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Abstract—We introduce an efficient transformation from uni-
variate polynomial commitment based zk-SNARKs to their fully
transparent counterparts. The transformation is achieved with
the help of a new IOP primitive which we call a list polynomial
commitment. This primitive is applicable for preprocessing zk-
SNARKs over both prime and binary fields. We present the prim-
itive itself along with a soundness analysis of the transformation
and instantiate it with an existing universal proof system. We
also present benchmarks for a proof of concept implementation
alongside a comparison with a non-transparent alternative based
on Kate commitments. Our results show competitive efficiency
both in terms of proof size and generation times at large security
levels.

Index Terms—polynomial commitments, zero-knowledge
proofs, proximity testing, verifiable computation

I. INTRODUCTION

Zero-knowledge proofs [1] have recently received increased
amounts of attention for providing efficient verification while
maintaining small proof sizes, even in the case of complex
predicates. Initially limited to theoretical considerations, such
proof systems have lately come to encompass the underlying
technology in a wide variety of practical and industrial appli-
cations with delicate trade-offs between privacy and system se-
curity [2] [3] [4]. In this work, we are interested in applications
for which there is limited space availability in the underlying
system, and thus for which minimal proof size is an important
property. Moreover, we ideally want to focus on applications
for which there exist no trusted parties at any point of the
computation, and thus hope to achieve proof size minimization
without compromising the trust model of the system.

The trade-off above is most closely associated with appli-
cations of zero-knowledge proofs to cryptocurrency systems,
such as Ethereum [5] or ZCash [6], in which participants have
to verify state (or transaction) validity to ensure system sound-
ness but for which there is limited space available in which
to do so. Bridging the gap between these two requirements
will allow for not only efficient but also trustless verification
of state transition in such systems. This has the potential for
scaling improvements, such as increased transaction through-
put or better privacy guarantees.

The most widely used proof systems for such an application
are preprocessing Succinct Non-interactive ARguments of
Knowledge (zk-SNARKs) [7] [8] [9], for which proof size
and verification time are polylogarithmic in the size of the

circuit being verified. ‘Pre-processing’ here denotes that such
systems rely on a one-time (often expensive) setup procedure
to produce a proving/verification key-pair (pk, vk) (known
as a Structured Reference String or SRS) that is used in all
subsequent computation. The most efficient such construction
is due to Groth [7] and achieves constant proof size consist-
ing of 3 group elements, with state-of-the-art proving time.
However, this construction (along with most in the literature,
see [10], [11], [12]) relies on a trusted setup, or a trusted
third-party actor to generate certain parameters (known as the
‘toxic waste’) that should be destroyed in order for the system
to retain its security guarantees.

Such a security lapse would be grave for all aforementioned
applications. For example, in a cryptocurrency system such
as ZCash an adversary possessing such waste would be
able to spend non-existent tokens without being found. An
adopted approach to mitigating this issue involves Multi-Party
Computation, in which a single participant needs to destroy
their parameters for security to hold [13]. However, scaling
such an approach to many participants comes with its own
challenges, and can never reach the completely trustless threat
model desired by such systems.

The trust issue inherent in the above approach stems from
the requirements for the generation of the SRS of the proof at
the preprocessing stage. This is done once at the beginning
of the protocol, encoding information that is used in the
subsequent proof generation of any input arguments. More
specifically, in most pairing-based SNARKs (such as [14])
the trusted part of SRS generation stems from the usage of a
polynomial commitment scheme that needs to sample (secret)
randomness in order to provide commitments to some low-
degree polynomial that in turn encodes the circuit in question.
That information is then used by the prover to efficiently
convince the verifier that a given value is indeed the evaluation
of this polynomial, thus proving knowledge of the statement.
Such systems use the polynomial commitment scheme of [15],
from which the above trust model is derived. This will be
further discussed in the following sections.

In attempting to retain a trustless (or ‘transparent’) threat
model, the main design challenge lies in the efficiency of the
underlying protocol. Various threads of work in this domain
have achieved different efficiency trade-offs. The work of [16]
produces proofs with size scaling as O(d log T ), while the



proofs in [17] scale with O(d logG) where T , d and G the
size, depth and width of the circuit respectively. Succinct
Transparent ARguments of Knowledge (zk-STARKs) [18]
achieve O(log2 T ) proof sizes for uniform (layered) circuits.
However, in the context of universal SNARKs (arbitrary
circuits), existing proof systems suffer from performance over-
heads with respect to pre-processing SNARK constructions
such as [7]. Some also require non-trivial circuit designs,
similar to what is described in [19]. Nevertheless, we should
note that for the class of problems that can be efficiently
expressed as layered circuits, these proof systems may be
more optimal than universal ones. Since we are also interested
in verifier succinctness, transparent approaches such as [20]
do not suffice here due to the linear dependence between
verification time and predicate size.

Below we informally describe the properties that an ‘ideal’
proof system should possess for satisfiability of a given circuit
C, where |C| denotes its size. The first three properties define
what is known as a ‘fully succinct’ zk-SNARK construction:
• Verifier Succinctness: Verification time is polylogarithmic

in |C|.
• Prover Efficiency: Proving time is quasi-linear in |C|.
• Proof Succinctness: Proof size is poly-logarithmic in |C|.
• Transparent: No trust assumptions are required for secu-

rity to hold.
• Plausibly Quantum Resistant: The system is not be based

on assumptions known to be false in a quantum setting.

A. Prior & Concurrent Work

1) Transparent zk-SNARK Constructions: A new approach
to the above problem relies on creating a ‘universal’ SRS at
the preprocessing phase, which can then be used in tandem
with any possible predicate (or circuit). This has been the
focus of many recent contributions (see [14], [21], [22]) and
most recently [23] that are also fully succinct zk-SNARKs in
the above sense. The approach in such schemes relies on two
main ingredients: (1) encoding the circuit satisfaction problem
of the predicate in question as a property of some (low-
degree) polynomial f , and then (2) committing to f using a
polynomial commitment scheme. In all the above approaches,
the polynomial commitment scheme in [15] is used due to
its constant size complexity and efficient implementation.
However, this is the only part in the protocol that introduces
the trusted setup, as the setup phase in the scheme requires a
trusted actor to create (and then destroy) a secret value that is
only used in generating commitments.

2) Polynomial Commitment Schemes: At a high level, poly-
nomial commitment schemes allow for the efficient verifi-
cation of the evaluations of f at an arbitrary point in its
domain. Given the above contributions, it is immediate that
a polynomial commitment scheme that is both transparent
and efficiently computable would yield transparent SNARK
constructions that have the potential to satisfy all of the
requirements of a fully succinct, transparent and plausibly
quantum resistant zk-SNARK. Since the introduction of poly-
nomial commitment schemes in [15], the first transparent such

scheme was introduced in [17] for multivariate polynomials,
with O(

√
d) commitment size and verification complexity.

Subsequent work in [24] introduces a scheme with O(µ log d)
size and verification complexity, where µ the number of
variables of the polynomial in question and d the polynomial’s
degree. Although the asymptotics of the approach in [24]
suffice for the above motivation, the practical implementation
of their system relies on cryptographic operations that are
substantially more resource-heavy than previous approaches.
This stems from the reliance of their system’s security on class
groups of unknown order. Although the proof sizes achieved
are sufficiently succinct, this dependence could make practical
deployment difficult at reasonable security levels when proof
generation time needs to also be substantially efficient. More-
over, the assumptions on which their construction rests are
known to not be quantum-resistant.

3) Preprocessing zk-SNARK Compilation Frameworks: Re-
cent work has also explored general frameworks for convert-
ing Interactive Oracle Proofs (IOPs) [25] into preprocessing
SNARKs. This approach was introduced in [26], with an
equivalent formalization appearing in [24]. At a high level,
both of these contributions formalize the idea that preprocess-
ing zk-SNARKs can be constructed from IOPs through oracle
access to a low-degree polynomial.

B. Our Contributions

In this work, we provide the following contributions:
1) List Polynomial Commitments: The works of [27] and

[28] introducing the Fast Reed Solomon IOP of Proximity
(FRI IOPP) implicitly define a transparent polynomial commit-
ment scheme, which provides commitments of size O(log2 d)
for polynomials of degree d. However, the soundness error
on such schemes implies that high-security deployments still
suffer from large proof sizes. In this work, we leverage
the proof system threat model to ‘relax’ the requirements
on transparent polynomial commitment schemes while still
retaining all necessary security properties for compilation into
zk-SNARKs. We introduce a new cryptographic primitive for
fast verification of polynomial evaluations we call a list com-
mitment scheme. At a high level, this scheme provides the nec-
essary security guarantees inherent in polynomial commitment
schemes that are required for polynomial-based proof systems
such as [23] and [14]. In the language of IOP formalization,
this primitive can be thought of as an alternative compiler for
public-coin IOP protocols.

2) Compilation of IOPs with List Commitments: The above
contribution implicitly provides a general framework that
demonstrates how the polynomial list commitment can be
used to compile any polynomial IOP into a preprocessing zk-
SNARK. As previously mentioned, this follows the approach
in [26] and [24] with the main difference being that we do
not require a polynomial commitment scheme in their (more
restrictive) sense.

3) REDSHIFT: A transparent zk-SNARK Construction: We
demonstrate the security and practicality of this approach
by compiling [23] using the framework above. By fitting an



implementation of the list commitment scheme on [23] with
suitable adaptations and optimizations, we remove all trusted
computation while retaining efficiency in both proof size and
generation time. We call this new proof system REDSHIFT,
and provide:

1) formal proofs of correctness and security for the proposed
system, demonstrating that this protocol is a zk-SNARK,

2) a proof-of-concept implementation, along with bench-
marks establishing feasibility.

Benchmarks and proof sizes are provided in Section X.
Overall, REDSHIFT is an efficient instantiation of a post-
quantum transparent preprocessing zk-SNARK suitable for
practical deployment at high security levels. We also demon-
strate how varying the list size allows for proof size im-
provements. This, however, comes at the cost of larger proof
generation times and RAM consumption.

II. OVERVIEW

The proof system in [23] (known as PLONK) is based
on polynomial commitment schemes. The role of polynomial
commitments in PLONK is the following: a secret prover’s
witness is encoded as a set of univariate polynomials, while
the verifier wishes to ensure that such an encoding satisfies
some polynomial relations. The prover commits to her secret
witness and later the verifier queries the values of witness
polynomials at a set of randomly selected points, checking if
all relations are indeed satisfied at those points. As the points
were sampled uniformly randomly, it is highly likely that the
given polynomial relations are identically satisfied.

The state-of-the-art polynomial commitment scheme used
in the construction of ZK-protocols is the KATE commitment
( [15]), which is based on pairings of points of elliptic curves.
The security of this scheme reduces to the Discrete Log
assumption while in the case of a perfectly hiding commitment
a strengthened version known as the t-Strong Diffie Hellman
assumption is required. The main drawback of [15] lies in
the requirement that some secret value needs to be sampled
as part of the parameter generation process. For security to
hold, this value should never be revealed to the prover nor the
verifier. Such a requirement is very strong, as it means that
every proof system using KATE commitment (and PLONK
is among them) as a sub-protocol will inevitably require a
‘trusted’ setup ceremony. We denote proof systems without
this requirement as transparent.

In fact, the only reason PLONK requires a trusted setup
ceremony is due to the KATE sub-protocol. This means that
once we replace such a polynomial commitment scheme by
any transparent equivalent, we will not have to conduct a
trusted setup ceremony. Given this, this work aims to find a
suitable replacement for KATE, turning PLONK (and similar
systems) into a zero-knowledge, succinct transparent argument
of knowledge, i.e. a zk-STARK.

To do so, we utilize the FRI protocol, which is a key
component of STARK [18] and AURORA [29]. FRI is focused
on solving the following proximity problem: The verifier is
given oracle access to an evaluation of some function f on

a fixed domain D ⊂ F. The prover wants to convince the
verifier that this function f is close in some metric to a
polynomial of some predefined degree d. The simplest solution
would be for verifier to query all the values of f on the
domain and then compute interpolation polynomial herself and
check that its degree is indeed bounded above by d. However
this straightforward approach requires large communication
complexity (as the verifier queries all the values) and carries
a large computational burden. FRI solves this problem by
requiring only a polylogarithmic number of queries in d.

