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Abstract—Computer-aided cryptography is an active area of
research that develops and applies formal, machine-checkable
approaches to the design, analysis, and implementation of
cryptography. We present a cross-cutting systematization of
the computer-aided cryptography literature, focusing on three
main areas: (i) design-level security (both symbolic security and
computational security), (ii) functional correctness and efficiency,
and (iii) implementation-level security (with a focus on digital
side-channel resistance). In each area, we first clarify the role
of computer-aided cryptography—how it can help and what the
caveats are—in addressing current challenges. We next present
a taxonomy of state-of-the-art tools, comparing their accuracy
and scope of analysis, trustworthiness, and usability. Then,
we highlight their main achievements, trade-offs, and research
challenges. After covering the three main areas, we present two
case studies. First, we study efforts in combining tools focused on
different areas to consolidate the guarantees they can provide.
Second, we distill the lessons learned from the computer-aided
cryptography community’s involvement in the TLS 1.3 stan-
dardization effort. Finally, we conclude with recommendations
to paper authors, tool developers, and standardization bodies
moving forward.

I. INTRODUCTION

Designing, implementing, and deploying cryptographic
mechanisms is notoriously hard to get right, with high-profile
design flaws, devastating implementation bugs, and side-
channel vulnerabilities being regularly found even in well-
studied mechanisms. Each step is highly involved and fraught
with pitfalls. At the design level, cryptographic mechanisms
must achieve specific security goals against some well-defined
class of attackers. Typically, this requires composing a series
of sophisticated building blocks—abstract constructions for
primitives, primitives for protocols, and protocols for sys-
tems. At the implementation level, high-level designs are then
fleshed out with concrete functional details, such as data
formats, session state, and programming interfaces. Moreover,
implementations must be optimized for interoperability and
performance. At the deployment level, implementations must
also account for low-level threats that are absent at the design
level, such as side-channel attacks.

Attackers are thus presented with a vast attack surface: They
can break high-level designs, exploit implementation bugs,
recover secret material via side-channels, or any combination
of the above. Preventing such varied attacks on complex cryp-
tographic mechanisms is a challenging task, and existing meth-
ods are hard-pressed to do so. Pen-and-paper security proofs
often consider pared-down cryptographic cores of mechanisms
to simplify analysis, yet remain highly complex and error-
prone; demands for aggressively optimized implementations

greatly increase the risks of introducing safety and correctness
bugs, which are difficult to catch by code testing/auditing
alone; ad-hoc constant-time coding recipes for mitigating side-
channel attacks are tricky to implement, and yet may not cover
whole gamut of leakage channels exposed in deployment.
Unfortunately, the current modus operandi—relying on a select
few cryptography experts armed with rudimentary tooling to
vouch for security and correctness—simply cannot keep pace
with the rate of innovation and development in the field.

Computer-aided cryptography, or CAC for short, is an
active area of research that aims to address these challenges.
Computer-aided cryptography encompasses formal, machine-
checkable approaches to designing, analyzing, and imple-
menting cryptography. The variety of tools available address
different parts of the problem space. At the design level,
tools can help manage the complexity of security proofs and
even reveal subtle flaws or as-yet-unknown attacks in the
process. At the implementation level, tools can guarantee that
highly optimized implementations behave according to their
functional specifications on all inputs. At the deployment level,
tools can check that implementations are correctly protected
against certain classes of side-channel attacks. Although in-
dividual tools may only address part of the problem, when
combined, they can provide a high degree of assurance.

Computer-aided cryptography has already fulfilled some
of these promises in focused but impactful settings. For
instance, computer-aided security analyses had deep influence
in the recent standardization of TLS 1.3 [1]–[4], and formally
verified primitives are now being deployed at Internet-scale—
HACL∗ [5] in Mozilla Firefox’s NSS security engine and Fiat
Cryptography [6] in Google’s BoringSSL library. In light of
these successes, there is growing enthusiasm for computer-
aided cryptography. This is reflected in the rapid emergence
of a dynamic community that brings together theoretical
cryptographers, cryptography engineers, and formal method
practitioners. Together, the community aims to achieve broader
adoption of computer-aided cryptography, blending ideas from
both fields, and more generally, to contribute to the future
development of cryptography.

At the same time, computer-aided cryptography runs the
risk of falling victim of its own success. Trust in the field
can be undermined by the difficulty of understanding the
guarantees of computer-aided cryptography artifacts and their
fine-print caveats. For example, it has been asked whether the
Selfie attack [7] contradicts prior claims of computer-aided
cryptography proofs of TLS 1.3. The attack is an edge case of
TLS 1.3’s vast range of possible configurations, not covered by



prior analysis, and therefore does not contradict, or diminish
the value of, formal analyses that prove the absence of a large
class of attacks. In addition, the field is increasingly broad,
complex, and rapidly evolving, so no one has a complete
understanding of every facet. This can make it difficult for the
field to develop and address pressing challenges, such as the
expected transition to post-quantum cryptography and scaling
from primitives and protocols to cryptographic systems.

Given these concerns, the purpose of this SoK is three-fold:

1) We clarify the current capabilities and limitations of
computer-aided cryptography.

2) We present a taxonomy of computer-aided cryptography
tools, highlighting their main achievements and important
trade-offs between them.

3) We outline promising new directions for computer-aided
cryptography and related areas.

We hope this will help non-experts better understand the field,
point experts to opportunities for improvement, and showcase
to stakeholders (e.g., standardization bodies) the many benefits
of computer-aided cryptography.

A. Structure of the Paper

The subsequent three sections expand on the role of
computer-aided cryptography in three main areas. Section II
covers how to establish design-level security guarantees,
using both symbolic and computational approaches. Sec-
tion III covers how to develop functionally correct and ef-
ficient implementations. Section IV covers how to establish
implementation-level security guarantees, with a particular
focus on protecting against digital side-channel attacks.

We begin each of these sections with a critical review
of the topic, explaining why the considered guarantees are
important, how current tools and techniques outside CAC may
fail to meet these guarantees, how CAC can help, the fine-print
caveats of using CAC, and necessary technical background.
We then taxonomize the state of the art tools for meeting
these guarantees. To do this, we identify criteria along four
main categories: accuracy (A) of modeling/analysis, scope (S)
of modeling/analysis, trust (T), and usability (U). For each
criteria, we label them with one or more categories, explain
their importance, and inline some light discussion about the
tools. The ensuing discussion highlights broader points, such
as main achievements, important takeaways, and research
challenges. Finally, we end each section with references for
further reading. Given the amount of material we wish to
cover, we are unable to be exhaustive in each area, but we
would still like to point to other relevant lines of work.

Sections V and VI then describe important case studies.
Having described how CAC tools can address the challenges
of a particular problem area, in our first case study (Sec-
tion V), we examine how to combine tools and consolidate
the guarantees they can provide. In our second case study
(Section VI), we distill the lessons learned from the computer-
aided cryptography community’s involvement in the TLS 1.3
standardization effort.

Finally, in Section VII, we close out with recommendations
to paper authors, tool developers, and standardization bodies
on how best to move the field of computer-aided cryptography
forward.

II. DESIGN-LEVEL SECURITY

In this section, we focus on the role of computer-aided
cryptography in establishing design-level security guarantees.
Over the years, two flavors of design-level security have been
developed in two largely separate communities—symbolic se-
curity (in the formal methods community) and computational
security (in the cryptography community). This has led to two
complementary strands of work, so we aim to cover them both.

A. Critical Review

Why is design-level security important? Validating cryp-
tographic designs through mathematical arguments is perhaps
the only way to convincingly demonstrate that they are secure
against entire classes of attacks. One class of attacks naturally
captured in the symbolic model are attacks that exploit flaws
in a protocol’s logic. These range from basic man-in-the-
middle or reflection attacks to complex attacks involving 18+
messages to drive the protocol into an insecure state [2], [8].
The computational model goes beyond the symbolic model, at
the expense of more intricate proofs and less automation, by
reasoning about the probability that an (often computationally
bounded) attacker breaks a design. This applies to primitives as
well as protocols and systems. For the latter, the computational
model considers both attacks in the underlying cryptographic
primitives and flaws that arise from their composition.

