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Abstract Gaussian sampling over the integers is a crucial tool in lattice-based cryptography, but
has proven over the recent years to be surprisingly challenging to perform in a generic, efficient
and provable secure manner. In this work, we present a modular framework for generating discrete
Gaussians with arbitrary center and standard deviation. Our framework is extremely simple, and it
is precisely this simplicity that allowed us to make it easy to implement, provably secure, portable,
efficient, and provably resistant against timing attacks. Our sampler is a good candidate for any
trapdoor sampling and it is actually the one that has been recently implemented in the Falcon
signature scheme. Our second contribution aims at systematizing the detection of implementation
errors in Gaussian samplers. We provide a statistical testing suite for discrete Gaussians called
SAGA (Statistically Acceptable GAussian). In a nutshell, our two contributions take a step towards
trustable and robust Gaussian sampling real-world implementations.
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1 Introduction
Gaussian sampling over the integers is a central building block of lattice-based cryptogra-
phy, in theory as well as in practice. It is also notoriously difficult to perform efficiently and
securely, as illustrated by numerous side-channel attacks exploiting the Gaussian sampler in
BLISS [7,20,49,56]. For this reason, some schemes choose to limit or discard the use of Gaus-
sians [5,35]. However, in some situations, Gaussians are unavoidable. The most prominent ex-
ample is trapdoor sampling [26,48,40]: performing trapdoor sampling using other distributions
is an open question, except in one limited cases [36] which entail a growth O(

√
n) to O(n) of

the output, resulting in a dwindling security level. Given the countless applications of trapdoor
sampling (full-domain hash signatures [26,53], identity-based encryption (or IBE) [26,17], hier-
archical IBE [9,1], etc.), it is important to come up with Gaussian samplers over the integers
which are not only efficient, but also provably secure, resistant to timing attacks, and more
generally easy to deploy.

Our first contribution is to propose a Gaussian sampler over the integers with all the proper-
ties which are expected of a sampler for widespread deployment. It is simple and modular, making
analysis and subsequent improvements easy. It is efficient and portable, making it amenable to a
variety of scenarii. Finally, we formally prove its security and resistance against timing attacks.
We detail below different aspects of our sampler:
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– Simplicity and Modularity. At a high level, our framework only requires two ingredients
(a base sampler and a rejection sampler) and combines them in a simple and black-box way.
Not only does it make the description of our sampler modular (as one can replace either
or both of the ingredients depending on the context), this simplicity and modularity also
infuses all aspects of its analysis.

– Genericity. Our sampler is fully generic as it works with arbitrary center µ and standard
deviation σ. In addition, it does not incur hidden precomputation costs: given a fixed base
sampler of parameter σmax, our framework allows to sample from DZ,σ,µ for any ηϵ(Zn) ≤
σ ≤ σmax. In comparison, [42] implicity requires a different base sampler for each different
value of σ; this limits its applicability for use cases such as Falcon [53], which has up to 2048
different σ’s, all computed at key generation.

– Efficiency and Portability. Our sampler is instantiated with competitive parameters which
make it very efficient in time and memory usage. For σmax = 1.8205 and SHAKE256 used
as PRNG, our sampler uses only 512 bytes of memory and achieved 1,848,428 samples per
second on an Intel i7-6500U clocked at 2.5 GHz. Moreover, our sampler can be instantiated
in such way that it uses only integer operations which make it highly portable.

– Provable Security. A security analysis based on the statistical distance would either pro-
vide very weak security guarantees or require to increase the running time by an order
of magnitude. We instead rely on the Rényi divergence, a tool which in the recent years
has allowed dramatic practical gains for lattice-based schemes [3,52]. We carefully selected
our parameters as to make them as amenable to a Rényi divergence-based analysis, while
retaining as much efficiency as possible.

– Isochrony. We formally show that our sampler is isochronous: its running time is indepen-
dent of the inputs σ, µ and of the output z. Isochrony is weaker than being constant-time,
but it nevertheless suffices to argue security against timing attacks. Interestingly, our proof
of isochrony relies on techniques and notions which are common in lattice-based cryptog-
raphy: the smoothing parameter, the Rényi divergence, etc. In particular, the isochrony of
our sampler is implied by parameters dictated by the current state of the art for black-box
security of lattice-based schemes.

One second contribution stems from a simple observation: implementations of otherwise per-
fectly secure schemes have failed in spectacular ways by introducing weaknesses, a common one
being randomness failure: this is epitomized by nonce reuses in ECDSA, leading to jailbreaking
Sony PS3 consoles1 and exposing Bitcoin wallets [6]. The post-quantum community is aware
of this point of failure but does not seem to have converged on a systematic way to mitigate
it [46]. Randomness failures have been manually discovered and fixed in implementations of
Dilithium [45], Falcon [51,47] and other schemes; the case of Falcon is particularly relevant to
us because the sampler implemented was the one described in this document!

Our second contribution is a first step at systematically detecting such failures: we propose
a statistical test suite called SAGA for validating discrete Gaussians. This test suite can check
univariate samples; we therefore use it to validate our own implementation of our sampler. In
addition, our test suite can check multivariate Gaussians as well; this enables validation at a
higher level: if the base sampler over the integers is validated, but the output of the high-level
scheme does not behave like a multivariate Gaussian even though the theory predicts it should,
then this is indicative of an implementation mistake somewhere else in the implementation (or,
at the worst case, that the theory is deficient). We illustrate that with a simple example of
a (purportedly) deficient implementation of Falcon [53], however it can be used for any other

1 https://media.ccc.de/v/27c3-4087-en-console_hacking_2010.

https://media.ccc.de/v/27c3-4087-en-console_hacking_2010
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scheme using sampling multivariate discrete Gaussians, including but not limited to [40,17,25,10].
The test suite is publicly available at: https://github.com/PQShield/SAGA.

2 Related Works
In the recent years, there has been a surge of works related to Gaussian sampling over the inte-
gers. Building on convolution techniques from [50], [42] proposed an arbitrary-center Gaussian
sampler base, as well as a statistical tool (the max-log distance) to analyse it. [3,52,39] revisited
classical techniques with the Rényi divergence. Polynomial-based methods were further studied
by [52,59,4]. The use of rounded Gaussians was proposed in [30]. Knuth-Yao’s DDG trees have
been considered in [19,31]. Lazy floating-point precision was studied in [18,15]. We note that
techniques dating back to von Neumann [57] allow to generate (continuous) Gaussians elegantly
using finite automata [23,2,32]. While these have been considered in the context of lattice-based
cryptography [16,14] they are also notoriously hard to make isochronous. Finally, [58] studied
previously cited techniques with the goal of minimizing their relative error.

