
Cloud-assisted Asynchronous Key Transport with Post-Quantum
Security

Gareth T. Davies1, Herman Galteland2, Kristian Gjøsteen2, and Yao Jiang2

1Bergische Universität Wuppertal, Germany.
davies@uni-wuppertal.de

2Norwegian University of Science and Technology, NTNU, Norway.
{herman.galteland,kristian.gjosteen,yao.jiang}@ntnu.no

December 5, 2019

Abstract

In cloud-based outsourced storage systems, many users wish to securely store their files for later
retrieval, and additionally to share them with other users. These retrieving users may not be online
at the point of the file upload, and in fact they may never come online at all. In this asynchoronous
environment, key transport appears to be at odds with any demands for forward secrecy. Recently,
Boyd et al. (ISC 2018) presented a protocol that allows an initiator to use a modified key encapsu-
lation primitive, denoted a blinded KEM (BKEM), to transport a file encryption key to potentially
many recipients via the (untrusted) storage server, in a way that gives some guarantees of forward
secrecy. Until now all known constructions of BKEMs are built using RSA and DDH, and thus are
only secure in the classical setting.

We further the understanding of secure key transport protocols in two aspects. First, we show
how to generically build blinded KEMs from homomorphic encryption schemes with certain prop-
erties. Second, we construct the first post-quantum secure blinded KEMs, and the security of our
constructions are based on hard lattice problems.

Keywords: Lattice-based cryptography, NTRU, Group Key Exchange, Blinded Key Encapsulation,
Forward Secrecy, Cloud Storage, Post-quantum cryptography

1 Introduction

Consider the following scenario: a user of a cloud storage service wishes to encypt and share a file with
a number of recipients, who may come online to retrieve the file at some future time. In modern cloud
storage environments, access control for files is normally done via the storage provider’s interface, and
the user is usually tasked with performing any encryption and managing the resulting keys. However the
users do not trust the server, and in particular may be concerned that key compromise may occur to any
of the involved parties at some point in the future – they thus desire some forward secrecy guarantees.
A number of approaches can be taken for transporting a (randomly chosen) file encryption key from
the initiator to the recipients. The first option is public-key encryption – simply encrypting under each
recipient’s public key. This approach does not provide any forward secrecy, however if the initiator were
to use puncturable encryption then this would provide a (currently inefficient) solution for acheiving
forward secrecy. The users could also perform a (necessarily interactive) group key exchange protocol,
however this requires all recipients to be online: a disqualifying criterion for many usage scenarios. The
challenge of providing efficient key transport that allows asynchronous fetching by the recipients and
simultaneously gives some forward secrecy guarantees appears to invoke trade-offs.

Recent work by Boyd et al. [10] (hereafter BDGJ) provided a solution that utilized the high avail-
ability of the storage provider. The initiator essentially performs key encapsulation, using an (public)
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encapsulation key belonging to the server, and sends an encapsulated value (out-of-band) to each recip-
ient. Then, each recipient blinds this value in such a way that when it asks the server to decapsulate, the
server does not learn anything about the underlying file encryption key, and the homomorphic properties
of the scheme enable successful unblinding by the recipient. This encapsulation-and-blinding procedure
was named by the authors as a blinded KEM (BKEM), and the complete protocol built from this was
named as a cloud-assisted offline group key exchange (OAGKE). Forward secrecy is acheived if the
recipients delete their ephemeral values after recovering the file encryption key, and if the server deletes
its decapsulation key after all recipients have been online and recovered the file.

A conceptual overview of the construction, which can achieve all these security properties, is de-
scribed in Figure 1, and we refer to their paper for full details [10]. In the protocol, the server runs
the KG and Decap algorithms to help the initiator share file encryption key k. The blinding algorithm
Blind, executed by the responder, should prohibit the server from learning any information about the file
encryption key. After the server has decapsulated a blinded encapsulation, the responder can use the
unblinding algorithm Unblind to retrieve the file encryption key.

S

(ek , dk)← KG k̃ ← Decapdk (C̃)

I

(C, k)← Encapek

R

(C̃, uk)← Blindek (C)

k ← Unblinduk (k̃)

1. ek

2. C

3. C̃

4. k̃

Figure 1: A simplified overview of an OAGKE protocol [10] between an initiator I, server S and poten-
tially many recipients R (one is given here for ease of exposition), built using a BKEM. File encryption
key k is used by I to encrypt one or more files. The numbered arrows indicate the order in which
operations occur.

While the approach appears promising, their two constructions – built from DDH and RSA, are
somewhat ad hoc, and further do not resist attacks in the presence of quantum computers. In this work
we wish to construct a post-quantum secure OAGKE protocol, where we need the individual components
– a blinded KEM (parameterized by a homomorphic encryption scheme), a collision resistant hash
function, a digital signature scheme, and a key derivation function – to all be post-quantum secure.
Acheiving post-quantum security of all components except for the BKEM has been covered extensively
in prior work, and thus we focus on finding post-quantum constructions of BKEMs. Much work has
been done on constructing regular key encapsulation mechanisms (KEMs) [1, 17, 18, 20, 29, 31] that are
post-quantum secure [8,13,30,34,36], (the ongoing NIST standardization effort [39] specifically asks for
KEMs) however BKEMs do not generalize KEMs, since decapsulation operates on blinded ciphertexts.

Providing post-quantum-secure BKEMs invokes a number of technical challenges. The Blind algo-
rithm must modify the file encryption key by incorporating some randomness r, in such a way that after
decapsulation (by the server) the recipient can strip off r to recover the file encryption key. In the DDH
setting this is straightforward since the recipient can simply exponentiate the encapsulation, and apply
the inverse on the received value from the server (the RSA setting is similarly straightforward), and, im-
portantly, the encapsulation (with the underlying file encryption key) and multiple blinded samples (each
with a value that is derived from the file encryption key) will all look like random group elements. In the
security game for BKEMs (as provided by BDGJ), the adversary receives: an encapsulation of a ‘real’
key, a number of blinded versions of this encapsulation (blinded encapsulations), a number of blinded
versions of the ‘real’ key (blinded keys), and either this ‘real’ key or a random key, and must decide
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which it has been given. If the blinded key samples (the k̃s) leak information about the file encryption
key then the adversary’s task in this game becomes much easier. For example, if the blinding algorithm
alters the file encryption key such that the blinded keys are located close to it then exhaustive search
becomes possible. We overcome this hurdle by using a big a blinding value to hide the file encryption
key. Similarly the blinded encapsulation samples (the C̃s) can leak information about the blinding value
used to hide the file encryption key, which can be used to recover the file encryption key. For example,
if the blinded encapsulation is a linear combination of the original encapsulation, the blinding value,
and some small error then the distance between the blinded encapsulation and the original encapsula-
tion could reveal the blinding value, or a small interval containing it, and therefore the file encryption
key. By making sure blinded encapsulations look fresh then all blinded encapsulation samples and the
encapsulation looks independent of each other. We use these techniques to provide secure BKEMs built
from (a variant of) NTRU [28, 40] and ideas from Gentry’s FHE scheme [23].