How can design-level security fail? The current modus
operandi of validating the security cryptographic designs using
pen-and-paper arguments is alarmingly fragile. This is for two
main reasons:
• Erroneous arguments. Writing security arguments is tedious

and error-prone, even for experts. Because they are primarily
done on pen-and-paper, errors are difficult to catch and can
go unnoticed for years.

• Inappropriate modeling. Even when security arguments are
correct, attacks can lie outside the model in which they are
established. This is a known and common pitfall: To make
(pen-and-paper) security analysis tractable, models are often
heavily simplified into a cryptographic core that elides many
details about cryptographic designs and attacker capabilities.
Unfortunately, unaccounted attacks are often found outside
of this core.
How are these failures being addressed outside CAC? To

minimize erroneous arguments, the game-based code-playing
methodology [9] advocates decomposing security arguments
into more elementary steps that are easier to understand
and get right. However, pen-and-paper proofs based on this
methodology remain error-prone, which has led to suggestions
of using computer-aided tools [10].

To reduce the risks of inappropriate modeling, real-world
provable security [11]–[13] advocates making security ar-
guments in more accurate models of cryptographic designs



and adversarial capabilities. Unfortunately, the added realism
comes with greater complexity, which in turn complicates
security analysis.

How can computer-aided cryptography help? Computer-
aided cryptography tools are effective for detecting flaws in
cryptographic designs and for managing the complexity of
security proofs. They crystalize the benefits of code-based
game playing and of real-world provable security, and deliver
trustworthy analyses for complex designs that are beyond
reach of pen-and-paper analysis.

What are the fine-print caveats? Computer-aided cryptog-
raphy artifacts are only as good as their top-level statements.
However, understanding these statements can be challenging,
as most security proofs rely on implicit assumptions, e.g.,
adequacy of the model for the symbolic model, or intractabil-
ity of computational problems and availability of a perfect
source of randomness for the computational model. Without
proper guidance, reconstructing top-level statements can be
challenging, even for experts. (As an analogy, it is hard even
for a talented mathematician to track all dependencies in a
textbook.) Finally, as any software, tools may have bugs.

What background do I need to know? The symbolic model
has mostly been applied to cryptographic protocols, rather
than non-interactive low-level primitives. This is because the
goal of the symbolic model is to reduce the complexity of
analyzing protocols by assuming the lower-level components
are ideal (e.g., an adversary can only decrypt ciphertexts if
it has knowledge of the entire secret key). This idealization
ensures that security protocol can be modeled and verified
using symbolic logic, which lends to automatically searching
for and unveiling logical flaws in complex cryptographic
protocols and systems.

The computational model has been applied to a range of
cryptographic schemes, spanning primitives, protocols, and
systems. Overwhelmingly, cryptographic designs are proba-
bilistic, and security notions are modeled by probabilistic
experiments, traditionally called games. A design is secure
as long as security breaks happen with negligible probability
(e.g., a signature scheme is unforgeable if an adversary has
a negligible probability to forge a valid signature). Most
proofs in the computational model are reductionist, and show
that succesfful attacks can be turned into algorithms for
solving computationally intractable problems. The quality of
reductionist arguments depends on the choice of the target
problems and the computational complexity (e.g., linear or
polynomial) of the reduction. Computational proofs often
decompose reasoning into elementary steps, and interleave
steps about “hops” between probabilistic experiments (e.g.,
proving that an event is equiprobable in the two experiments),
and steps about single probabilistic experiments (e.g., proving
that an event has bounded probability).

Game-based proofs in the computational model do not
scale well to complex cryptographic systems such as secure
messaging or cloud computing. Moreover, a general problem
with secure-design arguments is whether these hold in arbi-
trary contexts. To deal with these problems, compositional
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TABLE I
OVERVIEW OF TOOLS FOR SYMBOLIC SECURITY ANALYSIS. SEE
SECTION II-B FOR MORE DETAILS ON COMPARISON CRITERIA.

approaches to computational security proofs have also been
proposed that permit using a divide-and-conquer approach.
One such approach, that is widely used to reason about
cryptographic protocols of varying complexity is based on the
simulation paradigm [14].

B. Symbolic Tools: State of the Art

Table I presents a taxonomy of modern, general-purpose
symbolic tools. Tools are listed in three groups (demarcated
by dashed lines): unbounded trace-based tools, bounded trace-
based tools, and equivalence-based tools; within each group,
top-level tools are listed alphabetically. Tools are categorized
as follows.

Unbounded number of sessions (A). Can the tool analyze
an unbounded number of protocol sessions? There exist proto-
cols that are secure when at most N sessions are considered,
but become insecure with more than N sessions [34]. Tools
that explicitly limit the analyzed number of sessions perform
bounded analysis ( ): They do not consider attacks beyond
the cut-off. Tools that offer unbounded analysis ( ) can prove
the absence of attacks within the model, but at the cost of
undecidability [35]. However, in practice, modern unbounded
tools typically substantially outperform bounded tools even for
a small number of sessions, and therefore enable the analysis
of more complex models.

Equational theories (S). Equational theories capture mathe-
matical identities that hold in the underlying model. These are
important for broadening analysis—ignoring valid equations
implicitly weakens the class of adversaries considered. All



tools support equational theories, but the range of equational
theories supported varies. The finer details often make them
incomparable, and even where they overlap, they are not
all equally effective for analyzing concrete protocols. We
provide a coarse classification: Fixed ( ), without associative-
commutative (AC) axioms ( ), and with AC axioms ( ). At a
high-level, extra support for axioms enables detecting a larger
class of attacks, see, e.g., [36], [37].

Global mutable state (S). Does the tool support verification
of protocols with global mutable state? Many real-world proto-
cols involve databases, registers, key servers, making support
for global mutable state crucial for considering complex attack
scenarios [25].

Trace properties (S). Does the tool support verification of
trace properties? Trace properties state that a bad event never
occurs on any execution trace. Secrecy and authentication are
prime examples of trace properties. For example, a protocol
preserves secrecy if, for any execution trace, secret data is
absent from adversarial knowledge.

Equivalence properties (S). Does the tool support ver-
ification of equivalence properties? Equivalence properties
capture that an adversary is unable to distinguish between
two executions. Indistinguishability-based secrecy, unlinkabil-
ity, anonymity are prime examples. Equivalence properties
capture security notions that cannot (naturally or precisely)
be expressed as trace properties. They are inherently more
difficult to verify than trace properties, because they involve
relations between traces instead of single traces, and tool
support for such properties is substantially less mature than
for trace properties. There are several notions of equivalence:
trace (t), labeled bisimilarity (l), open bisimilarity (o), and
diff equivalence (d). For lack of space, we only discuss the
two most used notions (see Section II-C). For a more formal
treatment of all these notions, see the survey by Delaune and
Hirschi [38].

Link to implementation (T). Can the tool extract/generate
executable code from specifications in order to link symbolic
security guarantees to implementations?
† Abstractions (U). Does the tool use abstraction? Algo-

rithms may use abstraction to overestimate attack possibilities,
e.g., by computing a superset of the adversary’s knowledge.
This can yield more efficient and fully automatic analysis
systems and can be a workaround to undecidability, but comes
at the cost of incompleteness, i.e., false attacks may be found
or the tool may terminate with an indefinite answer.
‡ Interactive mode (U). Does the tool support an inter-

active analysis mode? Interactive modes generally trade off
automation for control. While push-button tools are certainly
desirable, they may fail opaquely (perhaps due to undecid-
ability barriers), leaving it unclear or impossible to proceed.
Interactive modes can allow users to analyse failed automated
analysis attempts, inspect partial proofs, and to provide hints
and guide analyses to overcome any barriers.
§ Independent verifiability (T). Are the analysis results

independently machine-checkable? Symbolic tools implement
complex verification algorithms and decision procedures,

which may be buggy and return incorrect results. This places
them in the trusted computing base. The one exception is
scyther-proof [23], which generates proof scripts that can be
machine-checked in the Isabelle theorem prover [39].