3 Preliminaries

3.1 Gaussians

For σ, µ ∈ R with σ > 0, we call Gaussian function of parameters σ, µ and denote by ρσ,µ the
function defined over R as ρσ,µ(x) = exp

(
− (x−µ)2

2σ2

)
. Note that when µ = 0 we omit it in index

notation, e.g. ρσ(x) = ρσ,0(x). The parameter σ (resp. µ) is often called the standard deviation
(resp. center) of the Gaussian. In addition, for any countable set S ⊊ R we abusively denote by
ρσ,µ(S) the sum

∑
z∈S ρσ,µ(z). When

∑
z∈S ρσ,µ(z) is finite, we denote by DS,σ,µ and call Gaussian

distribution of parameters σ, µ the distribution over S defined by DS,σ,µ(z) = ρσ,µ(z)/ρσ,µ(S).
Here too, when µ = 0 we omit it in index notation, e.g. DS,σ,µ(z) = DS,σ(z). We use the notation
Bp to denote the Bernoulli distribution of parameter p.

3.2 Renyi Divergence

We recall the definition of the Rényi divergence, which we will use massively in our security
proofs.

Definition 1 (Rényi Divergence). Let P, Q be two distributions such that Supp(P) ⊆
Supp(Q). For a ∈ (1,+∞), we define the Rényi divergence of order a by

Ra(P,Q) =

 ∑
x∈Supp(P)

P(x)a

Q(x)a−1

 1
a−1

.

In addition, we define the Rényi divergence of order +∞ by

R∞(P,Q) = max
x∈Supp(P)

P(x)
Q(x)

.

The Rényi divergence is not a distance; for example, it is neither symmetric nor does it verify
the triangle inequality, which makes it less convenient than the statistical distance. On the other
hand, it does verify cryptographically useful properties, incluing a few listed below.

Lemma 2 ([3]). For two distributions P,Q and two families of distributions (Pi)i, (Qi)i, the
Rényi divergence verifies these properties:

https://github.com/PQShield/SAGA
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– Data processing inequality. For any function f , Ra(f(P), f(Q)) ≤ Ra(P,Q).
– Multiplicativity. Ra(

∏
i Pi,

∏
iQi) =

∏
iRa(Pi,Qi).

– Probability preservation. For any event E ⊆ Supp(Q) and a ∈ (1,+∞),

Q(E) ≥ P(E)
a

a−1 /Ra(P,Q), (1)
Q(E) ≥ P(E)/R∞(P,Q). (2)

The following lemma shows that a bound of δ on the relative error between two distributions
implies a bound O(δ2) on the log of the Rényi divergence (as opposed to a bound O(δ) on the
statistical distance).

Lemma 3 (Lemma 3 of [52]). Let P,Q be two distributions of same support Ω. Suppose that
the relative error between P and Q is bounded: ∃δ > 0 such that

∣∣P
Q − 1

∣∣ ≤ δ over Ω. Then, for
a ∈ (1,+∞):

Ra(P,Q) ≤
(
1 +

a(a− 1)δ2

2(1− δ)a+1

) 1
a−1

∼
δ→0

1 +
aδ2

2

3.3 Smoothing Parameter

For ϵ > 0, the smoothing parameter ηϵ(Λ) of a lattice Λ is the smallest value σ > 0 such that
ρ 1

σ
√
2π
(Λ⋆\{0}) ≤ ϵ, where Λ⋆ denotes the dual of Λ. In the literature, some definitions of the

smoothing parameter scale our definition by a factor
√
2π. It is shown in [41] that ηϵ(Zn) ≤

η+ϵ (Zn), where:

η+ϵ (Zn) =
1

π

√
1

2
log

(
2n

(
1 +

1

ϵ

))
. (3)

3.4 Isochronous algorithms

We now give a semi-formal definition of isochronous algorithms.

Definition 4. Let A be a (probabilistic or deterministic) algorithm with set of input variables
I, set of output variables O, and let S ⊆ I ∪ O be the set of sensitive variables. We say that A
is perfectly isochronous with respect to S if its running time is independent of any variable in S.

In addition, we say that A statistically isochronous with respect to S if there exists a distri-
bution D independent of all the variables in S, such that the running time of A is statistically
close (for a clearly identified divergence) to D.

We note that we can define a notion of computationally isochronous algorithm. For such
an algorithm, it is computationally it hard to recover the sensitive variables even given the
distribution of the running time of the algorithm. We can even come up with a contrived example
of such an algorithm: let A() select in isochronous an x uniformly in a space of min-entropy
≥ λ, compute y = H(x) and wait a time y before outputting x. One can show that recovering
x given the running time of A is hard if H is a one-way function.

4 The sampler

In this section, we describe our new sampler with arbitrary standard deviation and center. The
main assumption of our setting is to consider that all the standard deviations are bounded and
that the center is in [0, 1]. In other words, denoting the upper bound and lower bound on the
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Algorithm 1 SamplerZ(σ, µ)
Require: µ ∈ [0, 1], σ ≤ σmax

Ensure: z ∼ DZ,σ,µ
1: while True do
2: z0 ← BaseSampler()
3: b← {0, 1} uniformly
4: z := (2b− 1) · z0 + b

5: x :=
z20

2σ2
max
− (z−µ)2

2σ2

6: if AcceptSample(σ, x) then
7: return z

Algorithm 2 AcceptSample(σ, x)
Require: σmin ≤ σ ≤ σmax, x < 0
Ensure: b ∼ Bσmin

σ
·exp(x)

1: p := σmin
σ
· ApproxExp(x)

Lazy Bernoulli sampling
2: i := 1
3: do
4: i := i · 28
5: u← J0, 28 − 1K uniformly
6: v := ⌊p · i⌋ & 0xff
7: while u = v
8: return (u < v)

standard deviation as σmax > σmin > 0, we present an algorithm that samples the distribution
DZ,σ,µ for any µ ∈ [0, 1] and σmin ≤ σ ≤ σmax.

Our sampling algorithm is called SamplerZ and is described in Algorithm 1. We denote by
BaseSampler an algorithm that samples an element with the fixed half Gaussian distribution
DZ+,σmax

. The first step consists in using BaseSampler. The obtained z0 sample is then trans-
formed into z := (2b − 1) · z0 + b where b is a bit drawn uniformly in {0, 1}. Let us denote by
BGσmax the distribution of z. The distribution of z is a discrete bimodal half-Gaussian of centers
0 and 1. More formally,

BGσmax(z) =
1

2

{
DZ+,σmax

(−z) if z ≤ 0
DZ+,σmax

(z − 1) if z ≥ 1.
(4)

The main interest of getting the latter distribution is that BGσmax(z) ≥ DZ,σ,µ(z) for any
z ∈ Z, µ ∈ [0, 1] and σ ≤ σmax. Then, to recover the desired distribution DZ,σ,µ for the inputs
(σ, µ), one might want to apply the classical rejection sampling technique applied to lattice based
schemes [34] and accept z with probability

DZ,σ,µ(z)

BGσmax(z)
=

exp
(

z2

2σ2
max
− (z−µ)2

2σ2

)
if z ≤ 0

exp
(
(z−1)2

2σ2
max
− (z−µ)2

2σ2

)
if z ≥ 1

= exp

(
z20

2σ2
max

− (z − µ)2

2σ2

)
.

