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Abstract

The Montgomery ladder has a conditional statement. Existing constant time implementations of
the Montgomery ladder are based on constant time conditional swaps or conditional selection of field
elements. Implementations of the underlying field arithmetic require a multi-limb representation of
the field elements. So, a swap or a selection of two field elements require a number of data movement
operations which is proportional to the number of limbs. In this work, we introduce a new method
for constant time implementation of the conditional statement. Our method does not require any
swap or selection of field elements. Further, the number of involved data movement operations in
our method is independent of the size of the underlying field. This leads to substantial savings in
the number of data movement operations required for Montgomery ladder computation. We have
implemented the new idea using 64-bit arithmetic for Curve25519 and Curve448, two elliptic curves
which have been proposed in the Transport Layer Security, Version 1.3. Timing measurements on
the Skylake and the Kaby Lake processors of Intel show that for Curve25519 about 11% and for
Curve448 about 13% speed-ups are achieved.

Keywords: Montgomery ladder, Diffie-Hellman protocol, constant time implementation, elliptic
curve cryptography, Curve25519, Curve448.

1 Introduction

Diffie-Hellman (DH) [6] key agreement is one of the fundamental primitives of modern cryptography.
The currently most efficient implementation of this primitive is done over groups arising from elliptic
curves [7, 8]. Several models of elliptic curves are used in cryptography. The Montgomery form [9] elliptic
curve is the most efficient for implementing the shared secret computation phase of DH key agreement.
A concrete Montgomery form curve, called Curve25519, has been proposed [2] to provide security at the
128-bit security level. Since its proposal, Curve25519 has gained wide acceptance and is used in many
important applications. Details can be found at [1].

The Transport Layer Security (TLS) protocol, Version 1.3 [13] specifies elliptic curve cryptography
for DH shared secret computation targeted at the 128-bit and the 224-bit security levels. For the 128-bit
security level, Curve25519 is specified. For the 224-bit security level, a Montgomery form curve called
Curve448 is specified. In view of the importance of the TLS protocol and also the widespread adoption
of Curve25519, efficient implementation of the shared secret computation phase of the DH key agreement
scheme has major implications to practical deployment.

Suppose p is a prime and Fp be the finite field of p elements. A Montgomery form elliptic curve
MA,B is specified by two parameters A ∈ Fp \ {2,−2} and B ∈ Fp \ {0}, and is given by an equation
MA,B : By2 = x3 +Ax2 +x. For i ≥ 1, the Fpi-rational points of MA,B are points (x, y) ∈ F2

pi satisfying

the equation of the curve. Following [13], we consider the case where p is a large prime and cryptography
is done over a prime order subgroup G of the Fp-rational points of MA,B .

The DH shared secret computation on MA,B requires performing the following computation. Let P
be a point in G and n be a secret scalar. Suppose the x-coordinate of P is xP . Given xP and n, it is
required to compute the x-coordinate of the point nP . Montgomery [9] introduced a particularly efficient
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way of performing this computation which has since then come to be known as the Montgomery ladder.
The basic structure of the Montgomery ladder and a single ladder step are shown in Algorithms 1 and 2.

A requirement for secure implementation of any cryptographic primitive is that the run time should
not depend on any secret value. Note that the Montgomery ladder shown in Algorithm 1 has a conditional
instruction where the condition is based on a secret bit. So, a straightforward implementation of the
ladder algorithm will not be constant time and has the potential to leak the secret bit. This problem
has been addressed in the literature and several constant time implementations are known.

