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Abstract. We investigate multiple implementations of a hash-based digital sig-
nature scheme in software and hardware for a RISC-V processor. For this, dif-
ferent instantiations of XMSS by leveraging SHA-256 and SHA-3 are consid-
ered. Moreover, we propose various optimisations for accelerating the signature
scheme on resource-constrained FPGAs. Compared to the pure software version,
the implemented hardware accelerators for SHA-256 and SHA-3 achieve a signif-
icant speedup of 25× and 87× respectively for generating 210 key pairs. Signing
and verifying with such key pairs achieves a speedup of 17× and 10× in the
case of SHA-256, and respectively 55× and 20× for SHA-3. Recently, Wang et
al. presented an XMSS-specific software-hardware co-design, resulting in signif-
icant speedups. Our general-purpose hardware accelerator for SHA-256 further
reduces the calculation cost for signing by 26%, and by 28% for verifying in
comparison to results of Wang et al., and achieves a better time-area product for
signing (3.3×) and verifying (2.5×).

Keywords: XMSS, RISC-V, hash-based signatures, post-quantum cryptography,
FPGA, resource-constrained systems

1 Introduction

Digital signatures are an essential primitive of modern cryptography, providing au-
thenticity, integrity, and non-repudiation. A digital-signature scheme is a cryptographic
primitive which allows a signer to generate a key-pair (public and secret keys), sign
data using the secret key, and enables a verifier to verify signed data using the pub-
lic key. Hence, digital signatures have a wide application where the interacting par-
ties might not need to be considered in a environment with relaxed assumptions on
trustworthiness. Typical applications are for instance credential-passed access control,
secure software download, authentic communication, etc. Typical signature schemes
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widely used in practice today are RSA [25], DSA [10], ECDSA [16], and EdDSA [3].
These algorithms can be successfully attacked by a quantum computers since their se-
curity relies on the hardness of number-theoretical problems such as factorisation or the
discrete-logarithm problem in certain groups [26]. Quantum-safe signature algorithms
are required for application domains in which a long-term security for multiple years is
required. Promising candidates for the construction of post-quantum signature schemes
are hash-based signatures. The reason for this observation is that the best known algo-
rithms for computing hash collisions on classical computers are based on the birthday
paradox and give a square-root speedup over a brute-force search. Grover’s algorithm
[12] gives at most a cube-root speedup as shown in [5], nonetheless according to [2] the
cost model applied in [5] does not reflect real-world attack cost.

The idea of hash-based signatures was first proposed by Lamport [19]. Merkle pro-
posed in 1989 the Merkle Signature Scheme (MSS) [22]. This approach starts with
a one-time signature scheme and constructs a many-time signature scheme using bi-
nary hash trees. One of the biggest disadvantages of hash-based signature schemes is
the relatively long execution time of the key generation process. In addition, signature
generation and verification is slow compared to currently used signature schemes. The
performance of hash-based signature schemes strongly depends on the performance of
the used hash function. Therefore, optimizing the underlying hash function is the most
promising approach for optimisation efforts. The eXtended Merkle Signature Scheme
(XMSS) first proposed in 2011 [8] describes an efficient forward-secure post-quantum
stateful signature scheme with minimal security assumptions. It is based on Merkle’s
approach and on the Generalised Merkle Signature Scheme (GMSS) [6]. SPHINCS+
[4], a stateless hash-based signature framework, and NIST-PQC1 candidate, which is
not the focus of this work, uses many components from XMSS, hence our results might
be valuable for future work in this area. We chose XMSS as a study example for our
analyses on speeding up hash-based signatures, because it has already been documented
in a standardisation manner by the IETF2.

The RISC-V instruction set architecture (ISA) is free and open for use in all types
of implementations without restriction. It is based on reduced-instruction-set computer
(RISC) principles. The RISC-V architecture is increasingly used not only in the aca-
demic environment but also in an industrial context. Due to its open and free architec-
ture, RISC-V is highly promising for security applications. Especially in the security
and trusted computing domain, the use of a transparent processor architecture can re-
duce the dependencies on chip manufacturers. Since according to [30] security spawns
across all sectors (hardware, software, protocols, systems, services, and infrastructures)
the only way to improve the general level of protection is deemed to retain or rather to
regain control of the entire supply chain.