The element inside the exp is computed in step 5. Next, we also introduce an algorithm de-
noted AcceptSample. The latter performs the rejection sampling (Algorithm 2): using ApproxExp
an algorithm that returns exp(·), it returns a Bernoulli sample with the according probability.
Actually, for isochrony matters, detailed in Section 6, the latter acceptance probability is rescaled
by a factor σmin

σ . As z follows the BGσmax distribution, after the rejection sampling, the final
distribution of SamplerZ(σ, µ) is then proportional to σmin

σ ·DZ,σ,µ which is, after normalization
exaclty equal to DZ,σ,µ. Thus, with this construction, one can derive the following proposition.

Proposition 5 (Correctness). Assume that all the uniform distributions are perfect and that
BaseSampler = DZ+,σmax

and ApproxExp = exp, then the construction of SamplerZ (in Algorithms
1 and 2) is such that SamplerZ(σ, µ) = DZ,σ,µ.

In practical implementations, one cannot acheive perfect distributions. Only acheiving BaseSampler ≈
DZ+,σmax

and ApproxExp ≈ exp is possible.Section 6 proves that, under certain conditions on
BaseSampler and ApproxExp and on the number of sampling queries, the final distribution re-
mains indistinguishable from DZ,σ,µ.
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Table 1: Number of calls to SamplerZ, BaseSampler and ApproxExp

Notation Value for Falcon

Calls to sign (as per NIST) Qs ≤ 264

Calls to SamplerZ QsamplZ Qs · 2 · n ≤ 275

Calls to BaseSampler Qbs Niter ·QsamplZ ≤ 276

Calls to ApproxExp Qexp Qbs ≤ 276

5 Proof of Security
Table 1 gives the notations for the number of calls to SamplerZ, BaseSampler and ApproxExp and
the considered values when the sampler is instanciated for Falcon. Due to the rejection sampling
in step 6, there will be a (potentially infinite) number of iterations of the while loop. We will
show later in Lemma 7, that the number of iterations follows a geometric law of parameter
≈ σmin·

√
2π

2·ρσmax (Z+)
. We note Niter a heuristic considered maximum number of iterations. By a central

limit argument, Niter will only be marginally higher than the expected number of iterations. To
instantiate the values Qexp = Qbs = Niter ·QsamplZ for the example of Falcon, we take Niter = 2.
In fact, σmin·

√
2π

2·ρσmax (Z+)
≤ 2 for Falcon’s parameters.

The following Theorem estimates the security of SamplerZ, it is independant of the chosen
values for the number of calls.

Theorem 6 (Security of SamplerZ). Let λIdeal (resp. λReal) be the security parameter of
an implementation using the perfect distribution DZ,σ,µ (resp. the real distribution SamplerZ).
If both following conditions are respected, at most two bits of security are lost. In other words,
∆λ := λIdeal − λReal ≤ 2.

∀x < 0,

∣∣∣∣ApproxExp(x)− exp(x)

exp(x)

∣∣∣∣ ≤
√

2 · λReal

2 · (2 · λReal + 1)2 ·Qexp

(Cond. (1))

R2·λReal+1

(
BaseSampler, DZ+,σmax

)
≤ 1 +

1

4 ·Qbs
(Cond. (2))

The proof of this Theorem is given in Appendix A.
To get concrete numerical values, we assume that 256 bits are claimed on the original scheme,

thus 254 bits of security are claimed for the real implementation. Then for an implementation
of Falcon, the numerical values are√

2 · λReal

2 · (2 · λReal + 1)2 ·Qexp

≈ 2−43 and 1

4 ·Qbs
≈ 2−78.

5.1 Instanciating the ApproxExp
To achieve condition (1) with ApproxExp, we use a polynomial approximation of the exponential
on [− ln(2), 0]. In fact, one can reduce the parameter x modulo ln(2) such that x = −r− s ln(2).
Compute the exponential remains to compute exp(x) = 2−s exp(−r). Noting that s ≥ 64 happen
very rarely, thus s can be saturated at 63 to avoid overflow without loss in precision.

We use the polynomial approximation tool provided in GALACTICS [4]. This tool generates
polynomial approximations that allow a computation in fixed precision with chosen size of
coefficients and degree. As an example, for 32-bit coefficients and a degree 10, we obtain a
polynomial Pgal(x) :=

∑10
i=0 ai · xi, with:
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◦ a0 = 1;
◦ a1 = 1;
◦ a2 = 2−1;
◦ a3 = 2863311530 · 2−34;
◦ a4 = 2863311481 · 2−36;
◦ a5 = 2290647631 · 2−38;

◦ a6 = 3054141714 · 2−41;
◦ a7 = 3489252544 · 2−44;
◦ a8 = 3473028713 · 2−47;
◦ a9 = 2952269371 · 2−50;
◦ a10 = 3466184740 · 2−54.

For any x ∈ [− ln(2), 0], Pgal verifies
∣∣∣Pgal(x)−exp(x)

exp(x)

∣∣∣ ≤ 2−47, which is sufficient to verify
condition (1) for Falcon implementation.

Flexibility on the implementation of the polynomial Depending on the platform and
the requirement for the signature, one can adapt the polynomial to fit their constraints. For
example, if one wants to minimize the number of multiplications, implementing the polynomial
with Horner’s form is the best option. The polynomial is written in the following form :

Pgal(x) = a0+x·(a1+x·(a2+x·(a3+x·(a4+x·(a5+x·(a6+x·(a7+x·(a8+x·(a9+x·a10))))))))).

Evaluating Pgal is then done serially as follows:

y← a10
y← a9 + y× x

...
y← a1 + y× x

y← a0 + y× x

Some architectures with small register sizes may be faster if the size of the coefficients of the poly-
nomial is minimized, thus GALACTICS tool can be used to generate a polynomial with smaller
coefficients. For example, we propose an alternative polynomial approximation on [0, ln(2)64 ] with
25 bits coefficients.