The second shortfall of the work of BDGJ lies in the non-generic nature of their constructions. The
two provided schemes appear to have similar properties, yet do not immediately indicate how any further
BKEM schemes could be constructed. We show how to generically build BKEMs from homomorphic
encryption schemes with minimal properties. This allows us to more precisely cast the desirable prop-
erties of schemes used to build BKEMs, generalizing the way that the responder alters the content of
an encapsulation (ciphertext) by adding an encrypted random value. Essentially, the resulting blinded
ciphertext is an encryption of the sum of a file encryption key and the random value. The server can de-
crypt the blinded ciphertext to retrieve the blinded key, and then the responder can unblind by removing
(subtracting) the random value.

1.1 Related work

Boyd et al. [10] formalized OAGKE and BKEMs, and they provided two BKEM constructions, based
on Diffie-Hellman and RSA. To our knowledge these are the only BKEM constructions in the literature.

Many works focused on secure messaging have shown how to perform secure key transport in the
presence of pre-keys of the recipients [16, 37, 41], we wish to avoid this assumption in our system ar-
chitecture. Puncturable encryption has developed rapidly in recent years [6, 21, 26, 27], however current
constructions are still impractical or unsuitable for the cloud-based key transport scenario that we con-
sider.

Gentry introduced the first fully homomorphic encryption (FHE) scheme, based on lattice problems,
and gave a generic framework [23]. After Gentry’s breakthrough several FHE schemes where con-
structed following his framework [11, 15, 22, 25], where all of these schemes rely on the learning with
errors (LWE) problem. Two FHE schemes based their security on an overstretched variant of the NTRU
problem [9,32], however, subfield lattice attacks against this variant was subsequently found [2,14], and
consequently these schemes are no longer secure. As a side note, our NTRU based BKEM construction
relies on the hardness of the LWE problem.

To make a BKEM from existing post-quantum secure KEM schemes we need, for each individual
scheme, a method for altering the encapsulations in a predictable way. Most of the post-quantum secure
KEM schemes submitted to NIST are built from a PKE scheme, where we can use our techniques to
make a BKEM if the PKE scheme supports one homomorphic operation. FrodoKEM is the only submis-
sion that advertises its additive homomorphic properties of its FrodoPKE scheme [3]. Other submissions
based on lattices [33], LWE [4, 5, 19], or NTRU [7, 12] are potential candidates for a BKEM construc-
tion. Note that the NTRU submission of Chen et al. [12] does not use the Gaussian distribution to sample
their polynomials, and NTRU Prime of Bernstein et al. [7] uses a large Galois group to construct their
polynomial field, instead of a cyclotomic polynomial. Furthermore, the NTRU contruction of Stehlé and
Steinfeld chooses the distribution of the secret keys such that the public key looks uniformly random
and they provide a security proof which relies on this.
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1.2 Our contribution

Our aim in this work is to further the understanding of blinded KEMs and their possible instantiations, in
order to deliver secure key transport protocols in cloud storage environments. Specifically, we provide:

• a generic homomorphic-based BKEM construction, and show that it meets the expected indistinguishability-
based security property for BKEMs, under feasible requirements.

• two instantiations of our homomorphic-based BKEM, built from primitives with post-quantum
security. The proof chain is as follows.

Hard problems
Quantum, Gentry [23]−−−−−−−−−−−−−−→

or Lyubashevsky et al. [35]
IND-CPA HE

This work−−−−−→ IND-secure
HE-BKEM

1.3 Organization

In Section 2 we provide the necessary background of ideal lattices and the discrete Gaussian Distribu-
tion. In Section 3 we formally define BKEM and their security. In Section 4 we construct a generic
homomorphic BKEM schemes and analyze its security requirements. In Section 5 we provide two
homomorphic-based BKEM constructions and prove that they are secure.

2 Preliminaries

This section introduces terminology and results from [23, 24, 38], and provides an introduction to our
notation and building blocks for constructing post-quantum secure homomorphic encryption schemes.
Towards the end of this section we detail two specific constructions of post-quantum secure homomor-
phic encryption schemes [23, 40].

2.1 Notation

Given n linearly independent vectors {b1, . . . ,bn} ∈ Rm, the m-dimensional lattice L generated by
the vectors is L = {

∑n
i=1 xibi | xi ∈ Z}. If n = m then L is a full-rank n-dimensional lattice, we will

always use full-rank lattices in this paper.
Suppose B = {b1,b2, · · · ,bn} is a basis of I , let P(B) = {

∑n
i=1 xibi | xi ∈ [−1/2, 1/2) ,bi ∈

B} be the half-open parallelepiped associated to the basis B.
Let R = Z[x]/(f(x)) be a polynomial ring, where f(x) is a monic polynomial of degree n. Any

ideal I ⊆ R yields a corresponding integer sublattice called ideal lattice of the polynomial ring. For
convenience, we identify all ideals of R with its ideal lattice.

Let ‖v‖ be the Euclidean norm of a vector v. Define the norm of a basis B to be the Euclidian norm
of its longest column vector, that is, ‖B‖ = max1≤i≤n(‖bi‖).

For a full-rank n-dimensional lattice L, let L∗ = {x ∈ Rn | 〈x,y〉 ∈ Z,∀y ∈ L} denote its
dual lattice. If B is a basis for the full-rank lattice L, then (B−1)T is a basis of L∗. Let γ×(R) =

maxx,y∈R
‖x·y‖
‖x‖·‖y‖ be the multiplicative expansion factor.

For r ∈ R, define r mod B to be the unique vector r′ ∈ P(B) such that r − r′ ∈ I . We call r
mod B to be the distinguished representative of the coset r + I . Denote R mod B = {r mod B |
r ∈ R} to be the set of all distinguished representatives in R, this set can be chosen to be the same as
the half-open parallelepiped P(B) associated to the basis B. For convinience we treat R mod B and
P(B) as the same set.

LetBc(r) denote the ball centered at c with radius r, for c = 0 we writeB(r). For any n-dimensional
lattice L and i = 1, . . . , n, let the ith successive minimum λi(L) be the smallest radius r such that B(r)
contains i linearly independent lattice vectors.

The statistical distance between two discrete distributions D1 and D2 over a set S is ∆(D1, D2) =
1
2

∑
s∈S |Pr[D1 = s]−Pr[D2 = s]|.
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2.2 Discrete Gaussian Distributions over Lattices

Definition 1 (Discrete Gaussian Distribution). Let L ⊆ Rn be a lattice, s ∈ R+, c ∈ Rn. For all x ∈ L
let ρs,c(x) = exp(−π ‖x− c‖2 /s2). For a set S let ρs,c(S) =

∑
x∈S exp(−π ‖x− c‖2 /s2). Define

the discrete Gaussian distribution over L centered at c with standard deviation s to be the probability
distribution

DL,s,c(x) =
ρs,c(x)

ρs,c(L)
,

for all x ∈ L.

If the standard deviation of a discrete Gaussian distribution is larger than the smoothing parameter,
defined below, then there are known, useful, results of discrete Gaussian distributions that we will use
the in this paper.