Specification language (U). How are protocols specified?
The categorizations are domain-specific security protocol lan-
guages (.), π-calculus based (?), multiset rewriting (∗), and
general programming language (�). Their differences are too
nuanced to describe here, but interested readers should refer
to the cited tool papers for more information.

C. Symbolic Security: Discussion

Achievements: Symbolic proofs for real-world case studies.
The applications of symbolic tools are too vast to survey here,
but ProVerif and Tamarin stand out as having been used to
analyze large, real-world protocols. ProVerif has been used to
analyze TLS 1.0 [40], TLS 1.3 [3], Signal [41], and Noise
protocols [42]. Tamarin has been used to analyze the 5G
authentication key exchange protocol [43], TLS 1.3 [2], [4],
and the DNP3 SAv5 power grid protocol [44]. ProVerif and
Tamarin offer unprecedented combinations of scalability and
expressivity, which enables them to deal with complex systems
and properties.

Challenge: Verifying equivalence properties. Many se-
curity properties can be modeled accurately by equivalence
properties, but their verification is limited: Either one bounds
the number of sessions or one has to use the very strong
notion of diff-equivalence, which cannot handle many desired
properties, e.g., vote privacy in e-voting and unlinkability.
Diff-equivalence, first introduced in ProVerif [45] and later
adopted by Maude-NPA [46] and Tamarin [47], remains the
only fully automated approach for proving equivalences for an
unbounded number of sessions. However, trace equivalence is
arguably the most adequate for formalizing privacy properties.
For the bounded setting, recent developments include more
support for more equational theories (AKISS, DEEPSEC),
for protocols with else branches (APTE, AKISS, DEEPSEC)
and for protocols whose inputs are not entirely determined
by their inputs (APTE, DEEPSEC). There have also been
performance improvements based on partial order reduction
(APTE, DEEPSEC) or graph planning (SAT-Equiv). Still,
verifying general equivalence properties for an unbounded
number of sessions remains a challenge.

D. Computational Tools: State of the Art

Table II presents a taxonomy of general-purpose computa-
tional tools. Tools are listed alphabetically and are categorized
as follows.

Automation (U). All tools provide some sort of automation,
so here we single out tools that can automatically find security
proofs.

Composition (U). Does the tool support decomposing secu-
rity arguments for cryptographic systems into security argu-
ments for their core components? Compositional reasoning is
essential to guarantee scalable analysis.



Tool Auto Comp CS GH Unary Link TCB
AutoG&P� [48] self, SMT
CertiCrypt.� [49] Coq
CryptHOL� [50] Isabelle
CryptoVerif?� [51] self
EasyCrypt.� [52] self, SMT
F7� [16] self, SMT
F∗� [53] self, SMT
FCF� [54] Coq
ZooCrypt� [55] self, SMT

Concrete security (CS) Game hopping (GH)
– security + efficiency – automation focus
– security only – expressiveness focus
– no support – no support

Unary Specification language
– automation focus ? – process calculus
– expressiveness focus . – imperative
– no support � – functional

TABLE II
OVERVIEW OF TOOLS FOR COMPUTATIONAL SECURITY ANALYSIS. SEE

SECTION II-D FOR MORE DETAILS ON COMPARISON CRITERIA.

Concrete security (A). Can the tool be used to prove
concrete bounds on success probability and attacker execution
time? We consider tools with no such support ( ), with support
for concrete success probabilities only ( ) and for both ( ).

Game hopping (U). Is there support for game hopping,
i.e., does the tool support common principles of game-based
proofs (bridging steps, failure event steps, hybrid arguments)
or not ( )? If so, is the emphasis put on automation ( )
or on being able to express arbitrary arguments ( ), i.e., on
expressivity. We note that in F7 and F∗, game hopping is based
on ideal functionalities and justified externally (see [56] for
more information).

Unary reasoning (U). Is there support for reasoning about
strong invariants or probabilities of events over a single
program execution or not ( )? If so, is the emphasis put on
automation ( ), in which case the reasoning is usually only
about deterministic yes/no properties, or on being able to ex-
press arbitrary probabilistic properties ( ), i.e., on expressivity.

Link to implementation (T). Can the tool extract/generate
executable code from specifications in order to link computa-
tional security guarantees to implementations?

Trusted computing base (T). What lies in the trusted
computing base (TCB)? A well established general-purpose
theorem prover such as Coq or Isabelle is usually held as the
minimum TCB for proof checking. Most tools, however, rely
on an implementation of the tool logics in a general purpose
language that must be trusted (self). Automation often relies
on general-purpose SMT solvers.

Specification language (U). What kind of specification
language is used? All tools support some functional language
core for expressing the semantics of operations (�). Some tools
support an imperative language (.) in which to write security
games, while others rely on a process calculus (?).

E. Computational Security: Discussion

Achievements: Machine-checked security for real-world
cryptographic designs. Computational tools have progressed
considerably over the years, to the point that they are now

being used to verify the security of real-world cryptographic
primitives, protocols, and systems. CryptoVerif has been used
for a number of protocols, including TLS 1.3 [3], Signal [41],
and WireGuard [57]. EasyCypt has been used for the Amazon
Web Service (AWS) key management system [58] and the
SHA-3 standard [59]. F7 was used to build miTLS, a refer-
ence implementation of TLS 1.2 with verified computational
security at the code-level [60], [61]. F∗ was used to implement
and verify the security of the TLS 1.3 record layer [1].

Takeaway: CryptoVerif is good for highly automated
computational analysis of protocols and systems. CryptoVerif
is both a proof-finding and proof-checking tool. It works
particularly well for protocols (e.g., key exchange), as it can
produce automatically or with a light guidance a sequence
of proof steps that establish security. One distinctive strength
of CryptoVerif is its input language based on the applied π-
calculus [62], which is well-suited to describing protocols that
exchange messages in sequence. Another strength of Cryp-
toVerif is a carefully crafted modeling of security assumptions
that help the automated discovery of proof steps. In turn,
automation is instrumental to deal with large cryptographic
games and games that contain many different cases, as is often
the case in proofs of protocols.

Takeaway: F∗ is good for analysis of full protocols and
systems. F∗ is a general-purpose verification-oriented program-
ming language. It works particularly well for analyzing cryp-
tographic protocols and systems beyond their crypographic
core. Computational proofs in F∗ rely on transforming a
detailed protocol description through a series of game trans-
formations into a final (ideal) program by relying on ideal
functionalities for cryptographic primitives. Formal validation
of the intermediate transformations is carried out manually,
with some help from the F∗ verification infrastructure. Formal
verification of the final program is done fully within F∗. This
approach is driven by the insight that critical security issues,
and therefore also potential attacks, often arise only in detailed
descriptions of full protocols and systems (compared to when
reasoning about cryptographic cores). The depth of this insight
is reflected by the success of F∗-based verification both in
helping discovering new attacks on real-world protocols like
TLS [8], [63] as well as in verifying their concrete design and
implementation [1], [60].

Takeaway: EasyCrypt is the closest to pen-and-paper cryp-
tographic proofs. EasyCrypt supports game-hopping through a
general-purpose relational program logic that captures many of
the common game-hopping techniques, e.g., bridging, failure
event, and reduction steps. This is complemented by libraries
that support other common techniques, e.g., the PRF/PRP
switching lemma, hybrid arguments, and lazy sampling. Over-
all, the game sequences in EasyCrypt proofs closely matches
pen-and-paper arguments—when the latter are correct. A con-
sequence is that EasyCrypt is amenable to proving security of
primitives, as well as protocols and systems.

Challenge: Scaling security proofs for cryptographic sys-
tems. Analyzing large cryptographic systems is best done
in a modular way by composing simpler building blocks.



However, cryptographers have long recognized the difficulties
of preserving security under composition [64]. Most game-
based security definitions do not to provide out-of-the-box
composition guarantees, so simulation-based definitions are
the preferred choice for analyzing large cryptographic systems,
with UC being the gold-standard—universally composable
(UC) definitions guarantee secure composition in arbitrary
contexts [65]. Work on developing machine-checked UC
proofs is relatively nascent [66]–[68], but is an important and
natural next step for computational tools.