P = 1 + x+ 2−1x2 + 699051 · 2−22 · x3 + 699299 · 2−24 · x4 + 605552 · 2−26 · x5

To recover the polynomial approximation on [0, ln(2)], we compute P ( x
64)

64.
Some architectures enjoy some level of parallelism, in which case it is desirable to minimise

the depth of the circuit computing the polynomial2. Writing Pgal in Estrin’s form [21] is helpful
in this regard.

x2 ← x× x

x4 ← x2 × x2
Pgal(x)← (x4 × x4)× ((a8 + a9 × x) + x2 × a10)

+ (((a0 + a1 × x) + x2 × (a2 + a3 × x)) + x4 × ((a4 + a5 × x) + x2 × (a6 + a7 × x)))

5.2 Instanciating the BaseSampler
To achieve condition (2) with BaseSampler, we rely on a cumulative distribution table (CDT). We
precompute a table of the cumulative distribution function of DZ+,σmax

with a certain precision;
then, to produce a sample, we generate a random value in [0, 1] with the same precision, and
return the index of the last entry in the table that is greater than that value. In variable time,
this can be done relatively efficiently with a binary search, but a constant-time implementation
has essentially no choice but to read the entire table each time and carry out each comparison.
This process is summed up in Algorithm 3. The parameters w and θ are respectivelly the number
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Algorithm 3 SampleCDT: full-table access CDT
z ← 0
u← [0, 1) uniformly with θ bits of absolute precision
for 0 ≤ i ≤ w do

b← (CDT[w] ≥ u) ▷ b = 1 if it is true and 0 otherwise
z ← z + b

return z

of elements of the CDT and the precision of its coefficients. Let a = 2 · λReal + 1. To derive the
parameters w and θ we use a simple script that, given σmax and θ as inputs:

1. Computes the smallest tailcut w such that the Renyi divergence Ra between the ideal distri-
bution DZ+,σmax

and its restriction to {0, . . . , w} (noted D[w],σmax
) verifies Ra(D[w],σmax

, DZ+,σmax
) ≤

1 + 1/(4Qbs);
2. Rounds the probability density table (PDT) of D[w],σmax

with θ bits of absolute precision.
This rounding is done “cleverly” by truncating all the PDT values except the largest:
◦ for z ≥ 1, the value D[w],σmax

(z) is truncated: PDT (z) = 2−θ
⌊
2θD[w],σmax

(z)
⌋
.

◦ in order to have a probability distribution, PDT (0) = 1−
∑

z≥1 PDT (z).
Since Ra(PDT,D[w],σmax

) ≤ R∞(PDT,D[w],σmax
), it is then easy to show that

Ra(PDT,D[w],σmax
) ≤ PDT (0)

D[w],σmax
(0)
≤ 2−θw

D[w],σmax
(0)
≈ 2−θw

σmax

√
π/2 + 1

.

3. Derives the CDT from the PDT.

Taking σmax = 1.8205 and θ = 72 as inputs, we found w = 19.

◦ PDT(0) = 2−72 × 1697680241746640300030

◦ PDT(1) = 2−72 × 1459943456642912959616

◦ PDT(2) = 2−72 × 928488355018011056515

◦ PDT(3) = 2−72 × 436693944817054414619

◦ PDT(4) = 2−72 × 151893140790369201013

◦ PDT(5) = 2−72 × 39071441848292237840

◦ PDT(6) = 2−72 × 7432604049020375675

◦ PDT(7) = 2−72 × 1045641569992574730

◦ PDT(8) = 2−72 × 108788995549429682

◦ PDT(9) = 2−72 × 8370422445201343

◦ PDT(10) = 2−72 × 476288472308334

◦ PDT(11) = 2−72 × 20042553305308

◦ PDT(12) = 2−72 × 623729532807

◦ PDT(13) = 2−72 × 14354889437

◦ PDT(14) = 2−72 × 244322621

◦ PDT(15) = 2−72 × 3075302

◦ PDT(16) = 2−72 × 28626

◦ PDT(17) = 2−72 × 197

◦ PDT(18) = 2−72 × 1

One can check that for any a ≥ 509, Ra(SampleCDTw=19,θ=72, DZ+,σmax
) ≤ 1 + 2−80 ≤

1 + 1
4Qbs

, which validates condition (2) for Falcon implementation.

6 Analysis of resistance against timing attacks

In this section, we show that Algorithm 1 is impervious against timing attacks. We formally
prove that it is isochronous with respect to σ, µ and the output z (in the sense of Definition 4).
We first prove a technical lemma which shows that the number of iterations in the while loop
of Algorithm 1 is (almost) independent of σ, µ, z.

2 We are thankful to Thomas Pornin for bringing up this fact.
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Lemma 7. Let ϵ ∈ (0, 1), µ ∈ [0, 1] and let σmin, σ, σ0 be standard deviations such that η+ϵ (Zn) =

σmin ≤ σ ≤ σ0. Let p = σmin·
√
2π

2·ρσmax (Z+)
. The number of iterations of the while loop in SamplerZ(σ, µ)

follows a geometric law of parameter

Ptrue(σ, µ) ∈ p ·
[
1, 1 +

(1 + 2−80)ϵ

n

]
.

The proof of Lemma 7 can be found in Appendix B. Next, we show that Algorithm 1 is
perfectly isochronous with respect to z and statistically isochronous (for the Rényi divergence)
with respect to σ, µ.

Theorem 8. Let ϵ ∈ (0, 1), µ ∈ R and let σmin, σ, σ0 be standard deviations such that η+ϵ (Zn) =

σmin ≤ σ ≤ σ0 and p = σmin·
√
2π

2·ρσmax (Z+)
be a constant in (0, 1). Suppose that the elementary opera-

tions {+,−,×, /} over integer and floating-point numbers are isochronous. The running time of
Algorithm 1 follows a distribution Tσ,µ such that:

Ra(Tσ,µ∥T ) ≲ 1 +
aϵ2max(1, 1−p

p )2

n2(1− p)
= 1 +O

(
aϵ2

n2

)
for some distribution T independent of σ, µ and the output z.

Finally, we leverage Theorem 8 to prove that the running time of SamplerZ(σ, µ) does not
help an adversary to break a cryptographic scheme. We consider that the adversary has access to
some function g(SamplerZ(σ, µ)) as well as the running time of SamplerZ(σ, µ): this is intended
to capture the fact that in practice the output of SamplerZ(σ, µ) is not given directly to the
adversary, but processed by some function before. For example, in the signature scheme Falcon,
samples are processed by algorithms depending on the signer’s private key. On the other hand,
we consider that the adversary has powerful timing attack capabilities by allowing him to learn
the exact runtime of each call to SamplerZ(σ, µ).

Corollary 9. Consider an adversary A making Qs queries to g(SamplerZ(σ, µ)) for some ran-
domized function g, and solving a search problem with success probability 2−λ for some λ ≥ 1.
With the notations of Theorem 8, suppose that max(1, 1−p

p )2 ≤ n(1−p) and ϵ ≤ 1√
λQs

. Learning
the running time of each call to SamplerZ(σ, µ) does not increase the success probability of A by
more than a constant factor.

The proof of Corollary 9 can be found in Appendix D. A nice thing about Corollary 9 is
that the conditions required to make it effective are already met in practice since they are also
required for black-box security of cryptographic schemes. For example, it is systematic to set
σ ≥ η+ϵ (Zn).