Definition 2 (Smoothing parameter). For any lattice L and real value ε > 0, let the smoothing parameter
ηε(L) denote the smallest s such that ρ1/s(L

∗ \ {0}) ≤ ε. We say that “s exceeds the smoothing
parameter” if s ≥ ηε(L) for negligible ε.

Below we show that the discrete Gaussian distribution is spherical if its standard deviation is larger
than the smoothing parameter.

Lemma 1 (Micciancio and Regev [38]). Let L be any full-rank n-dimensional lattice. For any c ∈ Rn,
real ε ∈ (0, 1), and s ≥ ηε(L) we have

Pr[‖x− c‖ > s ·
√
n | x← DL,s,c] ≤ 1 + ε

1− ε
· 2−n

Lemma 2 (Micciancio and Regev [38]). Let L be any full-rank n-dimensional lattice. For any s ≥
ηε(L), ε ∈ (0, 1), and any c ∈ Rn, we have ρs,c(L) ∈

[
1−ε
1+ε , 1

]
· ρs,0(L).

For a discrete Gaussian distribution over L centered at 0, with standard deviation s, DL,s,0 we
let the translated discrete Gaussian distribution over L centered at any c, with standard deviation s, be
DL,s,c. Using Lemma 1 and Lemma 2, we show that the statistical distance between the original discrete
Gaussian distribution and its translated discrete Gaussian distribution is negligible when ‖c‖ is small.

Corollary 1. Let ε > 0 negligible, s ≥ ηε(L). If ‖c‖ ≤ ε
6π
√
n
· s then the statistical distance between

DL,s,0 and DL,s,c is at most 3ε.

Proof. Suppose ε = 2−(n−1). As in Lemma 1 we have Pr[x /∈ B(s
√
n) | x ← DL,s,0] ≤ ε and

Pr[x /∈ Bc(s
√
n) | x← DL,s,c] ≤ ε. To show that the statistical distance between the two distributions

is small we partition the lattice into two sets. First, we look at all x ∈ L which is not in the union
Bc(s
√
n) ∪ B(s

√
n).∑

x∈L\(Bc(s
√
n)∪B(s

√
n))

|DL,s,c(x)−DL,s,0(x)| ≤
∑

x∈L\Bc(s
√
n)

DL,s,c(x) +
∑

x∈L\B(s
√
n)

DL,s,0(x)

≤ 2ε,

which follows from Lemma 1. Second, we look at all x in the union Bc(s
√
n) ∪ B(s

√
n).∑

x∈L∩(Bc(s
√
n)∪B(s

√
n))

|DL,s,c(x)−DL,s,0(x)| ≤
∑

x∈L∩B(2s
√
n)

|DL,s,c(x)−DL,s,0(x)|

≤ 4ε.
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The first inequality is straight forward. For the last inequality, we claim that for all x ∈ L ∩ B(2s
√
n)

we have |Ds,c(x)−Ds,0(x)| ≤ 4εDs,0(x). Note that

|Ds,c(x)−Ds,0(x)|
Lemma 2
≤ 1

ρs,0(L)

(
1 + ε

1− ε
|ρs,c(x)− ρs,0(x)|+ 2ε

1− ε
ρs,0(x)

)
=

1

ρs,0(L)

(
1 + ε

1− ε

∣∣∣e− π
s2

(‖x−c‖2−‖x‖2) − 1
∣∣∣ · ρs,0(x) +

2ε

1− ε
ρs,0(x)

)
≤ Ds,0(x)

(
1 + ε

1− ε
· π
s2
·
∣∣∣‖x− c‖2 − ‖x‖2

∣∣∣+
2ε

1− ε

)
≤ Ds,0(x)

(
1 + ε

1− ε
· π
s2
· ‖c‖ (‖x‖+ ‖x− c‖) +

2ε

1− ε

)
≤ Ds,0(x)

(
1 + ε

1− ε
· π
s2
· ‖c‖ (2s

√
n+ 4s

√
n) +

2ε

1− ε

)
≤ 4εDs,0(x),

and we get ∑
x∈L∩B(2s

√
n)

|DL,s,c(x)−DL,s,0(x)| ≤
∑

x∈L∩B(2s
√
n)

4εDs,0(x) ≤ 4ε
∑
x∈L

Ds,0(x) = 4ε.

Combining the above results we have

∆(DL,s,c(x), DL,s,0(x)) =
1

2

∑
x∈L
|DL,s,c(x)−DL,s,0(x)|

=
1

2

∑
x∈L\(Bc(s

√
n)∪B(s

√
n))

|DL,s,c(x)−DL,s,0(x)| +

1

2

∑
x∈L∩(Bc(s

√
n)∪B(s

√
n))

|DL,s,c(x)−DL,s,0(x)|

≤ 3ε.

2.3 Gentry’s homomorphic encryption scheme

Let GHE = (KGGHE,EncGHE,DecGHE,AddGHE) be an (additively) Homomorphic encryption scheme
derived from ideal lattices, with algrotihms as defined in Figure 2. The scheme is similar to Gentry’s
somewhat-homomorphic scheme [23]. The parameters of the GHE scheme are chosen as follows.

• Choose a polynomial ring R = Z[x]/(f(x)) according to a security parameter λ;

• Choose a basis BI of the ideal I ⊆ R;

• IdealGen is an algorithm which takes (R,BI) as input and outputs public and secret bases Bpk
J

and Bsk
J of some ideal J , where I and J are relatively prime;

• Samp is an algorithm which takes (BI ,x ∈ R, s) as input and outputs a sample from the coset
x + I according to a discrete Gaussian distribution with standard deviation s. In our construction
we use the following two distributions.

– Samp1(BI ,x, s) = x +DI,s,−x;
– Samp2(BI ,x, s) = x +DI,s,0;

• The plaintext space P = R mod BI is the set of distinguished representatives of cosets of I with
respect to the basis BI .
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KGGHE(R,BI) :

(Bpk
J ,B

sk
J )

$←− IdealGen(R,BI)

pk = (R,BI ,B
pk
J ,Samp), sk = Bsk

J

return pk, sk

EncGHE(pk, s, π ∈ P) :
ψ′ ← Samp(BI , π, s)

ψ ← ψ′ mod Bpk
J

return ψ

DecGHE(sk, ψ) :

π ← (ψ mod Bsk
J ) mod BI

return π

AddGHE(pk, ψ1, ψ2) :

ψ ← ψ1 + ψ2 mod Bpk
J

return ψ

Figure 2: The algorithms of the GHE homomorphic encryption scheme, which is similar to Gentry’s
somewhat homomorphic encryption scheme [23].

Correctness. Let XEnc denote the image of Samp and XDec denote R mod Bsk
J = P(Bsk

J ). Notice
that all ciphertexts are in XEnc + J, since XDec is the set of distinguished representatives with respect
to Bsk

J . The correctness requirement of this encryption scheme is XEnc ⊆ XDec. Furthermore, for the
addition algorithm AddGHE to output valid ciphertexts we require that XEnc +XEnc ⊆ XDec.

Let rEnc be the smallest value such that XEnc ⊆ B(rEnc) and let rDec be the largest value such that
XDec ⊇ B(rDec). By the spherical property of discrete Gaussian distribution (Lemma. 1) we know that,
for Samp1 as above, XEnc is located inside the ball B(s

√
n) with high probability and rEnc = s

√
n. For

a general Samp algorithm, which is located in B(lSamp), we have that rEnc ≤ (n+
√
nlSamp) ‖BI‖ [23].