The basic computations in the Montgomery ladder are on elements of Fp. Typically, multi-precision
arithmetic would be used to implement operations in Fp. So, an element x of Fp will be represented by
several words which are also called the limbs of x. For concreteness, consider the case of Curve25519
which is defined over Fp1

with p1 = 2255 − 19. Using 64-bit arithmetic, an element of Fp1
can have a

4-limb representation. Similarly, Curve448 is defined over Fp2
, with p2 = 2448 − 2224 − 1; using 64-bit

arithmetic, an element of Fp2 can have a 7-limb representation.
Going back to constant time conditional swap, we note that a swap of two field elements will require

swapping all the limbs storing the two field elements. So, a swap of two field elements will require a
number of 64-bit data movement operations which is proportional to the number of limbs. The exact
number of data movement operations will depend on the actual implementation, but, since all the limbs
will have to be swapped, this number must necessarily be linear in the number of limbs. Consequently, it
follows that the number of data movement operations to implement a swap of field element increases as the
number of limbs increases. For example, the number of 64-bit data movement operations to implement
a swap over Fp2

, will be more than the number of 64-bit data movement operations to implement a swap
over Fp1

. The conditional statement is part of the main loop of the Montgomery ladder. So, a substantial
number of 64-bit data movement operations are executed to implement the swaps of field elements. This
consumes a significant portion of the total time required for the entire ladder computation.

Our Contributions

We describe a new way of implementing the conditional statement in the Montgomery ladder in constant
time. Our method does not require swapping or selection between field elements. Further, the number
of 64-bit move instructions is independent of the size of the underlying field, i.e., it remains the same
irrespective of the number of limbs used to represent an element of Fp. This leads to substantial savings
in the number of 64-bit move instructions that need to be executed to perform the ladder computation.

Our idea works with addresses of memory locations storing the field elements. At a conceptual level,
two arrays U and V store the addresses of the relevant field elements, but in two different orders. The
start address of U is loaded to a memory location X. Then the present bit of the scalar is compared
to 1. Next, the assembly instruction cmove is used to copy the address of V to X. Depending upon
the outcome of the prior comparison, after the execution of the cmove instruction, X stores the address
of either U or V according as whether the present bit of the scalar is 0 or 1. Using X as a pointer it
becomes possible to access and update the relevant field elements in the proper order. This strategy
does not require swap or movement of any field element. Consequently, substantial speed improvement
is obtained.

We note that the cmove instruction has earlier been used to implement the conditional statement of
the Montgomery ladder in constant time. Such implementations, however, used the cmove instruction to
implement a conditional swap or a conditional selection of field elements. We propose a new use of the
cmove instruction to implement the conditional branching of the ladder that does not require swapping
or selection of field elements.

To demonstrate the practicability of our idea, we have carried out 64-bit assembly language im-
plementations of the algorithm targeting the Intel Skylake and later generation processors. For the
implementations, we chose Curve25519 and Curve448 due to their importance in being part of TLS
Version 1.3. The above mentioned savings in 64-bit data movement operations combined with carefully
optimised assembly code lead to substantial speed-up over the previously known implementations [12]
on Skylake and the Kaby Lake processors.

1. For Curve25519, about 11% speed-up is obtained on Skylake and Kaby Lake.

2. For Curve448, about 13% speed-up is obtained on Skylake and Kaby Lake.

Our source codes are publicly available at the following link.

https://github.com/kn-cs/shared-secret-curve25519-curve448.

These can be used to replace the existing codes in deployed softwares to obtain substantial speed-ups.
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2 The Montgomery Ladder

Let MA,B : By2 = x3 + Ax2 + x be a Montgomery curve over a field Fp. As mentioned earlier, follow-
ing [13], we will consider p to be a large prime such that cryptography is done over a suitable subgroup
of the Fp-rational points of MA,B .

The standard description of the Montgomery ladder is given in Algorithm 1. In the algorithm,
m = dlg pe, n is the scalar and it is required to compute the scalar multiplication nP . Following the idea
of clamping introduced in [2], we will assume that the (m−1)-th bit of the scalar n is set to 1. This ensures
that the number of iterations is the same for all scalars. Another option to achieve a constant number
of iterations is mentioned in Section 5.3 of [5]. A single step of the ladder is described in Algorithm 2.
For details of the background theory and correctness of these algorithms we refer to [9, 4, 5].

Algorithm 1 Montgomery ladder

1: function MontLadder(xP , n)
2: input: A scalar n and the x-coordinate xP of a point P .
3: output: (XnP , ZnP ), with xnP = XnP /ZnP .