The naive approach to build a (transparent) polynomial
commitment scheme on the top of FRI would be the following:

1) The prover commits to f providing an oracle to all
evaluations of f on some predefined domain D.

2) The prover and verifier engage in the FRI protocol for a
function f w.r.t to some degree d. If the prover passes
the check the verifier is then convinced that the function
f is actually close to a polynomial of degree less than d

3) The verifier wants to retrieve the value of f at point i /∈
D. The prover sends the corresponding opening z = f(i)
and prover and verifier then conduct another instance of
FRI, this time w.r.t to a quotient function q(x) = f(x)−z

x−i
and degree < d − 1. Note that the verifier has oracle
access to q(x) via oracle access to f and known i and z.
If the prover passes the last instance of FRI then q(x) is
in fact a polynomial function of degree < d−1 (a priori
we only know it is a rational function) which implies
f(i) = z. This follows from Bezout’s theorem, stating
that h(x) has value y at point t iff h(x)− y is divisible
by x− t in the ring F[x].

In reality this simplified protocol doesn’t suffice. There are
several reasons for that, among which are the following:

1) FRI has a sensitivity bound - it is incapable of distinguish-
ing between precise polynomials and functions which
are not polynomials but sufficiently close to them in
some predefined metric (which in our case is the relative
Hamming distance).

2) For implementation coherency, we want the same domain
for both FRI instances. However, FRI has an interdepen-
dence between the degree d and the size of the domain
|D| measured in terms of its rate ρ = |D|

d . The divide-
and-conquer nature of FRI requires the rate to be “2-
adic”, that is of the form 2−R for some R in N. However,
this property cannot hold simultaneously for two adjacent
degrees d and d− 1 without extra protocol modification.

The first mentioned problem means that the scheme needs to
correctly process the case when the function is not a polyno-
mial, but close to one - a property not naturally supported
by existing commitment schemes. Even more so, allowing
the oracle f to not be strictly polynomial and to take as the
prover’s commitment the polynomial f ′ lying in a small δ-
ball around f (where δ is taken according to sensitivity of
FRI) then a priori we cannot guarantee this polynomial f ′ is
unique in the chosen neighborhood of f . We call the set of
polynomials {f ′1, f ′2, . . . , f ′n} lying in the δ-neighborhood of



f to be the δ-list of f and denote it by Lδ = Lδ(f). For small
values of δ the list Lδ contains precisely one polynomial: in
this case we say that δ lies in the unique-decoding radius. The
problem is that such values of δ require larger proof sizes to
achieve adequate soundness guarantees. Thus, we would need
to increase δ to reduce proof sizes, which in turn would lead
to the size Lδ be greater than 1.

To solve this, we consider a relaxed treatment of commit-
ment schemes, where the commitment opens to a polynomial
in the δ-list Lδ . When the prover is asked for an evaluation at
point i, they respond with some value f ′(i), where f ′ ∈ Lδ .
In subsequent sections we show that this scheme is sufficient
for the construction of a transparent PLONK instance.

During the execution of PLONK both the prover and verifier
need to evaluate a set of ‘constraint’ (or setup) polynomials
cj(x) which encode the constraint system itself and which are
known by both parties from the very beginning. In order to
achieve succinctness, the verifier never calculates the value
cj(i) at point i by herself. To resolve this polynomial evalu-
ation problem, PLONK instead relies on the Kate scheme:
the prover and verifier run the commitment protocol with
the commitment to c and value i as inputs. By the security
of Kate, the verifier is convinced that the prover actually
sends the evaluation c(i) of the polynomial c(x) in question.
Since our relaxation commits to a whole neighborhood Lδ(c)
of c(x) instead of only c(x) itself, we lose this uniqueness
property. This means we can’t use such a ‘relaxed’ scheme as
is. However, we show that with minor changes, our list com-
mitment can be turned into a polynomial evaluation scheme.
This transformation constitutes the second key sub-protocol of
the paper.

With the list commitment and evaluation schemes, we can
modify PLONK to achieve full transparency. We call the
modified version RedShift and prove its correctness in the
IOP model. A large portion of our approach remains the same
as in [23]: our modification doesn’t touch the completeness
property of the system. However, the FRI-based protocol
doesn’t possess the hiding capabilities of Kate. This means
that we need to take additional measures to achieve zero-
knowledge for our system. We also need to change the security
model - the original PLONK protocol was proven secure in the
algebraic group model. Our approach is highly dependent on
FRI - an IOPP protocol. This means that we need to conduct
our security analysis in the IOP-model as well. Changing the
threat model affects the soundness proof as well as the proof
of knowledge approaches.

A. Roadmap

• In Section III, we provide general definitions, notations
and terms used throughout the paper. We also explain the
properties of the threat model used throughout this paper.

• Section IV provides a detailed overview of the FRI algo-
rithm. We do not consider FRI as a black-box protocol
for solving the proximity problem, as the knowledge of
FRI’s inner functionality will be required in the proof of
zero-knowledge.

• In Section V we describe the key component of RedShift
- the ‘list polynomial commitment’ scheme, and prove
that it meets all the requirements.

• In Section VI we present the evaluation scheme that is
used for ‘constraint’ polynomials.

• At this point we have all the components required for
the transformation of PLONK into RedShift, which is
conducted in Section VII.

• In Section VIII we will discuss various optimizations and
variants for the final protocol.

• In section IX we discuss the particular choice of setup
parameters leading to the most effective instantiation of
RedShift.

• In Section X we measure the running time of our protocol
as compared to the original PLONK construction over
various pairing-friendly curves.

III. DEFINITIONS

In this section, we lay out the building blocks that are
necessary to describe our constructions.

A. Notation

Through this paper we use the following notations:
• Fq is a prime field with modulus q
• D ⊂ F is an evaluation domain for Reed Solomon code

words
• f |D is a restriction of function f to domain D
• For function pair f, g, the relative Hamming distance with

respect to some domain D is given by:

∆(f, g) =
#{x ∈ D : f(x) 6= g(x)}

|D|
.

B. Preliminaries on Reed-Solomon codes

Most of the information covered in this section can be
found in any standard textbook on algebraic codes(e.g. [30]).

Definition 1 (Reed-Solomon Codes). For some subset D of
a given field F and a rate parameter ρ ∈ (0, 1], we denote
by RS[F, D, ρ] the set of all functions f : D → F that are
polynomials of degree d < ρ|D|. A binary additive RS code
family is a code family RS[F, D, ρ] for which F = F2m ,m ∈
N. Moreover, the set D is required to be an additive coset
which is an additive shift of some F2-linear space in F2m . A
prime field RS code family is a code family RS[F, D, ρ] for
which F = Fq , for prime q. In this case D is a multiplicative
subgroup of F∗q .

Definition 2 (List Decoding). Let V = RS[F, D, ρ] ⊂ FD be
an RS code family. Set a distance parameter δ ∈ [0, 1]. For
u ∈ FD, we define L(u, V, δ) to be the set of elements in V that
are at most δ-far from u in relative Hamming distance. The
code V is said to be (δ,N)-list-decodable if |L(u, V, δ)| ≤ N
for all u ∈ FDq . Let Lδ = L(F, D, d, δ) be the maximum size
of L(u, V, δ) taken over all u ∈ FD for V = RS[F, D, ρ =
d/|D|].



Theorem 1 (List Decoding Johnson bound [28]). Fix ρ ∈
(0, 1). Then for RS[F, D, ρ] list size |L| is

Jρ,ε = max(1−√ρ− ε, 1

2ε
√
ρ

)

for every ε ∈ (0, 1−√ρ).

The natural question arising in this context is the following:
for which distance parameters δ do we get unique decodability
(i.e. Lδ ≤ 1)?

Definition 3. We call δ0 unique decoding radius if for all
δ < δ0 list size Lδ ≤ 1. We call such δ < δ0 to lie in the
unique decoding radius.

The following theorem is a well-known fact on unique
decodability for Reed-Solomon facts.

Theorem 2. δ0 = 1−ρ
2 is the unique decoding radius for

RS[F, D, ρ]

The decoding problem for Reed-Solomon code V =
RS[F, D, ρ] is the problem of finding a codeword u ∈ V
that is within a distance of δ (with respect to Hamming
distance) from a “received” word ∈ FD. There are two famous
polynomial-time solutions for decoding problem. The first is
the classical Berlekamp-Messy [31] [32] algorithm which can
be applied only in the unique decoding radius setting. It’s
extension for distance parameters outside the unique-decoding
bound is Guruswami-Sudan [33] algorithm. As the result of
the latter algorithm we will get all codewords lying in δ-ball
of a ”received” word.

Theorem 3 (Berlekamp-Messy algorithm). For every δ < δ0
the decoding problem for V = RS[F, D, ρ] can be solved in
O(|D|3) steps.

Theorem 4 (Guruswami-Sudan algorithm). For all δ ≤ 1−√ρ
Reed-Solomon code V = RS[F, D, ρ] can be list-decoded in
time O(|D|15). When δ < 1 − √ρ then the decoding time
reduces to O(|D|3).

C. Interactive Oracle Proofs and IOPs of Proximity

For user convenience we will start with a remainder of
properties of ZK-schemes and of threat model we are going to
use. Given a relation R ⊆ S×T , we denote by L(R) ⊆ S the
set of s ∈ S such that there exists t ∈ T with (s, t) ∈ R; for
s ∈ S, we denote byR|s ⊆ T the set {t ∈ T : (s, t) ∈ R}. For
pairs (φ,w) ∈ R we call φ the statement and w the witness.

The security analysis in this section will be conducted
in Interactive Oracle Proof (IOP) model [25] which is
a simultaneous generalization of Interactive Proofs and
Probabilistically Checkable Proofs. The input of the verifier
is x ∈ S, and the input of the prover is (x,w) ∈ R for some
string w ∈ T . The number of interactive rounds, denoted
r(x), is called the round complexity of the system. During a
single round the prover P sends a message πi (which may
depend on prior interaction) to which the verifier V is given
oracle access, and the verifier responds with message mi to

the prover. The output of V after interacting with P is either
accept or reject and we denote the result of this interaction
by 〈P (x,w) ↔ V (x)〉 The proof length, denoted l(x), is the
sum of lengths of all messages sent by the prover. The query
complexity of the protocol, denoted q(x), is the total number
of entries read by V across various prover oracles.

A cryptographically secure IOP protocol should have the
following properties.

Perfect completeness: This says that, given any true state-
ment, an honest prover should be able to convince an honest
verifier. For all (φ,w) ∈ R:

Pr [〈P (φ,w)↔ V (φ)〉 = acc |(φ,w) ∈ R] = 1

.
Soundness: This says that malicious prover has negligible
chance to convince verifier in the wrong witness. For every
instance x /∈ L(R) and unbounded malicious prover P ∗:

Pr [〈P ∗(φ,w)↔ V (φ)〉 = acc |(φ,w) /∈ R] ≤ ε(x)

with ε(x)→ 0 when |x| → ∞.

Knowledge soundness: Strengthening the notion of sound-
ness, we say the IOP has knowledge soundness if every prover
who is capable of convincing the verifier that x ∈ L(R)
actually knows some witness w ∈ R|x. In other words IOP is
knowledge sound if for all adversaries A there exists a non-
uniform polynomial time extractor E(A) which gets full access
to the adversary’s state, including any random coins and with
high probability computes a witness whenever the adversary
produces a valid argument. Formally written:

Pr

[
w /∈ R|x

〈A(φ)↔ V (φ)〉 = acc
w ← E(A)

]
≤ ε(x)

where ε(x) has the same properties as above.
The definition of zero knowledge property that we use for

IOPs first requires the notion of a view, which we take them
from [25].