Impact of the scaling factor. The scaling factor σmin
σ ≤ σmin

σmax
is crucial in making our sampler

isochronous, as it decorrelates the runnin time from σ. However, it also impacts the running time
T , as one can easily show that T is proportional to the scaling factor. It is therefore desirable
to make it as small as possible. The maximal value of the scaling factor is actually dependent
no the cryptographic scheme in which our sampler is used. In Appendix E, we show that for the
case of the signature scheme Falcon, σmin

σmax
≤ 1.17−2 ≈ 0.73 and the impact of the scaling factor

is limited. Moreover, one can easily show that for Peikert’s sampler [48], the scaling factor is
equal to 1 and has no impact.
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7 “Err on the side of Gaussian”
This Section focuses on ensuring correct and verified implementations of our proposed isochronous
Gaussian sampler. The motivation for this section is based minimising implementation bugs,
such as implementation issues with Falcon [51,47] or the famous Heartbleed (CVE-2014-0160)
or ROCA vulnerabilities [44] (CVE-2017-15361). We propose a test suite named SAGA (Sta-
tistically Acceptable GAussians) in order to verify correct univariate or multivariate Gaussian
variables. At the very least, SAGA can act as a ‘sanity check’ for implementors and practioneers;
as bugs or errors in implementations of Gaussian samplers can potentially be very costly. Fur-
thermore, SAGA is designed to run in a generic fashion, agnostic to the technique used, by only
requiring a list of univariate (i.e., BaseSampler) or multivariate (i.e., SamplerZ) Gaussian samples
as input. Although we evaluate SAGA by applying it to Falcon, SAGA is equally as applicable to
any lattice-based cryptographic schemes which require Gaussian sampling, such as Frodo-KEM
[43], identity-based encryption [17,8], and in fully homomorphic encryption [54].

7.1 Univariate tests

The statistical tests we implement here are inspiried by a previous test suite proposal called
GLITCH [29]. We use standard statistical tools to validate a Gaussian sampler is operating with
the correct mean, standard deviation, skewness, and kurtosis, and finally we check whether it
passes a chi-square normality test. Skewness and kurtosis are descriptors of a normal distribution
that respectively measure the symmetry and peakedness of a distribution. To view the full
statistical analysis of these tests we created a python class, UnivariateSamples(mu, sigma,
data), which take as input the expected mean (mu), expected standard deviation (sigma), and
the list of observed univariate Gaussian samples (data). An example of how this works, as well
as its output, is shown in Appendix F.1.

7.2 Multivariate tests

This section details multivariate normality tests. The motivation for these tests is to detect
situations where the base Gaussian sampler over the integers is correctly implemented, yet the
high-level scheme (e.g. a signature scheme) uses it incorrectly way and ends up with a defective
multivariate Gaussian.

Multivariate normality: There are a number of statistical tests which evaluate the normality
of multivariate distributions. We found that multivariate normality tests predominantely used
in other fields [38,28,11] suffer with size and scaling issues. That is, the large sample sizes we
expect to use and the poor power properties of these tests will make a type II error highly likely3.
In fact, we implemented the Mardia [38] and Henze-Zirkler [28] tests and found, although they
worked for small sample sizes, they diverged to produce false negatives for sample sizes ≥ 50 in
small dimensions n = 64.

However, the Doornik-Hansen test [13] minimises these issues by using transformed versions
of the skewness and kurtosis of the multivariate data, increasing the test’s power. We also note
that it has a much faster computation time (essentially linear in the sample size) compared
to [38,28] (essentially quadratic in the sample size). As with the univariate tests, we created a
python class, denoted MultivariateSamples(sigma,data), which can output four results; two
based on the covariance matrix, and two based on the data’s normality. An example of how this
works, as well as its output, is shown in Appendix F.2.

3 Type I and type II errors are, respectively, rejection of a true null hypothesis and the non-rejection of a false
null hypothesis.
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A glitch in the (covariance) matrix: Our second test asks the following question: how
would someone implement correctly the base sampler, yet subsequently fail to use it properly?
There is no universal answer to that, and one usually has to rely on context, experience and
common sense to establish the most likely way this could happen. For example, in the signature
scheme Falcon, univariate Gaussian samples are combined according to values contained in a
balanced binary tree computed at key generation; there could be an implementation mistake in
the procedure computing the tree (during key generation), or in the procedure combining the
samples (during signing). Such mistakes have a very recognizable effect on the empiric covariance
matrix of Falcon signatures: they make them look like block-Toeplitz matrices, as illustrated by
Figure 1ă. We therefore devised a test which differentiate block Toeplitz covariance matrices
from the ones we would expect from spherical Gaussians.

(a) Nominal case (b) Defective Gaussian

Figure 1: Empiric covariance matrices of Falcon signatures. Figure 1a corresponds to a correct
implementation of Falcon. Figure 1b corresponds to an implementation where there is a mistake
when constructing the Falcon tree.

Supplementary tests: In the case where normality has been rejected, SAGA also provides a
number of extra tests to aid in finding the issues. More details for this can be found in Appendix
F.3.

8 Application and Limitations

Our sampler has been implemented by Pornin as part of the new isochronous implementation
of Falcon [51]. This implementation can use floating-point hardware or AVX2 instructions when
available, but also includes floating-point emulation code that uses only usual integer operations.
We perform benchmarks of this sampler implementation on a single Intel Core i7-6500U CPU
core clocked at 2.5 GHz. In Table 2 we present the running times of our isochronous sampler.
To compare with [60], we scale the numbers to be based on 2.5GHz. Note that for our sampler
the number of samples per second is in average for 1.2915 < σ ≤ 1.8502 while for [60] σ = 2 is
fixed.
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Table 2: Number of samples per second at 2.5 GHz for our sampler and [60].
Algorithm Number of samples

This work4 1.84× 106/sec
This work (AVX2)5 7.74× 106/sec
[60] (AVX2)6 5.43× 106/sec

In Table 3 we present the running times of the Falcon isochronous implementation [51] that
contains our sampler and compare it with a second non-isochronous implementation nearly
identical excepting the base sampler which is a faster lazy CDT sampler, and the rejection
sampling which is not scaled by a constant. Compared to the non-isochronous implementation,
the isochronous one is about 22% slower, but remains very competitive speed-wise.