Related Work. Some aspects of hardware implementations and accelerations of hash-
based schemes have been studied in the literature. Shoufan et al. [27] implemented a
hardware accelerator for generating Merkle hash trees. Hülsing et al. [15] demonstrated
that only a small amount of memory is required to generate and verify a SPHINCS-256

1 https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
2 https://tools.ietf.org/html/rfc8391
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signature on an ARM Cortex M3. Van der Laan et. al [18] presented an implementa-
tion of XMSS on the current Java Card platform, and make suggestions for some im-
provements. Amiet et al. [1] presented the first FPGA-based hardware accelerator for
SPHINCS-256. Ghosh et al. [11] proposed a latency-area optimised hardware-software
architecture for XMSS with 128-bit post-quantum security. Wang et al. [28] achieved
a significant speedup with a hardware-software co-design implementation for XMSS,
where they developed XMSS-specific hardware accelerators.

Our Contribution. In this work, we analyzed software and hardware implementations
of SHA-256, and SHA-3 on an FPGA-based RISC-V processor. The implemented hard-
ware accelerators are attached to a RISC-V processor by an instruction-set extension
approach. In addition, we discuss various architectural approaches and their impact on
the performance. We provide a comparative performance analysis based on clock cycles
of the instantiated versions of XMSS. Furthermore, we show that a generic optimisation
of the underlying hash function in XMSS leads to significant speedup. Our implemen-
tation is publicly available at https://doi.org/10.5281/zenodo.3556239. Due to
the selected approach, the resulting software-hardware co-design can be integrated into
other hardware architectures with negligible additional effort.

Organisation. The remainder of this paper is organised as follows. We start with an
introduction to Merkle Trees, Winternitz One-time Signatures, and XMSS in Section
2. In Section 3 we discuss different design criteria and briefly present the implemented
hash functions. Section 4 contains a description of our software and hardware imple-
mentation. Thereafter, we summarise our experimental results in Section 5 and give a
conclusion in Section 6.

2 Hash-based Signature Schemes

Hash-based signature schemes, whose security is only based on properties of the un-
derlying cryptographic hash functions, are among the most promising candidates for
quantum-safe digital signature schemes. While earlier hash-based schemes did not meet
practical time and space requirements, current schemes like LMS [20], XMSS, and
SPHINCS+ are faster and provide reasonably small signatures. In this section we intro-
duce the core elements and components of XMSS used in our case study.

Lamport et al. [19] proposed the most basic one-time hash-based signature scheme
(LOTS). Given a security parameter n and a one-way function f : {0,1}n → {0,1}n,
the following one-time scheme allows to sign a message M of m bits. The secret key
consists of 2m random values xi

b ∈ {0,1}n and the corresponding public key yi
b = f (xi

b),
where b ∈ {0,1} and 1 ≤ i ≤ m. The signature σ for a message M = M1...Mm is then
σ = (x1

M1
, ...,xm

Mm
), which can be verified by checking yi

Mi
= f (xi

Mi
) for 1 ≤ i ≤ m.

To sign messages of arbitrary length, they further proposed to use the hash-then-sign
construction.

https://doi.org/10.5281/zenodo.3556239


4 Braun, Campos, Reith, and Stöttinger

2.1 Winternitz One-time Signature Scheme

The main idea of the Winternitz one-time signature scheme (WOTS) [22] is to sign
multiple bits by calculating the public key based on a function chain. Let n be the
security parameter, w the “Winternitz parameter”, and f : {0,1}∗→ {0,1}n a one-way
function, then the key generation is processed as shown in Algorithm 1. Thereby f w−1

should be interpreted as the (w−1)th iteration of the one-way function f .

Algorithm 1: Key generation.
Input : security parameter n, Winternitz parameter w.
Output: one-time key pair: (secret key X , public key Y ).

1 `1← dn/ log2(w)e
2 `2← blog2(`1(w−1))/ log2(w)c+1
3 `← `1 + `2
4 for i = 0, ..., `−1 do
5 xi

$←− {0,1}n // sampled uniformly at random
6 yi← f w−1(xi) // the (w−1)th iteration of f

7 return ((x0,x1, ...,x`−1),(y0,y1, ...,y`−1))

To avoid some trivial attacks a checksum C is calculated, if necessary padded with
zeros such that the length n is divisible by log2(w), and appended to the message, as
shown in Algorithm 2 in line 5-7. The signature is constructed by mapping the chunks
of M′ to intermediary values of the respective function chain.