Definition 4. Let A,B be algorithms and x, y strings. We
denote by V iew(B(y), A(x)) the view (or transcript) of A(x)
in an interactive oracle protocol with B(y), i.e., the random
variable(x, r, a1, ..., an) where x is A’s input, r is A’s ran-
domness, and a1, · · · , an are the answers to A’s queries into
B’s messages.

Zero knowledge: 〈P, V 〉 has the zero knowledge property if
there exists a probabilistic polynomial time algorithm S (the
simulator) such that, for every (φ,w) ∈ R and unbounded
distinguisher D the following probabilities are equal:

Pr[D(V iew(P (φ,w), V (φ))) = 1] = Pr[D(S(φ)) = 1].

Remark: In subsequent sections we will use the words view
and transcript interchangeably.



An important subclass of IOP protocols is given by the
following definition:

IOPP. An Interactive Oracle Proof of Proximity (IOPP) is
an r-round interactive IOP for the following problem: given
a field F, d ∈ N, δ > 0 and domain D ⊂ F, the prover
is provided with the representation of some function f and
the verifier is given oracle access to its evaluation on domain
D (i.e. an oracle f̂(x) to f(x)|D). The prover then needs to
convince the verifier that f |D is in fact evaluations of some
degree d-polynomial on this domain, namely that f ∈ C,
where C = RS[F, D, ρ = d/|D|]. An IOPP of proximity must
have the following properties:

1) First message format: the first prover message, denoted
f0, is a purported codeword (evaluation of f(x) on the
domain D)

2) Completeness:

Pr[
〈
P ↔ V

〉
= accept |∆(f, C) = 0] = 1

3) Soundness error is a function err(δ) such that the follow-
ing equation holds: For any P ∗,

Pr[
〈
P ∗ ↔ V

〉
= accept |∆(f, C) > δ] ≤ err(δ).

IV. FRI

As a particular instance of an IOPP protocol, we use
FRI [27], [34] which is state-of-the-art to the best of our
knowledge. Here we provide an overview of its properties.
Fix RS code family RS[F, D, ρ] for which |D| = n = 2k and
rate ρ = 2−R (k,R ∈ N). This implies that degree bound d
is 2k−R. Fix r ∈ [1, log d = k − R] (number of FRI inner
rounds). With such a choice of parameters the FRI IOPP has
the following properties:

1) Prover Complexity: O(n) arithmetic operations over F.
2) Verifier Complexity: O(log n) arithmetic operations

over F.
3) Completeness: If f ∈ RS[F, D, ρ] and the prover is

honest, then the verifier always accepts.
4) Soundness: For every ε ∈ (0, 1], let Jε : [0, 1] → [0, 1]

be the function

Jε(x) = 1−
√

1− x(1− ε).

Suppose that ∆(f,RS) = δ > 0, then soundness error
err(δ) of FRI is bounded above by (again for any ε ∈
(0, 1]):

2 log |D|
ε3|F|

+
(

1−min
{
δ0, Jε(Jε(1− ρ))

}
+ ε log |D|

)l
where l is a repetition parameter.

Remark 1: l repetition parameter is a number of queries
performed during the FRI proof verification.
Remark 2: Later this soundness bound was improved in [28]
using sampling out of the domain techniques.

V. LIST POLYNOMIAL COMMITMENT (LPC) SCHEME

We are now ready to introduce the main ingredient under-
lying the transparency of our proving system, which we call
a list commitment scheme. This cryptographic primitive most
resembles a polynomial commitment scheme, with the main
difference being that the commitment is to an ε-ball around
some polynomial f (in some predefined metric ∆), rather than
specifically to f itself. As we are working in the IOP model we
prefer not to dissect the protocol as a tuple of (commit, open,
verify) sub-protocols, as it is commonly done in commitment
schemes’ literature and simply describe our relaxed scheme
as a subclass of IOP protocol with specific semantics and
structure. As before, we denote Lδ(f) as the δ-list of f(x)
or the set of all g(x) ∈ RS[F, D, ρ] such that ∆(f, g) < δ.

1) LPC protocol semantics.:
1) Setup: The prover and verifier agree on the following

parameters: field F, domain D ⊂ F, δ > 0 (error-bound),
d ∈ N (bound for degree of polynomial) and k (the
number of points to open).

2) First message format: The first prover message is an
oracle c to the evaluation of f(X) on the domain D. This
is analogous to the Commit method in KATE notation.

3) Second message format: The verifier chooses and sends
to the prover a set of k points: {ij}kj=1.

4) Third message format: The prover responds with val-
ues {zj}kj=1, which are the purported openings for the
{ij}kj=1.

5) Subsequent interaction: The prover and verifier engage
in a sub-protocol MultiEval〈P, V 〉 in which the prover
aims to convince the verifier of the validity of statement
Rδ(pp = 〈c, {ij}kj=1, {zj}kj=1, d〉), defined by:

Rε(pp) =

(
∃ g(x) ∈ F<d[x], ∆(f, g) < ε

)
g(ij) = zj ∀ j ∈ {1, . . . , k}

2) LPC Instantiation: We provide an implementation of the
MultiEval〈P, V 〉 sub-protocol for the case when d = 2n +
k, k << d, (n is any integer ∈ N) and D - any FRI-friendly
domain ⊂ F.

1) Both the prover and verifier compute an interpolation
polynomial U(x) of degree less than k such that U(il) =
zl for l ∈ [k]. Note that since the verifier needs to
evaluate U(x) themselves, we require k = O(log d). This
means verifier can construct and evaluate U(x) efficiently
without any help from the prover.

2) The prover and verifier engage in an IOPP (here instan-
tiated by FRI) protocol w.r.t to the quotient function:

q(x) =
f(x)− U(x)∏k
l=1(x− il)

,

with degree d′ = d − k, rate ρ = d′

|D| and error-bound
δ. Note that due to our convention d′ = 2n, so that ’2-
adicity’ constraint of the FRI protocol is satisfied. The
verifier has access to q(x) via oracle access to f(x) and
their knowledge of all (il, zl) pairs. If the prover passes
the FRI protocol, the verifier accepts, rejecting otherwise.



3) LPC Scheme Security: Below we provide an outline of
the security of the above scheme.
Completeness: If the prover starts with some g ∈ R[X] within
the δ radius from the exact polynomial f of degree less than
d+k, then by the completeness of the FRI protocol he would
definitely pass the FRI check and the MultiEval method would
verify for prover responses with g(il) = zl.
Soundness: We claim that the only source of soundness error
comes from the FRI protocol, which is inherent to the scheme.
We concern ourselves with the situation when q(x) passes the
FRI check and the verifier is convinced that q(x) is δ-close to
some polynomial h(x) with deg (h) < d. This implies that on
D:

f(x)− U(x)∏k
j=1(x− ij)

= h(x), except for δ-fraction of points,

f(x) = U(x)+h(x)

k∏
j=1

(x− ij), except for δ-fraction of pts.

Note that t(x) = U(x)+h(x)
∏k
j=1(x−ij) is a polynomial

of degree less than d + k. From the second equation we get
that this polynomial is δ-close to f(x) or that ∆(f, t) < δ
where ∆ denotes Hamming distance. Moreover, we have that
∀j ∈ k, t(ij) = U(ij) = zj by the definition of U(ij). This
means t(x) satisfies all the requirements for Rδ(F, D, ρ, k)
stated above.
Remark 1: The prover may efficiently decode every list
element (and hence t(x) from above) from representation of
f(x) using the Sudan–Guruswami list Decoding Algorithm
[33].
Remark 2: Unlike [15], we do not require the scheme to be
hiding. We say that a commitment scheme has the perfectly
hiding property if an opening at any point doesn’t give the
verifier any additional information about that polynomial apart
from its value at the opening. Certainly, if the verifier has
collected l > deg(φ(x)) openings to φ(x) then the polynomial
is completely specified and can be constructed via Lagrange
interpolation. The reason we do not insist on hiding property
for our scheme is that it is not necessary in subsequent
sections. We will achieve zero-knowledge on the application
level rather that at the level of polynomial commitments.

VI. POLYNOMIAL EVALUATION SCHEME

The list commitment scheme introduced above works fine
when dealing with ”witness” polynomials, since we are not
concerned with the uniqueness property of our scheme, i.e.
we are not interested in the exact polynomial g taken from
δ-list of f , evaluations of which are opened during MultiEval.
However, extra care should be taken outside of this regime,
when we work with setup polynomials c(x) encoding the
constraint system itself. In this case we want to be sure that
the openings provided by prover are indeed the evaluations of
the polynomial c(x) itself and not of any random polynomial
from Lδ(c).

The simplest approach would be to abolish the use of our
commitment scheme for setup polynomials and let the verifier
to evaluate setup polynomials on behalf of herself. However,
for zk-scheme to be truly succinct, we ideally want the verifier
to avoid this task and to simply receive the evaluations of
constraint polynomials from the prover (possibly with some
short signature of correctness).

With the above in mind, we propose the following
workaround. We leverage the fact that for a given setup
polynomial c(x) the list Lδ(c) is theoretically known at the
setup phase by both prover and verifier. They can hence find a
distinguisher point i in which the evaluation of setup polyno-
mial is different from the evaluations of all other polynomials
in the list. This can be naively achieved by running a list-
decoding algorithm once at the beginning to find all g ∈ Lδ
and then start picking such a point i at random (and checking
that c(i) 6= g(i) ∀ g ∈ Lδ) until we find a suitable candidate.
This, however, comes with significant (polynomial in |D|)
overhead.

The key to our approach is that the procedure of enumerat-
ing all such elements and picking a suitable candidate is (1)
fully transparent, and (2) executed and verified only once for
every circuit. We thus add an offline phase that is executed
only once at the beginning of the protocol. The task of offline
phase is to search for aforementioned distinguisher point i.
This allows us to strengthen the proof of knowledge guarantee
for the list commitment scheme to imply that all evaluations
come from the specific polynomial c(x). This permits us to
use the list commitment construction with constraint polyno-
mials as well (with minor changes). This preprocess phase in
completely analogous to the work of indexer in terms of [35].

1) Polynomial Evaluation Scheme Semantics:
1) Setup: The prover and verifier agree on the following

parameters: field F, domain D ⊂ F, δ > 0 (error-bound),
d ∈ N (degree of polynomial) and k (the number of points
to open).

2) Preprocess phase: Prover and verifier agree on a setup
polynomial c(x), separation point i ∈ F and value z =
c(i) with the following properties:

∀g(x) ∈ Lδ(c) : g(i) 6= c(i)

3) First message format: The verifier chooses and sends to
the prover a set of k points: {ij}kj=1.

4) Second message format: The prover responds with
values {zj}kj=1, which are the purported openings for the
{ij}kj=1.

5) Subsequent interaction: The following interaction is
completely analogous to MultiEval interactive oracle
protocol defined in the previous section except for the
fact that we explicitly add the pair (i, z) to our point-
values pairs (i.e. MultiEval is now played w.r.t the sets
{i, i1, . . . , ik} and {z, z1, . . . , zk}.)

2) Soundness: We provide soundness analysis for FRI-
based instantiation of evaluation scheme and MultiEval proto-
col.



We begin in a familiar setting: the protocol accepts only if
q passes the FRI check and the verifier is convinced that q(x)
is δ-close to some polynomial h(x) with deg (h) < d. This
implies that on D, except for a δ-fraction of points:

c(x)− U(x)

(x− i)
∏k
j=1(x− ij)

= h(x),

c(x) = U(x) + h(x)(x− i)
k∏
j=1

(x− ij).

