A note on the multivariate cryptosystem based on a linear code

Yasufumi Hashimoto *

Abstract

A new multivariate cryptosystem based on a linear code was proposed by Smith-Tone and Tone quite recently. This short note points out that it is a variant of UOV.

Keywords. multivariate public-key cryptosystems, linear code, UOV

Smith-Tone and Tone [2] proposed a new multivariate cryptosytem whose quadratic map is generated as follows. Let $n, k, p \geq 1$ be integers with $k<n, q$ a power of prime and \mathbf{F}_{q} a finite field of order q. For a rank k linear code C of length n over \mathbf{F}_{q}, denote by G the generator matrix in the standard form and H the corresponding parity check matrix, i.e. G, H are respectively $k \times n$ and $(n-k) \times n$ matrices with $G \cdot{ }^{t} H=0_{k, n-k}$. Choose $n \times(n-k)$ matrices A_{1}, \ldots, A_{k} over \mathbf{F}_{q} and define $B_{i}:=A_{i} H, F_{i}(\mathbf{x}):={ }^{t} \mathbf{x} B_{i} \mathbf{x}$ for $1 \leq i \leq k, \mathbf{x}={ }^{t}\left(x_{1}, \ldots, x_{n}\right)$. Choose further p quadratic forms $Q_{1}(\mathbf{x}), \ldots, Q_{p}(\mathbf{x})$ randomly and let T be an invertible $(k+p) \times(k+p)$ matrix over \mathbf{F}_{q}. The public key $P: \mathbf{F}_{q}^{n} \rightarrow \mathbf{F}_{q}^{k+p}$ of the proposed scheme is

$$
P(\mathrm{x}):=T^{t}\left(F_{1}(\mathrm{x}), \ldots, F_{k}(\mathrm{x}), Q_{1}(\mathrm{x}), \ldots, Q_{p}(\mathrm{x})\right) .
$$

See [2] for its decryption process in detail.
Let \bar{G} be an $n \times n$ matrix with $\bar{G}:=\left({ }^{\dagger} G, *_{n, n-k}\right)$. Since $H^{t} G=0_{n-k, k}$, we see that

$$
F_{i}(\bar{G} \mathbf{x})={ }^{t} \mathbf{x} t \bar{G} A_{i} H \bar{G} \mathbf{x}={ }^{t} \mathbf{x}\left(\begin{array}{ll}
0_{k} & * \\
0 & *_{n-k}
\end{array}\right) \mathbf{x}={ }^{t} \mathbf{x}\left(\begin{array}{ll}
0_{k} & * \\
* & *_{n-k}
\end{array}\right) \mathbf{x} .
$$

This means that $F_{1}(\mathbf{x}), \ldots, F_{k}(\mathbf{x})$ are generated by $(k, n-k)$-type UOV polynomials [1], and then the proposed scheme is a plus of UOV.

Acknowledgment. The author was supported by JST Crest no.JPMJCR14D6 and JSPS Grant-in-Aid for Scientific Research (C) no.17K05181.

References

[1] A. Kipnis, J. Patarin, L. Goubin, Unbalanced oil and vinegar signature schemes, Eurocrypt'99, LNCS 1592 (1999), pp.206-222, extended in http://www.goubin.fr/papers/ OILLONG. PDF, 2003.
[2] D. Smith-Tone, C. Tone, A. Petzoldt, J. Ding, L.C. Wang, A nonlinear multivariate cryptosystem based on a random linear code, https://eprint.iacr.org/2019/1355, 2019.

[^0]
[^0]: *Department of Mathematical Science, University of the Ryukyus, hashimoto@math.u-ryukyu.ac.jp