F. Further Reading

We provide pointers to relevant developments not covered
in this section. Several tools leverage the benefits of automated
verification to support automated synthesis of secure cryp-
tographic designs, mainly in the computational world [55],
[69]–[72]. Cryptographic compilers have been proposed for
verifiable computation [73]–[76], zero-knowledge [77]–[80],
and secure multiparty computation [81] protocols, which are
parametrized by a proof-goal or a functionality to compute.
Some of these compilers are supported by proofs that guaran-
tee that the output protocols are correct and/or secure for every
input specification [82]–[85]. We recommend readers to also
consult other recent surveys in the field. Blanchet [86] surveys
design-level security until 2012 (with a focus on ProVerif).
Cortier et al. [87] survey computational soundness results,
which transfer security properties from the symbolic world
to the computational world.

III. FUNCTIONAL CORRECTNESS AND EFFICIENCY

In this section, we focus on the role of computer-aided
cryptography in developing functionally correct and efficient
implementations.

A. Critical Review

Why are functional correctness and efficiency impor-
tant? To reap the benefits of design-level security guarantees,
concrete implementations must be an accurate translation
of the design proven secure. That is, they must be func-
tionally correct (i.e., have equivalent input/output behavior)
with respect to the design specification. Moreover, to meet
practical deployment requirements, implementations must be
efficient. Cryptographic routines are often on the critical path
for security applications (e.g., for reading and writing TLS
packets or files in an encrypted file system), and so even a
few additional clock-cycles can have a detrimental impact on
system performance.

How can functional correctness and efficiency fail? If per-
formance is not an important goal, then achieving functional
correctness is relatively easy—just use a reference implemen-
tation that does not deviate too far from the specification, so
that correctness is straightforward to argue. However, perfor-
mance demands drive cryptographic code into extreme con-
tortions that make functional correctness difficult to achieve,
let alone prove. For example, OpenSSL is one of the fastest
open source cryptographic libraries; they achieve this speed

in part through the use of Perl code to generate strings of
text that additional Perl scripts interpret to produce input to
the C preprocessor, which ulimately produces highly tuned,
platform-specific assembly code [94]. Many more examples of
high-speed crypto code written at assembly and pre-assembly
levels can be found in SUPERCOP [98], a benchmarking
framework for cryptography implementations.

More broadly, efficiency considerations typically rule out
using high-level languages. Instead, C and assembly are the
de facto tools of the trade, adding memory safety to the
list of important requirements. Indeed, memory errors can
compromise secrets held in memory, e.g., in the Heartbleed
attack [99]. Fortunately, as we discuss below, proving memory
safety is table stakes for most of the tools we discuss.
Additionally, achieving best-in-class performance demands
aggressive, platform-specific optimizations, far beyond what
is achievable by modern optimizing compilers (which are
problematic in their own ways, as we will see in Section IV).
Currently, these painstaking efforts are manually repeated for
each target architecture.

How are these failures being addressed outside CAC?
Given its difficulty, the task of developing high-speed cryp-
tography is currently entrusted to a handful of experts. Even
so, experts make mistakes (e.g., a performance optimization to
OpenSSL’s AES-GCM implementation nearly reached deploy-
ment even though it enabled arbitrary message forgeries [100];
an arithmetic bug in OpenSSL led to a full key recovery
attack [101]), and the current solutions for preventing more
of them are (1) auditing, which is costly in both time and
expertise, and (2) testing, which cannot be complete for the
size of inputs used in cryptographic algorithms. These solu-
tions are also clearly inadequate: Despite widespread usage
and scrutiny, OpenSSL’s cryptographic library libcrypto
reported 24 vulnerabilities between January 1, 2016 and May
1, 2019 [102].

How can computer-aided cryptography help? Crypto-
graphic code is an ideal target for program verification. Such
code is both critically important and difficult to get right. The
use of heavyweight formal methods is perhaps the only way
to attain the high-assurance guarantees expected of them. At
the same time, because the volume of code in cryptographic
libraries is relatively small (compared to, say, an operating sys-
tem), verifying complex, optimized code is well within reach
of existing tools and reasonable human effort. And indeed,
verified cryptographic primitives are already outperforming
their unverified counterparts, as we will see shortly.

What are the fine-print caveats? Functional correctness
makes implicit assumptions, e.g., correct modeling of hard-
ware functional behavior. Another source of implicit assump-
tions is the gap between code and verified artifacts, e.g., veri-
fication is carried on source code, or on a verification-friendly
representation. Moreover, proofs may presuppose correctness
of libraries, e.g., for efficient arithmetic. Finally, as with any
software, verification tools may have bugs.

What background do I need to know? Functional cor-
rectness is the central focus of program verification. An



Tool Memory
safety Automation Parameter-

ized Input language Target(s) TCB

Cryptol + SAW [88] C, Java C, Java SAT, SMT
CryptoLine [89] CryptoLine C Boolector, MathSAT, Singular
Dafny [90] Dafny C#, Java, JavaScript, Go Boogie, Z3
F∗ [53] F∗ OCaml, F#, C, Asm, Wasm Z3, typechecker
Fiat Crypto [6] Gallina C Coq, C compiler
Frama-C [91] C C Coq, Alt-Ergo, Why3
gfverif [92] C C g++, Sage
Jasmin [93] Jasmin Asm Coq, Dafny, Z3
Vale [94], [95] Vale Asm Dafny or F*, Z3
VST [96] Gallina C Coq
Why3 [97] WhyML OCaml SMT, Coq

Automation
– automated – automated + interactive – interactive

TABLE III
OVERVIEW OF TOOLS FOR FUNCTIONAL CORRECTNESS. SEE SECTION III-B FOR MORE DETAILS ON COMPARISON CRITERIA.

implementation can be proved functionally correct in two
different ways: equivalence to a reference implementation, or
satisfying a functional specification, typically expressed as pre-
conditions (what the program requires on inputs) and post-
conditions (what the program guarantees on outputs). Both
forms of verification are supported by a broad range of tools.
A unique aspect of cryptographic implementations is that
corrrectness proofs often rest on non-trivial mathematics, and
therefore require striking a good balance between automation
and user control. Nevertheless, SMT-based automation remains
instrumental for minimizing verification effort, and almost all
tools offer an SMT-based backend.

Functional correctness is overwhelmingly carried out at
source level. A long-standing challenge, then, is how to
carry guarantees to machine code. This can be addressed
using verified compilers, which are supported by a formal
correctness proof. CompCert [103] is a prime example of
moderately optimizing verified compiler for a large fragment
of C. However, the trade-off is that verified compilers typically
come with fewer optimizations than mainstream compilers.

B. Program Verification Tools: State of the Art

Table III presents a taxonomy of program verification tools
that have been used for cryptographic implementation. Tools
are listed alphabetically and are categorized as follows.

Memory-safety (S). Can the tool verify that programs are
memory safe? Memory safety ensures that all runs of a
program are free from memory errors (e.g., buffer overflow,
null pointer dereferences, use after free).

Automation (U). Tools provide varying levels of automa-
tion. We give a coarse classification: automatic tools ( ), tools
that combine automated and interactive theorem proving ( ),
and tools that allow only interactive theorem proving ( ).

Parameterized (U). Can the tool implement and verify pa-
rameterized code? This enables writing and verifying generic
code that can be used to produce different implementations de-
pending on the supplied parameters. For example, Fiat Crypto
can generate elliptic curves implementations parameterized by
a prime modulus; Vale implementations are parameterized by
OS, assembler, and hardware platform.

Input language (U). What is the input language? Many
toolchains use custom verification-oriented languages, such as

Dafny, F∗, Gallina, Jasmin, CryptoLine, and WhyML. Others
take code written in existing languages (e.g., C, Java) as input.

Target(s) (A,S). At what level is the analysis carried out
(e.g., source-level or assembly-level)? Note that tools target-
ing source-level analysis must use verified compilers (e.g.,
CompCert [103]) to carry guarantees to machine-level, which
comes with a performance penalty. Tools targeting assembly-
level analysis sidestep this dilemma, but generally verification
becomes more difficult.