Note that t(x) = U(x) + h(x)(x − i)
∏k
j=1(x − ij) is a

polynomial of degree less than d + k + 1. From the second
equation we get that this polynomial is δ-close to c(x) or that
∆(c, t) < δ where ∆ denotes Hamming distance. We have
that ∀j ∈ k, t(ij) = U(ij) = zj by the definition of U(ij).
Moreover, the same holds for t(i) = U(i) = z. This implies
that t = c since ∆(c, t) < δ (so t ∈ Lδ(c)) and c(i) = t(i)
where i is our separation point.
Remark: The degree l of constraint polynomial c(x) is usually
defined at the beginning by constraint system itself and there-
fore can’t be easily changed. However, our instantiation of
polynomial evaluation protocol only works with polynomials
of degree d = 2n + k + 1 (the last term comes from the
introduction of a new point-value pair (i, z)). This is not a
burdensome restriction as we may always take suitable n′ ∈ N
so that d′ = 2n

′
+ k + 1 > l and consider our polynomial

c(x) as a polynomial in F<d′ [x]. Note, that in this case we
consider Lδ(c) to be a subset of F<d′ [x] (and not of F≤l[x])
This remark should be taken into account during the search
for separator point i.

VII. REDSHIFT

A. Constraint system

We start with a description of the constraint system used
in PLONK [23] which is then used to design REDSHIFT.
We then describe an equivalent encoding of this system in
polynomial form.
Constraint system version 1:

The constraint system L = (V,Q) with n gates and m wires
is defined as follows:
• V is of the form V = (a,b, c), where a,b, c ∈ [m]
• We call qL,qR,qO,qM,qC “selector” vectors (left,

right, output, multiplication and constant respectively),
and set:

Q = (qL,qR,qO,qM,qC) ∈ Fn.

We say x ∈ Fm satisfies L if for each i ∈ [n],

(qL)i · xai + (qR)i · xbi + (qO)i · xci+

+(qM)i · (xaixbi) + (qC)i = 0.

To define a relation based on L, we extend it to include a
positive integer l ≤ m, and subset I ⊂ [m] of “public inputs”.
Without loss of generality, we assume that I = 1, . . . , l.

Define the relation RL as the set of pairs (x, ω) with x ∈
Fl, ω ∈ Fm−l such that x := (x, ω) satisfies L. We say L is
prepared for l public inputs if for i ∈ [l]

ai = i, (qL)i = 1, (qM)i = (qR)i = (qO)i = (qC)i = 0.

From here on, we assume the constraint system is in prepared
form.
Constraint system version 2:

In order to reformulate this constraint system in polynomial
terms we need a bunch of additional definitions. Let g ∈ F∗
be an element of order n+1. Let H = {e = g0, g, g2, . . . , gn}
be a cyclic subgroup of F∗ generated by g. Let H∗ = H/{e}.
For i ∈ [n+1] we denote by Li(X) the element of F≤n+1[X]
with Li(gi) = 1 and Li(a) = 0 for a ∈ H different from gi,
i.e. Li(x) for i ∈ [n+1] form a Lagrange basis for H . Define
Z(x) =

∏
a∈H∗(X − a) be a domain polynomial for H∗,

which is zero on all points a ∈ H∗ (and only on them).

Definition 5. permutation across several polynomials over do-
main H∗. Suppose we have multiple polynomials f1, . . . , fk ∈
F[X] and a permutation σ : [kn] → [kn]. For
(h1, . . . , hk) ∈ (F[X])k, we say that (h1, . . . , hk) =
σ(f1, . . . , fk) if the following holds. Define the sequences
(f(1), . . . , f(kn)), (h(1), . . . , h(kn)) ∈ Fkn by

f((j−1)·n+i) := fj(g
i), h((j−1)·n+i) := hj(g

i),

for each j ∈ [k], i ∈ [n]. Then we should have h(l) = f(σ(l))
for each l ∈ [kn].

Definition 6. Let T = T1, . . . , Ts be a partition of [kn], k, n ∈
N into disjoint blocks. We say that f1, . . . , fk ∈ F[X] copy-
satisfy T if, when defining (f(1), . . . , f(kn)) ∈ Fkn as above,
we have f(l) = f(l′) whenever l, l′ belong to the same block
of T .

Define a permutation σ(T ) on [kn] such that for each block
Ti of T , σ(T ) contains a cycle going over all elements of
Ti and only over them. There are several possible choices of
such a permutation (for example, we can rearrange elements
in the cycles corresponding to Ti), σ(T ) can be taken arbitrary
from the set of all allowed permutations. It is simple to check
that (f1, . . . , fk) copy-satisfy T if and only if (f1, . . . , fk) =
σ(f1, . . . , fk).

The constraint system L′ = (qL,qR,qO,qM,qC, σ) for
domain H∗ of size n is defined as follows:

1) qL,qR,qO,qM,qC ∈ F[X] - selector polynomials.
2) σ -permutation in [3n] elements.
We define the relation RL′ as the set (x, ω) =

(PI(x), 〈fL(x), fR(x), fO(x)〉) ∈ (F[X])4 with the following
properties:

1) fL(x), fR(x), fO(x) copy-satisfy σ.
2) ∀a ∈ H∗ : qL(x) · fL(x) + qR(x) · fR(x) + qO(x) ·

fO(x) + qM(x) · fL(x) · fR(x) + (qC(x) + PI(x)) = 0.
PI(x) is called public input polynomial and encodes public

data, fL(x), fR(x), fO(x) are called left, right and output
wires polynomial respectively and encode prover-only private



data.

Conversion between constraint systems:
Here we show a polynomial time transition from the first

constraint system to the second. It is easy to check that such
a transition can be reversed. Hence, it is enough to construct
a proof system for the second relation only.

Suppose V = (a,b, c); think of V as a vector in [m]3n. For
i ∈ [m], let Ti ⊂ [3n] be the set of indices j ∈ [3n] such that
Vj = i. Now define TL := {Ti}i∈[m] - partition of [3n] into
non-intersecting chunks. Define a permutation σ(TL) on [3n]
in the following way: for each block Ti of TL, σ(TL) contains
a cycle going over all elements of Ti. For simplicity we write
σ = σ(TL)

Overloading notation, set the selector polynomials
qL,qR,qO,qM,qC ∈ F[X] defined for each i ∈ [n] by

qL(gi) := (qL)i, qR(gi) := (qR)i,qO(gi) := (qO)i,

qM(gi) := (qM)i, qC(gi) := (qC)i.

If (x, ω) is a relation L prepared for l public inputs, then
(x′ω′) is a relation for L′ computed in the following way:

1) PI(X) :=
∑
i∈[l]−xi · Li(X)

2) fL, fR, fO ∈ F[X] are defined by the following condition:
∀i ∈ [n]

fL(i) = xai, fR(i) = xbi, fO(i) = xci.

Remark 1: Note that calculation of x′ requires only the access
to statement x and no access to secret witness ω.
Remark 2: Note that permutation σ was chosen in such a way
that ω is a valid witness for L|x iff fL, fR, fO constructed as
described before from a valid witness for L′|x′ .
Remark 3: Note, that ”true” degree of polynomials fL, fR, fC
is n − 1 where n is number of gates in L. However in
REDSHIFT we will allow them to be of some degree n′ > n,
where the particular choice of n′ will be described later.

B. Protocol

Preprocessing: Let L′ = (qL,qR,qO,qM,qC, σ) be con-
straint system in question.

Take k1 = e, k2, k3 ∈ F∗ to be representatives of different
cosets in F∗/H . Let τ be the bijection between the sets P1 =
[3n] and P2 = H∗ ∪ k2H∗ ∪ k3H∗ defined by:

τ [n · (j − 1) + i] = kjg
i, i ∈ [n], j ∈ [3].

Recall that σ is a permutation on P1 hence σ′ = τ ◦ σ ◦ τ−1
is a permutation on P2.

Define Sid1(X), Sid2(X), Sid3(X), Sσ1(X), Sσ2(X), Sσ3(X)
∈ F<n[X] - “permutation” polynomials by the following
rules:

1) Sidj (X) = kjX for j ∈ [3].
2) Sσj (g

i) = σ′(kjg
i) i ∈ [n], j ∈ [3].

Remark: Selectors qL,qR,qO,qM,qC, permutation poly-
nomials Sid1 , Sid2 , Sid3 , Sσ1

, Sσ2
, Sσ3

and Langrange-
basis polynomials {Li}i∈[n+1] play the role of ”constraint”
polynomials in terms of previous section.

Setup: Fix FRI parameters and degree d for FRI games
(that is, the degree of all quotient polynomials). The prover is
given an explicit representation of all constraint polynomials
and the verifier is given oracle access to them alongside the
“distinguishing” point z (which in general is different for each
constraint polynomial). The verifier is given PI(x) - the public
inputs polynomial and the honest prover is additionally given
fL, fR, fO, the witness-wire polynomials.

All commitments mean FRI-commitments in this section.
Protocol:

1) Prover chooses masking polynomials
h1(x), h2(x), h3(x) ∈ F<k[x] where the choice of
k will be described later. Prover defines new witness
polynomials f1(x) = fL(x) + h1(x)Z(x), f2(x) =
fR(x) + h2(x)Z(x), f3(x) = fO(x) + h3(x)Z(x).

2) Prover sends commitments to polynomials f1, f2, f3 to
verifier.

3) Verifier chooses random β, γ ∈ F and sends them to
prover.

4) For j ∈ [3] prover computes pj := fj + β · Sidj + γ
and qj = fj + β · Sσj + γ. He then defines p′(X) and
q′(X) ∈ F<3n[X] by

p′(X) =
∏
j∈[3]

pj(X), q′(X) =
∏
j∈[3]

qj(X).

Prover computes polynomial P (x), Q(x) ∈ F<n+1[X]
such that P (g) = Q(g) = 1 and for i ∈ {2, . . . , n+ 1}:

P (gi) =
∏

1≤j<i

p′(gj).

Q(gi) =
∏

1≤j<i

q′(gj).

Prover sends commitments to P and Q.
5) Verifier sends random a1, . . . , a6 ∈ F to Prover.
6) Define the following polynomials:

a) F1(x) = L1(x)(P (x)− 1)
b) F2(x) = L1(x)(Q(x)− 1)
c) F3(x) = P (x)p′(x)− P (xg)
d) F4(x) = Q(x)q′(x)−Q(xg)
e) F5(x) = Ln(x)(P (xg)−Q(xg))
f) F6(x) = qL(x) · fL(x) + qR(x) · fR(x) + qO(x) ·
fO(x) + qM(x) · fL(x) · fR(x) + (qC(x) + PI(x))

Later we show that for honest provers all of {Fi(x)} are
identically zero on domain H∗. This means that all of
{Fi(x)} are divisible by Z(x) in the ring F[x], hence
so is their linear combination F (x) =

∑6
i=1 aiFi(x).

Prover computes T (x) = F (x)
Z(x) and sends the verifier a

commitment to T (x).
Remark: Due to the restrictions on the degrees it may
be necessary to split T (x) into separate polynomials
T0(x), T1(x), . . . , T3(x) and commit to them indepen-
dently.

7) Verifier uniformly random chooses point y ∈ F/H and
queries openings for all setup and witness polynomials



at this point. Note that we use the evaluation scheme of
section VI to open constraint polynomials and the list
version of commit-reveal algorithm of section V to open
witness polynomials. By using queried values verifier is
able to compute {Fi(y)}i∈[6] and T (y).
Remark: We deprecate sampling y inside domain H
in order to achieve perfect-zero knowledge instead of
statistical.

8) Verifier checks the identity:

6∑
i=1

aiFi(y) = Z(y)T (y) (∗)

If this equation holds he accepts the proof and rejects
otherwise.

For brevity, we defer a full analysis of the security and
zero-knowledge properties of the above scheme to the
appendix.

Remark 1: Polynomials Fi(x)i∈[5] are responsible for
checking copy-satisfiability of witness polynomials.

Remark 2: Here we explain the intuition behind Sidk , Sσj .
Sidk is only required to map H to disjoint sets P1, P2, P3. Sσj
should then map to the same set P = P1 ∪ P2 ∪ P3 but in a
“permuted” fashion. We construct a map τ in order to transfer
permutation σ from domain [n] to P . The simplest way to
define Sidk is to map [n] to [1..n], [n + 1..2n], [2n + 1, 3n]
respectively, in this case there is no need to apply the map
τ as then there is no need of domain translation (P = [n]).
The problem is that all of the Sidk polynomials will be of
degree n in general. We construct Sidk in such a way to be
of minimal possible degree - 1, so it is easy to verifier to
calculate evaluations of those polynomials by himself and we
get rid of ”polynomial evaluation protocols” in this case.