4: X1 ← xP ;X2 ← 1;Z2 ← 0;X3 ← xP ;Z3 ← 1
5: for i← m− 1 down to 0 do
6: if the bit at index i of n is 1 then
7: (X3, Z3, X2, Z2)← LadderStep(X1, X3, Z3, X2, Z2)
8: else
9: (X2, Z2, X3, Z3)← LadderStep(X1, X2, Z2, X3, Z3)

10: end if
11: end for

12: return (X2, Z2)
13: end function.

Algorithm 2 Montgomery ladder step

1: function LadderStep(X1, X2, Z2, X3, Z3)

2: T1 ← X2 + Z2

3: T2 ← X2 − Z2

4: T3 ← X3 + Z3

5: T4 ← X3 − Z3

6: T5 ← T 2
1

7: T6 ← T 2
2

8: T2 ← T2 · T3
9: T1 ← T1 · T4

10: T1 ← T1 + T2
11: T2 ← T1 − T2
12: X3 ← T 2

1

13: T2 ← T 2
2

14: Z3 ← T2 ·X1

15: X2 ← T5 · T6
16: T5 ← T5 − T6
17: T1 ← ((A+ 2)/4) · T5
18: T6 ← T6 + T1
19: Z2 ← T5 · T6
20: return (X2, Z2, X3, Z3)
21: end function.

3 Constant Time Montgomery Ladder

As has been noted earlier, the Montgomery ladder has a conditional statement. A secure implementation
of the ladder requires a constant time implementation of this conditional statement. This problem is
well known in the literature and several methods have been suggested for constant time implementation
of the conditional statement. We discuss these below.
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Conditional swap. Algorithm 1 can be made to run in constant time by using an idea known as
conditionally swapping of field elements. At a top level, a description of the Montgomery ladder which
uses the idea is given in Algorithm 3. This algorithm uses a subroutine CSwap which performs a constant
time conditional swap as follows: CSwap(X2, Z2, X3, Z3, swap) swaps the pair of field elements (X2, Z2)
and (X3, Z3) if swap = 1, else not. Two methods for implementing CSwap have been described in the
literature. Algorithm 4 describes a method given in [5] whereas Algorithm 5 describes a method given
in [4]. Both realizations of CSwap require working with field elements. Depending of the size of the field,
a field element would be represented using several 64-bit words (limbs). So, both realizations of CSwap
require time which is linear in the number of limbs.

Algorithm 3 Constant time Montgomery ladder using conditional swap

1: function MontLadderCSwap(xP , n)
2: input: A scalar n and the x-coordinate xP of a point P .
3: output: (XnP , ZnP ), with xnP = XnP /ZnP .

4: X1 ← xP ;X2 ← 1;Z2 ← 0;X3 ← xP ;Z3 ← 1
5: prevbit := 0
6: for i← m− 1 down to 0 do
7: bit ← bit at index i of n
8: swap ← bit ⊕ prevbit

9: prevbit ← bit

10: (X2, Z2, X3, Z3)← CSwap(X2, Z2, X3, Z3, swap)
11: (X2, Z2, X3, Z3)← LadderStep(X1, X2, Z2, X3, Z3)
12: end for

13: return (X2, Z2)
14: end function.

Algorithm 4 Conditional swap using the operators and and xor

1: function CSwap1(X2, Z2, X3, Z3, b)
2: input: X2, Z2, X3, Z3 are field elements encoded as m-bit strings and b is a bit.
3: output: The pairs (X2, Z2) and (X3, Z3) are swapped if b = 1, else not.

4: mask← (bb . . . b)m
5: T1 ← mask and (X2 xor X3)
6: T2 ← mask and (Z2 xor Z3)
7: T3 ← T1 xor X2

8: T4 ← T2 xor Z2

9: T5 ← T1 xor X3

10: T6 ← T2 xor Z3

11: return (T3, T4, T5, T6)
12: end function.

Algorithm 5 Conditional swap using the operators +, - and ·
1: function CSwap2(X2, Z2, X3, Z3, b)
2: input: X2, Z2, X3, Z3 are field elements encoded as m-bit strings and b is a bit.
3: output: The pairs (X2, Z2) and (X3, Z3) are swapped if b = 1, else not.