For rDec we know that rDec = 1/(2 ·
∥∥((Bsk

J )−1)T
∥∥) [23].

Obviously, if rEnc ≤ rDec then the encryption scheme is correct. For GHE, if rEnc ≤ rDec, the
probability of decryption error is less than 1+ε

1−ε · 2
−n, which is negligible.

2.4 The revised NTRU encryption scheme

The NTRU encryption scheme variant by Stehlé and Steinfeld [40], which relies on the LWE problem,
has the similar structure as Gentry’s homomorphic encryption scheme. We modify the NTRU scheme
to use a discrete Gaussian distribution as the noise distribution instead of an elliptic Gaussian. Choose
the parameters of the scheme as follows.

• R = Z[x]/(xn + 1), where n ≥ 8 is a power of 2;

• q is a prime, 5 ≤ q ≤ Poly(n), Rq = R/q;

• p ∈ R×q , I = (p);

• the plaintext space P = R/p;

• set the noise distribution to be DZn,s,0.

The algorithms of the scheme are given in Figure 3.

KGNTRU(n, q ∈ Z, p ∈ R×q , s > 0) :

while (f mod q) /∈ R×q do
f ′ ← DZn,s,0
f = p · f ′ + 1

while (g mod q) /∈ R×q do
g ← DZn,s,0

h = pg/f ∈ Rq
(pk, sk)← (h, f)
return (pk, sk)

EncNTRU(pk = h, s, π ∈ P) :
e1, e2 ← DZn,s,0
ψ ← π + pe1 + he2 ∈ Rq
return ψ

DecNTRU(sk = f, ψ) :
ψ′ = f · ψ ∈ Rq
π ← ψ′ mod p
return π

AddNTRU(ψ1, ψ2) :
ψ ← ψ1 + ψ2 ∈ Rq
return ψ

Figure 3: The algorithms of the revised NTRU encryption scheme [40].
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Correctness Let ψ′ = fπ+ p(fe1 + ge2) ∈ Rq and ψ′′ = fπ+ p(fe1 + ge2) ∈ R (not modulo q), if
‖ψ′′‖∞ ≤ q/2 then the decryption algorithm will output π (see Lemma 12 of [40]). We will perform a
single homomorphic addition and want to find a bound on the sum of two ciphertexts. Discrete Gaussian
samples are bounded by s

√
n with high probability (Lemma 1) and the message space parameter p is a

polynomial with small coefficients, where we let pi denote the largest coefficient of p. We have

‖f(ψ1 + ψ2)‖∞ =
∥∥f(π1 + π2) + pi(f(e1 + e′1) + g(e2 + e′2))

∥∥
∞

≤ 2(p2
i (s
√
n)2 + p2

i s
√
n+ pis

√
n+ pi + (s

√
n)2)

≤ 8p2
i s

2n.

The standard deviation s is greater or equal to ηε(Zn) and has to satisfy ηε(Zn) ≤ s and 8p2
i s

2n < q/2
for the decryption to be correct, with high probability.

2.5 Hard lattice problems

The following lattice problems, assumed to be hard, are used in the paper.

Definition 3 (Shortest Vector Problem (SVP)). Given a basis B for a n-dimensional lattice L, output a
nonzero vector v ∈ L of length at most λ1(L).

Definition 4 (Ideal Shortest Independent Vector Problem (SIVP)). Fix the following parameters; a poly-
nomial ring R, and a positive real γ ≥ 1. Let BI be a basis for an ideal lattice I of R. Given BI , and
the parameters, output a basis B′I of I with ‖B′I‖ ≤ γ · λn(I).

Reduce Hard problems to the semantic security of Gentry’s encryption scheme The following two
theorems describe Gentry’s reduction from worst-case SIVP to the semantic security of the encryption
scheme GHE, via the ideal independent vector improvement problem (IVIP).

Theorem 1 (Gentry [23] (Corollary 14.7.1), reduce IVIP to semantic security). Suppose that sIVIP <
(
√

2sε− 4n2(max{‖BI‖})2)/(n4γ×(R) ‖f‖max{‖BI‖}), where s is the Gaussian deviation param-
eter in the encryption scheme GHE. Also suppose that s/2 exceeds the smoothing parameter of I , that
IdealGen always outputs an ideal J with s ·

√
n < λ1(J), and that [R : I] is prime. Finally, suppose

that there is an algorithm A that breaks the semantic security of GHE with advantage ε. Then there is a
quantum algorithm that solves sIVIP-IVIP for an ε/4 (up to negligible factors) weight fraction of bases
output by IdealGen.

Theorem 2 (Gentry [23] (Theorem 19.2.3 and Corollary 19.2.5), reduce SIVP to IVIP). Suppose dSIVP =
(3 ·e)1/n ·dIVIP, where e is Euler’s constant. Suppose that there is an algorithmA that solves sIVIP-IVIP
for parameter sIVIP > 16 · γ×(R)2 ·n5 · ‖f‖ · g(n) for some g(n) that is ω(

√
log n), whenever the given

ideal has det(J) ∈ [a, b], where [a, b] = [dnIVIP, 2 ·dnIVIP]. Assume that invertible prime ideals with norms
in [a, b] are not negligibly sparse. Then, there is an algorithm B that solves worst-case dSIVP-SIVP.

In summary we have the following informal result, which we will use to prove that our GHE-BKEM
(see Section 5.4) is post quantum secure.

Theorem 3 (Gentry [23]). If there exists an algorithm that breaks the semantic security of GHE with
parameters chosen as in Theorem 1 and Theorem 2, then there exists a quantum algorithm that solves
worst-case SIVP.

Reduce Hard problems to the semantic security of the revised NTRU encryption scheme We
define the ring learning with error problem as follows. For s ∈ Rq, an error distribution D over Rq,
define As,D to be a distribution that outputs tuples of the form (a, as+e), where a is sampled uniformly
at random from Rq and e is sampled from D. The problem is to distinguish between tuples sampled
from As,D and uniformly random ones.
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Definition 5 (Ring-LWE). Let D be a distribution over a family of distributions, each over Rq. The
Ring Learning With Errors Problem with parameters q, and D (R-LWEq,D) is as follows. Let D be
sampled from D and s be sampled uniformly at random from Rq. Given access to an oracle O that
produces samples in R2

q , distinguish whether O outputs samples from the distribution As,D or U(R2
q).

The distinguishing advantage should be non-negligible.

Lyubashevsky et al. [35] proposed a reduction from SIVP or SVP (both are thought to be hard
problems) to R-LWE.

Theorem 4 (Lyubashevsky et al. [35]). Let α <
√
logn/n and q = 1 mod 2n be a poly(n)-bounded

prime such that αq ≥ ω(
√

log n). Then there is a polynomial-time quantum reduction from O(
√
n/α)-

approximate SIVP (or SVP) on ideal lattices to R-LWEq,Ds given only l(≥ 1) samples, where s =

α · (nl/ log(nl))1/4.