Remark 4: Although by described construction fL, fR, fO can
be taken to be in F<n[X], the concrete degrees of them are not
important: the only required property is the relation between
these values on domain H∗. This freedom in degree choice
helps achieve zero-knowledge.

VIII. OPTIMIZATIONS AND VARIANTS

In this section we are going to describe various additional
techniques to achieve better concrete efficiency of the RedShift
protocol.

A. Batched FRI

Recall that all polynomial commitments and evaluations
in our protocol are reduced via FRI to the following check:
whether particular functions f1, . . . , fk represented as oracles
are close to the space of degree d polynomials. The intuitive
approach is to replace all those separate and independent
FRI queries by exactly one instance of FRI w.r.t a linear
combination of functions fi, where the coefficients of linear
dependence are provided by the verifier. This can in fact be

done, with rigorous justification based on the following lemma
found in [27].

Definition 7. J [k]
ε (λ) = Jε(Jε(· · · (Jε(λ)))), where there are

k iterations of the function Jε.

Definition 8. The relative hamming distance of set S ⊆ Fn is
∆(S) = min{∆(w,w0)|w,w0 ∈ S,w 6= w0}.

Theorem 5. Let V ⊆ Fn be a linear space over a finite field
F with ∆(V ) = λ. Let u∗ ∈ Fn and let ε > 0 satisfy δ <
J
[l+1]
ε (λ). For u1, u2, . . . , ul ∈ Fn let A = {α ∈ F∗/|∆(u∗+

αu1 + α2u2 + · · · + αlul, V ) < δ}. If |A| > l ·
(
2
ε

)l+2
, then

there exist v∗, v1, v2, . . . , vl ∈ V such that

|{i ∈ [n] | (u∗i = v∗i )∧ ((u1)i = (v1)i)∧· · ·∧ ((ul)i = (vl)i)}

is ≥ (1 − δ − ε)n. In particular, ∆(u∗, v∗) ≤ δ + ε and
∀i ∈ [l] : ∆(ul, vl) ≤ δ + ε.

Specifying this theorem for V = RS[F, D, ρ], for which
λ = ∆(V ) = 1 − ρ. We use the contrapositive to get the
following corollary:

Corollary 1. Let V = RS[F, D, ρ] be the family of RS-codes.
Let ε ∈ (0, 1), δ > 0 are chosen is such a way that δ <

J
[l]
ε (1 − ρ). Let l ≥ 2 ∈ N and u1, u2, . . . , ul ∈ Fn, such

that there exists i ∈ [l] for which ∆(ui, V ) > δ + ε. Then
|A| ≤ (l − 1)

(
2
ε

)l+1
.

We have the following protocol for a batched FRI, the
correctness of which is a trivial consequence of the previous
corollary.

Batched FRI protocol:
1) Prover publishes oracles to f1, . . . , fk.
2) Verifier selects random α ∈ F∗ and send it to prover.
3) Prover and Verifier are engaged into FRI-protocol w.r.t

f =
∑k
i=1 α

i−1fi. Verifier’s output is acc if prover has
passed FRI check and rej otherwise.

B. Remarks on the Setup Phase

Recall that as part of the setup for RedShift, for every
constraint polynomial c we are required to find a specific
point i ∈ F which separates c from all polynomials taken
the from corresponding δ-list Lδ(c). As we have noted in
previous sections, decoding the whole list can be conducted in
a polynomial number of steps (through the Sudan decoding-
algorithm) and such a point i can be quickly found by brute-
force. Despite the fact that all these preliminary actions should
be done only once per circuit and the resultant i can be
subsequently used in all created proofs, such a setup can
be a significant amount of work. A possible workaround
for this problem is to forgo decoding algorithms altogether
and randomly sample point i, e.g. as a hash of the circuit
using techniques similar to Fiat-Shamir heuristics. Due to the
Schwartz-Zippel lemma, there is a high chance that i will
indeed separate c from the corresponding δ-list. If i is taken in
a way that polynomials are indistinguishable (so some other
polynomial from the list Lδ(c) has the same value at the



point i and polynomial c) then the malicious prover will be
able to conduct proof forgery. As a result we have a trade-off
between speed, efficiency and security of the whole protocol.
We calculate the extra soundness penalty due to this below.

If at the setup step the choice of i ∈ F was random, the
probability that any two degree d polynomials g1, g2 ∈ Lδ(c)
satisfy g1(i) = g2(i) is small. To see this, by the Schwartz-
Zippel lemma we have that ∀g ∈ Lδ(c):

Pr
i

[g(i)− c(i) = 0] ≤ deg (g(X)− c(X))

|F|
≤ d

|F|

Enumerating over all gj ∈ Lδ(c)\{c} where j ∈ |Lδ(c)|,
from a union bound we get that:

Pr
i

 ⋃
j∈|Lδ|−1

gj(i)− c(i) = 0

 ≤ d

|F|
· (|Lδ| − 1)

1) Improving soundness with multiple samples: One issue
with the above lies in the size of |Lδ|. In cases where this is
too large, one random sample might not be enough to achieve
the desired soundness bound.

We show that the straightforward approach of sampling
multiple random points yields substantial soundness improve-
ments. In this case the verifier samples k random points
{ij}kj=1 computed the corresponding values {c(ij)}kj=1 at the
setup phase. The prover then performs an opening at the point
i ∈ F by performing an IOPP for membership of the following
function in RS[Fq, D, d/|D|]:

h(X) =
c(X)− U(X)

(X − i)
∏k
j=1(X − ij)

where U(X) interpolates between the target opening point
(i, z) and all other points (ij , c(ij)).

Given that the ij ∈ F are randomly sampled, then the
probability that some g ∈ Lδ(f) agrees with c on all k points
is actually substantially smaller:

Pr
i1,...,ik

 ⋂
j∈[k]

g(ij)− c(ij) = 0

 =

=

k∏
j=1

Pr
i

[g(i)− c(i) = 0] ≤
(
d

|F|

)k
.

From the union bound, we get the total soundness error to be
equal to |Lδ(c)| · (d/|F|)k.
Limitations on k: It is immediate that k ≤ d. Indeed, the
case where k = d fully specifies the polynomial since f is
of degree d. Sampling and evaluation procedure is O(kd) in
terms of computation complexity and has to be done only
once.

C. Binary fields

Recall that Kate-based PLONK is restricted to prime fields
only. The reason for this is that the Kate commitment requires
embedding a field F into a group of points on some pairing-
friendly elliptic curve. Such an embedding is known for prime
fields F only. In [27] there is a version of the FRI protocol for
binary fields which is similar to the one used here but which
exploits additive and vector space structure of the underlying
field instead of the multiplicative one. All other parts of
PLONK are completely field agnostic and only permutation
argument may require modifications. This means that RedShift
can be instantiated for binary fields as well as prime fields and
all constructions and proofs follow through: simply replace the
multiplicative domain |D| by an affine subspace. The binary
variant of PLONK is especially effective for computations
that require a lot of XOR’s and bit manipulations, which are
naturally encoded in a binary version of the system.

D. Recursion

One can express a verification subroutine of RedShift as
another circuit, where the dominating subroutine will be
verification of Merkle paths (if the IOP is instantiated with
Merkle trees), or inclusion proofs in some other cryptographic
accumulator (e.g. RSA-based). All the remaining arithmetic
operations are performed over the same field that the original
circuit (for which verifier is expressed) is defined, so there is
no requirement for cycles over pairing friendly elliptic curves
as in previous work. We should also note that one can use a
hybrid approach to perform the last step of recursion using a
pairing-based PLONK, e.g. the BLS12-381 curve has a main
subgroup of order |G| such that 232 | (|G| − 1). This allows
us to instantiate RedShift.

E. Application to other proof systems

One can apply the list polynomial commitment scheme and
evaluation scheme to other proof systems such as SONIC
[14] and Marlin [35] that were also originally instantiated
using univariate polynomial commitments. We leave such
transformation for an interested reader and will only suggest
that one will have to pay more attention to proximity testing
parameters e.g. testing inclusion in RS[Fq, D, (d − 1)/|D|],
where d = 2k in the case of Marlin. [29] contains a description
of such a subroutine.

We should also note that the DEEP-ALI protocol from [28]
uses a construction that is equivalent to the list commitment
scheme in their application to the STARK [18] proof system.
In this case, all the setup polynomials, constraints and checked
relations are known to the verifier and are checked naively dur-
ing the verification procedure. We expect that our polynomial
evaluation scheme can also be adapted for this case and allow
one to express more complex STARK circuits.

F. Strict commitment scheme

An interested reader may have noticed that all the logic
about list commitment schemes can be combined with a



requirement that the FRI δ parameter is in the unique decod-
ing radius. This provides a standard polynomial commitment
scheme. Introducing the limitation of unique decoding also
lifts the requirement for a separate evaluation scheme. Such a
primitive was already described in [36] and as mentioned in
the introduction it comes at the cost of larger proof sizes.

IX. SYSTEM INSTANTIATION

Now, we have constructed and proved RedShift from several
components based on various independent parameters: ρ, ε, δ,
n. In this section we want to come to common base and give
a concrete example how one can instantiate all the parameters
of the system.

First we focus on the contribution A′ = Lt2 4n
|F/D| , for

which the full soundness analysis can be found in Appendix B.
Following theorem 1, we choose ε = |F|−1/20. This provides
a list size of O(F1/20), and for any reasonable problem size
n we have t2 = 8 witness polynomials (enumerated later in
section X) and A′ ∼ 1/

√
F. For a typical field size of ∼ 256

bits, the error contribution due to A′ is on the order of 2−128.
Now we focus on how such choice of ε 6= 0 will affect the

formula of FRI soundness from section IV. We choose ρ =
1/16 and are interested in the part of the formula involving

p =
(

1−min
{
δ0, Jε(Jε(1− ρ))

}
+ ε log |D|

)
.

A smaller value of p allows one to have fewer queries to
achieve the same FRI soundness error. In the case of ε = 0,
we have p0 = 1/2 for our choice of ρ. For ε = F−1/20 and
domain size |D| = 232 this is equivalent to n + 1 = 228 and
we have that p ∼ 0.504.

If we instead use ρ = 1/32, then for the same choice of the
other parameters p0 ∼ 0.421 and p ∼ 0.425. In all the cases
δ = Jε(Jε(1− ρ)) is below the Johnson bound 1−√ρ.

Here we should also give numeric estimates for benefit
of moving away from unique decoding radius and using list
commitment scheme instead of testing for unique polynomial.
For a rate of ρ = 1/32 putting ε = 0 for ease of illustration
and aiming for 80 bits of security we have the following
comparison

1) δ = δ0 = 1−ρ
2 results in p0 = 1− δ0 = 33

64 and required
number of queries is ∼ 84

2) Using FRI [34] and list commitment δ = Jε(Jε(1 − ρ))
results in p = 4

√
ρ and required number of queries is ∼ 64

3) Using DEEP-FRI [28] and list commitment δ = J
3/2
ε (1−

ρ) results in p = 3
√
ρ and required number of queries is

∼ 48

Same estimate for ρ = 1/64 would result in values of 82,
52 and 40 queries respectively.

X. BENCHMARKS

We instantiate RedShift with q = r · 2192 + 1, r =
576460752303423505 which is a Proth prime, and use ρ =
1/16. Oracles were instantiated as Merkle trees using the
Blake2s hashing algorithm. The setup phase was performed
using the approach from Section VIII, where a random point

was sampled using Fiat-Shamir heuristics by placing all in-
dividual root hashes of oracles to the setup polynomials into
the transcript. For comparison, we have also implemented the
PLONK prover using Kate commitments and used two curves:
BN254 and BLS12-381, that are expected to provide ∼ 80 bits
and ∼ 120 bits of security levels respectively.