Table 3: Falcon signature generation time at 2.5 GHz.
Degree Non-isochronous (using AVX2) isochronous (using AVX2)

512 210.88 µs (153.64 µs) 257.33 µs (180.04 µs)
1024 418.76 µs (311.33 µs) 515.28 µs (361.39 µs)

Advantages and limitations. Our sampler has an acceptance rate ≈ σmin
σmax+0.4 making it

especially suitable when σmin and σmax are close. In particular, our sampler is, so far, the fastest
isochronous sampler for the parameters in Falcon. However, the larger the gap between σmin and
σmax, the lower the acceptance rate. In addition, our sampler uses a cummulative distribution
table (CDT) which is accessed in an isochronous way. This table grows when σmax grows, while
making both running time and memory usage larger. When σmax is large or far from σmin,
there exist faster isochronous samplers based on convolution [42] and rejection sampling [60]7
techniques.
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A Proof of Theorem 6
To estimate the security loss with the replacement of DZ,σ,µ by SamplerZ, we introduce an
intermediate case where ApproxExp outputs a perfect value. The 3 cases are defined as follows.
1. (Ideal) The ideal DZ,σ,µ is called. By Proposition 5, it is the same as considering ApproxExp =

exp and BaseSampler = DZ+,σmax
.

2. (Inter) Only ApproxExp = exp is assumed.
3. (Real) The imperfect SamplerZ is called.

We recall that λReal (resp. λIdeal) is the security parameter of the Real (resp. Ideal) case.
We aim at computing ∆λ = λIdeal − λReal.

We denote by a := 2 ·λReal+1. The values Ra(Real, Inter) and Ra(Inter, Ideal) will be used
to quantify the distance between each case. Let E be an event breaking the scheme. Let δIdeal
(resp. δInter, δReal) be the probability that this event occurs in the use of the Ideal (resp. Inter,
Real) case. By probability preservation of the Rényi divergence:

δIdeal ≥ δ
a

a−1

Inter/Ra(Inter, Ideal)Qbs

δInter ≥ δ
a

a−1

Real/Ra(Real, Inter)Qexp .

By definition, δReal ≥ 2−λReal , thus, the second equation can be upper bounded using δ
a

a−1

Real ≥
δReal/

√
2. By combining it,

δInter ≥ δReal/
(√

2 ·Ra(Real, Inter)Qexp

)
.
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And thus,

δIdeal ≥ δ
a

a−1

Real ·
(√

2
a

a−1 ·Ra(Real, Inter)
aQexp
a−1 Ra(Inter, Ideal)Qbs

)−1

≥ δReal ·
(√

2
a

a−1
+1 ·Ra(Real, Inter)

aQexp
a−1 Ra(Inter, Ideal)Qbs

)−1

So,

∆λ = log2

(√
2

a
a−1

+1 ·Ra(Real, Inter)
aQexp
a−1 ·Ra(Inter, Ideal)Qbs

)
Let us now use the conditions to get a concrete upper bound on ∆λ. First, suppose that

condition (1) is verified. We use a := 2 · λReal + 1, then, for all x < 0:

1−

√
a− 1

2 · a2 ·Qexp
≤ P (x)

ApproxExp(x) ≤ 1 +

√
a− 1

2 · a2 ·Qexp
.

An application of Lemma 3 yields to Ra(Real, Inter) ≤ 1 + a−1
4aQexp

.

Secondly, suppose that condition (2) is verified. Recall that BGσmax denotes the ideal dis-
tribution of z before rejection sampling (Step 4). Let us denote by BGσmax the distribution of
z before the rejection sampling when BaseSampler is not perfect. The next step s in SamplerZ
algorithm consist in multiplying the output distribution by z 7→ σmin

σ exp
(
(z−µ)2

2σ2 −
z20

2σ2
max

)
. By

data processing, we get

Ra(Inter, Ideal) ≤ Ra(BGσmax , BGσmax)

Then, since (considering the distribution of b as perfectly uniform)

Ra(Inter, Ideal) ≤ Ra

(
(2b− 1)BaseSampler + b, (2b− 1)DZ+,σmax

+ b
)
,

we re-apply data processing and obtain

Ra(Inter, Ideal) ≤ Ra(BaseSampler, DZ+,σmax
)

≤ 1 + 1
4·Qbs

.

Wrapping up,

∆λ = log2

(√
2

a
a−1

+1 ·Ra(Real, Inter)
aQexp
a−1 ·Ra(Inter, Ideal)Qbs

)
≤ log2

(
√
2

a
a−1

+1 ·
(
1 + a−1

4aQexp

)aQexp
a−1 ·

(
1 + 1

4·Qbs

)Qbs

)
.

Using the inequality
(
1 + x

n

)n ≤ exp(x) for x, n > 0,

∆λ ≤ log2

(√
2

a
a−1

+1 · exp(1/4)2
)

= log2

(√
2

a
a−1

+1 · 2
)

≤ 2.
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B Proof of Lemma 7
Proof. We note p1(z) the probability that z ∈ Z (with a uniquely associated z0) is output by
SamplerZ in a given iteration. It holds that:

p1(z) =
ρσmax(z0)

ρσmax(Z+)︸ ︷︷ ︸
P[BaseSampler→z0]

· 1

2︸︷︷︸
P[b]

· σmin

σ
· ρσ,µ(z)

ρσmax(z0)︸ ︷︷ ︸
P[AcceptSample→true|z]

=
σmin · ρσ,µ(z)

2 · σ · ρσmax(Z+)
.

The probability Ptrue that (AcceptSample→ true) in a given iteration is:

Ptrue = P[AcceptSample→ true] =
∑
z

p1(z) =
σmin · ρσ,µ(Z)

2 · σ · ρσmax(Z+)
. (5)

One can see in (5) that Ptrue is independent of the output z. This is unsurprising since a different
z is picked at each new iteration of the while loop, and each iteration’s running time is constant.

However, it is not obvious from (5) that Ptrue is independent of σ and µ; we now show that
it is essentially the case. Since σ ≥ η+ϵ (Zn) ≥ η+ϵ/n(Z) ≥ ηϵ/n(Z), it holds from [26, Lemma 2.7]
that:

ρσ,µ(Z) ∈
[
1− ϵ/n

1 + ϵ/n
, 1

]
· ρσ(Z). (6)

It is now helpful to bound ρσ(Z). By the Poisson summation formula:

ρσ(Z) = σ
√
2π ·

1 + 2
∑
i≥1

exp(−2i2π2σ2)

 . (7)

For any σ > 1, it holds that
∑

i≥1 exp(−2i2π2σ2) ∈ exp(−2π2σ2) ·
[
1, 1 + 2−80

]
. Moreover, it

follows from (3) that exp(−2π2σ2) ≤ ϵ
2n . Combined this fact with (7) yields:

σ
√
2π ≤ ρσ(Z) ≤ σ

√
2π ·

(
1 + (1 + 2−80) · ϵ

n

)
(8)

Finally, combining (5), (6) and (8) yields:

Ptrue(σ, µ) ∈
σmin ·

√
2π

2 · ρσmax(Z+)
·
(
1, 1 +

(1 + 2−80)ϵ

n

)
. (9)

This concludes the proof.

C Proof of Theorem 8
Before proving Theorem 8, we will need a preliminary lemma. Note that this lemma cannot be
proven in a black-box way using Lemma 3 since the relative error between any two distrinct
geometric distributions is infinite.