Trusted computing base (T). What lies in the trusted
computing base? Many verification frameworks rely on un-
trusted, building-block verification tools, such as SMT solvers
(e.g., Z3) and interactive theorem provers (e.g., Coq). While
these are acknowledged to be important trust assumptions of
verification tools, verified artifacts tend to rely on additional
trust assumptions, e.g., unverified interoperability between
tools or only verifying small routines in a larger primitive.

C. Discussion

Achievements: Verified primitives are being deployed at
Internet-scale. A recent milestone achievement of computer-
aided cryptography is that verified primitives are finally being
deployed at scale. Verified primitives in the HACL∗ [5] library
have made their way into Mozilla Firefox’s NSS security
engine, and verified elliptic curve implementations in the Fiat
Cryptography library [6] have made their way into Google’s
BoringSSL library.

There are several common insights to their success. First,
verified code needs to be as fast or faster than the code being
replaced. Second, verified code needs to fit the APIs that are
actually in use. Third, it helps if team members work with or
take internships with the companies that take the code. In the
case of HACL∗, it additionally helped that they replaced an
entire ciphersuite, and that they were willing to undertake a
significant amount of non-research work, such as packaging
and testing, that many academic projects stop short of.

Takeaway: Verified implementations are now as fast or
faster than their unverified counterparts. Through decades of
research in formal verification, it was commonly accepted that
the proof burden in verifying complex, optimized code was
exorbitant; verified code would be hard-pressed to compete
with unverified code in terms of performance. Recent advances



Implementation FC CC Tool(s) Target % Faster
evercrypt [102] F∗, Vale 64-bit C, Intel ADX asm 25.92
precomp [104] − Intel ADX asm 25.77
sandy2x [105] − Intel AVX asm 11.15
hacl [102] F∗ 64-bit C 8.69
jasmin [93] Jasmin Intel x86 64 asm 7.88
amd64 [106] Coq, SMT Intel x86 64 asm 6.11
fiat [6] Fiat Crypto 64-bit C 5.39
donna64 [107] − 64-bit C 0.00

Functional correctness (FC), Constant-time (CC)
– verified – partially verified – not verified

TABLE IV
COMPARISON OF CURVE25519 IMPLEMENTATIONS. % FASTER

CALCULATED USING DONNA64 AS THE BASELINE.

in various other domains have challenged this position, produc-
ing verified implementations with competitive performance to
unverified implementations (e.g., IronFleet [108]). Now, in the
cryptography domain, we are seeing verified implementations
that meet and exceed the performance of some of the fastest
unverified implementations.

As a small case study, we look at Curve25519 [109],
a widely used elliptic curve that has received considerable
interest from the applied cryptography community (in setting
new speed records) and the formal methods community (in
verifying that high-speed implementations are correct and se-
cure). We compare a number of Curve25519 implementations
in Table IV. These comprise some of the fastest available
verified and unverified implementations; they are written in
C, assembly, or a combination of both.

To see how they stack up in terms of efficiency, we measure
the number of CPU cycles (median over 5K executions) it
takes to perform scalar multiplication. We report the perfor-
mance increase (% Faster) over donna64 [107], one of the
fastest known (unverified) C implementations. All measure-
ments are collected on a 1.8 GHz Intel i7-8565U with 16 GB
of RAM; hyperthreading and dynamic-processor scaling (e.g.,
Turbo Boost) are disabled. Implementations written in C are
compiled using GCC 9.2 with flag -O3. To summarize, veri-
fied implementations beat unverified implementations in both
portable C implementations and assembly implementations.

Takeaway: Higher performance entails larger verification
effort. Verifying generic, high-level code is typically easier,
but comes with a performance cost. Hand-written assembly
can achieve best in class performance by taking advantage
of hardware-specific optimizations, but verifying such imple-
mentations is quite difficult due to complex side-effects, un-
structured control-flow, and flat structure. Moreover, this effort
must be repeated for each platform. C code is less efficient, as
hardware-specific features are not a part of standard portable
C, but implementations need only be verified once and can
then be run on any platform. Code written in higher-level
languages is even less efficent, but verification becomes much
easier (e.g., memory safety can be obtained for free). These
aspects are discussed in more detail in the Vale and Jasmin
papers [93], [94], [110].

Challenge: Automated “game-hopping” equivalence
proofs. Significant progress could be made if functional cor-

rectness proofs could be solved by providing a sequence of
simple transformations that connect spec to target and relying
on an automatic tool to check these simple transformations.
Promising recent work in this direction [111] demonstrates the
feasibility of the approach. However, the current approaches
are not automatic: neither in finding the “hops” nor in proving
the hops. The latter seems achievable for many useful control-
flow-preserving transformations, whereas the former could be
feasible at least for common control-flow transformations.

Challenge: Functional correctness of common arithmetic
routines. Verifying cryptographic code inevitably involves a
variety of tricky mathematical reasoning that even SMT-based
tools can struggle with. Examples range from proving the cor-
rectness of the Montgomery representations used to accelerate
big-integer computations, to the nuts-and-bolts of converting
between, say, 64-bit words and the underlying bytes. At
present, most verification efforts build this infrastructure from
scratch and customize it for their own particular needs, which
leads to significant duplication of effort across projects. Hence,
an open challenge is to devise a common core of such routines
(e.g., a verified version of the GMP library [112]) that can be
shared across all (or most) verification projects, despite their
reliance on different tools and methodologies.

D. Further Reading

While our principal focus is on cryptographic code, verify-
ing systems code is an important and active area of research.
For example, there has been significant work in verifying
operating systems code [113]–[119], distributed systems [108],
[120], [121], and even entire software stacks [122]. We expect
that these two strands of work will cross paths in the future.

IV. IMPLEMENTATION-LEVEL SECURITY

In this section, we focus on the role of computer-aided
cryptography in establishing implementation-level security
guarantees, with a particular focus on protecting against digital
side-channel attacks. By digital side-channel attacks, we mean
those that can be lauched by observing intentionally exposed
interfaces by the computing platform, including all execution
time variations and observable side-effects in shared resources
such as the cache. This excludes physical side channels such
as power consumption, electromagnetic radiation, etc.

A. Critical Review

Why is implementation-level security important? Although
design-level security can rule out large classes of attacks,
guarantees are proven in a model that idealizes an attacker’s
interface with the underlying algorithms: They can choose
inputs and observe outputs. However, in practice, attackers
can observe much more than just the functional behavior of
cryptographic algorithms. For example, side-channels are in-
terfaces available at the implementation-level (but unaccounted
for at the design-level) from which information can leak as
side-effects of the computation process (e.g., timing behavior,
memory access patterns). And indeed, these sources of leakage



Tool Target Method Synthesis Sound Complete Public
inputs

Public
outputs

Control
flow

Memory
access

Variable-
time op.

ABPV13 [123] C DV
CacheAudit [124] Binary Q
ct-verif [125] LLVM DV
CT-Wasm [126] Wasm TC
FaCT [127] LLVM TC
FlowTracker [128] LLVM DF
Jasmin [93] asm DV
KMO12 [129] Binary Q
Low∗ [130] C TC
SC Eliminator [131] LLVM DF
Vale [94] asm DF
VirtualCert [132] x86 DF

Method
TC – type-checking DF – data-flow analysis DV – deductive verification Q – Quantitative

TABLE V
OVERVIEW OF TOOLS FOR SIDE-CHANNEL RESISTANCE. SEE SECTION IV-B FOR MORE DETAILS ON TOOL FEATURES.

are devastating—key-recovery attacks have been demonstrated
on real implementations, e.g., on RSA [133] and AES [134].

How can implementation-level security fail? The prevailing
technique for protecting against digital side-channel attacks
is to follow constant-time coding guidelines [135]. We stress
that the term is a bit of a misnomer: The idea of constant-
time is that an implementation’s logical execution time (not
wall-clock execution time) should be independent of the values
of secret data; it may, however, depend on public data, such
as input length. To achieve this, constant-time implementions
must follow a number of strict guidelines, e.g., they must avoid
variable-time operations, control flow, and memory access
patterns that depend on secret data. Unfortunately, complying
with constant-time coding guidelines forces implementers to
avoid natural but potentially insecure programming patterns,
making enforcement error-prone.