We will consider a different variant of the R-LWE problem, namely R-LWE×HNF, which is the same
as R-LWEq,D except for the oracle O that outputs samples from the distribution A×s,D or U(R2

q), where
A×s,D outputs (a, as + e) with a ∈ R×q , s ∈ D. The analysis in the end of Section 2 of Stehlé and
Steinfeld [40] shows that when q = Ω(n), R-LWE×HNF remains hard.

The security proof of NTRU encryption scheme is similar to the security proof of Lemma 3.8 pro-
vided by Stehlé and Steinfeld [40]. The proof technique relies on the uniformity of public key and
p ∈ R×q . However, we chose a slightly different error distribution for our construction in Section 5.5,
but the adaption to our setting is straightforward.

Lemma 3. Let n ≥ 8 be a power of 2 such that Φ = xn + 1 splits into n irreducible factors modulo
prime q ≥ 5. Let 0 < ε < 1/3, p ∈ R×q and s ≥ 2n

√
ln(8nq) · q1/2+ε. For any IND-CPA adversary A

against NTRU encryption scheme, there exists an adversary B solving R-LWE×HNF such that

AdvIND-CPA
NTRU (A) ≤ AdvR-LWE×

HNF
(B) + q−Ω(n).

3 Blinded KEM

The blinded KEM primitive is the most important building block that BDGJ used to construct their key
transport protocol [10] – also required are a signature scheme, a public-key encryption scheme, a hash
function and a key derivation function. In this paper we only focus on blinded KEMs.

A blinded KEM scheme BKEM is parameterized by a key encapsulation mechanism KEM = (KG,
Encap,Decap), a blinding algorithm Blind and an unblinding algorithm Unblind; put together we have
that BKEM = (KG,Encap,Blind,Decap,Unblind).

The key generation algorithm KG outputs an encapsulation key ek ∈ KE and a decapsulation key
dk ∈ KD. The encapsulation algorithm Encap takes as input an encapsulation key and outputs a (file
encryption) key k ∈ KF together with an encapsulation C ∈ C of that key. The blinding algorithm takes
as input an encapsulation key and an encapsulation and outputs a blinded encapsulation C̃ ∈ C and an
unblinding key uk ∈ KU . The decapsulation algorithm Decap takes a decapsulation key and a (blinded)
encapsulation as input and outputs a (blinded) key k̃ ∈ KB . The unblinding algorithm takes as input an
unblinding key and a blinded key and outputs a key.

Definition 6 (Correctness of a BKEM). Scheme BKEM has correctness if:
Unblinduk (k̃) = k, when (ek , dk) ← KG, (C, k) ← Encapek , (C̃, uk) ← Blindek (C) and k̃ ←

Decapdk (C̃).

(The KEM scheme has correctness if Decapdk (C) = k, when (ek , dk) ← KG and (C, k) ←
Encapek .)

We parameterize all BKEM schemes by a public key encryption scheme (PKE), since any PKE
scheme can trivially be turned into a KEM. We modify the above definition to be a PKE-based BKEM,
where the KEM algorithms are described in Figure 4.
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Definition 7 (PKE-based BKEM). Let BKEM be a blinded KEM, where the underlying scheme KEM =
(KG,Encap,Decap) is parameterized by a PKE scheme PKE = (KGPKE,Enc,Dec) as in Figure 4. We
call such a BKEM a PKE-based BKEM.

KG(λ) :
pk, sk← KGPKE(λ)
(ek , dk)← (pk, sk)
return ek , dk

Encapek :

k
$←−M

C ← Encek (k)
return C, k

Decapdk (C̃) :

k̃ ← Decdk (C̃)
return k̃

Figure 4: KEM algorithms parameterized by a PKE scheme PKE = (KGPKE,Enc,Dec).

3.1 Security

We define indistinguishability under chosen-plaintext attack (IND-CPA) for public-key encryption and
indistinguishability (IND) for blinded KEMs, respectively.

Definition 8. Let PKE = (KGPKE,Enc,Dec) be a public key encryption scheme. The IND-CPA advan-
tage of any adversary A against PKE is

AdvIND-CPA
PKE (A) = 2

∣∣∣Pr[ExpIND-CPA
PKE (A) = 1]− 1/2

∣∣∣ ,
where the experiment ExpIND-CPA

PKE (A) is given in Figure 5 (left). We say that PKE is IND-CPA-secure
if AdvIND-CPA

PKE (A) is negligible for any adversary A.

ExpIND-CPA
PKE (A) :

b
$←− {0, 1}

(pk, sk)← KGPKE

(m0,m1)
$←− A

Cb ← Encpk(mb)
b′ ← A(pk, Cb)

return b′ ?
= b

ExpIND
BKEM(A, r) :

b
$←− {0, 1}

(ek , dk)← KG
(C, k1)← Encapek

k0
$←− KF

for j ∈ {1, . . . , r} do
(C̃j , uk j)← Blindek (C)
k̃j ← Decapdk (C̃j)

b′ ← A(ek , C, kb, {(C̃j , k̃j)}1≤j≤r)
return b′ ?

= b

Figure 5: IND-CPA experiment ExpIND-CPA
PKE (A) for PKE scheme PKE (left). Indistinguishability

experiment ExpIND
BKEM(A, r) for a BKEM scheme BKEM (right).

Definition 9. Let BKEM = (KG,Encap,Blind,Decap,Unblind) be a blinded KEM. The distinguish-
ing advantage of any adversary A against BKEM getting r blinded encapsulations and their blinded
decapsulation tuples is

AdvIND
BKEM(A, r) = 2

∣∣∣Pr[ExpIND
BKEM(A, r) = 1]− 1/2

∣∣∣ ,
where the experiment ExpIND

BKEM(A, r) is given in Figure 5 (right). We say that BKEM is IND-secure if
AdvIND

BKEM(A, r) is negligible for any adversary A.

4 Homomorphic-based BKEM

We now show how to turn a homomorphic encryption scheme with certain properties into a BKEM, and
analyze the security requirements of such a BKEM.
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4.1 Generic homomorphic-based BKEM

We look for PKE schemes with the following homomorphic property: suppose C and C ′ are ciphertexts
of k and k′, resp., then Decsk(C ⊕1 C

′) = k ⊕2 k
′, where ⊕1 and ⊕2 denote two group operations. We

see two reasons to look at such PKE schemes.
The first reason is that in a BKEM scheme we want the blinding algorithm to alter the file encryption

key k. Having a homomorphic encryption (HE) scheme makes this possible and we can construct a
blinding algorithm. The second reason is that we want k′ to hide k such that the adversary is unable to
gain information about k even with knowledge of k̃ = k⊕2 k

′. With a homomorphic encryption scheme
we can combine two independently random ciphertexts and make a third one.