Circuit sizes were chosen so as to set the n + 1 value
for PLONK and RedShift to

[
218, 219, ..., 223

]
. In the case of

RedShift, the degree bound for FRI checks is d = n+ 1. We
used a cloud “memory optimized” instance from DigitalOcean
with 16 (virtual) cores. Results are presented in Fig. 1 with
execution time measured in seconds.

All the implementations use a certain degree of precom-
putation: we precompute low degree extensions of setup
polynomials (for both RedShift and PLONK) and Merkle trees
of the setup polynomial oracles (RedShift only) before proof
generation. We also separately provide expected proof sizes
for RedShift for different sets of parameters.

We include calculations for approximate proof sizes at
different security levels, which are displayed in Table I.
A detailed description of how we calculate proof size and
applicable optimizations is presented in Appendix D. Results
from Table I also hint that in case of recursive constructions
one can use different strategies, e.g. use higher rate (ρ) for
”inner” level and lower one for levels of recursion that perform
a verification of the ”inner” proofs.

We note that there exists a specific interplay between the
system parameters, running time and proof sizes. As soon as
the field F and parameter ε are set, this fixes the list size
L and soundness error ASZ = Lt2 4n

|F/D| + 2
|F| of RedShift

(as analyzed in Appendix B-A) and the contribution from
the randomized setup in VIII-B, if one is applied. Another
component of the soundness error is due to the FRI error
AFRI , which depends on the number of queries. This does
not change the proof generation time and only affects proof
size. As shown in Section IX, we target a contribution ASZ ∼
1/
√
|F| ∼ 2−120 and then pick the number of queries so

that they achieve a specific FRI soundness level. The final
soundness error would then be ASZ + AFRI , but in some
cases one contribution clearly dominates in this sum. This is
reflected in Table I where we target security depends from
AFRI contribution. We note that the running times in Figure
1 are based on a prover running without all the optimizations
implemented, however we believe that incorporation of the
optimization techniques will not affect running time but rather
provide marginal improvements.

XI. FURTHER WORK

An immediate follow-up should be the investigation of how
the FRI improvement described in [28] affects proving time
and final proof sizes. Such a question requires an efficient
implementation of the DEEP-FRI protocol. From our previous
calculations, we anticipate that the improvements due to the
list commitment scheme would be more pronounced for [28]
than for [27]. Another important practical aspect is implemen-
tation of the verification circuit and explicit testing of recursive



TABLE I: Expected proof sizes for various setup parameters.

Target security
level, bits Rate Problem

size
Proof size,

unoptimized
Proof size,
optimized

80 1/16 220 1772 KB 623 KB
80 1/16 224 2207 KB 761 KB
80 1/16 228 2682 KB 933 KB
80 1/32 220 1877 KB 513 KB
80 1/64 220 1315 KB 465 KB
80 1/128 220 1179 KB 412 KB
80 1/256 220 1104 KB 381 KB

120 1/16 220 2657 KB 935 KB
120 1/16 224 3309 KB 1141 KB
120 1/16 228 4022 KB 1400 KB

Fig. 1: Benchmark data for settings as described in Section X.
Execution time measured in seconds.

construction and the resulting circuit size. This would also
require investigation of alternative hash functions as described
in [37].

As described in Section X, the PLONK proof system
initially has 17 different polynomials. The latest updates allow
one to reduce this number by one or two, which would
also lead to smaller proof sizes and faster proof generation.
It is also important to see if an application of RedShift to
other existing proof systems would result in even smaller
proof sizes for similar circuit sizes or faster proof generation.
Another important comparison would be against current state-
of-the-art proof systems such as Groth16 [7] with respect
to proof generation time. This requires an efficient compiler
to transform the R1CS based problem representation to the
PLONK arithmetization.

Perhaps a more important question is whether one would
need to use the described polynomial evaluation scheme for
“constraint” polynomials or if there exist other approaches

for how to guarantee the opening of a particular polynomial
without the unique decoding radius requirement for FRI.
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APPENDIX A
FRI OVERVIEW

Here we provide an overview of the FRI protocol, as seen
in [27].

Definition 9. For a function f : S → F, let interpolantf

be the unique degree < |S| polynomial that satisfies
interpolantf (s) = f(s) for all s ∈ S. This polynomial can be
constructed by Lagrange interpolation.

Setup phase. In the setup phase, the prover and verifier agree
on the following parameters
◦ A prime field F.
◦ A positive integer R ∈ Z>0 and the rate ρ = 2−R.
◦ A multiplicative domain D = D(0) = {ω, ω2, . . . , ωn}

generated by an element ω = ω0 ∈ F∗ of order n = 2k

for some k ∈ N. For chosen ρ = 2−R and n = 2k the FRI
protocol will check whether f is of degree < ρn = 2k−R.
◦ The prover and verifier agree on a number of rounds
r < k − R ∈ N and a sequence of sub-domains
D(0), D(1), D(2), . . . , D(r), constructed inductively as
follows. Suppose D(i) was already defined and generated
(as a cyclic group) by ωi. Let q(x) : F → F be
the map defined by the rule: q(x) = x2. Then define
D(i+1) = q(D(i)). Note that D(i+1) is cyclic subgroup
of F∗ generated by ωi+1 = ω2

i . Note that always
|D(i)| = |D(0)|

2i and for all i ∈ 0, 1, . . . , r − 1 D(i) can
be split into cosets ∪jsijH(i) where H(i) is the kernel of
the homomorphism q(x)|D(i) : D(i) → D(i+1). Note that
all cosets have equal size |D(i)|

|D(i+1)| = 2 and the number of

cosets j = |D(i)|
2i+1 .

When we say that prover commits to function f on domain
D this means prover sends an oracle containing f |D i.e. all
evaluations of function f on domain D.
Commit phase. In the commitment phase, the prover in-
ductively constructs and commits to a sequence of functions
f (0), . . . , f (r−1) and a sequence of coefficients a0, . . . , ad with
which the verifier will construct the final function f (r).
◦ Input: a purported low degree polynomial f (0) := f ∈
RS[F, D(0), ρ]. The prover commits to f (0) on D(0).
◦ For 0 ≤ i < r, given that f (i) was already defined (and

committed to), the prover constructs f (i+1) : D(i+1) → F
in the following way:
• The verifier sends a random x(i) ∈ F.
• For y ∈ D(i+1), let Sy = {x ∈ D(i) : q(x) = y} be

the coset of D(i) mapped to y.
• Using interpolation, the prover construct the polyno-

mial
p(i)y (x) := interpolantf

(i)|Sy (x),

and defines

f (i+1)(y) := p(i)y (x(i)).

◦ If i < r− 1, the prover commits to the values of f (i+1)

on D(i+1). If i = r−1 then f (r) is a purported polynomial
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of degree < ρ|D(r)|, in which case the prover commits
to its coefficients a0, . . . , ad.

Query phase. In the query phase, the verifier (probabilisti-
cally) validates the proof sent by the prover.
◦ Input: a sequence of oracles f (0), . . . , f (r−1), and co-
efficients a0, . . . , ad, with which the verifier constructs
f (r), by

f (r)(x) :=

d∑
k=0

akx
k ∈ RS[F, D(r), ρ].

◦ Verifier generates a random s(0) ∈ D(0) and for all 0 ≤
i < r lets

1) s(i+1) := q(s(i))
2) S(i) be the coset of H(i) in D(i) containing s(i).
◦ For 0 ≤ i < r − 1 the verifier checks that given
f (i), the function f (i+1) was constructed according to
the protocol:
• She queries f (i) on all of S(i), and
• computes p(i) = interpolantf

(i)|
S(i) , and

• performs ”round consistency” check:

f (i+1)(s(i+1)) = p(i)(x(i)).

Note that in the last check, the function considered is
f (r) which is in RS[F, D(r), ρ] by construction. If all
tests pass, the verifier accepts the proof. Otherwise, she
rejects.

Remark: Instead of taking a family of nested sub-domains to
be multiplicative subgroups it is also possible to take the cosets
of them. To be more precise, consider any shift g ∈ F∗/D.
There is a modification to FRI protocol operating over the
domains D(0)′ = gD(0), D(1)′ = gD(1), . . . , D(r)′ = gD(r)

The function mapping D(i)′ to D(i+1)′ is q′(x) = q−1x2.
The modified version of FRI has the same security guarantees
as the original one. The possibility to operate in cosets will
be later exploited to achieve zero-knowledge property of
transparent PLONK.

APPENDIX B
REDSHIFT SECURITY ANALYSIS

Here we provide the complete security analysis and zero
knowledge proof for RedShift.

A. Security analysis

Completeness: Assume prover posses a valid witness con-
sisting of polynomials fL, fR, fO. which copy-satisfy T . Note
that addition of masking polynomials doesn’t change the
values of fL, fR, fO on H , and only the values are checked
in the protocol. It is straightforward to check that F6(x)
will be identically zero on H∗ by the definition of witness
polynomials, F1(x), F2(x), F3(x), F4(x) will be zero on H∗

by construction of P (x) and Q(x). To prove completeness of
the protocol it is then enough to check F5(x) is identically zero
on H∗. Using the properties of Lagrange-basis it is equivalent

for P (gn+1) = Q(gn+1). Using the definition of P (x) and
Q(x) the last equation is equivalent to:

n∏
i=1

3∏
j=1

(
fj(g

i) + β · kjgi + γ
)

=

=

n∏
i=1

3∏
j=1

(
fj(g

i) + β · σ′(kjgi) + γ
)
.

Using the definition of τ and σ′ = τ ◦σ ◦ τ−1 we can rewrite
this as following:

n∏
i=1

3∏
j=1

(
f(j−1)n+i + β · τ

(
(j − 1)n+ i

)
+ γ
)

=

n∏
i=1

3∏
j=1

(
f(j−1)n+i + β · τ ◦ σ

(
(j − 1)n+ i

)
+ γ
)

Now we use the fact f1 = fL, f2 = fR and f3 = f0 copy-
satisfy T which means:

f(j−1)n+i = fσ((j−1)n+i)

After renumerating the products on both sides would be
completely equal which proves completeness.

B. Soundness and argument of knowledge.

It is enough to prove argument of knowledge property as
soundness is an easy corollary of this.

In order to conduct the proof we need three auxiliary
statements (the first two are proved in PLONK paper, the last
is classic).

Lemma 1. Let k ∈ N. Fix F1, . . . , Fk ∈ F[X]. Fix Z ∈ F[X].
Suppose that for some i ∈ [k], Z - Fi. Then except with
probability 1

|F| over uniformly random a1, . . . , ak ∈ F, Z - F ,

where F :=
∑k
i=1 aiFi.

Lemma 2. Let n ∈ N. Fix a permutation σ of [n], and
a1, . . . , an, b1, . . . , bn ∈ F. Suppose that for some i ∈ [n]
bi 6= aσ(i). Then except with probability n

|F| over random
β, γ ∈ F:

n∏
i=1

(ai + βi+ γ) =

n∏
i=1

(bi + βσ(i) + γ) .

Lemma 3 (Schwartz-Zippel lemma). Let P ∈
F[x1, x2, . . . , xn] be a non-zero polynomial of total degree
d ≥ 0 over a field F. Let S be a finite subset of F and
let r1, r2, . . . , rn be selected at random independently and
uniformly from S. Then

Pr[P (r1, r2, . . . , rn) = 0] ≤ d

|S|
.

We will apply last lemma to the special case of univariate
polynomial P (x) and the set S being all of F.

We will show that if prover is able to convince verifier in
correctness of the statement x then there actually exist an
extractor having full access to prover’s state and with high



probability capable of outputting valid witness fL, fR, fO ∈
L′|x for given statement x = PI(x).

First, let us count the overall number of FRI instances
conducted during the protocol. Let t1 denote the number of
FRI used for evaluation of setup polynomials (exploiting the
technique of section VI) and let t2 denote the number of FRI
used for evaluation of witness polynomials (as described in
section V).