4: T1 ← b · (X3 −X2) +X2

5: T2 ← b · (Z3 − Z2) + Z2

6: T3 ← (1− b) · (X3 −X2) +X2

7: T4 ← (1− b) · (Z3 − Z2) + Z2

8: return (T1, T2, T3, T4)
9: end function.

Conditional selection. A different idea, which may be called conditional select, can also be used to
make the Algorithm 1 run in constant time. We provide a general formalisation of the idea from the
implementation of shared secret computation of Curve25519 accompanying the work [12]. The description
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of the Montgomery ladder using conditional selection is given in Algorithm 6. This algorithm uses a
subroutine CSelect which performs a constant time conditional selection as follows: CSelect(swap, X, Y )
overwrites the value in X with the value in Y if swap = 1, else not. The variable X is used for further
computation within the ladder-step. So, if swap = 1, the field element stored in Y is selected, else the
field element stored in X is selected. It can be easily verified that Algorithm 6 correctly computes the
Montgomery ladder. Using the subroutine CSelect twice within the ladder-step comes out to be beneficial
compared to the subroutine CSwap in terms of computation time. We discuss this in further details in
the next section with the help of an example.

Algorithm 6 Constant time Montgomery ladder using conditional selection

1: function MontLadderCSelect(xP , n)
2: input: A scalar n and the x-coordinate xP of a point P .
3: output: (XnP , ZnP ), with xnP = XnP /ZnP .

4: X1 ← xP ;X2 ← 1;Z2 ← 0;X3 ← xP ;Z3 ← 1
5: prevbit ← 0
6: for i← m− 1 down to 0 do
7: bit ← bit at index i of n
8: swap ← bit ⊕ prevbit

9: prevbit ← bit

10: T1 ← X2 + Z2

11: T2 ← X2 − Z2

12: T3 ← X3 + Z3

13: T4 ← X3 − Z3

14: T5 ← T1 · T4
15: T6 ← T2 · T3
16: CSelect(swap, T1, T3)
17: CSelect(swap, T2, T4)
18: T1 ← T 2

1

19: T2 ← T 2
2

20: T7 ← T5 + T6
21: T8 ← T5 − T6
22: X3 ← T 2

7

23: T7 ← T 2
8

24: T8 ← T1 − T2
25: T9 ← ((A+ 2)/4) · T8
26: T9 ← T9 + T2
27: X2 ← T1 · T2
28: Z2 ← T8 · T9
29: Z3 ← T7 ·X1

30: end for

31: return (X2, Z2)
32: end function.

4 Constant Time Implementations of Montgomery Ladder

In this section, we consider prior assembly implementations of Montgomery ladder that runs in constant
time. Curve25519 is taken as a concrete example.

Implementation using conditional swap. The example that we discuss here is from the amd64-64

implementation1 of Curve25519 accompanying the work [3]. For 64-bit implementation, the elements
of F2255−19 have 4-limb representation. Consider the 4 limbs of the field elements X2, Z2, X3, Z3 to be
stored at the memory locations mentioned below. Also, let the register rsi hold the value of swap.

X2 : 0(%rdi), 8(%rdi), 16(%rdi), 24(%rdi)

Z2 : 32(%rdi), 40(%rdi), 48(%rdi), 56(%rdi)

X3 : 64(%rdi), 72(%rdi), 80(%rdi), 88(%rdi)

1https://github.com/floodyberry/supercop/blob/master/crypto_scalarmult/curve25519/amd64-64/work_cswap.s

(accessed on November 10, 2019).
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Z3 : 96(%rdi), 104(%rdi), 112(%rdi), 120(%rdi)