Lemma 10. Let P and Q be geometric distributions of parameters p, q ≥ C for a constant
C ≥ 0. Suppose there exists δ = o(1/(a+ 1)) such that:

e−δ ≤ p/q ≤ eδ,
e−δ ≤ (1− p)/(1− q) ≤ eδ.

Then the Rényi divergence between P and Q is bounded as follows:

Ra(P∥Q) ≲ 1 +
a(1− p)δ2

p2

(
∼ 1 +

a(1− q)δ2

q2

)
.
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Proof. The beginning of the proof follows the one of [52, Lemma 3], but makes a more precise
estimation. Let fa : (x, y) 7→ ya

(x+y)a−1 . We compute values of fa and its derivatives around (0, y):

fa(x, y) = y for x = 0
∂fa
∂x (x, y) = 1− a for x = 0

∂2fa
∂x2 (x, y) = a(a− 1)ya(x+ y)−a−1

≤ a(a−1)

e−(a+1)δy
for |x+ y| ≤ eδ · y

We now use partial Taylor bounds. If |xk| ≤ (eδk − 1) · yk, then:

fa(xk, yk) ≤ fa(0, y) +
∂fa
∂x

(0, yk) · xk +
a(a− 1)(eδk − 1)2

2e−(a+1)δk
· yk

We take yk = P(k) and xk = Q(k) − P(k), and note that e−kδ ≤ P(k)/Q(k) ≤ ekδ, hence
δk ≤ kδ. Summing all over the support of P gives:

Ra
a(P∥Q) ≤ 1 +

a(a− 1)

2

∑
k∈Z+

(ekδ − 1)2

e−(a+1)kδ
· (1− p)k−1p (10)

≤ 1 +
pa(a− 1)

2(1− p)
·
(
2(1− p)2δ2

p3
+O

(
aδ3(p− 1)3

p4

))
(11)

≲ 1 +
a(a− 1)(1− p)δ2

p2

To compute the sum in (10), we expanded (ekδ−1)2, which then gives us three distinct geometric
sums which all converge since δ = o(1/(a + 1)), and for which closed formulae are known. A
tedious but easy Taylor expansion then gives us 11, at which point we can conclude.

We now prove Theorem 8.

Proof. Let T0 denote the running time of one iteration of the while loop in Algorithm 1. It is
clear that steps 2 to 5 are isochronous. On the other hand, it is also clear that AcceptSample
(Algorithm 2) is isochronous; indeed, all its atomic operations are isochronous and each iteration
of its while loop has a constant probability 1− 2−8 of being the last one. We can conclude that
T0 follows a distribution which is independent of σ, µ, z.

Let us denote by Iσ,µ (resp. I) the number of iterations of the while loop when each iteration
accepts with probability Ptrue (resp. p). By Lemma 7, Iσ,µ (resp. I) follows a geometric law
of parameter Ptrue (resp. p). The relative error between Ptrue and p is upper bounded by
δ = (1+2−80)ϵ

n ·max(1, p
1−p). It then follows from Lemma 10 that:

Ra(Iσ,µ∥I) ≲ 1 +
a(1− p)δ2

p2

≲ 1 +
aϵ2max(1, 1−p

p )2

n2(1− p)

Finally, the total running time T of Algorithm 1 is a function of the running time of each
iteration and the number of iterations: T = f(T0, I) for some function f . This allows to apply
once again the data-processing inequality:

Ra(Tσ,µ∥T ) = Ra(f(T0, Iσ,µ)∥f(T0, I)) ≤ Ra(Iσ,µ∥I),

which concludes the proof.
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D Proof of Corollary 9

Proof. Let D denote the output distribution of g(SamplerZ(σ, µ)). In the ideal case, we can
consider without loss of generality that the adversary can query the joint distribution (D,T ),
where T is as in the proof of Theorem 8 and is thus independent from σ, µ. In the real case,
the adversary learns the runtime of each call to SamplerZ(σ, µ). Since we showed in the proof of
Theorem 8 that the runtime is independent of the output z, we can model it as the distribution
Tσ,µ described in the proof of Theorem 8, and the adversary has access to (D,Tσ,µ).

Let P0, P1 denote the success probability of A in the ideal and real cases, respectively. Taking
a = λ gives:

P1 ≤
[
P0 ·Ra((D,Tσ,µ)

Qs∥(D,T )Qs)
](a−1)/a (12)

≤
[
P0 ·Ra((D,Tσ,µ)∥(D,T ))Qs

](a−1)/a (13)

≤
[
P0 ·Ra(Tσ,µ∥T )Qs

](a−1)/a (14)

≲

P0 ·

(
1 +

aϵ2max(1, 1−p
p )2

n2(1− p)

)Qs
(a−1)/a

(15)

≲
[
P0 ·

(
1 +

1

n ·Qs

)Qs
](λ−1)/λ

(16)

≲ 2−(λ−1) · e1/n (17)

Hereabove, (12) uses the probability preservation property of the Renyi divergence, and (13)
uses its multiplicativity. We previously showed that D and Tσ,µ are independent, thus we can
discard D in (14). We then apply Theorem 8 to get (15). We replace ϵ by 1√

λQs
, take a = λ and

max(1, 1−p
p )2 ≤ n(1− p) to obtain (16). Finally, we use the identity (1+ x/k)k ≤ ex and replace

P0 by 2−λ to get (17).

E Impact of the scaling factor in Falcon
We now study the impact of the scaling factor σmin

σ ≤ σmin
σmax

on the running time for the particular
case of Falcon. There, each σ verifies σmin ≤ σ ≤ σmax, where σmin = η+ϵ (Zn) and σmax =

σmin · maxi ∥b̃i∥
mini ∥b̃i∥

. The b̃i are the Gram-Schmidt vectors of the secret, short basis B. In Falcon, it
holds that:

max
i
∥b̃i∥ ≤ 1.17

√
q (18)

min
i
∥b̃i∥ ≥

√
q/1.17 (19)

By construction, (18) is true (Falcon enforces it at key generation). To prove (19), we rely on a
peculiar property of Falcon’s private bases: symplecticity. Let f, g, F,G be such that fG−gF = q.
Let:

J =

[
0 1

−1 0

]
and B =

[
g −f
G −F

]
.

This form of B is indeed the one used in Falcon. It has been observed in [24] that B is q-
symplectic, that is, it verifies:

Bt × J×B = q · J. (20)
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As per [24, Corollary 1], this implies that for any i, ∥b̃2n+1−i∥ = q/∥b̃i∥. Combining this with
(18) yields (19). Thus σmin

σmax
≤ (1.17)−2 ≈ 0.73, which means a non-negligible but reasonable

impact on the running time of the sampler.