Algorithm 2: Signing.
Input : message M, secret key X , security parameter n, Winternitz parameter w.
Output: signature σ .

1 `1← dn/ log2(w)e
2 `2← blog2(`1(w−1))/ log2(w)c+1
3 `← `1 + `2
4 (M0,M1, ...,M`1)← split(M) // split M into log2(w)-bit chunks
5 C← ∑

`1−1
i=0 w−1−Mi

6 C← pad(C) // pad C with zeros if necessary
7 M′←M ||C // concatenate M and C
8 (M′0,M

′
1, ...,M

′
`)← split(M′) // split M′ into log2 w-bit chunks

9 for i = 0, ..., `−1 do
10 σi← f M′i (xi)

11 return (σ0,σ1, ...,σ`−1)

Unlike in LOTS, in WOTS the public key can be calculated directly from the signa-
ture, as shown in Algorithm 3.

Assuming f is a one-way, collision-resistant and preimage resistant function, this
scheme is existentially unforgeable under chosen message attacks (EU-CMA) as shown
in [9]. In [13] Hülsing et al. proposed WOTS+, a slight modification of the chaining
function by adding a random bitmask ri for each iteration, such that f 0(x) = x, and
f i(x) = f ( f i−1(x)⊕ ri). This modification uses tweakable hash functions [4] and elim-
inates the requirement for a collision resistant hash function.
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Algorithm 3: Verifying.
Input : signature σ , message M, public key Y , security parameter n, Winternitz

paramater w.
Output: valid or invalid.

1 `1← dn/ log2(w)e
2 `2← blog2(`1(w−1))/ log2(w)c+1
3 `← `1 + `2
4 (M0,M1, ...,M`1)← split(M) // split M into log2(w)-bit chunks
5 C← ∑

`1−1
i=0 w−1−Mi

6 C← pad(C) // pad C with zeros if necessary
7 M′←M ||C // concatenate M and C
8 (M′0,M

′
1, ...,M

′
`)← split(M′) // split M′ into log2 w-bits chunks

9 for i = 0, ..., `−1 do
10 if (( f w−1−M′i (σi)) 6= ( f w−1(yi))) then
11 return invalid

12 return valid

2.2 Merkle Trees

Based on the idea of one-time signature schemes, Merkle’s approach [22] was to con-
struct a balanced binary tree (a so-called Merkle tree) using a given hash function to
enable the use of a single public key (root of the tree) for verifying several messages.
Therefore, a signer generates 2H one-time key pairs (X j,Yj) where 0≤ j < 2H for a se-
lected H ∈ N and H ≥ 2. The leaves of the tree are the digests f (Yj) for 0≤ j < 2H . H
defines the height of the resulting binary tree whose inner nodes are represented by the
values computed as n = f (nl || nr), where nl and nr are the values of the left and right
child of n. To verify a leaf at index i, one simply needs f (Yi), i, and the authentication
path of i, which is a sequence of H nodes. This authentication path contains the siblings
of all the nodes on the path between leaf i and the root, and thus enables the verifier to
recompute and validate the root/public key.

2.3 XMSS

XMSS was introduced in 2011 [8] based on the concept of Merkle’s tree construction
[21] and on the Generalised Merkle Signature Scheme (GMSS) [6]. XMSS describes
an efficient post-quantum stateful signature scheme with minimal security assumptions.
One of the main advantages of XMSS with WOTS+ is that it does not require a collision-
resistant one-way function.

XMSS introduces a hash function address scheme to uniquely identify each individ-
ual calculation step. The calculation of the inner nodes of an XMSS tree uses a tweak-
able hash function and works as follows. First, an n-byte key K and two n-byte masks
are computed using a keyed pseudorandom function PRFK : {0,1}256→{0,1}256. The
two lower nodes in a XMSS tree are then XOR-ed to the corresponding mask, concate-
nated, and used as input for a keyed hash function hK : {0,1}512→{0,1}256. So in gen-
eral, the authenticity of many WOTS+ public keys is reduced to one XMSS public key
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using a binary Merkle tree. The i-th XMSS signature σi = (i,σWOT S+ ,(a0, ...,aH−1))
includes an index i of the current leaf, the one-time WOTS+ signature σWOT S+ , and the
authentication sequence (a0, ...,aH−1), which contains one node in each layer of the
hash tree.