The assembly instructions for swapping used in the amd64-64 [3] implementation is shown in Figure 1.
Except the cmp, all other instructions in the first column of Figure 1 perform a conditional swap between
X2 and X3. Similarly, the instructions in the second column perform a conditional swap between Z2 and
Z3. The bit value of swap is compared with 1 using the cmp instruction; if swap = 1, then the cmove

instructions performs the limb-wise swapping of the field elements; else the cmove instruction reads the
relevant memory locations, but, the elements remain unchanged. From Figure 1 we observe that the
constant time implementation of conditional swap involves swapping of two pairs of field elements. The
assembly code in Figure 1 has 32 movq, 8 mov and 16 cmove operations.

cmp $1, %rsi

movq 0(%rdi), %rsi

movq 64(%rdi), %rdx

mov %rsi, %rcx

cmove %rdx, %rsi

cmove %rcx, %rdx

movq %rsi, 0(%rdi)

movq %rdx, 64(%rdi)

movq 8(%rdi), %rsi

movq 72(%rdi), %rdx

mov %rsi, %rcx

cmove %rdx, %rsi

cmove %rcx, %rdx

movq %rsi, 8(%rdi)

movq %rdx, 72(%rdi)

movq 16(%rdi), %rsi

movq 80(%rdi), %rdx

mov %rsi, %rcx

cmove %rdx, %rsi

cmove %rcx, %rdx

movq %rsi, 16(%rdi)

movq %rdx, 80(%rdi)

movq 24(%rdi), %rsi

movq 88(%rdi), %rdx

mov %rsi, %rcx

cmove %rdx, %rsi

cmove %rcx, %rdx

movq %rsi, 24(%rdi)

movq %rdx, 88(%rdi)

movq 32(%rdi), %rsi

movq 96(%rdi), %rdx

mov %rsi, %rcx

cmove %rdx, %rsi

cmove %rcx, %rdx

movq %rsi, 32(%rdi)

movq %rdx, 96(%rdi)

movq 40(%rdi), %rsi

movq 104(%rdi), %rdx

mov %rsi, %rcx

cmove %rdx, %rsi

cmove %rcx, %rdx

movq %rsi, 40(%rdi)

movq %rdx, 104(%rdi)

movq 48(%rdi), %rsi

movq 112(%rdi), %rdx

mov %rsi, %rcx

cmove %rdx, %rsi

cmove %rcx, %rdx

movq %rsi, 48(%rdi)

movq %rdx, 112(%rdi)

movq 56(%rdi), %rsi

movq 120(%rdi), %rdx

mov %rsi, %rcx

cmove %rdx, %rsi

cmove %rcx, %rdx

movq %rsi, 56(%rdi)

movq %rdx, 120(%rdi)

Figure 1: Assembly code to implement constant time conditional swap.
Taken from the amd64-64 implementation of [3].

Implementation using conditional selection. The 64-bit implementation of Curve255192 provided
with [12] uses conditional selection. As before, here also the elements of F2255−19 have 4-limb represen-
tation. The conditional selection in Algorithm 6 between the elements T1, T3, and T2, T4 are performed
using a certain number of cmovnz instructions.

The inline assembly code taken from the implementation of [12] is provided in the left column and
the generated assembly is shown in the right column of Figure 2. From the generated assembly it
can be observed that the registers r9, r8, rsi, rax hold the limb value of X for the subroutine
CSelect(swap, X, Y ). The register values are conditionally overwritten with the limb values of Y through
the cmovnz instruction after the value of swap is tested using the test instruction. It may be noted that

2https://github.com/armfazh/rfc7748_precomputed/blob/master/src/x25519_x64.c (accessed on November 10,
2019).
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the functionality of CSelect can also be achieved using the cmp and cmove instructions without affecting
the cost too much.

The assembly code shown in Figure 2 implements one conditional select operation. So, implemen-
tation of the two conditional select operations in Algorithm 2 requires a total of 16 movq and 8 cmovnz

operations. It follows that the number of data movement instructions to implement the 2 CSelect opera-
tions in Algorithm 6 is significantly smaller than the number of data movement operations to implement
the CSwap operation. Nevertheless, both the approaches work on entire field elements and consequently,
the number of data movement operations increases linearly with the number of limbs.

