted
as EACT2)is the Walsh-Hadamard transform of the EBCT table over the pairs (b, c) of
output differences in Fm2 × Fm2 . Using the inverse Walsh-Hadamard transform, this link
works also to the other direction. In summary

ACT2 diagonal←− EACT2 Walsh-Hadamard Transform←→ EBCT diagonal−→ BCT,

where we denoted by ACT2 the table of squared ACT entries. Similarly as the EACT
table offers more options in selecting the output linear approximations for the differential-
linear approximation, the EBCT table offers more options for output differences for the
boomerang.
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5 Conclusion
We have considered the tools for evaluating known non-linearity properties of crypto-
graphic functions such as Sboxes and super Sboxes used in block ciphers. We have also
given a unified summary of links between these properties for general vectorial Boolean
functions based on the existing literature, some of which considered only bijective functions.
Finally, we show that, while not themselves mutually directly linked, the autocorrelation
and boomerang connectivity tables are obtained from the diagonals of the extended au-
tocorrelation and boomerang tables that are mutually linked via the Walsh-Hadamard
transform.
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