Using a pseudo-random function (PRF) as proposed in [7], the data space for storing
the private key can be reduced by storing only the seed of a PRF. Let PRF : {0,1}n→
{0,1}n×{0,1}n be a secure pseudo random number generator which takes an n-bit
Sin as input and outputs a n-bit random number R and a n-bit seed. Assuming that the
calculation of a previous seed from the current seed (Sout

?→ Sin) is unfeasible, therefore
using such a PRF leads to the additional benefit of forward security.

XMSS also proposes a multi-tree version (XMSSMT ) where the leaf nodes of a
higher-level tree are used to sign the roots of lower trees (see [14] for more details).

Parameter Sets. In order to achieve certain post-quantum security levels, RFC 8391
[14] defines parameter sets for the hash functions in order to provide 128 bit and 256
bit security respectively. We will focus on suitable second-preimage-resistant hash func-
tions with digest lengths of 256 bits, achieving 128 bits of post-quantum security against
(second)-preimage attacks. In particular, based on the current reference implementation
of XMSS3 we are interested in two types of functions:

H : {0,1}4n→{0,1}n and F : {0,1}3n→{0,1}n

Let n = 256, thus H : {0,1}1024 → {0,1}256, and F : {0,1}768 → {0,1}256. Table 1
summarises the required calls to these functions for key generation, signing and verifi-
cation.

Table 1: Number of calls toH and F for n = 256, w = 16, and H = 10.

KeyGen Sign Verify
calls of H 68607 66 76
calls of F 3362813 4970 1623

3 Architectural Aspects

In hash-based signature schemes the sole cryptographic operation is a hash function.
The remaining computing time is spent on performing XOR-operations, conversions,
and managing the data flow. Thus, from an architectural aspect the data transfer to and
from the hash function is very important and will impact the overall performance and
latency of the hash-based signature operations. Hence, this is the first option to increase
the speed up. The second option is to reduce the latency and increase the throughput of
the implementation of the hash-function. In general roughly three paradigms exist on
how to integrate a hardware accelerator for cryptographic operations.

3 https://github.com/joostrijneveld/xmss-reference, commit fb7e3f8

https://github.com/joostrijneveld/xmss-reference
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The first option is an external independent processing unit outside of the housing
of the main processing unit of the system. This option highly depends on the secu-
rity requirements of the use case. For signature operations this might by applicable for
verification or remote attestation services, however in most cases the verification infor-
mation cannot be trusted, because it is communicated via an insecure channel across
the printed circuit board. Hence, it is not a favored option to support a general solution
to speed up hash-based signature schemes.

The second option is an integrated co-processor running the cryptographic opera-
tion, independent from the main processor. Thereby, concurrency is exploitable to speed
up processing a lot of data to achieve a high throughput. However, at the same also
the integration is time limiting the throughput, because the data handling between the
processors needs to be coordinated. Thus in general, a pipelining approach for the co-
processor is applied in this scenario in order to hide the latency of the data transfer
between the co-processor and the accelerator. Therefore, in our scenario the hash func-
tion would require to have large inputs to exploit the pipelining efficiently, but for a
Merkle-Tree based hash signature scheme this is usually not the case.

The third option is to integrate the accelerator into the general-purpose processor via
an extension of the instruction set architecture (ISA). This will reduce the latency due to
memory access, but is not as efficient as the pipelined co-processor approach in case of
processing large amounts of independent data, as the general-purpose processor is not
running concurrently to the accelerator. Thus, this approach fits more the scenario that
is present with a Merkle-Tree based hash signature scheme. The downside of the ISA
approach is that the instruction set is fixed and cannot be changed, if another accelerator
is integrated, changes to the instruction set might be needed or an complicated adaption
is required. Thus, also the compiler for the processing unit needs to be updated which
will affect the development environment. This impact can be minimised by designing a
generic API for the ISA that makes at least the class of cryptographic functions easier
to exchange. In our case, we are aiming for a general API of the ISA for hash functions.
The major speed up with this approach is the reduced latency due to fast data access on
the memory.

For further investigation on the performance of various hash algorithms, we chose
an integration of the hash algorithm via an instruction-set extension. As discussed be-
fore, the integration of a cryptographic accelerator via an ISA with a generic API is in
our opinion a good compromise for the trade off between flexibility and performance.
In addition, comparison between a software implementation and a hardware implemen-
tation is more fair when almost the same memory transfer overhead is required. In the
following, we will discuss the different implementation options of the hash algorithms.