Remark. In the 64-bit implementation of Curve4483 provided with [12], the conditional selection has
been implemented using a high level ’C’ function. The logic used for the conditional selection is similar
to the logic used in Algorithm 4. The generated assembly does not use any conditional move instructions
and the number of instructions required to implement the conditional branching is fairly large.

static inline void cselect(uint8_t bit,

uint64_t *const px, uint64_t *const py) {

__asm__ __volatile__(

"test %4, %4 ;"

"cmovnzq %5, %0 ;"

"cmovnzq %6, %1 ;"

"cmovnzq %7, %2 ;"

"cmovnzq %8, %3 ;"

: "+r"(px[0]), "+r"(px[1]), "+r"(px[2]),

"+r"(px[3])

: "r"(bit), "rm"(py[0]), "rm"(py[1]),

"rm"(py[2]), "rm"(py[3])

: "cc"

);

}

Inline assembly code of CSelect

movq 0(%rsi), %r9

movq 8(%rsi), %r8

movq 16(%rsi), %rcx

movq 24(%rsi), %rax

test %dil, %dil

cmovnzq 0(%rdx), %r9

cmovnzq 8(%rdx), %r8

cmovnzq 16(%rdx), %rcx

cmovnzq 24(%rdx), %rax

movq %r9, 0(%rsi)

movq %r8, 8(%rsi)

movq %rcx, 16(%rsi)

movq %rax, 24(%rsi)

Generated assembly code of CSelect

Figure 2: Assembly code to implement constant time conditional select for Curve25519.
Inline assembly code has been taken from the implementation of [12].

5 New Algorithm for Constant Time Conditional Branching

We propose a new strategy to implement the conditional statement in Steps 6-10 of Algorithm 1.
The idea is to work with the addresses of the memory locations storing the field elements instead of
the field elements themselves. Assume that the elements X2, Z2, X3, Z3 are stored in memory. Let
&X2,&Z2,&X3,&Z3 denote the 64-bit addresses of the first bytes of the memory locations storing the
elements X2, Z2, X3, Z3 respectively. Let U [0..3] and V [0..3] denote two arrays of 64-bit quantities which
are in memory, each having contiguous 32 bytes of memory. By U (resp. V ) we will denote the 64-bit
address of the first byte of the memory storing U [0..3] (resp. V [0..3]).

To start with, the addresses &X2,&Z2,&X3,&Z3 are copied to U [0], U [1], U [2], U [3] respectively and
the addresses &X3,&Z3,&X2,&Z2 are copied to V [0], V [1], V [2], V [3] respectively. Within the main
loop, first the 64-bit address U is moved to a temporary location X. Let bit store the bit at index i of
n. Note that the indexes are considered in the order of highest to lowest value. A comparison of bit
is made to 1. This is followed by the constant time cmove operation to move V to X. As discussed
previously, the operation cmove works as follows: if bit equals 1, then V is moved to X, otherwise the
locations are read, but, no movement takes place. After the cmove operation, if bit = 1, then X contains
the start address of the array V [0..3] while if bit = 0, then X contains the start address of the array
U [0..3]. Considering the contents of X to be an address, after the cmove operation, X[0], X[1], X[2], X[3]
holds either the addresses of X2, Z2, X3, Z3 or the addresses of X3, Z3, X2, Z2 according as bit = 0 or
bit = 1. A second level of indirection provides access to the values required in the i-th iteration. The

3https://github.com/armfazh/rfc7748_precomputed/blob/master/src/x448_x64.c (accessed on November 10, 2019).
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&X2

&Z2

&X3

&Z3

&X3

&Z3

&X2

&Z2

X2

Z2

X3

Z3

X

U

V

bit = 0

bit = 1

Figure 3: Idea to implement the proposed ladder.

ladder step is computed using contents pointed to by the addresses X[0], X[1], X[2], X[3]. Since X points
to either U or V depending on whether bit = 1 or not, the ladder step correctly updates the values of
X2, Z2, X3, Z3.

A diagram explaining the above idea is shown in Figure 3 and Algorithm 7 provides a pseudo-code
level description. Note that the inputs to the subroutine LadderStep in MontLadderNew are addresses.