1) Fri is used for retrieving the values of Sσ1
(x), Sσ2

(x),
Sσ3

(x),qL(x), qR(x), qM(x), qO(x), qC(x) at point
z /∈ H sent by the verifier during one of the last
steps of the protocol, hence t1 = 8. Note that there
is no need for using FRI for evaluation of any of
L1(x), Ln(x), Z(x), Sid1 , Sid2 , Sid3 as the polynomials
are of very special reduced form and can be evaluated
on behalf a verifier himself without any help from the
prover. More precisely, polynomials Sidj for j ∈ [3] are
linear, Li(x) for i ∈ [n+ 1] are of the form:

L(x) =
ci(x

n+1 − 1)

x− gi

for some constant ci and Z(x) is of the form:

Z(x) =
∏
a∈H∗

(x− a) =
xn − 1

x− 1
.

2) Witness polynomials f1(x) = fL(x), f2(x) = fR(x),
f3(x) = fO(x), T0(x), T1(x), T2(x), T3(x) are evaluated
at point z, Polynomials P (x) and Q(x) are evaluated at
point z and z · g (recall, that we handle multi-evaluation
with one instance of FRI). Hence t2 = 7.

Assume that prover is malicious: he doesn’t possess a valid
witness and aims to cheat on a honest verifier. Let A denote the
event for the prover to succeed in passing all verifier’s checks.
We will estimate the probability of event A. The probability is
taken over random variables β, γ, z and all verifier’s random
variables sent during all FRI instances.

Assume that after interaction with prover verifier accepts
the proof. The cases why it might happen fall into two major
categories: either prover managed to cheat on verifier during
any of FRI instances (we denote this event as B) or prover
passed all FRI without cheating. Recall that soundness of any
instance of FRI is denoted by err(δ) Hence:

Pr(A) = Pr(A|B) Pr(B) + Pr(A|B̄) Pr(B̄) ≤

1− (1− err(δ))t1+t2 + Pr(A ∩ B̄).

We now restrict ourselves to the case of event A ∩ B̄ to
happen. Due to soundness of list commitments scheme and
evaluation scheme, event A ∩ B̄ means that all opening of
setup polynomials are correct, and for every witness oracle
f̂ there exists a polynomial f(x), such that f(x) is δ-close
to f̂ and the opening provided by the prover is evaluation of
f(x) at corresponding point. Let L - be the maximal size of
all the |Lδ| running over all witnesses’ δ-lists. Note that L is
bounded above by Johnson-bound Jρ,ε.

For prover to pass the protocol the equation (∗) should be
satisfied at randomly chosen point z. There are at most Lt2
choices of substituted values in equation (∗) dependent on par-
ticular choices of functions f1, f2, . . . , ft2 from corresponding
δ-lists of oracles f̂1, f̂2, . . . , f̂t2 .

Let C be event that for any choice of polynomials
f1, . . . , ft2 from aforementioned δ-lists the LHS of equation
(∗) is not divisible by Z(x) in the ring F[X]. This in
particular implies that for any choice of polynomials T0(x),
T1(x), T2(x), T3(x) on the RHS the equation (∗) is not
satisfied identically. Note that LHS and RHS of (∗) are both
polynomials of degree at most 4n and if they are not equals
they may coincide on at most 4n points (by Schwartz-Zippel
lemma). Then:

Pr(A ∩ B̄) = Pr(A ∩ B̄|C) Pr(C) + Pr(A ∩ B̄ ∩ C̄)

≤ Lt2 4n

|F/D|
+ Pr(A ∩ B̄ ∩ C̄).

Event A∩B̄∩C̄ means that for some choice of polynomials
P = {f1, . . . , ft2} equation (∗) holds identically. From now
on we fix this set of polynomials P and show that with high
probability they form a valid witness. Note that the set P may
be efficiently derived by prover from corresponding oracles
with the help of Sudan list-decoding algorithm, efficiently
delivering proof of knowledge property.

For P = {f1, . . . , fn} and any of F1(x)F2(x), . . . , F6(x)
(where we substitute polynomials from P at appropriate places
in Fi(x)), denote by D the event that this is not divisible by
Z(x). Using Lemma 1 we get:

Pr(A ∩ B̄ ∩ C̄) = Pr(A ∩ B̄ ∩ C̄|D) Pr(D) + Pr(A ∩ B̄ ∩ C̄ ∩ D̄)

≤ Pr(Z(x) divides F (x) | ∃ Fi(x) : Z(x) - F (x)) + Pr(A ∩ B̄ ∩ C̄ ∩ D̄)

≤ 1

|F|
+ Pr(A ∩ B̄ ∩ C̄ ∩ D̄).

Event D̄ in particular means that F6(x) is identically zero
on H∗ and therefore f1(x), f2(x), f3(x), satisfy the second
condition of the definition of witness for L′|x.

From F1(x), F2(x), . . . , F5(x) being identically zero on
H∗ we retrieve (mimicking the reasoning in the proof of
completeness property) that:

n∏
i=1

3∏
j=1

(
f(j−1)n+i + β · τ

(
(j − 1)n+ i

)
+ γ
)

=

n∏
i=1

3∏
j=1

(
f(j−1)n+i+β · τ ◦ σ

(
(j − 1)n+ i

)
+ γ
)

(•)

However, we have started with the assumption A that prover
doesn’t posses any valid witness for L′|x and hence, as
f1(x), f2(x), . . . , fn(x), satisfy the second condition of the
definition of witness, they can’t satisfy the first (or they will
constitute the witness in question). Using lemma 2 we then
have:



Pr(A ∩ B̄ ∩ C̄ ∩ D̄)

≤ Pr(eq. (•) holds | f1(x), f2(x), f3(x) don’t copy-satisfy σ)

≤ 1

|F|
.

Resuming all the computations we get, that the probability
of malicious prover to cheat on a honest verifier is at most:

Pr(A) ≤ 1− (1− err(δ))t1+t2 + Lt2
4n

|F/D|
+

2

|F|
,

which is negligible (for precise numeric estimates of this
probability refer to section IX). Moreover, we have shown that
if prover manages to pass all the protocol’s checks than any
actual witness may be reconstructed (in polynomial number
of steps) with the help of Sudan list decoding algorithm. This
conclusion completes the soundness property proof.

C. Zero-knowledge

We will start with the explanation of the idea underlying
zk-property proof. Presence of zero knowledge property means
the existence of a simulator S not possessing any valid witness
for L′ such that S is able to generate a transcript 〈S〉 which is
from side view indistinguishable from honest prover-verifier
interaction 〈P, V 〉 for any adversary D. Indeed, this is what
zk-property is roughly saying: if there is no difference between
transcript of prover-verifier interaction and simulator’s output
then prover’s answers do not expose any information on
the hidden witness (or the transcripts should be in some
sort different). Recall that transcript in this context means a
set of random variables 〈a1, a2, . . . , an〉, where ai represent
either verifier’s messages and queries or prover’s responses
to corresponding queries. Note that transcript doesn’t capture
any information about the oracles themselves as we treat all
oracles as being ideal and hence exposing no data except for
the elements sent in response to verifier’s queries to oracles
(and those responses are encoded inside ai). Note also, that in
our case we have a public-coin protocol in which all verifier’s
queries are randomly distributed field elements.

We are going to construct the simulator S and transcript
〈S〉 in the following way: we will put as many variables
of the transcript as possible being uniformly and randomly
distributed. All remaining values will be uniquely fixed by the
choice of previous random variables. We will then show that
such an approach finally results in the requirement for witness
polynomials fi to have uniformly and randomly distributed
values over some domains Ki (Ki are in general different for
every witness polynomial). Then we will show that adding
to each witness polynomial a masking polynomial hi(x) of
degree at least |Ki| is enough to achieve the required uniform
distribution of values over Ki finishing the proof of ZK-
property. (In reality we need to add masking of the form
z(x)hi(x) as we don’t want to change the values of any fi(x)
on domain Z).

Now we are going to plug in all the details.
The transcript of RedShift is the following:
〈β, γ, z, T 〈f1〉, T 〈f2〉, . . . , T 〈Q(x)〉 (the range here is
over all witness polynomials). where T 〈f〉 denote the
part of the transcript corresponding to relaxed polynomial
commitment w.r.t. to witness oracle f . Note that we do
not list the transcripts corresponding to the instances of
polynomial evaluation protocol as it is conducted w.r.t to
setup polynomials and those polynomials are considered to
be public - we do not care how much information evaluation
protocol exposes about them.

We start constructing the transcript 〈S〉 of S in the following
way: we take β, γ to be uniformly randomly distributed over
F and y to be uniformly and randomly distributed over F/H .
As those values are also taken at random on exactly the same
domains by a honest verifier during the actual interaction with
prover then this part of transcripts in 〈S〉 and 〈P, V 〉 is totally
equal. For 〈S〉 we also take the openings of each witness
function except for T0(x) to be uniformly randomly distributed
over F. The evaluation of T0(x) at y is uniquely determined
by equation (∗) which holds for any true transcript 〈P, V 〉
and hence the same relation between variables should hold
for simulator’s transcript 〈S〉 for them to be indistinguishable
(It can be easily observed that there are no other dependencies
between the openings). Note, how we used our convention for
y /∈ H here: in this case Z(y) 6= 0 and so we can obtain unique
value for RHS of (∗) that will satisfy (∗) for any random
choice of evaluations on LHS.

Now we are going to analyze transcript T (f) for any
witness polynomial f in more detail. In the actual interaction
between prover and verifier the transcripts T 〈f〉 is of the
following form:

i1, i2, . . . , ik

z1, z2, . . . , zk

x(0), x(1), . . . , x(r−1)

a0, s
(0)

q(0)(s(0)), q(0)(t(0)), . . . , q(r−1)(s(r−1)), q(r−1)(t(r−1))

where:
1) i1, i2, . . . , ik ∈ F - the points in which verifier ask

to open the oracle f . k is one for single-point evalu-
ation (conducted for witness polynomials f1(x), f2(x),
f3(x), T0(x), T1(x), T2(x), T3(x) at y: i = i1 = y) and
k = 2 for double evaluation (conducted for P (x) and
Q(x) at points y and gy: i1 = y, i2 = gy).

2) z1, z2, . . . , zk - corresponding openings sent by the
prover.

3) x(0), x(1), . . . , x(r−1) are random elements of F sent
by verifier during the commit phase of FRI (which is,
according to relaxed commitment protocol is conducted
with respect to quotient function q(x) = q(0)(x) =
f(x)−U(x)∏k
l=1(x−il)

).

4) a0 is the only coefficient of f (r) ∈ F sent by prover at
the end of the commit phase of FRI (note, that according



to the remark at the end of FRI section we assume all
our instantiations of FRI to be fully unrolled and hence
f (r)(x) to be constant. The proof of zero-knowledge
property for the general case deg(f (r)) > 0 is only a
little harder and handled in a similar fashion).

5) s(0) ∈ D is the value chosen by verifier at the beginning
of the query phase of FRI.

6) Every s(i+1) = q(s(i)) (for the definition of q(x) refer to
FRI section). s(i), t(i) is the coset of s(i+1).

The simulated transcript 〈S〉 of polynomial commitment of
f is constructed in the following way:

1) The point (i) or two points (i1, i2) are already fixed by
the previous history of < S >: i = y or (i1, i2) = (y, gy).

2) Similar for corresponding evaluations z1(z1, z2): recall,
that they were are either chosen at random (for all witness
polynomials except for T0(x)) or defined uniquely by all
previous values (for T0(x)).

3) The values x(i) are distributed uniformly over F for
honest verifier V . We take the same approach to simulator
S: in 〈S〉 every x(i) is chosen uniformly at random over
F.