4 Implementation

Currently, several open source-instruction set architectures (ISAs) (RISC-V, Open RISC,
etc.) are available for designing a RISC processor, on ASIC or FPGA. The base RISC-V
ISA has fixed-length 32-bit instructions that must be naturally aligned on 32-bit bound-
aries and is divided into several basic instruction sets and extensions. The integer set
is available in three different configurations with 32, 64 and 128-bit width registers,
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respectively called RV32I, RV64I, and RV128I. Additionally, the RV32E configuration,
which is essentially a lightweight RV32I with a reduced number of registers is available
for small embedded devices. The extensions expand the basic commands with addi-
tional commands, such as multiplication and division. A comprehensive description of
the instruction set is available in the RISC-V specification [29].

VexRiscv4 is an open-source 32-bit CPU implementing the RISC-V instruction set.
The VexRiscv framework has a modular structure, which can easily be extended by
integrating plugins. The VexRiscv used in this work supports the basic command set
with the multiplication extension for 32-bit words. It further has a classical five-stage
pipeline. The provided ability of skipping pipeline stages enables some speedup in cer-
tain cases. Currently two types of System on Chip (SoC) of VexRiscv are available:
Briey, which implements almost all features of the VexRiscv processor, and Murax,
which only implements the most basic features. In this work we implemented the Mu-
rax SoC with the following extensions: multiplication and division extension, a simple
branch prediction, and the feature to skip pipeline steps. The simple shifter was replaced
by one full featured barrel shifter. For development and test purposes the communica-
tion with the processor was realised via UART and JTAG interface for debugging. We
developed the hardware accelerators in the high-level hardware description language
SpinalHDL. SpinalHDL is based on Scala and translates a hardware description into
VHDL/Verilog code.

Moreover a hybrid approach to control the hash-function accelerators was imple-
mented. While start (hashStart()) and reset (hashReset()) functions are respectively pro-
vided by custom instructions, data IO is done directly over the simple memory bus of
the Murax SoC (load–store architecture) as shown in Figure 1. Thus, input and output
are handled by a fixed memory address. In order to take full advantage of the data bus,
the memory blocks are divided into 32-bit words. Hence, in the case of SHA-256, the
input of 512-bits length is distributed over 16 memory words. In the case of SHA-3,
the input of 1088-bits length is distributed over 34 words. The resulting digest is pro-
vided by a fixed memory address and consists of 8 memory words of 32 bits. For the
purpose of modularity, the provided custom instructions for the currently chosen hash
functions are identical. More precisely, the provided custom instruction for starting the
compression function (SHA-256) and the permutation function (SHA-3) are the same.
Basically, the simultaneous use of both hardware accelerators is possible with minor
changes and requires the sum of the respective areas.

We provide two methods for flow control. The first implemented approach stalls the
pipeline in order to avoid data hazards. Although this method causes some delay in the
entire pipeline, it has a significant advantage in terms of portability compared to the
second approach. The second method is based on interrupts and therefore requires the
implementation of a corresponding interrupt service routine. The proposed software-
hardware co-design focuses on a general architecture which differs only slightly de-
pending on the implemented hash function. In order to minimise space and improve
portability without significant loss in perfomance, we only implemented the compres-
sion respectively permutation function of the chosen hash functions in hardware. As
shown in Figure 2, the pre-computation steps of padding and message scheduling were

4 https://github.com/SpinalHDL/VexRiscv, commit fe385da

https://github.com/SpinalHDL/VexRiscv
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Fig. 1: Schematic Murax SoC with instruction set enabled hardware accelerator.

implemented in software. In order to use many of the outputs simultaneously, the in-
ternal registers (message and state) of the hash engine were implemented using flip-
flops. Additionally the implemented primitives can operate in parallel, providing high
throughput whenever needed. The correctness of the implementation of the algorithms
is tested against the available Known Answer Tests (KAT) [23] [24]. We also verified
the signing method for deterministic behavior.

Pre-Computation. To improve the performance without the need for additional space,
we implemented the pre-computation technique from [28]. Within XMSS, for a given
key pair, the first 512-bit block (256-bit domain separator and 256-bit hash-function
key) of the input to the pseudo-random function (of type F : {0,1}768 → {0,1}256,
where n = 256) is the same for all calls. Considering this fact, we store the digest of
the first 512 bit block at the first call to the pseudorandom function (PRF) and skip this
effort by reusing this result in all further calls. The number of calls to the PRF in XMSS
is about 70% of the total calls of F (see Table 1).