We can construct blinding and unblinding algorithms, using this homomorphic property, to create
a BKEM with correctness. To blind an encapsulation C (with corresponding file encryption key k)
the Blind algorithm creates a fresh encapsulation C ′ (with corresponding blinding value k′) using the
Encapek algorithm, the blinded encapsulation C̃ is computed as C̃ ← C⊕1C

′. The unblinding key uk is
the inverse element of k′ with respect to ⊕2, that is, uk ← k′−1. The blinding algorithms outputs C̃ and
uk . The decapsulation algorithm can evaluate the blinded encapsulation because of the homomorphic
property. The blinded key k̃ is the output of the decapsulation algorithm, that is, k̃ ← Decapdk (C̃). To
unblind k̃ the unblinding algorithm outputs k̃⊕2uk , which is (k⊕2k

′)⊕2 (k′−1) = k, and so the BKEM
scheme has correctness. Formally, we define the BKEM scheme constructed above as follows.

Definition 10 (Homomorphic-based BKEM). Let BKEM be a PKE-based BKEM, as in Definition 7.
Suppose the underlying public key encryption scheme is a homomorphic encryption scheme HE =

(KGHE,Enc,Dec) such that for any k, k′ ∈M and any key pair (sk, pk)
$←− KGHE it holds that

Decsk(Encpk(k)⊕1 Encpk(k
′)) = k ⊕2 k

′

where (M,⊕2) is the plaintext group and (C,⊕1) is the ciphertext group. Furthermore, let the blinding
and unblinding algorithms operate according to Figure 6. We call such a scheme BKEM a homomorphic-
based BKEM.

Blindek (C) :
(C ′, k′)← Encapek
C̃ ← C ⊕1 C

′

uk ← k′−1

return C̃, uk

Unblinduk (k̃) :

k ← k̃ ⊕2 uk
return k

Figure 6: Blinding and unblinding algorithms of the homomorphic based BKEM.

All BKEM schemes considered in the rest of this paper are homomorphic-based BKEMs.
The homomorphic encryption scheme HE does not need to be fully homomorphic, since we only

need one operation in the blinding algorithm: a partially homomorphic encryption scheme is sufficient.

4.2 Security requirements

In the indistinguishability game IND for BKEMs the adversary A has r blinded samples, which are the
following two sets: {k̃i = k ⊕2 k

′
i}i=1...r and {C̃i = C ⊕1 C

′
i}1,...,r, in addition to an encapsulation C

of the real file encryption key. We want the blinded samples and the encapsulation to be random looking
such that the combination of all these values does not reveal any information about the underlying file
encryption key k that is being transported.

First, we show how to choose the blinding values k′i to make the blinded keys k̃i look random.
Then, we show how to make the blinded encapsulations C̃i look like a fresh output of the encapsulation
algorithm, similar to circuit privacy [23]. Finally, we show how an IND-CPA-secure HE scheme ensures
that the encapsulation does not reveal any information about the file encryption key.
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Eventually, we provide the main theorem in this paper stating how to achieve an IND secure BKEM
scheme. Particularly, if the underlying HE scheme is post-quantum IND-CPA secure then the corre-
sponding homomorphic-based BKEM scheme is post-quantum IND secure.

4.2.1 Random-looking blinded keys

We want the blinded key to look like a random element of the space containing blinded keys. In the
IND game the adversary will be given several blinded keys of the form k̃ = k ⊕2 k

′, where k is the file
encryption key and k′ is a blinding value, and wishes to gain information about k.

Let k be sampled uniformly at random from the file encryption key set KF and let k′ be sampled
uniformly at random from the blinding value set KR. We would like that the size of KF is large enough
to prevent a brute force attacker from guessing the key k, say |KF | = 2λ for some security parameter λ.
If KR is a small set then the value of any blinded key k̃ = k⊕2 k

′ will be located within a short distance
around k, so the adversary can successfully guess k with high probability. We always assume that KR
is at least as large as KF .

If a given blinded key k̃ can be expressed as a result of any file encryption key k and a blinding value
k′, with respect to an operation, then our goal is to ensure that the adversary cannot get any information
of the true file encryption key hidden in k̃, and ideally we wish it to be indistinguishable from a random
element.

Definition 11 (ε-blinded blinded key). Let BKEM be a blinded KEM with blinded key set KB . Let k be
sampled uniformly random from the file encryption key set KF and let k′ be sampled uniformly random
from the blinding value setKR. We define a ε-blinded blinded key set S := {k̃ ∈ KB | ∀k ∈ KF , ∃1k′ ∈
KR such that k̃ = k ⊕2 k

′}: we say that BKEM has ε-blinded blinded keys if

Pr
[
k̃ = k ⊕2 k

′ ∈ S | k $←− KF , k′
$←− KR

]
= 1− ε.

Suppose the adversary is given any number of ε-blinded blinded keys from S with the same underly-
ing file encryption key k. By the definition of the ε-blinded blinded set the file encryption key k can be
any value inKF and all values are equally probable. In other words, guessing k, given ε-blinded blinded
keys, is the same as guessing a random value from KF . To prevent giving the adversary a better chance
at guessing the key k we wish the blinded keys to be located inside the ε-blinded blinded key set S with
high probability, which means we want ε to be small.

4.2.2 Fresh-looking blinded encapsulations

Blinded encapsulations are constructed from two encapsulations, one containing the file encryption key
and one containing a blinded value, where we want it to look like a fresh encapsulation, containing the
result of the two values with respect to ⊕2. In the IND game for BKEMs the adversary A gets r blinded
samples and has knowledge of the set {C̃i = C ⊕1 C

′
i}1,...,r, where C is an encapsulation of a file

encryption key k and C ′i is an encapsulation of a blinding value. We want this set to be indistinguishable
from the output set of the encapsulation algorithm.

Definition 12 (ε-blinded blinded encapsulation). Let HE-BKEM be a homomorphic-based BKEM. Let
ek be any encapsulation key and C0 be an encapsulation with the underlying file encryption key k0. We
say that HE-BKEM has ε-blinded blinded encapsulation if the statistical distance between the following
distributions is at most ε:

X = {C0 ⊕1 C
′ | k′ $←− KR, C ′ ← Encek (k′)},

Y = {C | k′ $←− KR, C ← Encek (k0 ⊕2 k
′)}.

The above property ensures that the output of the blinding algorithm looks like a fresh encapsula-
tion expect for probability ε. Note that the BKEM constructions of Boyd et al. [10], DH-BKEM and
RSA-BKEM, both have 0-blinded blinded encapsulation.
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It is well known that in a fully homomorphic encryption scheme the product of two ciphertexts
is much larger compared to the sum of two ciphertexts, hence, it is easier to achieve ε-blinded blinded
encapsulation for one addition compared to one multiplication. In our constructions we will use addition.

4.2.3 Indistinguishability of BKEM

Furthermore, if we want to achieve indistinguishability of blinded KEM. We require the underlying
homomorphic encryption scheme have some kind of semantic security to protect the message (the file
encryption key) in the ciphertext (the encapsulation).

Theorem 5 (Main Theorem). Let BKEM be a homomorphic based BKEM designed as in Definition 10
from a homomorphic encryption scheme HE. Let the file encryption key k and the blinding value k′ be
sampled uniformly random from the large setsKF andKR, respectively. Suppose BKEM has ε1-blinded
blinded encapsulations and ε2-blinded blinded keys. For any adversary A against BKEM getting r
blinded encapsulations and their blinded decapsulation samples, there exists an IND-CPA adversary B
against HE such that

AdvIND
BKEM(A, r) ≤ 2r(ε1 + ε2) + AdvIND-CPA

HE (B)

Proof. The proof of the theorem consists of a sequence of games.