Algorithm 7 Constant time Montgomery ladder proposed through this work

1: function MontLadderNew(xP , n)
2: input: A scalar n and the x-coordinate xP of a point P on the elliptic curve E.
3: output: (XnP , ZnP ), with xnP = XnP /ZnP .

4: X1 ← xP ;X2 ← 1;Z2 ← 0;X3 ← xP ;Z3 ← 1
5: U [0..3]← {&X2,&Z2,&X3,&Z3} // store addresses of X2, Z2, X3, Z3 in U [0..3]

6: V [0..3]← {&X3,&Z3,&X2,&Z2} // store addresses of X3, Z3, X2, Z2 in V [0..3]

7: for i← m− 1 down to 0 do
8: mov U , X // X ← base address of U [0..3]

9: bit← bit at index i of n
10: cmp 1, bit

11: cmove V , X // if bit = 1, X ← base address of V [0..3]

12: LadderStep(&X1, X[0], X[1], X[2], X[3]) // modifies values at X[0], X[1], X[2], X[3]

13: end for
14: X2 ← value at X[0];Z2 ← value at X[1]

15: return (X2, Z2)
16: end function.

We would like to emphasize that no swapping of elements take place in MontLadderNew. In partic-
ular, each iteration of Algorithm MontLadderNew requires two 64-bit move operations to implement the
conditional branching irrespective of the size of the field. In contrast, previous implementations actually
moved two pairs of field elements to achieve the same task.

To provide a concrete example of the new idea, we consider the implementation of Curve25519.
Assume that elements X2, Z2, X3, Z3 are stored at memory locations 0(%rsp) to 120(%rsp). Also, let
the register rcx holds the bit at index i of n. The relevant assembly instructions for implementing
Steps 4-6 and Steps 8-11 of MontLadderNew are shown in Figure 4.

1. The implementation of Steps 4-6 in Figure 4 consists of 4 leaq instructions which loads the ad-
dresses of X2, Z2, X3, Z3 to the registers r11, r12, r13, r14 respectively. The next 8 movq instruc-
tions move the addresses of X2, Z2, X3, Z3 to U and the addresses of X3, Z3, X2, Z2 to V .

2. The implementation of Steps 8-11 in Figure 4 consists of two leaq instructions which loads the
address of the start location of U to the register rax and the address of the start location of V
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to the register rbx. Based on the result of the cmp instruction, a single cmove instruction ensures
that the register rax holds the correct base address.

Note that even though we have considered the example of Curve25519, the codes in Figure 4 implementing
Steps 4-6 and Steps 8-11 of MontLadderNew do not depend on the underlying field. As a result, the same
codes can be used for implementing Steps 4-6 and Steps 8-11 of MontLadderNew for a Montgomery form
curve over a field of any size.

Steps 4-6 of MontLadderNew are outside the main loop and are to be executed once for the entire
ladder computation. Steps 8-11 of MontLadderNew are part of the loop and are executed for each bit
of the scalar. So, for each iteration, implementing Steps 8-11 of MontLadderNew requires 2 leaq, and 1
cmove instructions. Additionally, the new method requires 4 movq instructions to resolve the first level
of indirection for accessing the limb values of X2, Z2, X3, Z3 before computing X2 + Z2, X2 − Z2, X3 +
Z3, X3−Z3. Similarly, 4 movq instructions are required to resolve the first level of indirection for updating
the limb values of X2, Z2, X3, Z3 at the end of a ladder-step. So, a total of 2 leaq, 1 cmove and 8 movq

instructions are required to implement the conditional branching. This is to be contrasted with 32
movq, 8 mov and 16 cmove instructions required to implement CSwap based strategy and 16 movq and 8
cmovnz required to implement CSelect based strategy. Further, in the new algorithm, the number of data
movement operations remain the same irrespective of the field size, whereas in the previous methods this
number increases linearly with the number of limbs.