Even worse, the observable properties of a program’s exe-
cution are generally not evident from source code alone. Thus,
software-invisible optimizations, e.g., compiler optimizations
or data-dependent ISA optimizations, can degrade/eliminate
countermeasures implemented at source-code level. Also, pro-
grammers also assume that the computing machine provides
memory isolation, which is a strong and often unrealistic
assumption in general-purpose hardware (e.g., due to isolation
breaches allowed by speculative execution mechanisms).

How are these failures being addressed outside CAC?
To check that implementations correctly adhere to constant-
time coding guidelines, current solutions are (1) auditing,
which is costly in both time and expertise, and (2) testing,
which commits the fallacy of interpreting constant-time to be
constant wall-clock time. These solutions are inadequate: A
botched patch for a timing vulnerability in TLS [136] led to the
Lucky 13 timing vulnerability in OpenSSL [137]; in turn, the
Lucky 13 patch led to yet another timing vulnerability [138]!

To prevent compiler optimizations from interfering with
constant-time recipes applied at the source-code level, imple-
menters simply avoid using compilers at all, instead choosing
to implement cryptographic routines and constant-time recipes
directly in assembly. Again, checking that countermeasures are
implemented correctly is done through auditing and testing,
but in a much more difficult, low-level setting.

Dealing with micro-architectural attacks that breach mem-
ory isolation, such as Spectre and Meltdown [139], [140], is
still an open problem and seems to be out of reach of purely
software-based countermeasures if there is to be any hope of
achieving decent performance.

How can computer-aided cryptography help? Program
analysis and verification tools can automatically (or semi-
automatically) check whether a given implementation meets
constant-time coding guidelines, thereby providing a formal
foundation supporting heretofore informal best practices. Even
further, some tools can automatically repair code that violates
constant-time into compliant code. Still, these approaches
necessarily abstract the leakage interface available to real-
world attackers. The upside is that these abstractions are
precisely defined, thus clarifying the gap between between
formal leakage models and real-world leakage.

What are the fine-print caveats? Implementation-level
proofs are only as good as their models, e.g., of physically
observable effects of hardware. Furthermore, new attacks may
challenge these models. Implicit assumptions arise from gaps
between code and verified artifacts.

What background do I need to know? Formal reason-
ing about side-channels is based on a leakage model. This
model is defined over the semantics of the target language,
abstractly representing what an attacker can observe during
the computation process. For example, the leakage model for
a branching operation may leak all values associated with
the branching condition. After having defined the appropriate
leakage models, proving that an implementation is secure
(with respect to the leakage models) amounts to showing
that the leakage accumulated over the course of execution is
independent of the values of secret data. This property is an
instance of observational non-interference.

The simplest leakage model is the program counter secu-
rity model, where the program control-flow is leaked during
execution [141]. The most common leakage model, namely
constant-time, additionally assumes that memory accesses are
leaked during execution. This leakage model is usually taken
as the best practice to remove exploitable execution time
variations and a best-effort against cache-attacks lauched by
co-located processes.



B. Digital Side-Channel Tools: State of the Art

Table III presents a taxonomy of tools for verifying digital
side-channel resistance. Tools are listed alphabetically and are
categorized as follows.

Target (A,S). At what level is the analysis performed
(e.g., source, assembly, binary)? To achieve the most reliable
guarantees, analysis should be performed as close as possible
to the executed machine code.

Method (A). The tools we consider all provide a means
to verify absence of timing leaks in a well-defined leakage
model, but using different techniques:
• Static analysis techniques use type systems or data-flow

analysis to keep track of data dependencies from secret
inputs to problematic operations.

• Quantitative analysis techniques that construct a rich model
of a hardware feature, e.g, the cache, and derive an upper-
bound on the leaked information.

• Deductive verification techniques to prove that the leakage
traces of two executions of the program coincide if the pub-
lic parts of the inputs match. These techniques are closely
related to the techniques used for functional correctness.

Type-checking and data-flow analysis are more amenable to
automation, and they guarantee non-interference by excluding
all programs that could pass secret information to an operation
that appears in the trace. The emphasis on automation, how-
ever, limits the precision of the techniques, which means that
secure programs may be rejected by the tools (i.e., they are
not complete). Tools based deductive verification are usually
complete, but require more user interaction. In some cases,
users interact with the tool by annotating code, and in others
the users use an interactive proof assistant to complete the
proof. It is hard to conciliate a quantitative bound on leakage
with standard cryptographic security notions, but such tools
can also be used to prove a zero-leakage upper bound, which
implies non-interference in the corresponding leakage model.

Synthesis (U). Can the tool take an insecure program and
automatically generate a secure program? Tools that support
synthesis (e.g., FaCT [127] and SC Eliminator [131]) can
automatically generate secure implementations from insecure
implementations. This allows developers to write code natu-
rally with constant-time coding recipes applied automatically.

Soundness (A, T). Is the analysis sound, i.e., it only deems
secure programs as secure? Note that this is our baseline filter
for consideration, but we make this explicit in the table.

Completeness (A, S). Is the analysis complete, i.e., it only
deems insecure programs as insecure?

Public input (S). Does the tool support public inputs? Sup-
port for public inputs allows differentiating between public and
secret inputs. Implementations can benignly violate constant-
time policies without introducing side-channel vulnerabilities
by leaking no more information than public inputs of compu-
tations. Unfortunately, tools without such support would reject
these implementations as insecure; forcing execution behaviors
to be fully input independent may lead to large performance
overheads.

Public output (S). Does the tool support public outputs?
Similarly, support for public outputs allows differentiating be-
tween public and secret outputs. The advantages to supporting
public outputs is the same as those for supporting public
inputs: for example, branching on a bit that is revealed to
the attacker explicitly is fine.

Control flow leakage (S). Does the tool consider control-
flow leakage? The leakage model includes the list of program
memory addresses accessed during program execution.

Memory access leakage (S). Does the tool consider memory
access pattern leakage? The leakage model includes the list of
data memory addresses accessed during program execution.

Variable-time operation leakage (S). Does the tool consider
variable-time operation leakage? The leakage model includes
the inputs to variable-time operations classified according to
timing-equivalent ranges.

C. Discussion

Achievements: Automatic verification of constant-time
real-world code. There are several tools that can perform
verification of constant-time code automatically, both for high-
level code and low-level code. These tools have been applied
to real-world libraries. For example, portions of the assembly
code in OpenSSL have been verified using Vale [94], high-
speed implementations of SHA-3 and TLS 1.3 ciphersuites
have been verified using Jasmin [93], and various off-the-shelf
libraries have been analyzed with FlowTracker [128].

Takeaway: Lowering the target provides better guarantees.
Of the surveyed tools, several operate at the level of C code;
others operate at the level of LLVM assembly; still others
operate at the level of assembly or binary. The choice of target
is important. To obtain a faithful correspondence with the ex-
ecutable program under an attacker’s scrunity, analysis should
be performed as close as possible to the executed machine
code. Given that mainstream compilers (e.g., GCC and Clang)
are known to optimize away defensive code and even introduce
new side-channels [142], compiler optimizations can interfere
with countermeasures deployed and verified at source-level.

Challenge: Secure, constant-time preserving compilation.
Given that mainstream compilers can interfere with side-
channel countermeasures, many cryptography engineers avoid
using compilers at all, instead choosing to implement crypto-
graphic routines directly in assembly, which means giving up
the benefits of high-level languages.

An alternative solution is to use secure compilers that carry
source-level countermeasures along the compilation chain
down to machine code. This way, side-channel resistant code
can be written using portable C, and the secure compiler takes
care of preserving side-channel resistance to specific architec-
tures. Barthe et al. [143] laid the theoretical foundations of
constant-time preserving compilation. These ideas were sub-
sequently realized in the verified CompCert C compiler [144].
Unfortunately, CompCert-generated assembly code is not as
efficient as that generated by GCC and Clang, which in turn
lags the performance of hand-optimized assembly.