Game 0

The first game is the experiment ExpIND
BKEM(A, r), given in Figure 5 (right). From Definition 9 we have

that
AdvIND

BKEM(A, r) = 2 |Pr[E0]− 1/2| .

Game 1

Modify the game such that the Unblind algorithm outputs a random ε-blinded blinded key (Defini-

tion 11), k̃ $←− S, and the Blind algorithm outputs an encapsulation of this random key, C̃ ← Encek (k̃).
We first prove that a real pair of blinded key and blinded encapsulation output in Game 0 is (ε1 + ε2)

statically close to the modified values output in Game 1.
Suppose k0 ∈ KF is the file encryption key and C0 ← Encek (k0) is the encapsulation with k0, let

X = {(k0 ⊕2 k
′, C0 ⊕1 C

′) | k′ $←− KR, C ′ ← Encek (k′)} be the statistical distribution of the real pair

of blinded key and blinded encapsulation output in Game 0, and Y = {(k̃, C̃) | k̃ $←− S, C̃ ← Encek (k̃)}
be the statistical distribution of the modified values output in Game 1. We define a middle distribution

Z = {(k0 ⊕2 k
′, C) | k′ $←− KR, C ← Encek (k0 ⊕2 k

′)}. We compute the statistical distance between
X and Y as follows.
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∆(X,Y ) =
1

2
(
∑
k̃∈KB
C̃∈C

∣∣∣Pr[X = (k̃, C̃)]−Pr[Y = (k̃, C̃)]
∣∣∣)

=
1

2
(
∑
k̃∈KB
C̃∈C

∣∣∣Pr[X = (k̃, C̃)]−Pr[Z = (k̃, C̃)] + Pr[Z = (k̃, C̃)]−Pr[Y = (k̃, C̃)]
∣∣∣)

≤ ∆(X,Z) +
1

2
(
∑
k̃∈KB
C̃∈C

∣∣∣Pr[Z = (k̃, C̃)]−Pr[Y = (k̃, C̃)]
∣∣∣)

≤ ε1 +
1

2
(
∑
k̃∈KB
C̃∈C

∣∣∣Pr[Z = (k̃, C̃) | k̃ ∈ S] ·Pr[k̃ ∈ S]

+ Pr[Z = (k̃, C̃) | k̃ 6∈ S] ·Pr[k̃ 6∈ S]−Pr[Y = (k̃, C̃)]
∣∣∣)

≤ ε1 +
1

2
(
∑
k̃∈S
C̃∈C

∣∣∣Pr[Z = (k̃, C̃)] · (1− ε2)−Pr[Y = (k̃, C̃)]
∣∣∣+
∑
k̃ 6∈S
C̃∈C

∣∣∣Pr[Z = (k̃, C̃)]
∣∣∣)

≤ ε1 +
1

2
(
∑
k̃∈S
C̃∈C

∣∣∣ε2 ·Pr[Y = (k̃, C̃)]
∣∣∣+ ε2)

≤ ε1 + ε2

For r samples we get ∣∣∣Pr[E1]− Pr[E0]
∣∣∣ ≤ r(ε1 + ε2).

Next, we claim that there exists an adversary B against IND-CPA security of HE such that

2
∣∣∣Pr[E1]− 1

2

∣∣∣ = AdvIND-CPA
HE (B).

We construct a reduction B that plays the IND-CPA game by running A, it simulates the responses of
Game 1 to A as follows.

1. B flips a coin b $←− {0, 1},
2. B simulates the key generation algorithm KG by running its own KGHE,

3. B simulates the encapsulation by randomly choosing two group key k0, k1, sends challenge query
with input (k0, k1) to its IND-CPA challenger, and forwards the response C to A,

4. B simulates the outputs of the Blind and Unblind algorithm by running Encap algorithms k̃ $←−
S, C̃ ← Encek (k̃), and outputs C̃ as the blinded encapsulation and k̃ as the blinded key.

5. When A asks for a challenge, B sends kb to A.

6. After A sends back a guess b′, B sends b to the challenger if b′ = 1 and 1− b if b′ = 0.

If B interacts with Expind-cpa-b
HE (A) then B perfectly simulates the inputs of A in Game 1 when the

output of the key is a real key. Otherwise (B interacts with Exp
ind-cpa-(1-b)
HE (A)), kb is a random key to

A and B perfectly simulate the inputs of A in Game 1 when the output of the key is a random key.

Remark 1. As a specific case of Theorem 5, the DH-BKEM construction of BDGJ has 0-blinded blinded
encapsulations and 0-blinded blinded keys, and the indistinguishibility of DH-BKEM is upper bounded
by DDH advantage (defined in the real-or-random sense instead of left-or-right).

AdvIND
DH-BKEM(A, r) ≤ AdvDDH(B)
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5 Instantiating Homomorphic-based BKEMs

We provide two specific homomorphic-based BKEM constructions, based on Gentry’s homomorphic
encryption scheme (see Section 2.3 ) and the NTRU variant by Stehlé and Steinfeld (see Section 2.4 ).
We also prove that the BKEMs that result from these HE schemes are post-quantum secure by reducing
to hard lattice problems.

5.1 Two Homomorphic-based BKEM

Let HE = (KGHE,EncHE,DecHE) be a homomorphic encryption scheme described in Section 2.3 or
Section 2.4 . Let L be any full-rank n-dimensional lattice, for any ε ∈ (0, 1), s ≥ ηε(L), and r ≥ 6πsn

ε .
The abstract construction of HE-BKEM is in Figure 7. Suppose HE-BKEM has ε2–blinded blinded keys,
a detailed description of these designs follows in Section 5.2.

KG(λ) :
pk, sk← KGHE(λ)
(ek , dk)← (pk, sk)
return ek , dk

Encapek :

k
$←− KF

C ← EncHE(ek , s, k)
return C, k

Blindek (C) :

k′
$←− KR

C ′ ← EncHE(ek , r, k′)
C̃ ← AddHE(C,C ′)
uk ← −k′ mod B
return C̃, uk

Decapdk (C̃) :

k̃ ← DecHE(dk, C̃)
return k̃

Unblinduk (k̃) :

k ← k̃ + uk mod B
return k

Figure 7: HE-BKEM, where B is the basis of the plaintext space P .

5.2 Constructions of random-looking blinded keys

We want the blinded keys to be in the ε-blinded blinded key set S with high probability, and we analyze
the requirements of the blinding values. We provide two constructions of the ε-blinded blinded keys set
S as follows.

Construction I. A file encryption key of HE-BKEM is a random element located in a subspace of
the underlying HE scheme’s message spaceM. We want to take a small file encryption key k and add
a large blinding value k′ to produce a slightly larger blinded key k̃, hence, the corresponding key sets
should satisfy KF ⊆ KR ⊆ KB ⊆M.