F Additional information on SAGA

F.1 Univariate tests

An example of the standard outputs of the univariate tests in SAGA is shown in Listing 1.1.� �
>> python3 # initialize python
>> import saga as test # import the test suite
>> a = test. UnivariateSamples (0, 1.5 , data) # run tests on data
>> a # print the results

Testing a Gaussian sampler with center = 0 and sigma = 1.5
Number of samples : 10000

Moments | Expected Empiric
---------+----------------------
Mean: | 0.00000 -0.01260
St. dev. | 1.50000 1.49514
Skewness | 0.00000 -0.03414
Kurtosis | 0.00000 -0.00494

Chi -2 statistic : 5.98872465536634
Chi -2 p- value : 0.8162096584746129 ( should be > 0.001)

How many outliers ? 0

Is the sample valid ? True� �
Listing 1.1: Output statistics on univariate Gaussian samples.

F.2 Multivariate tests

An example of the standard outputs of the multivariate tests in SAGA is shown in Listing 1.2.
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>> python3 # initialize python environment
>> import saga as test # import the test suite
>> sk ,u = test. test_sig (256 , 1000) # generate your multivariate data
>> u # print the results

Testing a centered multivariate Gaussian of dimension = 2048 and sigma = 163.072
Number of samples : 10000

The test checks that the data corresponds to a multivariate Gaussian , by doing the
following :

1 - Print the covariance matrix ( visual check ). One can also plot
the covariance matrix by using self. show_covariance ()).

2 - Perform the Doornik - Hansen test of multivariate normality .
The p- value obtained should be > 0.001

3 - Perform a custom test called covariance diagonals test.
4 - Run a test of univariate normality on each coordinate

1 - Covariance matrix (2048 x 2048) :
[[ 1.0115 -0.0268 -0.0112 ... 0.0102 -0.0043 0.004 ]

[ -0.0268 1.0067 -0.0057 ... 0.004 0.0063 0.0286]
[ -0.0112 -0.0057 1.0059 ... 0.0008 -0.0023 0.0052]
...
[ 0.0102 0.004 0.0008 ... 0.986 0.0192 -0.0062]
[ -0.0043 0.0063 -0.0023 ... 0.0192 0.9905 0.0012]
[ 0.004 0.0286 0.0052 ... -0.0062 0.0012 1.0129]]

2 - P- value of Doornik - Hansen test: 0.7064

3 - P- value of covariance diagonals test: 0.0497

4 - Gaussian coordinates (w/ st. dev. = sigma )? 2042 out of 2048

>> u. univariates # returns univariate tests on each ’row ’

Testing a Gaussian sampler with center = 0 and sigma = 164.46976732471182
Number of samples : 1000

Moments | Expected Empiric
---------+----------------------
Mean: | 0.00000 -2.01000
St. dev. | 164.46977 160.92979
Skewness | 0.00000 0.01555
Kurtosis | 0.00000 -0.00831

Chi -2 statistic : 97.98787878787878
Chi -2 p- value : 0.2650065102842649 ( should be > 0.001)

How many outliers ? 0

Is the sample valid ? True� �
Listing 1.2: Output statistics on multivariate Gaussian samples.

F.3 Supplementary, visual, ‘sanity check’ tests

We also provide further sanity check functionality in the code, which will be particularly useful
if any of the statistical tests above fail to conform to the expected values. D’Agostino et al. [12]
suggested the best way to do this is via graphical methods, thus we provide visuals for both
univariate and multivariate Gaussians.

For univariate Gaussians, we provide plots of the observed and expected probability density
functions (Figure 2a) and quantile-quantile (QQ) plots (Figure 2b), shown in Figure 2. The QQ
plot also provides the coefficient of determination, R2 ∈ [0, 1), which measures how well the
observed data follows the distribution we expect. There are many different errors which can be
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observed in QQ plots, from sampling biases to data skewness, but there are some useful guides
[22], helpful websites89, and online tools10 to help analysing these plots.
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Figure 2: Visual representation of the expected form of univariate Gaussian samples.

For multivariate distributions, it is typically difficult to visualise any statistical properties of
a distribution beyond three dimensions. However, there is a method for checking multivariate
normality using a distribution’s Mahalanobis distance [37], which is a measure of the distance
between certain points to a certain distribution. More specifically, it is a multi-dimensional
generalisation of measuring how many standard deviations a point is away from a distribution.
These sorted distances should follow a chi-square distribution [33], thus we can visualise this
as a QQ-plot comparing the Mahalanobis distance versus the expected chi-square distribution.
Figure 3 shows an example of our proposed multivariate normality graphical respresentation.

A final test we provide is for checking the rejection rate of the Gaussian samplers. Theoret-
ically, the rejection rates of the Gaussian samples should decrease geometrically. An example of
what the rejection rates should look like for a fixed σ are provided in Figure 4.

In order to check the rejection rates, the test suite requires the additional output of the
rejection rate associated to each sample. An example of this is shown in Listings 1.3 and 1.4,
which shows the typical Gaussian sampler (Listing 1.3) and the Gaussian sampler which also
outputs the repetitions for each sample (Listing 1.4).

8 https://stats.stackexchange.com/questions/101274/how-to-interpret-a-qq-plot.
9 https://data.library.virginia.edu/understanding-q-q-plots/.

10 https://xiongge.shinyapps.io/QQplots/

https://stats.stackexchange.com/questions/101274/how-to-interpret-a-qq-plot
https://data.library.virginia.edu/understanding-q-q-plots/
https://xiongge.shinyapps.io/QQplots/
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Figure 3: Visual representation of the expected form of univariate Gaussian samples.

� �
def samplerz (center , sigma ):

assert ( sigma < sigma0 )
assert ( sigma >= sigmin )
c0 = center - floor ( center )
sf = sigma / sigma0

while (1):
z0 = sampler0 ()
b = randint (0, 1)
z = ((b << 1) - 1) * z0 + b
x = ((z - c0) ** 2) / (2 * ( sigma ** 2)) -

(z0 ** 2) / (2 * ( sigma0 ** 2))

if berexp (x, sf) is True:

return floor ( center ) + z� �
Listing 1.3: Standard Gaussian sampler.

� �
def samplerz_rep (center , sigma ):

assert ( sigma < sigma0 )
assert ( sigma >= sigmin )
c0 = center - floor ( center )
sf = sigma / sigma0
cnt = 0 # repetition counter
while (1):

z0 = sampler0 ()
b = randint (0, 1)
z = ((b << 1) - 1) * z0 + b
x = ((z - c0) ** 2) / (2 * ( sigma ** 2)) -

(z0 ** 2) / (2 * ( sigma0 ** 2))
cnt += 1 # increment counter
if berexp (x, sf) is True:

# output count with value
return floor ( center ) + z, cnt� �

Listing 1.4: Gaussian sampler with repetitions.
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Figure 4: Expected geometric decrease in rejection numbers during Gaussian sampling.
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