Challenge: Protecting against micro-architectural attacks.
The constant-time policy is designed to capture logical timing
side channels in a simple model of hardware. Unfortunately,
this simple model is inappropriate for modern hardware, as
microarchitectural features, e.g., speculative or out-of-order
execution, can be used for launching devastating side-channel
attacks. Over the last year, the security world has been
shaken by a series of attacks, including Spectre [139] and
Meltdown [140]. A pressing challenge is to develop notions
of constant-time security and associated verification methods
that account for microarchitectural features.

Challenge: Rethinking the hardware-software contract
from secure, formal foundations. An instruction set archi-
tecture (ISA) describes (usually informally) what one needs
to know to write a functionally correct program [145], [146].
However, current ISAs are an insufficient specification of
the hardware-software contract when it comes to writing
secure programs [147]. They do not capture hardware features
that affect the temporal behavior of programs, which makes
carrying side-channel countermeasures at the software-level to
the hardware-level difficult.

To rectify this, researchers have called on new ISA designs
that expose, for example, the temporal behaviors of hardware,
which can lend to reasoning about them in software [147].
This, of course, poses challenging and competing requirements
for hardware architects, but we believe developing formal
foundations for verification and reasoning about security at
the hardware-software interface can help. This line of work
seems also to be the only path that can lead to a sound, formal
treatment of micro-architectural attacks.

D. Further Reading

For lack of space, we had to omit many lines of relevant
work. There is a large body of work on verifying side-channel
resistance in hardware [148]–[152]. There are also many tools
that focus on verifying masked implementations, which aim to
protect against differential power analysis attacks [153]–[158].

V. CASE STUDY I: CONSOLIDATING GUARANTEES

Previous sections focus on specific guarantees: design-level
security, functional correctness, efficiency, and side-channel
resistance. This case study focuses on unifying approaches that
can combine these guarantees. This is a natural and important
step towards the Holy Grail of computer-aided cryptography:
to deliver guarantees on executable code that match the
strength and elegance of guarantees on cryptographic designs.

Table VI collects implementations that verifiably meet more
than one guarantee. Implementations are grouped by year
(demarcated by dashed lines), starting from 2014 and ending in
2019; within each year, implementations listed alphabetically
by author. We report on the primitives included, the languages
targeted, the tools used, and the guarantees met.

Computational security. We categorize computational se-
curity guarantees as follows: verified ( ), partially veri-
fied ( ), not verified ( ), and not applicable (−). The
HACL∗-related implementations are partially verified, as only

AEAD primitives have computational proofs, which are semi-
mechanized [1]. Security guarantees do not apply to, e.g.,
elliptic curve implementations or bignum code.

Functional correctness. We categorize functional correct-
ness guarantees as follows: target-level ( ), source-level ( ),
and not verified ( ). Target-level guarantees can be achieved
in two ways: Either guarantees are established directly on
assembly code, or guarantees are established at source level
and a verified compiler is used.

Efficiency. We categorize efficiency as follows: comparable
to assembly reference implementations ( ), comparable to
portable C reference implementations ( ), and slower than
portable C reference implementations ( ).

Side-channel resistance. We categorize side-channel resis-
tance guarantees as follows: target-level ( ), source-level ( ),
and not verified ( ).

Takeaway: Existing tools can be used to achieve the
“grand slam” of guarantees for complex cryptographic
primitives. Ideally, we would like computational security
guarantees, (target-level) functional correctness, efficiency, and
(target-level) side-channel guarantees to be connected in a
formal, machine-checkable way (the “grand slam” of guar-
antees). Many implementations come close, but so far, only
one meets all four. Almeida et al. [59] formally verify an
efficient implementation of the sponge construction from the
SHA-3 standard. It connects proofs of RO (random oracle)
indifferentiability for a pseudo-code description of the sponge
construction, and proofs of functional correctness and side-
channel resistance for an efficient, vectorized, implementation.
The proofs are constructed using EasyCrypt and Jasmin.
Other works focus on either provable security or efficiency,
plus functional correctness and side-channel resistance. This
disconnect is somewhat expected. Provable security guarantees
are established for pseudo-code descriptions of constructions,
whereas efficiency considerations demand non-trivial opti-
mizations at the level of C or assembly.

Takeaway: Integration can deliver strong and intuitive
guarantees. Interpreting verification results that cover multiple
requirements can be very challenging, especially because they
may involve (all at once) designs, reference implementations,
and optimized assembly implementations. To simplify their in-
terpretation, Almeida et al. [161] provide a modular methodol-
ogy to connect the different verification efforts, in the form of
an informal meta-theorem, which concludes that an optimized
assembly implementation is secure against implementation-
level adversaries with side-channel capabilities. The meta-
theorem states four conditions: (i) the design must be prov-
ably black-box secure in the (standard) computational model;
(ii) the design is correcly implemented by a reference imple-
mentation; (iii) the reference implementation is functionally
equivalent to the optimized implementation; (iv) the optimized
implementation is protected against side-channels. These con-
ditions yield a clear separation of concerns, which reflects the
division of the previous sections.

Takeaway: Achieving broad scope and efficiency. As
Table VI illustrates, many implementations target either C



Implementation(s) Target(s) Tool(s) used Computational
security

Functional
correctness Efficiency Side-channel

resistance
RSA-OEAP [159] C EasyCrypt, Frama-C, CompCert
Curve25519 scalar mult. loop [106] asm Coq, SMT −
HMAC-SHA-2 [160] C FCF, VST, CompCert
MEE-CBC [161] C EasyCrypt, Frama-C, CompCert
Salsa20, AES, ZUC, FFS, ECDSA, SHA-3 [162] Java, C Cryptol, SAW
Curve25519 [163] OCaml F∗, Sage −
Salsa20, Curve25519, Ed25519 [93] asm Jasmin
IronClad (SHA-2, Poly1305, AES-CBC) [94] asm Dafny, BoogieX86
HMAC-DRBG [164] C FCF, VST, CompCert
HACL∗1 [5] C F∗

HACL∗1 [5] C F∗, CompCert
HMAC-DRBG [165] C Cryptol, SAW
SHA-3 [59] asm EasyCrypt, Jasmin
ChaCha20, Poly1305 [110] asm EasyCrypt, Jasmin
BGW multi-party computation protocol [166] OCaml EasyCrypt, Why3
Curve25519, P-256 [6] C Fiat Crypto −
Poly1305, AES-GCM [95] asm F∗, Vale
Bignum code4 [89] C CryptoLine −
WHACL∗1, LibSignal∗ [167] Wasm F∗

EverCrypt2 [102] C F∗

EverCrypt3 [102] asm F∗, Vale

Computational security Functional correctness Efficiency Side-channel resistance
– verified – target-level – comparable to asm ref – target-level
– partially verified – source-level – comparable to C ref – source-level
– not verified – not verified – slower than C ref – not verified

− – not applicable
1(ChaCha20, Salsa20, Poly1305, SHA-2, HMAC, Curve25519, Ed25519) 2(MD5, SHA-1, SHA-2, HMAC, Poly1305, HKDF, Curve25519, ChaCha20)
3(AES-GCM, ChaCha20, Poly1305, SHA-2, HMAC, HKDF, Curve25519, Ed25519, P-256) 4(In NaCl, wolfSSL, OpenSSL, BoringSSL, Bitcoin)

TABLE VI
VERIFIED CRYPTOGRAPHIC IMPLEMENTATIONS AND THEIR FORMAL GUARANTEES.

or assembly. This involves tradeoffs between the portability
and relatively easy verification of C code, and the efficiency
that can be gained via hand-tuned assembly. EverCrypt [102]
is one of the first systems to target both. This garners the
advantages of both, and it helps explain, in part, the broad
scope of algorithms EverCrypt covers. Generic functionality
and outer loops can be efficiently written and verified in C,
whereas performance-critical cores can be verified in assem-
bly. Soundly mixing C and assembly requires careful modeling
of interoperation between the two, including platform and
compiler-specific calling conventions, and differences in the
“natural” memory and leakage models used to verify C versus
assembly [95], [102].