SupposeM is HE scheme’s message space with generators 1, x, . . . , xn−1 and order q, i.e. M =
{d0 + d1x+ · · ·+ dn−1x

n−1 | di ∈ Fq}. The addition of two elements inM is defined as follows

(a0 + a1x+ · · ·+ an−1x
n−1) + (b0 + b1x+ · · ·+ bn−1x

n−1)

= (a0 + b0) + (a1 + b1)x+ · · ·+ (an−1 + bn−1)xn−1

SupposeKF = {d0+d1x+· · ·+dn−1x
n−1 | di ∈ Zb

√
q/2c} andKR = {d0+d1x+· · ·+dn−1x

n−1 |

di ∈ Zbq/2c}. Notice that for any ci ∈ {b
√
q/2c, . . . , bq/2c} and any ai ∈ Zb

√
q/2c there exists a

unique bi = ci − ai ∈ Zbq/2c. In other words, for these restricted c0 + c1x + · · · + cn−1x
n−1 and for

any a0 + a1x + · · · an−1x
n−1 ∈ KF there exists a unique b0 + b1x + · · · bn−1x

n−1 ∈ KR such that
(a0 + a1x+ · · · an−1x

n−1) + (b0 + b1x+ · · · bn−1x
n−1) = c0 + c1x+ · · ·+ cn−1x

n−1. Then

S = {d0 + d1x+ · · ·+ dn−1x
n−1 | di ∈ {b

√
q/2c, . . . , bq/2c}}
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Note that for any i ∈ {0, . . . , n− 1}

Pr
[
ai + bi ∈ {b

√
q/2c, . . . , bq/2c} | ai

$←− Zb
√
q/2c, bi

$←− Zbq/2c
]

= 1−
b
√
q/2c − 1

bq/2c
.

Hence, the probability of a blinded key locates in the ε-blinded blinded set is

Pr
[
k̃ = k + k′ ∈ S | k $←− KF , k′

$←− KR
]

=

(
1−
b
√
q/2c − 1

bq/2c

)n
≈ 1− n

b
√
q/2c

.

In this construction, HE-BKEM has ε-blinded blinded keys with ε = n/b
√
q/2c. For suitably large q,

the above ε can be made negligible.

Construction II. Let the file encryption key k be an element in a subset of M, we want to add a
random blinding value k′ from the whole message spaceM to produce a random-looking blinded key
k̃, hence, the corresponding key sets should satisfy KF ⊆ KR = KB =M.

For any blinded key k̃ ∈M and any file encryption key k ∈ KF there exists a unique random value
k′ = k̃−k mod B ∈ M such that k̃ = k + k′ mod B, thus the ε-blinded blinded set S isM and we
have

Pr
[
k̃ = k + k′ mod B ∈ S | k $←− KF , k′

$←−M
]

= 1.

In this construction, HE-BKEM has ε-blinded blinded keys with ε = 0.

Remark 2. Both of these constructions can be applied to our HE-BKEM schemes.

5.3 Construction of fresh-looking blinded encapsulations

We claim that the above constructed HE-BKEM has 4ε-blinded blinded encapsulations. The idea is to
take the small constant ciphertext and add a ciphertext with big errors and the resulting ciphertext should
look like the big error ciphertext. The details are showed in the following lemma.

Lemma 4. Let HE-BKEM be a homomorphic based BKEM with the underlying homomorphic encryp-
tion scheme, described in Section 2.3 or Section 2.4 . Let ek be any encapsulation key, recall that the
encryption algorithm EncHE(ek , s, ·) uses the discrete Gaussian distribution DL,s,0 as the error distri-
bution. Suppose C0 = EncHE(ek , s, k0) is an encapsulation of the underlying file encryption key k0. For
any ε ∈ (0, 1), s ≥ ηε(L), and r ≥ 6πsn

ε the statistical distance of the following distributions is at most
4ε

X = {C0 ⊕1 C
′ | k′ $←− KR, C ′ ← EncHE(ek , r, k′)}

Y = {C | k′ $←− KR, C ← EncHE(ek , r, k0 ⊕2 k
′)},

which means HE-BKEM has 4ε-blinded blinded encapsulation.

Proof. As in the proof of Corollary 1, assume ε = 2−(n−1). From Lemma 1 we have Pr[x /∈ B(s
√
n) |

x ← DL,s,0] ≤ ε, which means the size of the error outputted by the distribution DL,s,0 is upper
bounded by s

√
n expect for negligible probability ε.

For Gentry’s scheme, suppose C0 = k0 + e0, where e0 ← DL,s,0. From Corollary 1 we know
that for a small error ‖e0‖ ≤ s

√
n and big randomness r ≥ ‖e0‖ 6π

√
n

ε the statistical distance between
DL,r,0 and DL,r,e0 is at most 3ε. So the following approximation holds

C0 ⊕1 EncHE(ek , r, k′) = k0 + e0 + k′ +DL,r,0 ≈ k0 + k′ +DL,r,0 = EncHE(ek , r, k0 ⊕2 k
′).

The above result can be easily adapted to NTRU encryption scheme.
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5.4 Indistinguishability of GHE-BKEM

The following result says GHE-BKEM is an IND-secure BKEM with post-quantum security.

Corollary 2. Let GHE-BKEM be a homomorphic-based BKEM described in Section 5.1. For negligible
ε1 = ε, ε2, choose parameters as in Lemma 4, Theorem 1 and Theorem 2. Suppose GHE-BKEM has
ε2-blinded blinded keys. Then GHE-BKEM has 4ε1-blind blinded encapsulation. Furthermore, if there
is an algorithm that breaks the indistinguishability of GHE-BKEM, i.e. the distinguishing advantage
of this algorithm against GHE-BKEM getting r blinded encapsulation and their blinded decapsulation
tuples is non-negligible, then there exists a quantum algorithm that solves worst-case SIVP.

Proof. By Lemma 4 we know GHE-BKEM has 4ε1-blinded blinded encapsulation.
Theorem 5 states that if there is an algorithm that breaks the indistinguishability of GHE-BKEM

then there exists an algorithm breaks IND-CPA security of GHE and by Theorem 3 we have a quantum
algorithm that solves worst-case SIVP.

5.5 Indistinguishability of NTRU-BKEM

The following result says NTRU-BKEM is an IND-secure BKEM with post-quantum security.

Corollary 3. Let NTRU-BKEM be a homomorphic based BKEM constructed in Section 5.1. For negli-
gible ε1 = ε, ε2, choose parameters as in Lemma 4, Lemma 3, and Theorem 4. Suppose NTRU-BKEM
has ε2-blinded blinded keys. Then NTRU-BKEM has 4ε1-blinded blinded encapsulation. Furthermore,
if there is an algorithm that breaks the indistinguishability of NTRU-BKEM, then there exists a quantum
algorithm that solves O(

√
n/α)-approximate SIVP (or SVP) on ideal lattices.

Proof. By Lemma 4 we know NTRU-BKEM has 4ε1-blinded blinded encapsulation.
Theorem 5 states that if there is an algorithm that breaks the indistinguishability of NTRU-BKEM

then there exists an algorithm that breaks IND-CPA security of NTRU. By Lemma 3 there exists an
adversary solving R-LWE×HNF and by Theorem 4 there exists a quantum algorithm that solves SIVP.
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