This approach can generally be applied if the internal block size of the implemented
hash function is less than or equal to 512 bits. Depending on the internal block size of
the used hash function, the number of calls to the internal compression respectively
permutation function to be saved (SpeedupPRF ) can be calculated as follows. Let Bbits
be the internal block size in bits and #callPRF be the number of calls to the PRF, then
SpeedupPRF = b512 bits/Bbitsc∗#callPRF , where Bbits is longer than 512 bits.

In the case of SHA-256, where the 512-bit block fits into a 512 bit SHA-256 internal
block, this approach reduces the number of calls to the compression function by half.
Although this method can basically be applied in a sponge construction, it cannot be
used for SHA-3 due to an internal block size longer than 512 bits.

5 Evaluation

In this section we present the results of our work. We outline the most important per-
formance aspects here, and give a final conclusion in Section 6.

We measured the performance of our software and hardware implementations on
a RISC-V implementation (VexRiscv) on a Digilent Nexys 4 DDR board (ARTIX
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Fig. 2: Schematic representation of the implemented hash functions.

XC7A100 T), using the XMSS5 reference implementation. Our measurements consider
straightforward hardware implementations of SHA-256 and SHA-3. We use the C im-
plementation from Intel’s TinyCrypt Cryptographic Library6 for the software version of
SHA-256 and the SUPERCOP7 for SHA-38, both compiled using the GNU Embedded
Toolchain9 with riscv32-unknown-elf-gcc-9.2.0 using the flags -march=rv32im
-mabi=ilp32 -O3. The area and the timing report has been obtained after executing
place and route in the implementation step on Xilinx Vivado v2017.3 (64-bit) tool. In
particular, we performed 100 runs to measure the speed of generating keys, signing mes-
sages and verifying signatures. The implemented SHA-3 accelerator needs 8401 slices,
and thus 45% more space than the SHA-256 accelerator (5759 slices) and achieves al-
most the same maximal frequency, as shown in Table 2. The area of both accelerators
include 3492 slices for the implemented VexRiscv CPU. The hardware-accelerated hash
function requires 1528 clock cycles for calculating F : {0,1}768→{0,1}256 in the case
of SHA-256 and 746 clock cycles in the case of SHA-3. In the applied version of SHA-
3 the internal block (rate) is 1088 bits of length and therefore it only requires one call
to the permutation function. Whereas SHA-256 requires two calls to the compression
function, due to the internal block size of 512 bits.

A comparison of the results of our hardware and software implementation of SHA-
256 and SHA-3 is shown in Table 3. Ghosh et al. [11] presented a lightweight solution
based on XMSS using a general-purpose Keccak-400 hash function. Due to the smaller
internal state of Keccak-400 and its lower security level, a comparison of the results
is only partially possible, as presented in Table 2. Wang et al. [28] developed multi-
ple hardware accelerators and integrated the XMSS-specific hardware accelerators into
a RISC-V processor. The resulting software-hardware co-design of XMSS works for
trees containing 210 key pairs and achieves a significant speedup compared to a pure
software version. As shown in Table 3 despite a lower FMax, this work achieves con-
siderably better performance for key generation than our general-purpose objective.
For the purpose of analysing the time-area product, a detailed comparison between

5 https://github.com/joostrijneveld/xmss-reference, commit fb7e3f8
6 https://github.com/intel/tinycrypt, commit 5969b0e
7 https://bench.cr.yp.to/supercop.html, version 20190910
8 crypto hash/keccakc512/simple/
9 https://github.com/riscv/riscv-gnu-toolchain, commit 2c037e6

https://github.com/joostrijneveld/xmss-reference
https://github.com/intel/tinycrypt
https://bench.cr.yp.to/supercop.html
https://github.com/riscv/riscv-gnu-toolchain


Comparison of Hardware Accelerated Hash Functions for XMSS 11

Table 2: Comparison with related work.