VI. CASE STUDY II: LESSONS LEARNED FROM TLS

The Transport Layer Security (TLS) protocol is widely used
to establish secure channels on the Internet, and is arguably
the most important real-world deployment of cryptography to
date. Before TLS version 1.3, the protocol’s design phases did
not involve substantial academic analysis, and the process was
highly reactive: When an attack was found, interim patches
would be released for the mainstream TLS libraries or a
longer-term fix would be incorporated in the next version
of the standard. This resulted in an endless cycle of attacks
and patches. Given the complexity of the protocol, early
academic analyses considered only highly simplified models.
However, once the academic community started considering
more detailed aspects of the protocol, many new attacks were
discovered, e.g., [168], [169].

The situation changed substantially during the proactive

design process of TLS version 1.3: The academic community
was actively consulted and encouraged to provide analysis
during the process of developing multiple drafts. (See [170]
for a more detailed account of TLS’s standardization history.)

On the computer-aided cryptography side of things, there
were substantial efforts in verifying implementations of TLS
1.3 [1], [3] and using tools to analyze symbolic [2]–[4] and
computational [3] models of TLS. Below we collect the most
important lessons learned from TLS throughout the years.

Lesson: The process of formally specifying and verifying
a protocol can reveal flaws. Prior work demonstrates that
the process of formally verifying TLS, and perhaps even just
formally specifying it, can reveal flaws. The implementation of
TLS 1.2 with verified cryptographic security by Bhargavan et
al. [60] discovered new alert fragmentation and fingerprinting
attacks and led to the discovery of the Triple Handshake
attacks [8]. The symbolic analysis of TLS 1.3 draft 10 using
Tamarin by Cremers et al. [2] uncovered a potential attack
allowing an adversary to impersonate a client during a PSK-
resumption handshake, which was fixed in draft 11. The
symbolic and computational analysis of TLS 1.3 draft 18 using
ProVerif and CryptoVerif by Bhargavan et al. [3] uncovered
a new attack on 0-RTT client authentication that was fixed
in draft 13. The symbolic analysis draft 21 using Tamarin by
Cremers et al. [4] revealed unexpected behavior that inhibited
certain strong authentication guarantees. In nearly all cases,
these discoveries led to improvements to the protocol, and
otherwise clarified documentation of security guarantees.

Lesson: Cryptographic protocol designs are moving tar-
gets; machine-checked proofs can be more easily updated.



The TLS 1.3 specification was a rapidly moving target, with
significant changes being effected on a fairly regular basis.
As changes were made between a total of 28 drafts, previous
analyses were often rendered stale within the space of a few
months, requiring new analyses and proofs. An important
benefit of machine-checked analyses and proofs over their
manual counterparts is that they can be more easily updated
from draft to draft as the protocol evolves [2]–[4]. Moreover,
machine-checked analyses and proofs can ensure that new
flaws are not introduced as components are changed.

Lesson: Standardization processes can facilitate analysis
by embracing minor changes that simplify security argu-
ments and help modular reasoning. In contrast to other
protocol standards, the TLS 1.3 design incorporates many sug-
gestions from the academic community: In addition to security
fixes, these include changes purposed to simplify security
proofs and automated analysis. For example, this includes
changes to the key schedule that help with key separation,
thus simplifying modular proofs; a consistent tagging scheme;
and including more transcript information in exchanges, which
simplifies consistency proofs. These changes have negligible
impact on the performance of the protocol, and have helped
make analyzing such a complex protocol feasible.

VII. CONCLUDING REMARKS

A. Recommendations to Authors

Our first recommendation concerns the clarity of trust
assumptions. We observe that, in some papers, the distinction
between what parts of an artifact are trusted/untrusted is
not always clear, which runs the risk of hazy/exaggerated
guarantees. On the one hand, crisply delineating between what
is trusted/untrusted may be difficult, especially when multiple
tools are used, and authors may be reluctant to spell out an
artifact’s weaknesses. On the other hand, transparency and
clarity of trust assumptions are vital for progress. We point
to the paper by Beringer et al. [160] as an exemplar for how
to clearly delineate between what is trusted/untrusted. At the
same time, critics should understand that trust assumptions are
often necessary to make progress at all.

Our second recommendation concerns the use of metrics.
Metrics can be useful for measuring progress over time
when used appropriately. The HACL∗ [5] paper uses metrics
effectively: To quantify verification effort, the authors report
proof-to-code ratios and person efforts for various primitives.
While these are crude proxies, because the comparison is
vertical (same tool, same developers), the numbers sensibly
demonstrate that, e.g., code involving bignums requires more
work to verify in F∗. Despite their limitations, we argue that
even crude metrics (when used appropriately) are better than
none for advancing the field. When used inappropriately, how-
ever, metrics become dangerous and misleading. Horizontal
comparisons across disparate tools tend to be problematic and
must be done with care if they are to be used. For example,
lines of proof or analysis times across disparate tools are often
incomparable, since it is non-trivial to model a problem in the
exact same way.

B. Recommendations to Tool Developers

Although we are still in the early days of seeing verified
cryptography deployed in the wild, one major pending chal-
lenge is how to make computer-aided cryptography artifacts
maintainable. Because computer-aided cryptography tools sit
at the bleeding-edge of how cryptography is done, they are
constantly evolving, often in non-backwards-compatible ways.
When this happens, we must either leave many artifacts (e.g.,
machine-checked proofs) to become stale, or else muster
significant human efforts to keep them up to date. Moreover,
because cryptography is a moving target, we should expect
that even verified implementations (and their proofs) will
require updates. This could be to add additional functionality,
or worse, to swiftly patch new vulnerabilities beyond what
was verifiably accounted for. If only a handful of experts
are capable of maintenance, then, in this respect, we are in
no better position than we are today. We hope to see more
interplay between proof engineering research [171], [172] and
computer-aided cryptography research in the coming years.

C. Recommendations to Standardization Bodies

Given its benefits in the TLS 1.3 standardisation effort, we
believe computer-aided cryptography should play an important
role in the cryptography standardization process [173]. Tradi-
tionally, cryptographic standards are written in a combination
of prose, formulas, and pseudocode, and can change drastically
from draft to draft. On top of getting the cryptography right
in the first place, standards must also focus on clarity, ease
of implementation, and interoperability. It is perhaps not
surprising, then, that the standardization process can be long
and arduous. And even when it is successful, the substantial
gap between standards and implementations still leaves plenty
of rope for error.

Security proofs can also become a double-edged sword
in standardization processes. Proposals supported by hand-
written security arguments often cannot be reasonably audited.
A plausible claim with a proof that cannot be audited should
not be taken as higher assurance than simply stating the
claim—we argue that the latter is a lesser evil, as it does
not create a false sense of security. As a concrete example,
Hales [174] discusses ill-intentioned security arguments in
the context of the Dual EC pseudo-random generator [175].
Another example is the recent discovery of attacks against the
AES-OCB2 ISO standard, which was previously believed to
be provably secure [176].

To address these challenges, we advocate the use of
computer-aided cryptography, not only to formally certify
compliance to standards, but also to facilitate the role of
auditors and evaluators in standardization processes, allowing
the discussion to focus on the security claims, rather than on
whether the supporting security arguments are convincing. We
see the current NIST post-quantum standardization effort [177]
as an excellent opportunity to put our recommendations into
practice, and we encourage the computer-aided cryptography
community to engage in the process.
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[49] G. Barthe, B. Grégoire, and S. Z. Béguelin, “Formal certification
of code-based cryptographic proofs,” in Proc. of the Symposium on
Principles of Programming Languages (POPL). ACM, 2009, pp. 90–
101.

[50] D. A. Basin, A. Lochbihler, and S. R. Sefidgar, “Crypthol: Game-
based proofs in higher-order logic,” IACR Cryptology ePrint Archive,
vol. 2017, p. 753, 2017.

[51] B. Blanchet, “CryptoVerif: Computationally sound mechanized prover
for cryptographic protocols,” in Dagstuhl seminar on Formal Protocol
Verification Applied, 2007, p. 117.
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