4) For S we take s(0) uniformly at random over D = D(0).
5) In 〈S〉 the values of q(0)(s0) and q(0)(t(0)) are also taken

uniformly at random over F.
6) Recall that in true FRI protocol we have:

q(i+1)(s(i+1)) = p
(i)

s(i+1)(x
(i))

where

p
(i)

s(i)
(x) := interpolantq

(i)|{s(i),t(i)}(x),

hence the value of every q(i+1)(s(i)) is uniquely
determined by values q(i)(s(i)) and q(i)(t(i)) cho-
sen on the previous ”level” of FRI. In our sim-
ulator transcript this relation between values of
q(i)(s(i)), q(i)(t(i)), q(i+1)(s(i+1)) should remain un-
changed.
At step 5 we have fixed the values of
q(0)(s(0)), q(0)(t(0)). From what said the value of
q(1)(s(1)) in < S > is then uniquely determined.

7) Now we try to simulate the value of q(2)(s(2)). As in
previous paragraph, q(2)(s(2)) is uniquely determined
by the values of q(1)(s(1)) and q(1)(t(1)) but for now
only q(1)(s(1)) is fixed in 〈S〉 and q(1)(t(1)) remains
undetermined. We lay q(1)(t(1)) uniformly at random over
F and this will fix q(2)(s(2)) as well.

8) We proceed by induction: to fix the value q(2)(s(2)) we
choose the value q(2)(t(2)) to be uniformly randomly
distributed over F. We then take the same approach for all
downstream layers of FRI up to the bottom where we will
eventually fix a0 (which is determined by q(r−1)(s(r−1))
and q(r−1)(t(r−1)). This completes the construction of
simulation 〈S〉.

Our next aim is to achieve the same distribution for
transcripts in honest prover-verifier interaction 〈P, V 〉. First,
for all witness polynomials (except for T0, but it is not of

big importance for now) we want their values at z to look
like randomly distributed values over F. This means, that
all these polynomials should have one additional ”degree of
freedom”: allow the prover to replace every witness fi(x)
by f ′i(x) = fi(x) + aZ(x), where a ∈ F is some constant
chosen by prover uniformly random. This modification will not
violate the protocol (as we are actually interested in the values
of witness polynomials on domain H), but let the prover to
achieve the desired property for uniform distribution of f ′(z).

There are more uniformly distributed random variables that
come from our construction of simulator S for FRI sub-
protocol. Recall that due to our construction of < S > we
want the values

q(0)(s(0)), q(0)(t(0)), q(1)(t(1)), q(2)(t(2)), . . . , q(r−1)(t(r−1))

to look like being completely uniformly random. In order to
achieve this we need the following lemma:

Lemma 4. Let f(x) be interpolation polynomial of Z =
{z1, z2, . . . , zn} over domain I = {i1, . . . , in} (which means
that f(x) is the unique polynomial of degree ≤ n − 1, such
that f(ik) = zk, for all k ∈ [n]). Let x be any point in F
different from all i2, . . . in. If z1 runs uniformly over all of F
then f(x) also runs uniformly over F.

Proof. Recall the definition of Lagrange interpolation polyno-
mial:

f(x) =

n∑
j=1

∏
k 6=j

x− ik
ij − ik

zj .

With fixed x, i1, . . . , in and z1, . . . , zn f(x) is a function of
z1 of the form:

f(x) = az1 + b.

where a, b - constants ∈ F. Note that

a =
∏
k 6=1

x− ik
i1 − ik

6= 0,

provided x being different from all of i2, . . . in. Now, for linear
function the conclusion of the lemma is obvious.

Consider s(01) and t(01) - the coset of t(1). Although the
evaluations at these points are never explicitly shown in the
transcript they are of severe importance of us. Indeed, at
least one of s(01) or t(01) is unequal to x(0). Without loss
of generality assume t(01) 6= x(0). We use lemma 4 for
I = {s(01), t(01)}, Z = {q(0)(s(01)), q(0)(t(01))} and x = x(0)

which implies that uniform distribution of q(0)(t(01)) results
in uniform distribution of q(1)(t(1)), independent of value
q(0)(s(01)).

We proceed by induction with repetitious use of lemma 4.
To achieve uniformly random distribution of q(2)(t(2)) we
need uniformly random distribution of one of values from
the previous level: q(1)(s(12)) or q(1)(t(12)). Assume that
s(12) 6= x(1) and hence satisfy the conditions of lemma 4. The
uniform distribution of q(2)(t(2)) then follows from uniformly
random distribution of one of q(1)(s(12)) which in turn follows



Fig. 2: FRI transcript

from uniform distribution of (say) q(0)(s(02)). The same logic
is then applied for all downstream layers of FRI.

To aid your intuition with what happens in the previous
paragraph, consider fig. 2 depicting the first view layers of
FRI.

Here bold lines separate adjacent levels of FRI, green blocks
determine the values that are taken uniformly at random, yel-
low blocks represent the values that are uniquely determined
by the values of corresponding coset on the previous layer and
red blocks have no impact in the constructions.

To sum up, to achieve the same distribution of variables
in transcripts 〈P, V 〉 and 〈S〉 we need to add more ”degrees
of freedom” for each witness polynomial. More precisely, we
want the evaluation

q(0)(s(0)), q(0)(t(0)), q(0)(t(01)),

q(0)(s(02)), . . . (r + 1 values in total)

over the set K ′ = {s(0), t(0), t(01), s(02), . . .} on the top level
of FRI to be uniformly and randomly distributed.

Now, recall that:

q(0)(x) = q(x) =
f(x)− U(x)∏k
l=1(x− il)

(∗∗)

.
Recall that in our case the sets {i1, . . . , ik} and D are

disjoint. This in turn means that uniformly random distribution
of values of q(0)(x) over K ′ is exactly the same as the
uniformly random distribution of values of f over the same
domain (as all other terms in (∗∗) are now fixed by previous
considerations). Plugging in the the requirement for f(z) to
be also uniformly randomly distributed we arrive at the set
K = K ′∪z with |K| = r+2 at which the values of f should
look like random elements in F. To achieve this property, it is
enough to replace f(x) by f ′(x) = f(x) + h(x)Z(x) where
h(x) is any polynomials of degree r + 1 (note, that we use
the fact the sets K and H are disjoint).

This completes the proof of zero-knowledge property and
the whole analysis of RedShift.

APPENDIX C
FRI PARAMETERS

As described in the main text of the paper and in particular
in Section IX, one has the freedom to pick FRI parameters that
also affect contributions into the soundness error of RedShift
due to the list size |L|. In general, smaller list sizes will lead
to a smaller δ parameter (this is intuitively expected, as a
larger list size requires less sensitivity) that in turn reduces FRI
soundness for a chosen domain D, parameter ρ and number
of queries. Alternatively, one can pick another limit in the FRI
soundness formula

p =
(

1−min
{
δ0, Jε(Jε(1− ρ))

}
+ ε log |D|

)
and set δ0 = 1−ρ

2 to be in the unique decoding radius. In
this case list size |L| = 1, but FRI has smaller soundness for
the same number of queries. This means that one has to pay
particular attention to the final system soundness as described
in Section X: for in case where the sum ASZ +AFRI ∼ ASZ
one should also consider the case of the limit δ0 = 1−ρ

2 in the
FRI soundness term and can recalculate ASZ and thus a final
soundness in case of list size |L| = 1.

Such checks are also important if one would want to reduce
the field size for a corresponding reduction in proof size.

APPENDIX D
PROOF SIZE AND OPTIMIZATIONS

There are various options that can reduce the proof size.
Some of the are described in detail in [37]. There are two
essential parts to check satisfiability at the random point:

1) Consistency between openings of various polynomials
at the random point i. The prover sends the purported
evaluations to the verifier and these values are used for
two subroutines:

a) Check the equations from Section VII at this random
point.

b) Perform simulation of virtual oracles to the quotient
functions in the form q(x) = g(x)−g(i)

x−i that are later
used as an input to the FRI protocol.



2) Proximity testing performed by invocation of the FRI
protocol

As described in [37], the prover can join the evaluations of
various polynomials gk at the domain D into a single oracle
by placing the corresponding values into the same leaf of
the Merkle tree thus reducing total number of Merkle paths
required for authentication.

We can perform such a joining operation for the following
sets of polynomials:

1) Constraint polynomials: selectors qL, qR, qO, qM , qC and
permutation polynomials Sid1 , Sσ1 , Sσ2 , Sσ3 as all those
are independent and prepared simultaneously at the setup
step.

2) Witness polynomials fL, fR, fO.
3) Grand product polynomials P,Q.
4) Polynomials Tlow, Tmid, Thigh.
While initially we would have to provide 17 independent

Merkle paths for authentication of various oracle values now
we can reduce this number to 4.

Next we can place more values (2k) into leafs of every
Merkle tree used to instantiate the oracles. This optimization
allows the verifier to get more values from the oracle for
the small change of total communicated data size. This also
allows one to perform k interpolation steps before accessing
values from the next subdomain oracle in FRI. We do not
analyze whether such an operation is equivalent to testing
2k−1 independent starting values to FRI and thus effectively
improves soundness by the factor of 2k−1 per query. Note that
we still use a localization factor of 2 for FRI even while more
values are placed in the leaf.

There also exist other optimization e.g. to perform proof-of-
work on top of challenge values obtained from the transcript
to reduce number of required queries for FRI protocol (as
used in [38]) and other estimates for the number of required
queries. To the best of our knowledge there is no public
analysis of such optimizations and we will not use them in
our analysis. For a rate of ρ = 1/16 we place 8 values per
leaf in Merkle tree, which allows us to perform 3 interpolations
simultaneously in FRI - thus saving on Merkle paths. Thus our
final proof size for a case of n+1 = d = 220 and domain size
of |D| = d/ρ = 224 will have the following contributions:

1) 4 Merkle roots for 4 aggregated oracles to polynomials
enumerated above.

2) Queries to the oracles to 4 polynomials enumerated above
on the domain D: 8 + log(224)− log(8) = 29 of 32 byte
values per query per aggregated polynomial oracle.

3) Merkle roots to FRI intermediate oracles. There are
oracles for domains of sizes 21, 18, . . . , 6, 3 (keep in mind
that we use 8 values per leaf) for a total of 7.

4) Final interpolation coefficients for FRI: 1 coefficient (FRI
is fully unrolled and it may be not the optimal solution).

5) Queries to the final batched FRI over quotients: as
described above we assume testing of 4 cosets simul-
taneously per query that is ∼ 4 bits of security for a rate
ρ = 1/16. One will need to communicate 8− 1 elements

per intermediate FRI domain (one element is calculated
from interpolation steps) and Merkle paths for each of the
oracles for domains of sizes 21, 18, . . . , 6, 3, (7 domains)
in total of 7 · 7 + (21 + 18 + · · · + 6 + 3) = 133 of 32
byte values per query.

Thus we can calculate a total proof size for 80 bits of
security: we will need 80 queries with a final consisting of
4 + 1 + 7 + 80 · (4 · 29 + 133) = 19932 of 32 byte values in a
total 623 KB (1 KB = 1024 bytes). For comparison if we do
not implement optimizations and use only naive approaches
at every step we should use 80 queries and 17 independent
oracles to polynomial evaluations on D then proof size would
be 17 + 1 + 23 + 80 · (17 ·24 + 24 + 23 + · · ·+ 2 + 1) = 54761
of 32 byte values in a total 1772 KB.

Not all the optimizations were implemented in the PoC
prover as of the date of writing, but effect of optimizations
is expected to also slightly benefit proving times.

For illustrative purposes we also demonstrate proof sizes
if conjecture from [28] is correct. In this case number of
queries can be calculated as ∼ −λ/log(ρ) where λ is our
security parameter. We target again 80 bits of security with
the following proof sizes if conjecture holds as shown in a
table II.

TABLE II: Expected proof sizes for various setup parameters
if conjecture from [28] is valid.

Target security
level, bits Rate Problem

size
Proof size, optimized,

under conjecture from [28]

80 1/16 220 156 KB
80 1/16 224 191 KB
80 1/16 228 234 KB
80 1/32 220 131 KB
80 1/64 220 123 KB
80 1/128 220 110 KB
80 1/256 220 96 KB

120 1/16 220 234 KB
120 1/16 224 286 KB
120 1/16 228 351 KB
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