Parameters
(n,H,w)

Hash function Platform FMax
(MHz)

KeyGena Signa Verifya

Ghosh et al. [11] 256,16,16 Keccak-400 Q+Stratix IV 32 — 4.8 4.8
our workb 256,10,16 SHA-3 Murax SoC 105 2766 6.4 5.9

Wang et al. [28] 256,10,16 SHA-256 Murax SoC 93 320c 0.93c 0.54d

our workb 256,10,16 SHA-256 Murax SoC 106 3645 7.9 4.7

a All results are given in 106 clock cycles.
b Our work running on Murax SoC with hardware accelerator.
c Based on the ”Murax + Leaf + PRECOMP” design of [28].
d Based on the ”Murax + Chain + PRECOMP” design of [28].

our results on the SHA-256 hardware implementation and the results from Wang et al.
[28] is presented in Table 4. Despite the more general approach, Table 4 shows that
our software-hardware co-design achieves a better performance and a better time-area
product in signing and verification.

Table 3: Comparison of hardware and software implementation on a VexRiscv.

KeyGena Signa Verifya

SHA-256 SHA-3 SHA-256 SHA-3 SHA-256 SHA-3
Software 92326 242784 131.5 356.3 49.9 120.3
Hardware 3645 2766 7.9 6.4 4.7 5.9
speedup factor 25x 87x 17x 55x 10x 20x

a All results are in 106 clk cyc. for n = 256, w = 16, and H = 10 (average of 100 iterations).

6 Conclusion

The presented work focuses on hardware and software implementations of hash func-
tions on a RISC-V processor, and on different instantiations of XMSS. Following the
approach of modularising and sharing components with a high utilisation in hash-based
signature schemes, we integrated the components for hash operations as an instruction-
set extension on the RISC-V architecture as atomic as possible. We chose hash functions
following different design principles to evaluate the generality of our instruction set ex-
tension interface as well as the performance impact from architectural point of view.
In detail, we compared SHA-2, following the Merkle-Damgård design principles, and
SHA-3 as a sponge-based hash function.

Further, we investigated the impact of different implementations of hash-functions
with respect to the integration via an ISA. Thus with the reduced latency the perfor-
mance of the individual hash functions could be compared due to rounds and execution
time, etc. In perspective of flexibility on long-term solutions, also known as crypto-
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Table 4: Comparison of the time-area product of the SHA-256 hardware implementa-
tion with Wang et al. [28] for n = 256, w = 16, and H = 10.

FMax
(MHz)

Time Area
(slices)

Time x Areaa

(ratio)

key gen
Wang et al.b 93.1 3.44 s 14260 1.00
Wang et al.c 95.2 7.80 s 11328 1.80
This work 106 34.38 s 5759 4.03

sign
Wang et al.b 93.1 9.95 ms 14260 3.30
Wang et al.c 95.2 17.8 ms 11328 4.69
This work 106 7.45 ms 5759 1.00

verify
Wang et al.b 93.1 5.80 ms 14260 3.24
Wang et al.c 95.2 5.68 ms 11328 2.52
This work 106 4.43 ms 5759 1.00

a Based on Time and Area relative to the respective most efficient design (bold)
b Based on the ”Murax + Leaf + PRECOMP” design [28]
c Based on the ”Murax + Chain + PRECOMP” design [28]

agility together with the drawback of a fixed instruction set via the ISA, a hybrid ap-
proach might also be of interest. Is it possible to merge two hash-algorithms in an im-
plementation with shared resources with a general ISA API to be more future proof than
using only one hash algorithm without sacrificing the efficiency in terms of resources
and throughput? In contrast to [28], which focuses on XMSS specific optimisations, the
aim of our work is a more generic optimisation of hash functions in order to enable
post-quantum cryptography in today’s devices. Therefore, the results of this work can
also be used for other approaches that have a high utilisation of hash operations such as
lattice-based signature schemes. Kannwischer et al. [17] provide a very comprehensive
evaluation of hash operation utilisation of various lattice schemes. Table 3 shows that
our generic hardware accelerator achieves a significant speedup without specific adapta-
tions for XMSS. In an embedded environment usually the procedures for key generation
and signing take place in a resource-rich backend, while signature verification is pro-
cessed on a embedded device. Hence, implementations for signature verification shall
focus on speed and area to optimise the cost. As presented in Table 4, in case of signing
and verification our SHA-256 implementation only requires 40% (50% resp.) of the area
compared to the fastest design of [28], and thereby achieves a better time-area product.
According to our results, in the case of XMSS general-purpose hardware accelerators
for hash functions are the more suitable solution in an embedded environment due to
their reusability, the smaller required area, and the achieved performance.
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