leaq 0(%rsp), %r11 // &X2

leaq 32(%rsp), %r12 // &Z2

leaq 64(%rsp), %r13 // &X3

leaq 96(%rsp), %r14 // &Z3

movq %r11, 128(%rsp) // &X2

movq %r12, 136(%rsp) // &Z2

movq %r13, 144(%rsp) // &X3

movq %r14, 152(%rsp) // &Z3

movq %r13, 160(%rsp) // &X3

movq %r14, 168(%rsp) // &Z3

movq %r11, 176(%rsp) // &X2

movq %r12, 184(%rsp) // &Z2

Assembly code for Steps 4-6

leaq 128(%rsp), %rax

leaq 160(%rsp), %rbx

cmp $1, %rcx

cmove %rbx, %rax

// At this point:

// if %rcx = 0, %rax holds base address

// of the sequence (&X2,&Z2,&X3,&Z3)

// if %rcx = 1, %rax holds base address

// of the sequence (&X3,&Z3,&X2,&Z2)

Assembly code for Steps 8-11

Figure 4: Assembly code to implement relevant portions of MontLadderNew for Curve25519 and Curve448.

6 Implementation and Timings

For Curve25519 and Curve448, we have carried out 64-bit assembly implementations of the Montgomery
ladder using the new idea targeting the Skylake and later generation processors of Intel.

Curve Field Security Skylake Kaby Lake Reference

Curve25519 F2255−19 126
118231 113728 [12]

105135 101564 This work

Curve448 F2448−2224−1 222.5
536362 521934 [12]

470602 454685 This work

Table 1: CPU-cycle counts on Skylake and Kaby Lake processors for
shared secret computation of Curve25519 and Curve448.

As mentioned earlier, the underlying primes for Curve25519 and Curve448 are p1 := 2255 − 19 and
p2 := 2448−2224−1 respectively. Elements of Fp1

are represented using four 64-bit words while elements
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of Fp2
are represented using seven 64-bit words. The instructions mulx/adcx/adox available in the Sky-

lake and later processors allow the use of two independent carry chains for multiplying/squaring two large
integers represented using several 64-bit words. A general algorithmic form for multiplication/squaring
of 64κ-bit numbers, κ ≥ 4 is available in [10]. We have used these algorithms for implementing the inte-
ger multiplication/squaring assemblies. To reduce an element after an integer multiplication/squaring,
algorithm reduceSLPMP from [10] has been used while working with Fp1

. Implementations of basic field
arithmetic for Fp2

have been done following the algorithms given in [11].

Platform specifications. The details of the hardware and software tools used in our software imple-
mentations are as follows.

Skylake: Intel®CoreTM i7-6500U 2-core CPU @ 2.50GHz. The OS was 64-bit Ubuntu 14.04 LTS and
the source code was compiled using GCC version 7.3.0.

Kaby Lake: Intel®CoreTM i7-7700U 4-core CPU @ 3.60GHz. The OS was 64-bit Ubuntu 18.04 LTS
and the source code was compiled using GCC version 7.3.0.

Timings. The timing experiments were carried out on a single core of Skylake and Kaby Lake proces-
sors. During measurement of the cpu-cycles, turbo-boost and hyper-threading features were turned off.
An initial cache warming was done with 25000 iterations and then the median of 100000 iterations was
recorded. The time stamp counter TSC was read from the CPU to RAX and RDX registers by RDTSC
instruction.

The numbers of cpu-cycles required for variable base scalar multiplication using the new implemen-
tations are given in Table 1. For comparison, we also provide the numbers of cpu-cycles required by
the previously best known public implementations. The timings of the previous implementations were
obtained by downloading the relevant software and measuring the required cycles on the same platforms
where the present implementations have been measured. From Table 1, we observe that for Curve25519
about 11% and for Curve448 about 13% speed-ups are achieved.

7 Conclusion

In this work we have provided a simple and novel idea to implement the Montgomery ladder in constant
time. The proposed idea has produced significant speed-ups for 64-bit implementations of variable base
scalar multiplication of Curve25519 and Curve448 on Skylake and Kaby Lake processors. More generally,
the idea can be applied to 64-bit Montgomery ladder computation of other curves.
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